A C 0 interior penalty method for m th-Laplace equation
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 6, pp. 2081-2103

In this paper, we propose a C0 interior penalty method for mth-Laplace equation on bounded Lipschitz polyhedral domain in ℝ$$, where m and d can be any positive integers. The standard H1-conforming piecewise r-th order polynomial space is used to approximate the exact solution u, where r can be any integer greater than or equal to m. Unlike the interior penalty method in Gudi and Neilan [IMA J. Numer. Anal. 31 (2011) 1734–1753], we avoid computing D$$ of numerical solution on each element and high order normal derivatives of numerical solution along mesh interfaces. Therefore our method can be easily implemented. After proving discrete H$$-norm bounded by the natural energy semi-norm associated with our method, we manage to obtain stability and optimal convergence with respect to discrete H$$-norm. The error estimate under the low regularity assumption of the exact solution is also obtained. Numerical experiments validate our theoretical estimate.

DOI : 10.1051/m2an/2022074
Classification : 65N30, 65L12
Keywords: $$0 interior penalty, $$th-Laplace equation, stabilization, error estimates
@article{M2AN_2022__56_6_2081_0,
     author = {Chen, Huangxin and Li, Jingzhi and Qiu, Weifeng},
     title = {A  $C^0$ interior penalty method for $m${th-Laplace} equation},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {2081--2103},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {6},
     doi = {10.1051/m2an/2022074},
     mrnumber = {4504130},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2022074/}
}
TY  - JOUR
AU  - Chen, Huangxin
AU  - Li, Jingzhi
AU  - Qiu, Weifeng
TI  - A  $C^0$ interior penalty method for $m$th-Laplace equation
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2022
SP  - 2081
EP  - 2103
VL  - 56
IS  - 6
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2022074/
DO  - 10.1051/m2an/2022074
LA  - en
ID  - M2AN_2022__56_6_2081_0
ER  - 
%0 Journal Article
%A Chen, Huangxin
%A Li, Jingzhi
%A Qiu, Weifeng
%T A  $C^0$ interior penalty method for $m$th-Laplace equation
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2022
%P 2081-2103
%V 56
%N 6
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2022074/
%R 10.1051/m2an/2022074
%G en
%F M2AN_2022__56_6_2081_0
Chen, Huangxin; Li, Jingzhi; Qiu, Weifeng. A  $C^0$ interior penalty method for $m$th-Laplace equation. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 6, pp. 2081-2103. doi: 10.1051/m2an/2022074

[1] P. F. Antonietti, G. Manzini and M. Verani, The conforming virtual element method for polyharmonic problems. Comput. Math. Appl. 79 (2020) 2021–2034. | MR | DOI

[2] S. Balay et al., PETSc Web page. https://petsc.org/ (2021).

[3] J. W. Barrett, S. Langdon and R. Nürnberg, Finite element approximation of a sixth order nonlinear degenerate parabolic equation. Numer. Math. 96 (2004) 401–434. | MR | Zbl | DOI

[4] J. H. Bramble and M. Zlámal, Triangular elements in the finite element method. Math. Comput. 24 (1970) 809–820. | MR | Zbl | DOI

[5] J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system I. Interfacial free energy. J. Chem. Phys. 28 (1958) 258–267. | DOI

[6] A. S. Chang and W. Chen, A note on a class of higher order comformally covariant equations. Discrete Continuous Dyn. Syst. 7 (2001) 275–281. | MR | Zbl | DOI

[7] L. Chen and X. Huang, Nonconforming virtual element method for 2 m th order partial differential equations in n . Math. Comput. 89 (2020) 1711–1744. | MR | DOI

[8] H. Chen, A. Pani and W. Qiu, A mixed finite element scheme for biharmonic equation with variable coefficient and von Kármán equations. Preprint: (2020). | arXiv | MR

[9] M. Cheng and J. A. Warren, An efficient algorithm for solving the phase field crystal model. J. Comput. Phys. 227 (2008) 6241–6248. | MR | Zbl | DOI

[10] C. M. Elliott and S. Zheng, On the Cahn-Hilliard equation. Arch. Ration. Mech. Anal. 96 (1986) 339–357. | MR | Zbl | DOI

[11] G. Engel, K. Garikipati, T. J. R. Hughes, M. G. Larson, L. Mazzei and R. L. Taylor, Continuous/discontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity. Comput. Methods Appl. Mech. Eng. 191 (2002) 3669–3750. | MR | Zbl | DOI

[12] T. Gudi, A new error analysis for discontinuous finite element methods for linear elliptic problems. Math. Comput. 79 (2010) 2169–2189. | MR | Zbl | DOI

[13] T. Gudi and M. Neilan, An interior penalty method for a sixth-order elliptic equation. IMA J. Numer. Anal. 31 (2011) 1734–1753. | MR | Zbl | DOI

[14] J. Hu and S. Zhang, The minimal conforming H k finite element space on n rectangular grids. Math. Comput. 84 (2015) 563–579. | MR | Zbl | DOI

[15] J. Hu and S. Zhang, A canonical construction of H m -nonconforming triangular elements. Ann. Appl. Math. 33 (2017) 266–288. | MR

[16] J. Hu, T. Lin and Q. Wu, A construction of C r conforming finite element spaces in any dimension. Preprint: (2021). | arXiv | MR

[17] X. Huang, Nonconforming virtual element method for 2 m th order partial differential equations in n with m > n . Calcolo 57 (2020) 1–38. | MR | DOI

[18] N. A. Kudryashov, Highly dispersive optical solitons of the generalized nonlinear eighth-order Schrödinger equation. Optik 206 (2020) 164335. | DOI

[19] M. Schedensack, A new discretization for m th-Laplace equations with arbitrary polynomial degrees. SIAM J. Numer. Anal. 54 (2016) 2138–2162. | MR | DOI

[20] E. Süli and I. Mozolevski, h p -version interior penalty DGFEMs for the biharmonic equation. Comput. Methods Appl. Mech. Eng. 196 (2007) 1851–1863. | MR | Zbl | DOI

[21] C. Wang and S. M. Wise, An energy stable and convergent finite-difference scheme for the modified phase field crystal equation. SIAM J. Numer. Anal. 49 (2011) 945–969. | MR | Zbl | DOI

[22] M. Wang and J. Xu, Minimal finite element spaces for 2 m -th-order partial differential equation in n . Math. Comput. 82 (2013) 25–43. | MR | Zbl | DOI

[23] S. M. Wise, C. Wang and J. S. Lowengrub, An energy-stable and convergent finite difference scheme for the phase field crystal equation. SIAM J. Numer. Anal. 47 (2009) 2269–2288. | MR | Zbl | DOI

[24] S. Wu and J. Xu, 𝒫 m interior penalty nonconforming finite element methods for 2 m -th order PDEs in n . Preprint: (2017). | arXiv

[25] S. Wu and J. Xu, Nonconforming finite element spaces for 2 m th order partial differential equations on n simplicial grids when m = n + 1 . Math. Comput. 88 (2019) 531–551. | MR | DOI

Cité par Sources :