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A 𝐶0 INTERIOR PENALTY METHOD FOR 𝑚TH-LAPLACE EQUATION

Huangxin Chen1, Jingzhi Li2 and Weifeng Qiu3,*

Abstract. In this paper, we propose a 𝐶0 interior penalty method for 𝑚th-Laplace equation on
bounded Lipschitz polyhedral domain in R𝑑, where 𝑚 and 𝑑 can be any positive integers. The standard
𝐻1-conforming piecewise 𝑟-th order polynomial space is used to approximate the exact solution 𝑢,
where 𝑟 can be any integer greater than or equal to 𝑚. Unlike the interior penalty method in Gudi and
Neilan [IMA J. Numer. Anal. 31 (2011) 1734–1753], we avoid computing 𝐷𝑚 of numerical solution on
each element and high order normal derivatives of numerical solution along mesh interfaces. Therefore
our method can be easily implemented. After proving discrete 𝐻𝑚-norm bounded by the natural energy
semi-norm associated with our method, we manage to obtain stability and optimal convergence with
respect to discrete 𝐻𝑚-norm. The error estimate under the low regularity assumption of the exact
solution is also obtained. Numerical experiments validate our theoretical estimate.
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1. Introduction

We consider the 𝑚th-Laplace equation

(−1)𝑚∆𝑚𝑢 = 𝑓 in Ω, (1.1a)

𝑢 =
𝜕𝑢

𝜕𝜈
= · · · =

𝜕𝑚−1𝑢

𝜕𝜈𝑚−1
= 0 on 𝜕Ω, (1.1b)

where 𝑚 is an arbitrary positive integer, Ω is a bounded Lipschitz polyhedral domain in R𝑑 (𝑑 = 1, 2, 3, · · · ),
and 𝜈 is the outward unit normal vector field along 𝜕Ω. The source term 𝑓 ∈ 𝐻−1(Ω).

Several works have been done to solve numerically (1.1). Standard 𝐻𝑚 conforming finite elements space
requires 𝐶𝑚−1 continuity and leads to complicated construction of finite element space and lots of degrees of
freedom when 𝑚 is large. Bramble and Zlámal [4] studied the 𝐻𝑚 conforming finite elements space on the two
dimensional triangular meshes. Meanwhile, a 𝐻𝑚 conforming finite element space is developed by Hu and Zhang
on rectangular grids for arbitrary 𝑑 in [14]. Recently, Hu et al. introduce a 𝐻𝑚-conforming finite element space
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on simplicial meshes for any 𝑑 in [16]. The finite element space in [16] contains piecewise 𝑟-th order polynomials
with 𝑟 ≥ 2𝑑𝑚 + 1. Therefore, the polynomial order of finite element space in [16] is quite big. Though up to
this moment they have above mentioned restrictions, conforming 𝐻𝑚 finite element spaces are desirable in both
theoretical analysis and practice. In order to simplify the construction of𝐻𝑚 finite element space, alternative𝐻𝑚

nonconforming finite element space is introduced in several works. In [22], a 𝐻𝑚 nonconforming finite element
space (named Morley–Wang–Xu elements) is introduced for 𝑚 ≤ 𝑑. Besides, Hu and Zhang also considered the
𝐻𝑚 nonconforming finite element space in [15] on triangular meshes for 𝑑 = 2. The finite element space in [22]
is generalized for 𝑚 = 𝑑+ 1 by Wu and Xu [25]. Recently in [24], it is further generalized for arbitrary 𝑚 and
𝑑 but with stabilization along mesh interface in order to balance the weak continuity and the penalty terms. In
order to obtain stability and optimal convergence in some discrete 𝐻𝑚-norm, Wang and Xu [22], Wu and Xu
[24,25] propose to compute numerical approximation to 𝐷𝑚𝑢, such that their implementation may become quite
complicated as 𝑚 is large. The finite element spaces in [4, 14] can be used to solve numerically (1.1) with any
source term 𝑓 ∈ 𝐻−𝑚(Ω). However, the implementation of these conforming and nonconforming finite element
spaces can be quite challenging for large 𝑚. Virtual element methods have been investigated for (1.1). In [1], a
conforming 𝐻𝑚 virtual element method is introduced for convex polygonal domain in R2. The finite element
space in [1] contains piecewise 𝑟-th order polynomials, where 𝑟 ≥ 2𝑚 − 1. The virtual element method in [1]
needs strong assumption on regularity of 𝑓 (𝑓 ∈ 𝐻𝑟−𝑚+1(Ω)) to achieve optimal convergence (see [1], Thm. 4.2).
In [7], a nonconforming 𝐻𝑚 virtual element method is developed for bounded Lipschitz polyhedral domain in
R𝑑, where 𝑑 can be any positive integer. The design of finite element space in [7], which contains piecewise 𝑟-th
(𝑟 ≥ 𝑚) order polynomials, is based on a generalized Green’s identity for 𝐻𝑚 inner product. It is assumed
that 𝑚 ≤ 𝑑 in [7]. In [17], the virtual element method in [7] is extended for 𝑚 > 𝑑. Besides above numerical
methods based on primary formulations of (1.1), a mixed formulation based on Helmholtz decomposition for
tensor valued function is introduced in [19] for two dimensional domain.

We propose a 𝐶0 interior penalty method (2.2) for (1.1) for arbitrary positive integers 𝑚 and 𝑑. The finite
element space of (2.2) is the standard 𝐻1-conforming piecewise 𝑟-th order polynomials, where 𝑟 ≥ 𝑚. The
design of (2.2) avoids computing 𝐷𝑚 of numerical solution on each element and high order normal derivatives of
numerical solution along mesh interfaces. In fact, equation (2.2) only gets involved with calculation of high order
multiplicity of Laplace of numerical solution (∆𝑖𝑢ℎ for 1 ≤ 𝑖 ≤ 𝑚) and the gradient of high order multiplicity
of Laplace of numerical solution (∇∆𝑖𝑢ℎ for 0 ≤ 𝑖 ≤ 𝑚 − 1) on both elements and mesh interfaces. Therefore
our method (2.2) can be easily implemented, even when 𝑚 is large and 𝑑 = 3. After proving (Thm. 3.4) that
discrete 𝐻𝑚-norm (see Def. 3.1) is bounded by the natural energy semi-norm associated with (2.2), we manage
to show our method (2.2) has stability and optimal convergence on bounded Lipschitz polyhedral domain in R𝑑

with respect to the discrete 𝐻𝑚-norm, for any positive integers 𝑚 and 𝑑. Roughly speaking, we have

‖𝑢ℎ‖𝑚,ℎ ≤ 𝐶‖𝑓‖𝐻−1(Ω),

‖𝑢ℎ − 𝑢‖𝑚,ℎ ≤ 𝐶ℎmin(𝑟+1−𝑚,𝑠−𝑚)‖𝑢‖𝐻𝑠(Ω),

where 𝑠 ≥ 2𝑚− 1. We refer to Theorems 3.6 and 3.7 for detailed descriptions on stability and optimal conver-
gence. The design and analysis of our method (2.2) can be easily generalized for nonlinear partial differential
equations with (−1)𝑚∆𝑚𝑢 as their leading term. We would like to point out that our method (2.2) is not a
generalization of the interior penalty method for sixth-order elliptic equation (𝑚 = 3) in (3.4), (3.5) of [13].
Actually, the method in [13] needs to calculate numerical approximation to 𝐷3𝑢.

If the exact solution of (1.1) is under the low regularity assumption, Gudi et al. have applied the analysis
technique from the a posteriori error analysis to derive the error estimates for the interior penalty methods for
the 2nd-order, 4th-order and 6th-order elliptic equations under the low regularity assumptions in [12, 13]. In
this paper, we shall extend the analysis by Gudi et al. for the proposed 𝐶0 interior penalty methods for (1.1)
when 𝑚 ≥ 2. Assuming 𝑢 ∈ 𝐻𝑚

0 (Ω) for (1.1), we have

‖𝑢− 𝑢ℎ‖𝑚,ℎ ≤ 𝐶 inf
𝑣∈𝑉ℎ

(‖𝑢− 𝑣‖𝑚,ℎ + osc𝑚(𝑓)),



𝐶0 INTERIOR PENALTY METHOD FOR 𝑀TH-LAPLACE EQUATION 2083

where 𝑉ℎ is the 𝐶0 conforming finite element space and osc𝑚(𝑓) is the oscillation term defined in (4.6).
The numerical method considered in this paper works for any positive integers 𝑚 and 𝑑 from theoretical

viewpoint. It can be applied to the practical high order equations. For instance, the modeling for plates in
linear elasticity results in consideration of fourth-order partial differential equations [11]. Modeling in material
science usually applies the fourth-order equation such as the Cahn–Hilliard equation [5,10] and the sixth-order
equation such as the thin-film equations [3] and the phase field crystal model [9,21,23]. Recently, an eighth-order
equation was considered for the nonlinear Schrödinger equation in [18]. As mentioned in [22], although there
are rare practical applications for general higher order equations, the elliptic equations of order 𝑚 = 𝑑/2 in any
dimension have been used in differential geometry [6]. One can also extends the numerical methods and analysis
for the solution of nonlinear Hamilton–Jacobi–Bellman equation and other phase-field models.

In the next section, we present the 𝐶0 interior penalty method. In Section 3, we prove stability and optimal
convergence with respect to discrete 𝐻𝑚-norm (see Def. 3.1). In Section 4, we show the error estimates under
the low regularity assumption of the exact solution. In Section 5, we provide numerical experiments.

2. 𝐶0 interior penalty method

In this section, firstly we give notations to define the 𝐶0 interior penalty method for (1.1). Then in Section 2.1,
we derive the 𝐶0 interior penalty method for any 𝑚 ≥ 1. Finally in Section 2.2, we provide concrete examples
of the method for 𝑚 = 1, 2, 3, 4.

Let Tℎ be a quasi-uniform conforming simplicial mesh of Ω. Here we define ℎ = max𝐾∈Tℎ
ℎ𝐾 where ℎ𝐾 is

the diameter of the element 𝐾 ∈ Tℎ. We denote by Fℎ, Fint
ℎ and F𝜕

ℎ the collections of all (𝑑 − 1)-dimensional
faces, interior faces and boundary faces of Tℎ, respectively. Obviously, Fℎ = Fint

ℎ ∪ F𝜕
ℎ. For any positive integer

𝑟, we define 𝑉ℎ = 𝐻1
0 (Ω) ∩ 𝑃𝑟(Tℎ), where 𝑃𝑟(Tℎ) = {𝑣ℎ ∈ 𝐿2(Ω) : 𝑣ℎ|𝐾 ∈ 𝑃𝑟(𝐾),∀𝐾 ∈ Tℎ}.

We introduce some trace operators. For any interior face 𝐹 ∈ Fint
ℎ , let 𝐾−,𝐾+ ∈ Tℎ be two elements sharing

𝐹 . We denote by 𝜈− and 𝜈+ the outward unit normal vectors along 𝜕𝐾− and 𝜕𝐾+, respectively. For scalar
function 𝑣 : Ω → R and vector field 𝜑 : Ω → R𝑑, which may be discontinuous across Fint

ℎ , we define the following
quantities. For 𝑣− := 𝑣|𝐾− , 𝑣+ := 𝑣|𝐾+ , 𝜑− := 𝜑|𝐾− and 𝜑+ := 𝜑|𝐾+ , we define

{{𝑣}} =
1
2
(︀
𝑣−|𝐹 + 𝑣+|𝐹

)︀
, {{𝜑}} =

1
2
(︀
𝜑−|𝐹 + 𝜑+|𝐹

)︀
,

J𝑣K = 𝑣−𝜈−|𝐹 + 𝑣+𝜈+|𝐹 , J𝜑K = 𝜑− · 𝜈−|𝐹 + 𝜑+ · 𝜈+|𝐹 ;

if 𝐹 ∈ 𝜕𝐾+ ∩ 𝜕Ω, we define

{{𝑣}} = 𝑣+|𝐹 , {{𝜑}} = 𝜑+|𝐹 , J𝑣K = 𝑣+𝜈|𝐹 , J𝜑K = 𝜑+ · 𝜈|𝐹 .

We also define J𝑣K𝐽 |𝐹 = 𝑣−|𝐹 − 𝑣+|𝐹 for 𝐹 ∈ Fint
ℎ and J𝑣K𝐽 |𝐹 = 𝑣+|𝐹 for 𝐹 ∈ 𝜕Ω.

2.1. Derivation of 𝐶0 interior penalty method

We assume the exact solution 𝑢 ∈ 𝐻2𝑚−1(Ω). For any 𝑣ℎ ∈ 𝑉ℎ, via 𝑚-times integrating by parts,

((−1)𝑚∆𝑚𝑢, 𝑣ℎ)Ω

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(︀
∆𝑚̃𝑢,∆𝑚̃𝑣ℎ

)︀
Tℎ
−
∑︀𝑚̃−1

𝑖=0 ⟨∆𝑚̃+𝑖𝑢, 𝜕𝜈∆𝑚̃−𝑖−1𝑣ℎ⟩𝜕Tℎ
+
∑︀𝑚̃−2

𝑖=0

⟨︀
𝜕𝜈∆𝑚̃+𝑖𝑢,∆𝑚̃−𝑖−1𝑣ℎ

⟩︀
𝜕Tℎ

,

if 𝑚 = 2𝑚̃ (𝑚 is an even number);(︀
∇∆𝑚̃𝑢,∇∆𝑚̃𝑣ℎ

)︀
Tℎ

+
∑︀𝑚̃−1

𝑖=0 ⟨∆𝑚̃+𝑖+1𝑢, 𝜕𝜈∆𝑚̃−𝑖−1𝑣ℎ⟩𝜕Tℎ
−
∑︀𝑚̃−1

𝑖=0

⟨︀
𝜕𝜈∆𝑚̃+𝑖𝑢,∆𝑚̃−𝑖𝑣ℎ

⟩︀
𝜕Tℎ

,

if 𝑚 = 2𝑚̃+ 1 (𝑚 is an odd number).

Since 𝑢 ∈ 𝐻2𝑚−1(Ω), for any 𝑣ℎ ∈ 𝑉ℎ,

((−1)𝑚∆𝑚𝑢, 𝑣ℎ)Ω (2.1)
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=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(︀
∆𝑚̃𝑢,∆𝑚̃𝑣ℎ

)︀
Tℎ
−
∑︀𝑚̃−1

𝑖=0

⟨︀{︀{︀
∆𝑚̃+𝑖𝑢

}︀}︀
,
q
∇∆𝑚̃−𝑖−1𝑣ℎ

y⟩︀
Fℎ

+
∑︀𝑚̃−2

𝑖=0

⟨︀{︀{︀
∇∆𝑚̃+𝑖𝑢

}︀}︀
,
q
∆𝑚̃−𝑖−1𝑣ℎ

y⟩︀
Fℎ
,

if 𝑚 = 2𝑚̃ (𝑚 is an even number);(︀
∇∆𝑚̃𝑢,∇∆𝑚̃𝑣ℎ

)︀
Tℎ

+
∑︀𝑚̃−1

𝑖=0

⟨︀{︀{︀
∆𝑚̃+𝑖+1𝑢

}︀}︀
,
q
∇∆𝑚̃−𝑖−1𝑣ℎ

y⟩︀
Fℎ
−
∑︀𝑚̃−1

𝑖=0

⟨︀{︀{︀
∇∆𝑚̃+𝑖𝑢

}︀}︀
,
q
∆𝑚̃−𝑖𝑣ℎ

y⟩︀
Fℎ
,

if 𝑚 = 2𝑚̃+ 1 (𝑚 is an odd number).

Equation (2.1) inspires us to define the coupling term 𝐶ℎ in Definition 2.1.

Definition 2.1. For any 𝑤ℎ, 𝑣ℎ ∈ 𝑉ℎ, we define the coupling term 𝐶ℎ(𝑤ℎ, 𝑣ℎ) along mesh interface Fℎ by

𝐶ℎ(𝑤ℎ, 𝑣ℎ)

=

⎧⎨⎩−
∑︀𝑚̃−1

𝑖=0

⟨︀{︀{︀
∆𝑚̃+𝑖𝑤ℎ

}︀}︀
,
q
∇∆𝑚̃−𝑖−1𝑣ℎ

y⟩︀
Fℎ

+
∑︀𝑚̃−2

𝑖=0

⟨︀{︀{︀
∇∆𝑚̃+𝑖𝑤ℎ

}︀}︀
,
q
∆𝑚̃−𝑖−1𝑣ℎ

y⟩︀
Fℎ
, if 𝑚 = 2𝑚̃;∑︀𝑚̃−1

𝑖=0

⟨︀{︀{︀
∆𝑚̃+𝑖+1𝑤ℎ

}︀}︀
,
q
∇∆𝑚̃−𝑖−1𝑣ℎ

y⟩︀
Fℎ
−
∑︀𝑚̃−1

𝑖=0

⟨︀{︀{︀
∇∆𝑚̃+𝑖𝑤ℎ

}︀}︀
,
q
∆𝑚̃−𝑖𝑣ℎ

y⟩︀
Fℎ
, if 𝑚 = 2𝑚̃+ 1.

In order to define 𝐶0 interior penalty method, we need the stabilization term 𝑆ℎ in Definition 2.2.

Definition 2.2. For any 𝑤ℎ, 𝑣ℎ ∈ 𝑉ℎ, we define the stabilization term 𝑆ℎ(𝑤ℎ, 𝑣ℎ) along mesh interface Fℎ by

𝑆ℎ(𝑤ℎ, 𝑣ℎ)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑︀𝑚̃−1
𝑖=0 ℎ−(4𝑖+1)

⟨︀q
∇∆𝑚̃−𝑖−1𝑤ℎ

y
,
q
∇∆𝑚̃−𝑖−1𝑣ℎ

y⟩︀
Fℎ

+
∑︀𝑚̃−2

𝑖=0 ℎ−(4𝑖+3)
⟨︀q

∆𝑚̃−𝑖−1𝑤ℎ

y
,
q
∆𝑚̃−𝑖−1𝑣ℎ

y⟩︀
Fℎ
,

if 𝑚 = 2𝑚̃ (𝑚 is an even number);∑︀𝑚̃−1
𝑖=0 ℎ−(4𝑖+3)

⟨︀q
∇∆𝑚̃−𝑖−1𝑤ℎ

y
,
q
∇∆𝑚̃−𝑖−1𝑣ℎ

y⟩︀
Fℎ

+
∑︀𝑚̃−1

𝑖=0 ℎ−(4𝑖+1)
⟨︀q

∆𝑚̃−𝑖𝑤ℎ

y
,
q
∆𝑚̃−𝑖𝑣ℎ

y⟩︀
Fℎ
,

if 𝑚 = 2𝑚̃+ 1 (𝑚 is an odd number).

We would like to point out that 𝑆ℎ(𝑤ℎ, 𝑣ℎ) = 0 if 𝑚 = 1.
The 𝐶0 interior penalty method is to find 𝑢ℎ ∈ 𝑉ℎ, such that for any 𝑣ℎ,

𝑎ℎ(𝑢ℎ, 𝑣ℎ) = (𝑓, 𝑣ℎ)Ω, (2.2)

where⎧⎨⎩𝑎ℎ(𝑢ℎ, 𝑣ℎ) =
(︀
∆𝑚̃𝑢ℎ,∆𝑚̃𝑣ℎ

)︀
Tℎ

+ 𝐶ℎ(𝑢ℎ, 𝑣ℎ) + 𝐶ℎ(𝑣ℎ, 𝑢ℎ) + 𝜏𝑆ℎ(𝑢ℎ, 𝑣ℎ), if 𝑚 = 2𝑚̃;

𝑎ℎ(𝑢ℎ, 𝑣ℎ) =
(︀
∇∆𝑚̃𝑢ℎ,∇∆𝑚̃𝑣ℎ

)︀
Tℎ

+ 𝐶ℎ(𝑢ℎ, 𝑣ℎ) + 𝐶ℎ(𝑣ℎ, 𝑢ℎ) + 𝜏𝑆ℎ(𝑢ℎ, 𝑣ℎ), if 𝑚 = 2𝑚̃+ 1.
(2.3)

Here the parameter 𝜏 ≥ 1 shall be large enough but independent of ℎ.

2.2. Examples of 𝐶0 interior penalty method

– 𝑚 = 1.
The 𝐶0 interior penalty method for −∆𝑢 = 𝑓 is to find 𝑢ℎ ∈ 𝑉ℎ satisfying

(∇𝑢ℎ,∇𝑣ℎ)Ω = (𝑓, 𝑣ℎ)Ω, ∀𝑣ℎ ∈ 𝑉ℎ. (2.4)

– 𝑚 = 2.
The 𝐶0 interior penalty method for ∆2𝑢 = 𝑓 is to find 𝑢ℎ ∈ 𝑉ℎ satisfying

(∆𝑢ℎ,∆𝑣ℎ)Tℎ
− ⟨{{∆𝑢ℎ}}, J∇𝑣ℎK⟩Fℎ

− ⟨{{∆𝑣ℎ}}, J∇𝑢ℎK⟩Fℎ
(2.5)

+ 𝜏ℎ−1⟨J∇𝑢ℎK, J∇𝑣ℎK⟩Fℎ
= (𝑓, 𝑣ℎ)Ω, ∀𝑣ℎ ∈ 𝑉ℎ.

Actually, equation (2.5) is the 𝐶0 interior penalty method which replaces the discontinuous finite element
spaces in [20] with 𝐶0 finite element space.
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– 𝑚 = 3.
The 𝐶0 interior penalty method for −∆3𝑢 = 𝑓 is to find 𝑢ℎ ∈ 𝑉ℎ satisfying

(∇∆𝑢ℎ,∇∆𝑣ℎ)Tℎ
+
(︁⟨︀{︀{︀

∆2𝑢ℎ

}︀}︀
, J∇𝑣ℎK

⟩︀
Fℎ
− ⟨{{∇∆𝑢ℎ}}, J∆𝑣ℎK⟩Fℎ

)︁
(2.6)

+
(︁⟨︀{︀{︀

∆2𝑣ℎ

}︀}︀
, J∇𝑢ℎK

⟩︀
Fℎ
− ⟨{{∇∆𝑣ℎ}}, J∆𝑢ℎK⟩Fℎ

)︁
+ 𝜏
(︀
ℎ−3⟨J∇𝑢ℎK, J∇𝑣ℎK⟩Fℎ

+ ℎ−1⟨J∆𝑢ℎK, J∆𝑣ℎK⟩Fℎ

)︀
= (𝑓, 𝑣ℎ)Ω, ∀𝑣ℎ ∈ 𝑉ℎ.

It is easy to see that (2.6) is quite different from the interior penalty method in [13].
– 𝑚 = 4.

The 𝐶0 interior penalty method for ∆4𝑢 = 𝑓 is to find 𝑢ℎ ∈ 𝑉ℎ satisfying(︀
∆2𝑢ℎ,∆2𝑣ℎ

)︀
Tℎ

+
(︁
−
⟨︀{︀{︀

∆3𝑢ℎ

}︀}︀
, J∇𝑣ℎK

⟩︀
Fℎ

+
⟨︀{︀{︀
∇∆2𝑢ℎ

}︀}︀
, J∆𝑣ℎK

⟩︀
Fℎ
−
⟨︀{︀{︀

∆2𝑢ℎ

}︀}︀
, J∇∆𝑣ℎK

⟩︀
Fℎ

)︁
(2.7)

+
(︁
−
⟨︀{︀{︀

∆3𝑣ℎ

}︀}︀
, J∇𝑢ℎK

⟩︀
Fℎ

+
⟨︀{︀{︀
∇∆2𝑣ℎ

}︀}︀
, J∆𝑢ℎK

⟩︀
Fℎ
−
⟨︀{︀{︀

∆2𝑣ℎ

}︀}︀
, J∇∆𝑢ℎK

⟩︀
Fℎ

)︁
+ 𝜏
(︀
ℎ−5⟨J∇𝑢ℎK, J∇𝑣ℎK⟩Fℎ

+ ℎ−3⟨J∆𝑢ℎK, J∆𝑣ℎK⟩Fℎ
+ ℎ−1⟨J∇∆𝑢ℎK, J∇∆𝑣ℎK⟩Fℎ

)︀
= (𝑓, 𝑣ℎ)Ω, ∀𝑣ℎ ∈ 𝑉ℎ.

3. Analysis

In this section, firstly we prove Theorem 3.4, which states the discrete 𝐻𝑚-norm (see Def. 3.1) bounded by
the natural energy semi-norm associated with the 𝐶0 interior penalty method (2.2). Then we prove Theorem 3.6,
which shows the energy estimate of (2.2). Finally, we prove Theorem 3.7, which gives optimal convergence of
numerical approximation to 𝑢 in the discrete 𝐻𝑚-norm. Throughout this paper, 𝐶 with or without a subscript
denotes a positive constant depending only on the property of Ω, the shape regularity of the meshes and the
degree of polynomial spaces. The constant 𝐶 can take on different values in different occurrences.

Definition 3.1. For any integers 𝑚 ≥ 2, we define the discrete 𝐻𝑚-norm ‖𝑣‖𝑚,ℎ by

‖𝑣‖2𝑚,ℎ =
𝑚∑︁

𝑖=0

⃦⃦
𝐷𝑖𝑣

⃦⃦2

𝐿2(Tℎ)
+

𝑚−1∑︁
𝑗=1

ℎ−(2𝑚−2𝑗−1)
⃦⃦q
𝐷𝑗𝑣

y
𝐽

⃦⃦2

𝐿2(Fℎ)

:=
𝑚∑︁

𝑖=0

∑︁
𝐾∈Tℎ

⃦⃦
𝐷𝑖𝑣

⃦⃦2

𝐿2(𝐾)
+

𝑚−1∑︁
𝑗=1

∑︁
𝐹∈Fℎ

ℎ−(2𝑚−2𝑗−1)
⃦⃦q
𝐷𝑗𝑣

y
𝐽

⃦⃦2

𝐿2(𝐹 )
, ∀𝑣 ∈ 𝐻1

0 (Ω) ∩𝐻𝑚(Tℎ).

For any 𝐹 ∈ Fint
ℎ , there are two elements 𝐾−,𝐾+ ∈ Tℎ sharing the common face 𝐹 . We denote by 𝑣− := 𝑣|𝐾−

and 𝑣+ := 𝑣|𝐾+ . We define

⃦⃦q
𝐷𝑗𝑣

y
𝐽

⃦⃦2

𝐿2(𝐹 )
=

∑︁
1≤𝑘1,··· ,𝑘𝑗≤𝑑

⃦⃦⃦r
𝜕𝑥𝑘1

𝜕𝑥𝑘2
· · · 𝜕𝑥𝑘𝑗

𝑣
z

𝐽

⃦⃦⃦2

𝐿2(𝐹 )

:=
∑︁

1≤𝑘1,··· ,𝑘𝑗≤𝑑

⃦⃦⃦(︁
𝜕𝑥𝑘1

𝜕𝑥𝑘2
· · · 𝜕𝑥𝑘𝑗

𝑣−
)︁⃒⃒⃒

𝐹
−
(︁
𝜕𝑥𝑘1

𝜕𝑥𝑘2
· · · 𝜕𝑥𝑘𝑗

𝑣+
)︁⃒⃒⃒

𝐹

⃦⃦⃦2

𝐿2(𝐹 )
.

For any 𝐹 ∈ F𝜕
ℎ, we define

⃦⃦q
𝐷𝑗𝑣

y
𝐽

⃦⃦2

𝐿2(𝐹 )
=

∑︁
1≤𝑘1,··· ,𝑘𝑗≤𝑑

⃦⃦⃦r
𝜕𝑥𝑘1

𝜕𝑥𝑘2
· · · 𝜕𝑥𝑘𝑗

𝑣
z

𝐽

⃦⃦⃦2

𝐿2(𝐹 )
:=

∑︁
1≤𝑘1,··· ,𝑘𝑗≤𝑑

⃦⃦⃦(︁
𝜕𝑥𝑘1

𝜕𝑥𝑘2
· · · 𝜕𝑥𝑘𝑗

𝑣
)︁⃒⃒⃒

𝐹

⃦⃦⃦2

𝐿2(𝐹 )
.
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3.1. Discrete 𝐻𝑚-norm bounded by natural energy semi-norm

The main result of Section 3.1 is Theorem 3.4, which shows that the discrete 𝐻𝑚-norm (see Def. 3.1) is
bounded by the natural energy semi-norm associated with the 𝐶0 interior penalty method (2.2). The proof of
Theorem 3.4 is based on Lemmas 3.2 and 3.3.

Lemma 3.2. For any integers 𝑟 ≥ 𝑚 ≥ 2, there is a constant 𝐶 > 0 such that

𝑚−1∑︁
𝑗=1

ℎ−(2𝑚−2𝑗−1)
⃦⃦q
𝐷𝑗𝑣ℎ

y
𝐽

⃦⃦2

𝐿2(Fℎ)
≤ 𝐶𝑆ℎ(𝑣ℎ, 𝑣ℎ), ∀𝑣ℎ ∈ 𝑉ℎ. (3.1)

Proof. We choose 𝐹 ∈ Fℎ arbitrarily. There is an orthonormal coordinate system {𝑦𝑘}𝑑
𝑘=1 such that the 𝑦𝑑-axis

is parallel to normal vector along 𝐹 . Therefore 𝑦1-axis, · · · , 𝑦𝑑−1-axis are all parallel to 𝐹 .
We claim that for any 1 ≤ 𝑙 ≤ 𝑚, there is a positive integer 𝐶 ′ such that

⃦⃦q
𝐷𝑙𝑣ℎ

y
𝐽

⃦⃦2

𝐿2(𝐹 )
≤ 𝐶 ′

⎛⎝ 𝑙∑︁
𝑗=0

ℎ−(2𝑙−2𝑗)
⃦⃦⃦q
𝜕𝑗

𝑦𝑑
𝑣ℎ

y
𝐽

⃦⃦⃦2

𝐿2(𝐹 )

⎞⎠, ∀𝑣ℎ ∈ 𝑃𝑟(Tℎ). (3.2)

We prove (3.2) by induction. When 𝑙 = 1, it is easy to see

‖J𝐷𝑣ℎK𝐽‖
2
𝐿2(𝐹 )

=
𝑑∑︁

𝑘=1

⃦⃦
J𝜕𝑥𝑘

𝑣ℎK𝐽

⃦⃦2

𝐿2(𝐹 )
=

𝑑∑︁
𝑘=1

⃦⃦
J𝜕𝑦𝑘

𝑣ℎK𝐽

⃦⃦2

𝐿2(𝐹 )
.

By discrete inverse inequality and the fact that 𝑦1-axis, · · · , 𝑦𝑑−1-axis are all parallel to 𝐹 , we have that

𝑑−1∑︁
𝑘=1

⃦⃦
J𝜕𝑦𝑘

𝑣ℎK𝐽

⃦⃦2

𝐿2(𝐹 )
≤ 𝐶ℎ−2‖J𝑣ℎK𝐽‖

2
𝐿2(𝐹 )

.

Therefore we have

‖J𝐷𝑣ℎK𝐽‖
2
𝐿2(𝐹 )

≤ 𝐶
(︁
ℎ−2‖J𝑣ℎK𝐽‖

2
𝐿2(𝐹 )

+
⃦⃦
J𝜕𝑦𝑑

𝑣ℎK𝐽

⃦⃦2

𝐿2(𝐹 )

)︁
.

Thus (3.2) holds when 𝑙 = 1. We assume that (3.2) holds for any 𝑙 < 𝑚. Then by discrete inverse inequality
and the fact that 𝑦1-axis, · · · , 𝑦𝑑−1-axis are all parallel to 𝐹 ,

⃦⃦q
𝐷𝑙+1𝑣ℎ

y
𝐽

⃦⃦2

𝐿2(𝐹 )
=

𝑑∑︁
𝑘=1

⃦⃦q
𝜕𝑥𝑘

𝐷𝑙𝑣ℎ

y
𝐽

⃦⃦2

𝐿2(𝐹 )
=

𝑑∑︁
𝑘=1

⃦⃦q
𝜕𝑦𝑘

𝐷𝑙𝑣ℎ

y
𝐽

⃦⃦2

𝐿2(𝐹 )

≤ 𝐶
(︁
ℎ−2

⃦⃦q
𝐷𝑙𝑣ℎ

y
𝐽

⃦⃦2

𝐿2(𝐹 )
+
⃦⃦q
𝐷𝑙(𝜕𝑦𝑑

𝑣ℎ)
y

𝐽

⃦⃦2

𝐿2(𝐹 )

)︁
.

Since 𝑣ℎ ∈ 𝑃𝑟(Tℎ), then 𝜕𝑦𝑑
𝑣ℎ ∈ 𝑃𝑟(Tℎ). Since we assume (3.2) holds for 𝑙, we have

⃦⃦q
𝐷𝑙(𝜕𝑦𝑑

𝑣ℎ)
y

𝐽

⃦⃦2

𝐿2(𝐹 )
≤ 𝐶

⎛⎝ 𝑙∑︁
𝑗=0

ℎ−(2𝑙−2𝑗)
⃦⃦⃦q
𝜕𝑗

𝑦𝑑
(𝜕𝑦𝑑

𝑣ℎ)
y

𝐽

⃦⃦⃦2

𝐿2(𝐹 )

⎞⎠,
ℎ−2

⃦⃦q
𝐷𝑙𝑣ℎ

y
𝐽

⃦⃦2

𝐿2(𝐹 )
≤ 𝐶

⎛⎝ 𝑙∑︁
𝑗=0

ℎ−(2(𝑙+1)−2𝑗)
⃦⃦⃦q
𝜕𝑗

𝑦𝑑
𝑣ℎ

y
𝐽

⃦⃦⃦2

𝐿2(𝐹 )

⎞⎠.
Therefore (3.2) holds for 𝑙 + 1. Thus we can conclude that the claim (3.2) is true.
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Now we start to prove (3.1) by induction. Since ‖J𝜕𝑦𝑑
𝑣ℎK𝐽‖𝐿2(𝐹 ) = ‖J∇𝑣ℎK‖𝐿2(𝐹 ), (3.2) and the fact 𝑣ℎ ∈

𝐻1
0 (Ω) imply

‖J𝐷𝑣ℎK𝐽‖𝐿2(𝐹 ) = ‖J∇𝑣ℎK‖𝐿2(𝐹 ). (3.3)

Since 𝐹 ∈ Fℎ is chosen arbitrarily, (3.3) implies that (3.1) holds when 𝑚 = 2.
Applying (3.2) with 𝑙 = 2, we have⃦⃦q

𝐷2𝑣ℎ

y
𝐽

⃦⃦2

𝐿2(𝐹 )
≤ 𝐶

(︂
ℎ−4‖J𝑣ℎK𝐽‖

2
𝐿2(𝐹 )

+ ℎ−2
⃦⃦
J𝜕𝑦𝑑

𝑣ℎK𝐽

⃦⃦2

𝐿2(𝐹 )
+
⃦⃦⃦q
𝜕2

𝑦𝑑
𝑣ℎ

y
𝐽

⃦⃦⃦2

𝐿2(𝐹 )

)︂
= 𝐶

(︂
ℎ−2‖J∇𝑣ℎK‖2𝐿2(𝐹 ) +

⃦⃦⃦q
𝜕2

𝑦𝑑
𝑣ℎ

y
𝐽

⃦⃦⃦2

𝐿2(𝐹 )

)︂
. (3.4)

The last equality in (3.4) holds since 𝑣ℎ ∈ 𝐻1
0 (Ω) and ‖J𝜕𝑦𝑑

𝑣ℎK𝐽‖𝐿2(𝐹 ) = ‖J∇𝑣ℎK‖𝐿2(𝐹 ). We notice that

∆𝑣ℎ =
(︁
𝜕2

𝑦1
𝑣ℎ + · · ·+ 𝜕2

𝑦𝑑−1
𝑣ℎ

)︁
+ 𝜕2

𝑦𝑑
𝑣ℎ. (3.5)

Since 𝑦1-axis, · · · , 𝑦𝑑−1-axis are all parallel to 𝐹 , discrete inverse inequality implies⃦⃦⃦r(︁
𝜕2

𝑦1
𝑣ℎ + · · ·+ 𝜕2

𝑦𝑑−1
𝑣ℎ

)︁z⃦⃦⃦2

𝐿2(𝐹 )
=
⃦⃦⃦r(︁

𝜕2
𝑦1
𝑣ℎ + · · ·+ 𝜕2

𝑦𝑑−1
𝑣ℎ

)︁z
𝐽

⃦⃦⃦2

𝐿2(𝐹 )

≤ 𝐶ℎ−2‖J𝐷𝑣ℎK𝐽‖
2
𝐿2(𝐹 )

= 𝐶ℎ−2‖J∇𝑣ℎK‖2𝐿2(𝐹 ).

By (3.5) and the above inequality, we have⃦⃦⃦q
𝜕2

𝑦𝑑
𝑣ℎ

y
𝐽

⃦⃦⃦2

𝐿2(𝐹 )
≤ 𝐶

(︁
ℎ−2‖J∇𝑣ℎK‖2𝐿2(𝐹 ) + ‖J∆𝑣ℎK‖2𝐿2(𝐹 )

)︁
. (3.6)

By (3.4), (3.6), we have ⃦⃦q
𝐷2𝑣ℎ

y
𝐽

⃦⃦2

𝐿2(𝐹 )
≤ 𝐶

(︁
ℎ−2‖J∇𝑣ℎK‖2𝐿2(𝐹 ) + ‖J∆𝑣ℎK‖2𝐿2(𝐹 )

)︁
. (3.7)

Since 𝐹 ∈ Fℎ is chosen arbitrarily, equations (3.3), (3.7) imply that (3.1) holds when 𝑚 = 3.
We assume that 1 ≤ 𝑙 < 𝑚 is an odd number, 𝑙 = 2𝑙̃ + 1 and

⃦⃦q
𝐷𝑙𝑣ℎ

y
𝐽

⃦⃦2

𝐿2(𝐹 )
≤ 𝐶

⎛⎝ 𝑙̃∑︁
𝑖=0

ℎ−4𝑖
⃦⃦⃦r
∇∆𝑙̃−𝑖𝑣ℎ

z⃦⃦⃦2

𝐿2(𝐹 )
+

𝑙̃−1∑︁
𝑖=0

ℎ−(4𝑖+2)
⃦⃦⃦r

∆𝑙̃−𝑖𝑣ℎ

z⃦⃦⃦2

𝐿2(𝐹 )

⎞⎠. (3.8)

Then by applying (3.8) for each 𝜕𝑦𝑘
𝑣ℎ, we have

⃦⃦q
𝐷𝑙+1𝑣ℎ

y
𝐽

⃦⃦2

𝐿2(𝐹 )
=

𝑑∑︁
𝑘=1

⃦⃦q
𝐷𝑙(𝜕𝑥𝑘

𝑣ℎ)
y

𝐽

⃦⃦2

𝐿2(𝐹 )
=

𝑑∑︁
𝑘=1

⃦⃦q
𝐷𝑙(𝜕𝑦𝑘

𝑣ℎ)
y

𝐽

⃦⃦2

𝐿2(𝐹 )

≤ 𝐶

𝑑∑︁
𝑘=1

⎛⎝ 𝑙̃∑︁
𝑖=0

ℎ−4𝑖
⃦⃦⃦r
∇∆𝑙̃−𝑖(𝜕𝑦𝑘

𝑣ℎ)
z⃦⃦⃦2

𝐿2(𝐹 )
+

𝑙̃−1∑︁
𝑖=0

ℎ−(4𝑖+2)
⃦⃦⃦r

∆𝑙̃−𝑖(𝜕𝑦𝑘
𝑣ℎ)

z⃦⃦⃦2

𝐿2(𝐹 )

⎞⎠.
Here 2𝑙̃ + 1 = 𝑙. Since 𝑦1-axis, · · · , 𝑦𝑑−1-axis are all parallel to 𝐹 , discrete inverse inequality implies

⃦⃦q
𝐷𝑙+1𝑣ℎ

y
𝐽

⃦⃦2

𝐿2(𝐹 )
≤ 𝐶ℎ−2

⎛⎝ 𝑙̃∑︁
𝑖=0

ℎ−4𝑖
⃦⃦⃦r
∇∆𝑙̃−𝑖𝑣ℎ

z⃦⃦⃦2

𝐿2(𝐹 )
+

𝑙̃−1∑︁
𝑖=0

ℎ−(4𝑖+2)
⃦⃦⃦r

∆𝑙̃−𝑖𝑣ℎ

z⃦⃦⃦2

𝐿2(𝐹 )

⎞⎠
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+ 𝐶

⎛⎝ 𝑙̃∑︁
𝑖=0

ℎ−4𝑖
⃦⃦⃦r
∇∆𝑙̃−𝑖(𝜕𝑦𝑑

𝑣ℎ)
z⃦⃦⃦2

𝐿2(𝐹 )
+

𝑙̃−1∑︁
𝑖=0

ℎ−(4𝑖+2)
⃦⃦⃦r

∆𝑙̃−𝑖(𝜕𝑦𝑑
𝑣ℎ)

z⃦⃦⃦2

𝐿2(𝐹 )

⎞⎠.
Again by the fact that 𝑦1-axis, · · · , 𝑦𝑑−1-axis are all parallel to 𝐹 , we have that for any 0 ≤ 𝑖 ≤ 𝑙̃,⃦⃦⃦r

∇∆𝑙̃−𝑖(𝜕𝑦𝑑
𝑣ℎ)

z⃦⃦⃦2

𝐿2(𝐹 )
=
⃦⃦⃦r
∇
(︁
𝜕𝑦𝑑

∆𝑙̃−𝑖𝑣ℎ

)︁z
𝐽

⃦⃦⃦2

𝐿2(𝐹 )

=
(︂⃦⃦⃦r

𝜕𝑦1

(︁
𝜕𝑦𝑑

∆𝑙̃−𝑖𝑣ℎ

)︁z
𝐽

⃦⃦⃦2

𝐿2(𝐹 )
+ · · ·+

⃦⃦⃦r
𝜕𝑦𝑑−1

(︁
𝜕𝑦𝑑

∆𝑙̃−𝑖𝑣ℎ

)︁z
𝐽

⃦⃦⃦2

𝐿2(𝐹 )

)︂
+
⃦⃦⃦r
𝜕2

𝑦𝑑

(︁
∆𝑙̃−𝑖𝑣ℎ

)︁z
𝐽

⃦⃦⃦2

𝐿2(𝐹 )

≤ 𝐶

(︂
ℎ−2

⃦⃦⃦r
𝜕𝑦𝑑

∆𝑙̃−𝑖𝑣ℎ

z

𝐽

⃦⃦⃦2

𝐿2(𝐹 )
+
⃦⃦⃦r
𝜕2

𝑦𝑑

(︁
∆𝑙̃−𝑖𝑣ℎ

)︁z
𝐽

⃦⃦⃦2

𝐿2(𝐹 )

)︂
≤ 𝐶

(︂
ℎ−2

⃦⃦⃦r
∇∆𝑙̃−𝑖𝑣ℎ

z

𝐽

⃦⃦⃦2

𝐿2(𝐹 )
+
⃦⃦⃦r
𝜕2

𝑦𝑑

(︁
∆𝑙̃−𝑖𝑣ℎ

)︁z
𝐽

⃦⃦⃦2

𝐿2(𝐹 )

)︂
≤ 𝐶

(︂
ℎ−2

⃦⃦⃦r
∇∆𝑙̃−𝑖𝑣ℎ

z

𝐽

⃦⃦⃦2

𝐿2(𝐹 )
+
⃦⃦⃦r

∆𝑙̃−𝑖+1𝑣ℎ

z

𝐽

⃦⃦⃦2

𝐿2(𝐹 )

)︂
.

We have applied (3.6) for ∆𝑙̃−𝑖𝑣ℎ to obtain last inequality. We also notice that for any 0 ≤ 𝑖 ≤ 𝑙̃ − 1,⃦⃦⃦r
∆𝑙̃−𝑖(𝜕𝑦𝑑

𝑣ℎ)
z⃦⃦⃦2

𝐿2(𝐹 )
=
⃦⃦⃦r
𝜕𝑦𝑑

(∆𝑙̃−𝑖𝑣ℎ)
z

𝐽

⃦⃦⃦2

𝐿2(𝐹 )
=
⃦⃦⃦r
∇∆𝑙̃−𝑖𝑣ℎ

z⃦⃦⃦2

𝐿2(𝐹 )
.

Therefore we have that (3.8) implies

⃦⃦q
𝐷𝑙+1𝑣ℎ

y
𝐽

⃦⃦2

𝐿2(𝐹 )
≤ 𝐶

⎛⎝ 𝑙̃∑︁
𝑖=0

ℎ−4𝑖
⃦⃦⃦r

∆𝑙̃−𝑖+1𝑣ℎ

z⃦⃦⃦2

𝐿2(𝐹 )
+

𝑙̃∑︁
𝑖=0

ℎ−(4𝑖+2)
⃦⃦⃦r
∇∆𝑙̃−𝑖𝑣ℎ

z⃦⃦⃦2

𝐿2(𝐹 )

⎞⎠, (3.9)

where 𝑙 = 2𝑙̃ + 1.
Now we assume that 1 ≤ 𝑙 < 𝑚 is an even number, 𝑙 = 2𝑙̃ and

⃦⃦q
𝐷𝑙𝑣ℎ

y
𝐽

⃦⃦2

𝐿2(𝐹 )
≤ 𝐶

⎛⎝ 𝑙̃−1∑︁
𝑖=0

ℎ−4𝑖
⃦⃦⃦r

∆𝑙̃−𝑖𝑣ℎ

z⃦⃦⃦2

𝐿2(𝐹 )
+

𝑙̃−1∑︁
𝑖=0

ℎ−(4𝑖+2)
⃦⃦⃦r
∇∆𝑙̃−𝑖−1𝑣ℎ

z⃦⃦⃦2

𝐿2(𝐹 )

⎞⎠. (3.10)

Then by similar argument in last paragraph, we have that (3.10) implies

⃦⃦q
𝐷𝑙+1𝑣ℎ

y
𝐽

⃦⃦2

𝐿2(𝐹 )
≤ 𝐶

⎛⎝ 𝑙̃∑︁
𝑖=0

ℎ−4𝑖
⃦⃦⃦r
∇∆𝑙̃−𝑖𝑣ℎ

z⃦⃦⃦2

𝐿2(𝐹 )
+

𝑙̃−1∑︁
𝑖=0

ℎ−(4𝑖+2)
⃦⃦⃦r

∆𝑙̃−𝑖𝑣ℎ

z⃦⃦⃦2

𝐿2(𝐹 )

⎞⎠, (3.11)

where 𝑙 = 2𝑙̃.
According to (3.3), (3.7)–(3.11) and the fact that 𝐹 ∈ Fℎ is chosen arbitrarily, we can conclude that the proof

is complete. �

According to (3.1c) in Theorem 3.1 of [8], there is a constant 𝐶 > 0 such that

‖∇𝑣ℎ‖2𝐿2(Tℎ) +
⃦⃦
𝐷2𝑣ℎ

⃦⃦2

𝐿2(Tℎ)
≤ 𝐶

(︁
‖∆𝑣ℎ‖2𝐿2(Tℎ) + ℎ−1‖J∇𝑣ℎK‖2𝐿2(Fℎ) + ℎ−3‖J𝑣ℎK‖2𝐿2(Fℎ)

)︁
, ∀𝑣ℎ ∈ 𝑃𝑟(Tℎ),

(3.12)

where 𝑟 ≥ 2 is a positive integer.
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Lemma 3.3. We define 2𝑚̃ + 1 = 𝑚 if 𝑚 is an odd number, while 2𝑚̃ = 𝑚 if 𝑚 is an even number. Then
there is a positive constant 𝐶 such that

‖𝐷𝑚𝑣ℎ‖2𝐿2(Tℎ) ≤

⎧⎨⎩𝐶
(︁⃦⃦

∆𝑚̃𝑣ℎ

⃦⃦2

𝐿2(Tℎ)
+
∑︀𝑚−1

𝑗=1 ℎ−(2𝑚−2𝑗−1)
⃦⃦q
𝐷𝑗𝑣ℎ

y
𝐽

⃦⃦2

𝐿2(Fℎ)

)︁
, if 𝑚 = 2𝑚̃;

𝐶
(︁⃦⃦
∇∆𝑚̃𝑣ℎ

⃦⃦2

𝐿2(Tℎ)
+
∑︀𝑚−1

𝑗=1 ℎ−(2𝑚−2𝑗−1)
⃦⃦q
𝐷𝑗𝑣ℎ

y
𝐽

⃦⃦2

𝐿2(Fℎ)

)︁
, if 𝑚 = 2𝑚̃+ 1,

(3.13)

for any 𝑣ℎ ∈ 𝑉ℎ.

Proof. It is easy to see that (3.13) holds when 𝑚 = 1. By (3.12), (3.13) holds when 𝑚 = 2.
It is easy to see

⃦⃦
𝐷3𝑣ℎ

⃦⃦2

𝐿2(Tℎ)
=

𝑑∑︁
𝑘=1

⃦⃦
𝐷2(𝜕𝑥𝑘

𝑣ℎ)
⃦⃦2

𝐿2(Tℎ)
.

Applying (3.12) to each 𝜕𝑥𝑘
𝑣ℎ, we have

⃦⃦
𝐷3𝑣ℎ

⃦⃦2

𝐿2(Tℎ)
≤ 𝐶

𝑑∑︁
𝑘=1

(︁
‖∆(𝜕𝑥𝑘

𝑣ℎ)‖2𝐿2(Tℎ) + ℎ−3
⃦⃦
J𝜕𝑥𝑘

𝑣ℎK𝐽

⃦⃦2

𝐿2(Fℎ)
+ ℎ−1

⃦⃦
J𝐷(𝜕𝑥𝑘

𝑣ℎ)K𝐽

⃦⃦2

𝐿2(Fℎ)

)︁
= 𝐶

(︁
‖∇∆𝑣ℎ‖2𝐿2(Tℎ) + ℎ−3‖J𝐷𝑣ℎK𝐽‖

2
𝐿2(Fℎ)

+ ℎ−1
⃦⃦q
𝐷2𝑣ℎ

y
𝐽

⃦⃦2

𝐿2(Fℎ)

)︁
.

Thus (3.13) holds when 𝑚 = 3.
For any 2 < 𝑙 ≤ 𝑚, we have ⃦⃦

𝐷𝑙𝑣ℎ

⃦⃦2

𝐿2(Tℎ)
=
⃦⃦
𝐷2
(︀
𝐷𝑙−2𝑣ℎ

)︀⃦⃦2

Tℎ
.

Applying (3.12) to each component of 𝐷𝑙−2𝑣ℎ, we have⃦⃦
𝐷𝑙𝑣ℎ

⃦⃦2

𝐿2(Tℎ)
≤ 𝐶

(︁⃦⃦
𝐷𝑙−2∆𝑣ℎ

⃦⃦2

𝐿2(Tℎ)
+ ℎ−3

⃦⃦q
𝐷𝑙−2𝑣ℎ

y
𝐽

⃦⃦2

𝐿2(Fℎ)
+ ℎ−1

⃦⃦q
𝐷𝑙−1𝑣ℎ

y
𝐽

⃦⃦2

𝐿2(Fℎ)

)︁
. (3.14)

According to (3.14) and the fact (3.13) holds for 𝑚 = 1, 2, 3, we can conclude that the proof is complete. �

According to Lemmas 3.2, 3.3 and the discrete Poincaré inequality, we immediately have the following
Theorem 3.4.

Theorem 3.4. For any integers 𝑟 ≥ 𝑚 ≥ 1, there is a constant 𝐶 > 0 such that

‖𝑣ℎ‖2𝑚,ℎ ≤

⎧⎨⎩𝐶
(︁⃦⃦

∆𝑚̃𝑣ℎ

⃦⃦2

𝐿2(Tℎ)
+ 𝑆ℎ(𝑣ℎ, 𝑣ℎ)

)︁
, if 𝑚 = 2𝑚̃;

𝐶
(︁⃦⃦
∇∆𝑚̃𝑣ℎ

⃦⃦2

𝐿2(Tℎ)
+ 𝑆ℎ(𝑣ℎ, 𝑣ℎ)

)︁
, if 𝑚 = 2𝑚̃+ 1,

for any 𝑣ℎ ∈ 𝑉ℎ. ‖𝑣ℎ‖𝑚,ℎ is introduced in Definition 3.1. We point out that the right hand side of the above
inequality is the natural energy semi-norm associated with the method (2.2).

3.2. Energy estimate of 𝐶0 interior penalty method

We provide Theorem 3.6, which shows energy estimate of 𝐶0 interior penalty method (2.2) with respect to
the discrete 𝐻𝑚-norm (see Def. 3.1). Before we prove Theorem 3.6, we introduce Lemma 3.5.
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Lemma 3.5. For any integers 𝑟 ≥ 𝑚 ≥ 2 and any spatial dimension 𝑑 ≥ 1, there is a positive number 𝜏0 ≥ 1
such that for any 𝑣ℎ ∈ 𝑉ℎ,

4|𝐶ℎ(𝑣ℎ, 𝑣ℎ)| ≤

⎧⎨⎩
⃦⃦

∆𝑚̃𝑣ℎ

⃦⃦2

𝐿2(Tℎ)
+ 𝜏0𝑆ℎ(𝑣ℎ, 𝑣ℎ), if 𝑚 = 2𝑚̃ (𝑚 is an even number);⃦⃦

∇∆𝑚̃𝑣ℎ

⃦⃦2

𝐿2(Tℎ)
+ 𝜏0𝑆ℎ(𝑣ℎ, 𝑣ℎ), if 𝑚 = 2𝑚̃+ 1 (𝑚 is an odd number).

(3.15)

Proof. We prove (3.15) for 𝑚 = 2𝑚̃ (𝑚 is an even number) in the following. It is similar to prove (3.15) for 𝑚
which is an odd number.

According to Definition 2.1, discrete trace inequality and inverse inequality,

|𝐶ℎ(𝑣ℎ, 𝑣ℎ)| =

⃒⃒⃒⃒
⃒−

𝑚̃−1∑︁
𝑖=0

⟨︀{︀{︀
∆𝑚̃+𝑖𝑣ℎ

}︀}︀
,
q
∇∆𝑚̃−𝑖−1𝑣ℎ

y⟩︀
Fℎ

+
𝑚̃−2∑︁
𝑖=0

⟨︀{︀{︀
∇∆𝑚̃+𝑖𝑣ℎ

}︀}︀
,
q
∆𝑚̃−𝑖−1𝑣ℎ

y⟩︀
Fℎ

⃒⃒⃒⃒
⃒

≤
𝑚̃−1∑︁
𝑖=0

⃦⃦{︀{︀
∆𝑚̃+𝑖𝑣ℎ

}︀}︀⃦⃦
𝐿2(Fℎ)

⃦⃦q
∇∆𝑚̃−𝑖−1𝑣ℎ

y⃦⃦
𝐿2(Fℎ)

+
𝑚̃−2∑︁
𝑖=0

⃦⃦{︀{︀
∇∆𝑚̃+𝑖𝑣ℎ

}︀}︀⃦⃦
𝐿2(Fℎ)

⃦⃦q
∆𝑚̃−𝑖−1𝑣ℎ

y⃦⃦
𝐿2(Fℎ)

≤ 𝐶

𝑚̃−1∑︁
𝑖=0

ℎ−
1
2
⃦⃦

∆𝑚̃+𝑖𝑣ℎ

⃦⃦
𝐿2(Tℎ)

⃦⃦q
∇∆𝑚̃−𝑖−1𝑣ℎ

y⃦⃦
𝐿2(Fℎ)

+ 𝐶

𝑚̃−2∑︁
𝑖=0

ℎ−
1
2
⃦⃦
∇∆𝑚̃+𝑖𝑣ℎ

⃦⃦
𝐿2(Tℎ)

⃦⃦q
∆𝑚̃−𝑖−1𝑣ℎ

y⃦⃦
𝐿2(Fℎ)

≤ 𝐶

𝑚̃−1∑︁
𝑖=0

ℎ−(2𝑖+ 1
2 )
⃦⃦
∆𝑚̃𝑣ℎ

⃦⃦
𝐿2(Tℎ)

⃦⃦q
∇∆𝑚̃−𝑖−1𝑣ℎ

y⃦⃦
𝐿2(Fℎ)

+ 𝐶

𝑚̃−2∑︁
𝑖=0

ℎ−(2𝑖+ 3
2 )⃦⃦∆𝑚̃𝑣ℎ

⃦⃦
𝐿2(Tℎ)

⃦⃦q
∆𝑚̃−𝑖−1𝑣ℎ

y⃦⃦
𝐿2(Fℎ)

≤ 1
4

⃦⃦
∆𝑚̃𝑣ℎ

⃦⃦2

𝐿2(Tℎ)
+ 𝐶

(︃
𝑚̃−1∑︁
𝑖=0

ℎ−(4𝑖+1)
⃦⃦q
∇∆𝑚̃−𝑖−1𝑣ℎ

y⃦⃦2

𝐿2(Fℎ)
+

𝑚̃−2∑︁
𝑖=0

ℎ−(4𝑖+3)
⃦⃦q

∆𝑚̃−𝑖−1𝑣ℎ

y⃦⃦2

𝐿2(Fℎ)

)︃
.

By Definition 2.2, it is easy to see that (3.15) holds. Therefore the proof is complete. �

Theorem 3.6. When 𝑚 = 1, the method (2.2) is well-posed such that

‖𝑢ℎ‖𝐻1(Ω) ≤ 𝐶‖𝑓‖𝐻−1(Ω). (3.16)

For any 𝑚 ≥ 2, there is a positive number 𝜏0 ≥ 1 which is the same as Lemma 3.5, such that if 𝜏 ≥ 𝜏0, then
the method (2.2) is well-posed such that

‖𝑢ℎ‖𝑚,ℎ ≤ 𝐶‖𝑓‖𝐻−1(Ω). (3.17)

Here 𝑢ℎ ∈ 𝑉ℎ is the numerical solution of the method (2.2).

Proof. By (2.4), the method is the standard finite element method for Poisson equation when 𝑚 = 1. Therefore,
the method (2.2) is well-posed and (3.16) holds, when 𝑚 = 1.
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Now we consider 𝑚 ≥ 2. By the definition of the bilinear form 𝑎ℎ(·, ·), Theorem 3.4 and Lemma 3.5, the
coercivity and the continuity of 𝑎ℎ(·, ·) are obtained which imply the well-posedness of the method (2.2). We
assume 𝑚 = 2𝑚̃ to be an even number. By taking 𝑣ℎ = 𝑢ℎ in the method (2.2), we have

‖∆𝑚̃𝑢ℎ‖2𝐿2(Tℎ) + 2𝐶ℎ(𝑢ℎ, 𝑢ℎ) + 𝜏𝑆ℎ(𝑢ℎ, 𝑢ℎ) = (𝑓, 𝑢ℎ)Ω.

We choose 𝜏0 the same as Lemma 3.5. Then Lemma 3.5 implies

1
2
‖∆𝑚̃𝑢ℎ‖2𝐿2(Tℎ) +

𝜏

2
𝑆ℎ(𝑢ℎ, 𝑢ℎ) ≤ (𝑓, 𝑢ℎ)Ω ≤ ‖𝑓‖𝐻−1(Ω)‖𝑢ℎ‖𝐻1(Ω) ≤ ‖𝑓‖𝐻−1(Ω)‖𝑢ℎ‖𝑚,ℎ,

if 𝜏 ≥ 𝜏0. Then by Theorem 3.4 and the above inequality, we obtain (3.17) when 𝑚 is an even number.
It is similar to show that (3.17) holds when 𝑚 is an odd number. Thus we can conclude that the proof is

complete. �

3.3. Error analysis of 𝐶0 interior penalty method

We provide Theorem 3.7, which gives error analysis of 𝐶0 interior penalty method (2.2) with respect to the
discrete 𝐻𝑚-norm (see Def. 3.1).

Theorem 3.7. We assume that the exact solution 𝑢 ∈ 𝐻𝑚
0 (Ω) ∩𝐻𝑠(Ω) where 𝑠 ≥ 2𝑚 − 1. When 𝑚 = 1, we

have

‖𝑢− 𝑢ℎ‖𝐻1(Ω) ≤ 𝐶ℎmin(𝑟,𝑠−1)‖𝑢‖𝐻𝑠(Ω). (3.18)

For 𝑚 ≥ 2, we assume that 𝜏 ≥ 𝜏0 ≥ 1 where 𝜏0 is the same as Theorem 3.6. Then we have

‖𝑢− 𝑢ℎ‖𝑚,ℎ ≤ 𝐶ℎmin(𝑟+1−𝑚,𝑠−𝑚)‖𝑢‖𝐻𝑠(Ω). (3.19)

Here 𝑢ℎ ∈ 𝑉ℎ is the numerical solution of the method (2.2).

Proof. When 𝑚 = 1, the method (2.2) is the standard finite element method (2.4) for Poisson equation with
homogeneous Dirichlet boundary condition. So it is easy to see that (3.18) holds. In the following, we assume
𝑚 ≥ 2.

By Theorem 3.6, the method (2.2) has the unique numerical solution 𝑢ℎ ∈ 𝑉ℎ.
Since 𝑢 ∈ 𝐻𝑚

0 (Ω), it is easy to see that for any 0 ≤ 𝑗 ≤ 𝑚− 1, every component of 𝐷𝑗𝑢 is continuous across
any face 𝐹 ∈ Fint

ℎ and is equal to zero along 𝜕Ω. Therefore by Definitions 2.1 and 2.2, we have

𝐶ℎ(𝑣ℎ, 𝑢) = 𝑆ℎ(𝑢, 𝑣ℎ) = 0, ∀𝑣ℎ ∈ 𝑉ℎ. (3.20)

We denote by Πℎ𝑢 ∈ 𝑉ℎ the standard 𝐿2-orthogonal projection of 𝑢 into 𝑉ℎ. We define 𝑒𝑢 = Πℎ𝑢 − 𝑢ℎ and
𝛿𝑢 = Πℎ𝑢− 𝑢. Since 𝑢 ∈ 𝐻𝑠(Ω) and 𝑠 ≥ 2𝑚− 1, we have⃦⃦

𝐷𝑗𝛿𝑢
⃦⃦

𝐿2(Tℎ)
≤ 𝐶ℎmax(min(𝑟+1−𝑗,𝑠−𝑗),0)‖𝑢‖𝐻𝑠(Ω), ∀0 ≤ 𝑗 ≤ 2𝑚− 1. (3.21)

We assume 𝑚 = 2𝑚̃ to be an even number. By (2.1), (3.20) and the method (2.2), we have⃦⃦
∆𝑚̃𝑒𝑢

⃦⃦2

𝐿2(Tℎ)
+ 2𝐶ℎ(𝑒𝑢, 𝑒𝑢) + 𝜏𝑆ℎ(𝑒𝑢, 𝑒𝑢) =

(︀
∆𝑚̃𝛿𝑢,∆𝑚̃𝑒𝑢

)︀
Tℎ

+ 𝐶ℎ(𝛿𝑢, 𝑒𝑢) + 𝐶ℎ(𝑒𝑢, 𝛿𝑢) + 𝜏𝑆ℎ(𝛿𝑢, 𝑒𝑢).
(3.22)

By Lemma 3.5 and (3.22), we have

1
2

⃦⃦
∆𝑚̃𝑒𝑢

⃦⃦2

𝐿2(Tℎ)
+
𝜏

2
𝑆ℎ(𝑒𝑢, 𝑒𝑢) ≤

(︀
∆𝑚̃𝛿𝑢,∆𝑚̃𝑒𝑢

)︀
Tℎ

+ 𝐶ℎ(𝛿𝑢, 𝑒𝑢) + 𝐶ℎ(𝑒𝑢, 𝛿𝑢) + 𝜏𝑆ℎ(𝛿𝑢, 𝑒𝑢). (3.23)
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It is easy to see that(︀
∆𝑚̃𝛿𝑢,∆𝑚̃𝑒𝑢

)︀
Tℎ
≤
⃦⃦

∆𝑚̃𝛿𝑢
⃦⃦

𝐿2(Tℎ)

⃦⃦
∆𝑚̃𝑒𝑢

⃦⃦
Tℎ
≤ 𝐶ℎmin(𝑟+1−𝑚,𝑠−𝑚)

⃦⃦
∆𝑚̃𝑒𝑢

⃦⃦
Tℎ
‖𝑢‖𝐻𝑠(Ω), 𝜏𝑆ℎ(𝛿𝑢, 𝑒𝑢)

= 𝜏

𝑚̃−1∑︁
𝑖=0

ℎ−(4𝑖+1)
⟨︀q
∇∆𝑚̃−𝑖−1𝛿𝑢

y
,
q
∇∆𝑚̃−𝑖−1𝑒𝑢

y⟩︀
Fℎ

+ 𝜏

𝑚̃−2∑︁
𝑖=0

ℎ−(4𝑖+3)
⟨︀q

∆𝑚̃−𝑖−1𝛿𝑢
y
,
q
∆𝑚̃−𝑖−1𝑒𝑢

y⟩︀
Fℎ

≤ 𝜏

𝑚̃−1∑︁
𝑖=0

(︁
ℎ−(4𝑖+1)

⃦⃦q
∇∆𝑚̃−𝑖−1𝛿𝑢

y⃦⃦2

𝐿2(Fℎ)

)︁ 1
2
(︁
ℎ−(4𝑖+1)

⃦⃦q
∇∆𝑚̃−𝑖−1𝑒𝑢

y⃦⃦2

𝐿2(Fℎ)

)︁ 1
2

+ 𝜏

𝑚̃−2∑︁
𝑖=0

(︁
ℎ−(4𝑖+3)

⃦⃦q
∆𝑚̃−𝑖−1𝛿𝑢

y⃦⃦2

𝐿2(Fℎ)

)︁ 1
2
(︁
ℎ−(4𝑖+3)

⃦⃦q
∆𝑚̃−𝑖−1𝑒𝑢

y⃦⃦2

𝐿2(Fℎ)

)︁ 1
2

≤ 𝐶𝜏ℎmin(𝑟+1−𝑚,𝑠−𝑚)(𝑆ℎ(𝑒𝑢, 𝑒𝑢))
1
2 ‖𝑢‖𝐻𝑠(Ω).

We have used trace inequality and (3.21) to obtain the last inequality above.
By trace inequality and (3.21) again, we have

𝐶ℎ(𝛿𝑢, 𝑒𝑢) = −
𝑚̃−1∑︁
𝑖=0

⟨︀{︀{︀
∆𝑚̃+𝑖𝛿𝑢

}︀}︀
,
q
∇∆𝑚̃−𝑖−1𝑒𝑢

y⟩︀
Fℎ

+
𝑚̃−2∑︁
𝑖=0

⟨︀{︀{︀
∇∆𝑚̃+𝑖𝛿𝑢

}︀}︀
,
q
∆𝑚̃−𝑖−1𝑒𝑢

y⟩︀
Fℎ

≤
𝑚̃−1∑︁
𝑖=0

(︁
ℎ4𝑖+1

⃦⃦{︀{︀
∆𝑚̃+𝑖𝛿𝑢

}︀}︀⃦⃦2

𝐿2(Fℎ)

)︁ 1
2
(︁
ℎ−(4𝑖+1)

⃦⃦q
∇∆𝑚̃−𝑖−1𝑒𝑢

y⃦⃦2

𝐿2(Fℎ)

)︁ 1
2

+
𝑚̃−2∑︁
𝑖=0

(︁
ℎ4𝑖+3

⃦⃦{︀{︀
∇∆𝑚̃+𝑖𝛿𝑢

}︀}︀⃦⃦2

𝐿2(Fℎ)

)︁ 1
2
(︁
ℎ−(4𝑖+3)

⃦⃦q
∆𝑚̃−𝑖−1𝑒𝑢

y⃦⃦2

𝐿2(Fℎ)

)︁ 1
2

≤ 𝐶

𝑚̃−1∑︁
𝑖=0

(︁
ℎ4𝑖+1

(︁
ℎ−1

⃦⃦
∆𝑚̃+𝑖𝛿𝑢

⃦⃦2

𝐿2(Tℎ)
+ ℎ
⃦⃦

∆𝑚̃+𝑖𝛿𝑢
⃦⃦2

𝐻1(Tℎ)

)︁)︁ 1
2
(︁
ℎ−(4𝑖+1)

⃦⃦q
∇∆𝑚̃−𝑖−1𝑒𝑢

y⃦⃦2

𝐿2(Fℎ)

)︁ 1
2

+ 𝐶

𝑚̃−2∑︁
𝑖=0

(︁
ℎ4𝑖+3

(︁
ℎ−1

⃦⃦
∇∆𝑚̃+𝑖𝛿𝑢

⃦⃦2

𝐿2(Tℎ)
+ ℎ
⃦⃦
∇∆𝑚̃+𝑖𝛿𝑢

⃦⃦2

𝐻1(Tℎ)

)︁)︁ 1
2

×
(︁
ℎ−(4𝑖+3)

⃦⃦q
∆𝑚̃−𝑖−1𝑒𝑢

y⃦⃦2

𝐿2(Fℎ)

)︁ 1
2

≤ 𝐶ℎmin(𝑟+1−𝑚,𝑠−𝑚)(𝑆ℎ(𝑒𝑢, 𝑒𝑢))
1
2 ‖𝑢‖𝐻𝑠(Ω).

By inverse inequality and discrete trace inequality,

𝐶ℎ(𝑒𝑢, 𝛿𝑢) = −
𝑚̃−1∑︁
𝑖=0

⟨︀{︀{︀
∆𝑚̃+𝑖𝑒𝑢

}︀}︀
,
q
∇∆𝑚̃−𝑖−1𝛿𝑢

y⟩︀
Fℎ

+
𝑚̃−2∑︁
𝑖=0

⟨︀{︀{︀
∇∆𝑚̃+𝑖𝑒𝑢

}︀}︀
,
q
∆𝑚̃−𝑖−1𝛿𝑢

y⟩︀
Fℎ

≤
𝑚̃−1∑︁
𝑖=0

(︁
ℎ4𝑖+1

⃦⃦{︀{︀
∆𝑚̃+𝑖𝑒𝑢

}︀}︀⃦⃦2

𝐿2(Fℎ)

)︁ 1
2
(︁
ℎ−(4𝑖+1)

⃦⃦q
∇∆𝑚̃−𝑖−1𝛿𝑢

y⃦⃦2

𝐿2(Fℎ)

)︁ 1
2

+
𝑚̃−2∑︁
𝑖=0

(︁
ℎ4𝑖+3

⃦⃦{︀{︀
∇∆𝑚̃+𝑖𝑒𝑢

}︀}︀⃦⃦2

𝐿2(Fℎ)

)︁ 1
2
(︁
ℎ−(4𝑖+3)

⃦⃦q
∆𝑚̃−𝑖−1𝛿𝑢

y⃦⃦2

𝐿2(Fℎ)

)︁ 1
2

≤ 𝐶

𝑚̃−1∑︁
𝑖=0

(︁
ℎ4𝑖
⃦⃦

∆𝑚̃+𝑖𝑒𝑢

⃦⃦2

𝐿2(Tℎ)

)︁ 1
2
(︁
ℎ−(4𝑖+1)

⃦⃦q
∇∆𝑚̃−𝑖−1𝛿𝑢

y⃦⃦2

𝐿2(Fℎ)

)︁ 1
2
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+ 𝐶

𝑚̃−2∑︁
𝑖=0

(︁
ℎ4𝑖+2

⃦⃦
∇∆𝑚̃+𝑖𝑒𝑢

⃦⃦2

𝐿2(Tℎ)

)︁ 1
2
(︁
ℎ−(4𝑖+3)

⃦⃦q
∆𝑚̃−𝑖−1𝛿𝑢

y⃦⃦2

𝐿2(Fℎ)

)︁ 1
2

≤ 𝐶

𝑚̃−1∑︁
𝑖=0

(︁⃦⃦
∆𝑚̃𝑒𝑢

⃦⃦2

𝐿2(Tℎ)

)︁ 1
2
(︁
ℎ−(4𝑖+1)

⃦⃦q
∇∆𝑚̃−𝑖−1𝛿𝑢

y⃦⃦2

𝐿2(Fℎ)

)︁ 1
2

+ 𝐶

𝑚̃−2∑︁
𝑖=0

(︁⃦⃦
∆𝑚̃𝑒𝑢

⃦⃦2

𝐿2(Tℎ)

)︁ 1
2
(︁
ℎ−(4𝑖+3)

⃦⃦q
∆𝑚̃−𝑖−1𝛿𝑢

y⃦⃦2

𝐿2(Fℎ)

)︁ 1
2

≤ 𝐶ℎmin(𝑟+1−𝑚,𝑠−𝑚)
⃦⃦

∆𝑚̃𝑒𝑢

⃦⃦2

𝐿2(Tℎ)
‖𝑢‖𝐻𝑠(Ω).

Combing (3.23) with above estimates, we have

‖∆𝑚̃𝑒𝑢‖2𝐿2(Tℎ) + 𝜏𝑆ℎ(𝑒𝑢, 𝑒𝑢) ≤ 𝐶ℎ2 min(𝑟+1−𝑚,𝑠−𝑚)‖𝑢‖2𝐻𝑠(Ω).

We have used the fact that 𝜏 is independent of ℎ to obtain the above inequality. Then by Theorem 3.4, we have

‖𝑒𝑢‖2𝑚,ℎ ≤ 𝐶
(︁
‖∆𝑚̃𝑒𝑢‖2𝐿2(Tℎ) + 𝜏𝑆ℎ(𝑒𝑢, 𝑒𝑢)

)︁
≤ 𝐶ℎ2 min(𝑟+1−𝑚,𝑠−𝑚)‖𝑢‖2𝐻𝑠(Ω).

Now we obtain the error estimate (3.19) when 𝑚 ≥ 2 is an even number. It is similar to show that (3.19) holds
when 𝑚 ≥ 2 is an odd number. Therefore we can conclude that the proof is complete. �

4. Error analysis under the low regularity assumption

In the above section, we assume the exact solution 𝑢 ∈ 𝐻𝑚
0 (Ω)∩𝐻𝑠(Ω) with 𝑠 ≥ 2𝑚−1. Since this regularity

assumption may be high for the realistic problems, we further deduce the error analysis in this section for the
exact solution under the low regularity assumption, i.e., 𝑢 ∈ 𝐻𝑚

0 (Ω). In this case, the Galerkin orthogonality
does not hold true for the 𝐶0 interior penalty method if 𝑚 ≥ 2. We derive the error analysis by the technique
developed by Gudi in [12] which utilizes the analysis idea from the a posteriori error analysis.

Let 𝑉 := 𝐻𝑚
0 (Ω) and 𝑉 𝑐

ℎ be the 𝐻𝑚-conforming finite element space in 𝑉 . One can refer to the construction of
𝐻𝑚-conforming finite element space in 𝑉 in any dimension according to a recent work in [16]. For any 𝑣, 𝑤 ∈ 𝑉 ,
let 𝑎(𝑣, 𝑤) = (∆𝑚̃𝑣,∆𝑚̃𝑤)Ω if 𝑚 = 2𝑚̃ and 𝑎(𝑣, 𝑤) = (∇∆𝑚̃𝑣,∇∆𝑚̃𝑤)Ω if 𝑚 = 2𝑚̃+ 1. As the three abstract
assumptions in [12], firstly we assume there exists an enriching operator 𝐸ℎ : 𝑉ℎ → 𝑉 𝑐

ℎ such that∑︁
𝐾∈Tℎ

ℎ−2𝑚
𝐾 ‖𝑣 − 𝐸ℎ𝑣‖2𝐿2(𝐾) + ‖𝐸ℎ𝑣‖2𝑉 ≤ 𝐶‖𝑣‖2𝑚,ℎ, ∀𝑣 ∈ 𝑉ℎ. (4.1)

Actually, for the cases of 𝑚 = 2 and 3, this enriching operator 𝐸ℎ has been constructed by averaging technique
and the above estimate has been derived in [12,13].

Secondly, by the definition of 𝑎ℎ(·, ·) in (2.3) and Lemma 3.5, choosing 𝜏 as in Theorem 3.6, we easily have
that

‖𝑣ℎ‖2𝑚,ℎ ≤ 𝐶𝑎ℎ(𝑣ℎ, 𝑣ℎ), ∀𝑣ℎ ∈ 𝑉ℎ. (4.2)

Thirdly, we have the following estimate: for any 𝑣 ∈ 𝑉 , 𝑤 ∈ 𝑉 𝑐
ℎ and 𝑣ℎ ∈ 𝑉ℎ, it holds that

|𝑎(𝑣, 𝑤)− 𝑎ℎ(𝑣ℎ, 𝑤)| ≤ 𝐶‖𝑣 − 𝑣ℎ‖𝑚,ℎ‖𝑤‖𝑉 . (4.3)

Actually, for 𝑚 = 2𝑚̃, due to the fact that 𝑤 ∈ 𝑉 𝑐
ℎ and 𝑣 ∈ 𝑉 , we can derive

𝑎(𝑣, 𝑤)− 𝑎ℎ(𝑣ℎ, 𝑤) = (∆𝑚̃𝑣,∆𝑚̃𝑤)− (∆𝑚̃𝑣ℎ,∆𝑚̃𝑤)− 𝐶ℎ(𝑣ℎ, 𝑤)− 𝐶ℎ(𝑤, 𝑣ℎ)− 𝜏𝑆ℎ(𝑣ℎ, 𝑤)

= (∆𝑚̃(𝑣 − 𝑣ℎ),∆𝑚̃𝑤)− 𝐶ℎ(𝑤, 𝑣ℎ)
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= (∆𝑚̃(𝑣 − 𝑣ℎ),∆𝑚̃𝑤)− 𝐶ℎ(𝑤, 𝑣 − 𝑣ℎ). (4.4)

By the trace inequality and inverse estimate, we have

𝐶ℎ(𝑤, 𝑣 − 𝑣ℎ) = −
𝑚̃−1∑︁
𝑖=0

⟨︀{︀{︀
∆𝑚̃+𝑖𝑤

}︀}︀
,
q
∇∆𝑚̃−𝑖−1(𝑣 − 𝑣ℎ)

y⟩︀
Fℎ

+
𝑚̃−2∑︁
𝑖=0

⟨︀{︀{︀
∇∆𝑚̃+𝑖𝑤

}︀}︀
,
q
∆𝑚̃−𝑖−1(𝑣 − 𝑣ℎ)

y⟩︀
Fℎ

≤ 𝐶

𝑚̃−1∑︁
𝑖=0

‖∆𝑚̃𝑤‖Tℎ
ℎ−

1
2−2𝑖‖

q
∇∆𝑚̃−𝑖−1(𝑣 − 𝑣ℎ)

y
‖Fℎ

+ 𝐶

𝑚̃−2∑︁
𝑖=0

‖∆𝑚̃𝑤‖Tℎ
ℎ−

3
2−2𝑖‖

q
∆𝑚̃−𝑖−1(𝑣 − 𝑣ℎ)

y
‖Fℎ

,

which, together with (4.4), yields the estimate (4.3). For the case of 𝑚 = 2𝑚̃+ 1, one can similarly derive (4.3)
and we omit the details here.

By the estimates (4.1)–(4.3) and following Lemma 2.1 in [12], we have

‖𝑢− 𝑢ℎ‖𝑚,ℎ ≤ 𝐶 inf
𝑣∈𝑉ℎ

(︃
‖𝑢− 𝑣‖𝑚,ℎ + sup

𝜑∈𝑉ℎ∖{0}

(𝑓, 𝜑− 𝐸ℎ𝜑)Ω − 𝑎ℎ(𝑣, 𝜑− 𝐸ℎ𝜑)
‖𝜑‖𝑚,ℎ

)︃
· (4.5)

In order to get the upper bound for the second term on the right-hand side of (4.5), we first provide two lemmas.

Lemma 4.1. Let 𝑣 ∈ 𝑉ℎ. There exists a positive constant 𝐶 independent of mesh size such that

∑︁
𝐾∈Tℎ

ℎ2𝑚‖𝑓 − (−1)𝑚∆𝑚𝑣‖2𝐿2(𝐾) ≤

{︃
𝐶
(︀
‖∆𝑚̃(𝑢− 𝑣)‖2Tℎ

+ osc2
𝑚(𝑓)

)︀
, if 𝑚 = 2𝑚̃,

𝐶
(︀
‖∇∆𝑚̃(𝑢− 𝑣)‖2Tℎ

+ osc2
𝑚(𝑓)

)︀
, if 𝑚 = 2𝑚̃+ 1,

where

osc𝑚(𝑓) =

(︃ ∑︁
𝐾∈Tℎ

ℎ2𝑚
𝐾 inf

𝑓∈𝑃𝑟−𝑚(𝐾)

⃦⃦
𝑓 − 𝑓

⃦⃦2

𝐿2(𝐾)

)︃ 1
2

. (4.6)

Proof. We provide the proof for the case of 𝑚 = 2𝑚̃, and the case of 𝑚 = 2𝑚̃ + 1 can be similarly deduced.
Let 𝑏𝐾 ∈ 𝑃𝑚(𝑑+1)(𝐾) ∩𝐻𝑚

0 (𝐾) be the bubble function defined on 𝐾 such that 𝑏𝐾(𝑥𝐾) = 1, where 𝑥𝐾 is the
barycenter of the element 𝐾. Let 𝜓 = 𝑏𝐾(𝑓 − (−1)𝑚∆𝑚𝑣) on 𝐾 ∈ Tℎ and 𝜓 = 0 on Ω ∖𝐾. We easily have that

𝐶1‖𝑓 − (−1)𝑚∆𝑚𝑣‖𝐿2(𝐾) ≤ ‖𝜓‖𝐿2(𝐾) ≤ 𝐶2‖𝑓 − (−1)𝑚∆𝑚𝑣‖𝐿2(𝐾). (4.7)

It follows integration by parts that

(𝑓 − (−1)𝑚∆𝑚𝑣, 𝜓)𝐾 = ((−1)𝑚∆𝑚𝑢− (−1)𝑚∆𝑚𝑣, 𝜓)𝐾 =
(︀
∆𝑚̃(𝑢− 𝑣),∆𝑚̃𝜓

)︀
𝐾
.

By the inverse estimate, we further have

𝐶
⃦⃦
𝑓 − (−1)𝑚∆𝑚𝑣

⃦⃦2

𝐿2(𝐾)
≤
(︀
𝑓 − (−1)𝑚∆𝑚𝑣, 𝜓

)︀
𝐾

= (𝑓 − 𝑓, 𝜓)𝐾 + (𝑓 − (−1)𝑚∆𝑚𝑣, 𝜓)𝐾

= (𝑓 − 𝑓, 𝜓)𝐾 +
(︀
∆𝑚̃(𝑢− 𝑣),∆𝑚̃𝜓

)︀
𝐾

≤ 𝐶
(︁⃦⃦
𝑓 − 𝑓

⃦⃦
𝐿2(𝐾)

+ ℎ−𝑚
𝐾

⃦⃦
∆𝑚̃(𝑢− 𝑣)

⃦⃦
𝐿2(𝐾)

)︁
‖𝜓‖𝐿2(𝐾),
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which, together with (4.7), yields that

ℎ𝑚
𝐾

⃦⃦
𝑓 − (−1)𝑚∆𝑚𝑣

⃦⃦
𝐿2(𝐾)

≤ 𝐶
(︁
ℎ𝑚

𝐾

⃦⃦
𝑓 − 𝑓

⃦⃦
𝐿2(𝐾)

+
⃦⃦

∆𝑚̃(𝑢− 𝑣)
⃦⃦

𝐿2(𝐾)

)︁
.

By the above estimate and the triangular inequality, we directly obtain

ℎ2𝑚‖𝑓 − (−1)𝑚∆𝑚𝑣‖2𝐿2(𝐾) ≤ 𝐶
(︁
ℎ2𝑚

𝐾

⃦⃦
𝑓 − 𝑓

⃦⃦2

𝐿2(𝐾)
+
⃦⃦

∆𝑚̃(𝑢− 𝑣)
⃦⃦2

𝐿2(𝐾)

)︁
,

which yields the desired estimate. �

Lemma 4.2. Let 𝑣 ∈ 𝑉ℎ. For 𝑚 = 2𝑚̃, there exists a positive constant 𝐶 independent of mesh size such that,
for 𝑖 = 0, · · · , 𝑚̃− 1, ∑︁

𝐹∈Fℎ

ℎ4𝑖+1
𝐹

⃦⃦q
∆𝑚̃+𝑖𝑣

y⃦⃦2

𝐿2(𝐹 )
≤ 𝐶

(︁⃦⃦
∆𝑚̃(𝑢− 𝑣)

⃦⃦2

Tℎ
+ osc2

𝑚(𝑓)
)︁
, (4.8)

∑︁
𝐹∈Fℎ

ℎ4𝑖+3
𝐹

⃦⃦q
∇∆𝑚̃+𝑖𝑣

y⃦⃦2

𝐿2(𝐹 )
≤ 𝐶

(︁⃦⃦
∆𝑚̃(𝑢− 𝑣)

⃦⃦2

Tℎ
+ osc2

𝑚(𝑓)
)︁
. (4.9)

For 𝑚 = 2𝑚̃+ 1, there exists a positive constant 𝐶 independent of mesh size such that∑︁
𝐹∈Fℎ

ℎ4𝑖+3
𝐹

⃦⃦q
∆𝑚̃+𝑖+1𝑣

y⃦⃦2

𝐿2(𝐹 )
≤ 𝐶

(︁⃦⃦
∇∆𝑚̃(𝑢− 𝑣)

⃦⃦2

Tℎ
+ osc2

𝑚(𝑓)
)︁
, 𝑖 = 0, · · · , 𝑚̃− 1, (4.10)

∑︁
𝐹∈Fℎ

ℎ4𝑖+1
𝐹

⃦⃦q
∇∆𝑚̃+𝑖𝑣

y⃦⃦2

𝐿2(𝐹 )
≤ 𝐶

(︁⃦⃦
∇∆𝑚̃(𝑢− 𝑣)

⃦⃦2

Tℎ
+ osc2

𝑚(𝑓)
)︁
, 𝑖 = 0, · · · , 𝑚̃. (4.11)

Proof. For brevity, we only provide the proof for the case of 𝑚 = 2𝑚̃. The estimates (4.10) and (4.11) for the
case of 𝑚 = 2𝑚̃+ 1 can be similarly deduced. The proof is based on the induction approach.

Now we prove (4.8) with 𝑖 = 0. For any 𝐹 ∈ Fint
ℎ , we denote 𝜔𝐹 = 𝐾− ∪𝐾+ where 𝜕𝐾− ∩ 𝜕𝐾+ = 𝐹 . Let

𝜈𝐹 be the unit normal vector along 𝐹 pointing from 𝐾− to 𝐾+. Let 𝜉1 ∈ 𝑃𝑟−1(𝜔𝐹 ) be defined by

∆𝑚̃−𝑖𝜉1|𝐹 = 0, 𝑖 = 1, · · · , 𝑚̃, (4.12)

∇∆𝑚̃−𝑖𝜉1 · 𝜈𝐹 |𝐹 = 0, 𝑖 = 2, · · · , 𝑚̃, (4.13)

∇∆𝑚̃−1𝜉1 · 𝜈𝐹 |𝐹 =
q
∆𝑚̃𝑣

y
𝐽
|𝐹 . (4.14)

For the construction of 𝜉1, we can firstly assume 𝑟 = 𝑚. Let 𝜆+
𝑑+1 and 𝜆−𝑑+1 be the linear basis functions

at the nodes opposite to the face 𝐹 on 𝐾+ and 𝐾− respectively. We choose 𝜉1|𝐾+ = 𝐶+(𝜆+
𝑑+1)𝑚−1 and

𝜉1|𝐾− = 𝐶−(𝜆−𝑑+1)𝑚−1, where 𝐶+ and 𝐶− are constants. It is obviously that 𝜉1 satisfies (4.12) and (4.13). One
can easily choose 𝐶+ and 𝐶− such that

𝐶+∇∆𝑚̃−1(𝜆+
𝑑+1)𝑚−1 · 𝜈𝐹 |𝜕𝐾+∩𝐹 = 𝐶−∇∆𝑚̃−1(𝜆−𝑑+1)𝑚−1 · 𝜈𝐹 |𝜕𝐾−∩𝐹 =

q
∆𝑚̃𝑣

y
𝐽
|𝐹 .

For 𝑟 > 𝑚, one can similarly construct 𝜉1|𝐾+ = (𝜆+
𝑑+1)𝑚−1𝜉+1 and 𝜉1|𝐾− = (𝜆−𝑑+1)𝑚−1𝜉−1 , where 𝜉+1 ∈

𝑃𝑟−𝑚(𝐾+), 𝜉−1 ∈ 𝑃𝑟−𝑚(𝐾−) such that 𝜉1 satisfies (4.12)–(4.14).
Let 𝜉2 ∈ 𝐻𝑚

0 (𝜔𝐹 ) be a piecewise polynomial bubble function such that 𝜉2(𝑚𝐹 ) = 1, where 𝑚𝐹 is the
barycenter of 𝐹 . Denote 𝜑 = 𝜉1𝜉2 on 𝜔𝐹 and extend it by zero on Ω ∖ 𝜔𝐹 . It follows from the definitions of 𝜉1,
𝜉2 and integration by parts that

𝐶
⃦⃦q

∆𝑚̃𝑣
y⃦⃦2

𝐿2(𝐹 )
≤
⟨︀q

∆𝑚̃𝑣
y

𝐽
, 𝜉2∇∆𝑚̃−1𝜉1 · 𝜈𝐹

⟩︀
𝐹

=
⟨︀q

∆𝑚̃𝑣
y

𝐽
,∇∆𝑚̃−1𝜑 · 𝜈𝐹

⟩︀
𝐹
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=
(︀
∆𝑚̃𝑣,∆𝑚̃𝜑

)︀
𝜔𝐹

+
(︀
∇∆𝑚̃𝑣,∇∆𝑚̃−1𝜑

)︀
𝜔𝐹

=
(︀
∆𝑚̃𝑣,∆𝑚̃𝜑

)︀
𝜔𝐹
−
(︀
∆2𝑚̃𝑣, 𝜑

)︀
𝜔𝐹

=
(︀
∆𝑚̃(𝑣 − 𝑢),∆𝑚̃𝜑

)︀
𝜔𝐹

+ (𝑓 −∆𝑚𝑣, 𝜑)𝜔𝐹
.

By the scaling argument, for 𝐾 ∈ 𝜔𝐹 , we have

‖𝜉1‖𝐿∞(𝐾) ≤ 𝐶ℎ
𝑚− 1

2−
𝑑
2

𝐹

⃦⃦q
∆𝑚̃𝑣

y
𝐽

⃦⃦
𝐿2(𝐹 )

= 𝐶ℎ
𝑚− 1

2−
𝑑
2

𝐹

⃦⃦q
∆𝑚̃𝑣

y⃦⃦
𝐿2(𝐹 )

,

which directly yields that

‖𝜑‖𝐿2(𝐾) ≤ 𝐶‖𝜉1‖𝐿∞(𝐾)‖𝜉2‖𝐿2(𝐾) ≤ 𝐶ℎ
𝑚− 1

2
𝐹

⃦⃦q
∆𝑚̃𝑣

y⃦⃦
𝐿2(𝐹 )

. (4.15)

By the inverse estimate, we have⃦⃦q
∆𝑚̃𝑣

y⃦⃦2

𝐿2(𝐹 )
≤ 𝐶

∑︁
𝐾∈𝜔𝐹

(︁
ℎ−𝑚

𝐾

⃦⃦
∆𝑚̃(𝑢− 𝑣)

⃦⃦
𝐿2(𝐾)

+ ‖𝑓 −∆𝑚𝑣‖𝐿2(𝐾)

)︁
‖𝜑‖𝐿2(𝐾). (4.16)

Combining (4.15) and (4.16) yields

ℎ𝐹

⃦⃦q
∆𝑚̃𝑣

y⃦⃦2

𝐿2(𝐹 )
≤ 𝐶

∑︁
𝐾∈𝜔𝐹

(︁⃦⃦
∆𝑚̃(𝑢− 𝑣)

⃦⃦2

𝐿2(𝐾)
+ ℎ2𝑚

𝐹 ‖𝑓 −∆𝑚𝑣‖𝐿2(𝐾)

)︁
. (4.17)

The above estimate (4.17) can be similarly deduced for the case of 𝐹 ∈ 𝜕Ω. Now combining (4.17), Lemma 4.1
and summing over all 𝐹 ∈ Fℎ, we get the estimate (4.8) with 𝑖 = 0.

Next we prove (4.9) with 𝑖 = 0. For any 𝐹 ∈ Fint
ℎ , let 𝜂1 ∈ 𝑃𝑟−3(𝜔𝐹 ) be defined by ∆𝑚̃−𝑖𝜂1|𝐹 = 0,

∇∆𝑚̃−𝑖𝜂1 · 𝜈𝐹 |𝐹 = 0 with 𝑖 = 2, · · · , 𝑚̃, and ∆𝑚̃−1𝜂1|𝐹 =
q
∇∆𝑚̃𝑣

y
|𝐹 . Here 𝜂1 can be similarly constructed

as 𝜉1. Let 𝜂2 ∈ 𝐻𝑚
0 (𝜔𝐹 ) be a piecewise polynomial bubble function such that 𝜂2(𝑚𝐹 ) = 1, where 𝑚𝐹 is the

barycenter of 𝐹 . Denote 𝜓 = 𝜂1𝜂2 on 𝜔𝐹 and extend it by zero on Ω ∖ 𝜔𝐹 . By integration by parts, we have

𝐶
⃦⃦q
∇∆𝑚̃𝑣

y⃦⃦2

𝐿2(𝐹 )
≤
⟨︀q
∇∆𝑚̃𝑣

y
, 𝜂2∆𝑚̃−1𝜂1

⟩︀
𝐹

=
⟨︀q
∇∆𝑚̃𝑣

y
,∆𝑚̃−1𝜓

⟩︀
𝐹

=
(︀
∇∆𝑚̃𝑣,∇∆𝑚̃−1𝜓

)︀
𝜔𝐹

+
(︀
∆𝑚̃+1𝑣,∆𝑚̃−1𝜓

)︀
𝜔𝐹

= −
(︀
∆𝑚̃𝑣,∆𝑚̃𝜓

)︀
𝜔𝐹

+
∑︁

𝐾∈𝜔𝐹

∫︁
𝜕𝐾

q
∆𝑚̃𝑣

y{︀{︀
∇∆𝑚̃−1𝜓

}︀}︀
+
(︀
∆2𝑚̃𝑣, 𝜓

)︀
𝜔𝐹

=
(︀
∆𝑚̃(𝑢− 𝑣),∆𝑚̃𝜓

)︀
𝜔𝐹

+
∑︁

𝐾∈𝜔𝐹

∫︁
𝜕𝐾

q
∆𝑚̃𝑣

y{︀{︀
∇∆𝑚̃−1𝜓

}︀}︀
+
(︀
∆2𝑚̃𝑣 − 𝑓, 𝜓

)︀
𝜔𝐹
.

By the scaling argument, for 𝐾 ∈ 𝜔𝐹 , we have

‖𝜂1‖𝐿∞(𝐾) ≤ 𝐶ℎ
𝑚− 3

2−
𝑑
2

𝐹

⃦⃦q
∇∆𝑚̃𝑣

y⃦⃦
𝐿2(𝐹 )

,

which yields

‖𝜓‖𝐿2(𝐾) ≤ 𝐶ℎ
𝑚− 3

2
𝐹

⃦⃦q
∇∆𝑚̃𝑣

y⃦⃦
𝐿2(𝐹 )

. (4.18)

By the inverse estimate and the trace inequality, we get

ℎ3
𝐹

⃦⃦q
∇∆𝑚̃𝑣

y⃦⃦2

𝐿2(𝐹 )
≤ 𝐶

∑︁
𝐾∈𝜔𝐹

(︁⃦⃦
∆𝑚̃(𝑢− 𝑣)

⃦⃦
𝐿2(𝐾)

+ ℎ𝑚
𝐹 ‖𝑓 −∆𝑚𝑣‖𝐿2(𝐾) + ℎ

1
2
𝐹

⃦⃦q
∆𝑚̃𝑣

y⃦⃦
𝐿2(𝜕𝐾)

)︁
ℎ3−𝑚

𝐹 ‖𝜓‖𝐿2(𝐾).
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The above estimate can be similarly deduced for the case of 𝐹 ∈ 𝜕Ω. Combining the above estimate with (4.18),
(4.17), Lemma 4.1 and summing over all 𝐹 ∈ Fℎ, we obtain the estimate (4.9) with 𝑖 = 0.

We assume (4.8) and (4.9) hold true for 0 < 𝑖 = 𝑘 ≤ 𝑚̃− 2, we would like to prove that (4.8) and (4.9) hold
true with 𝑖 = 𝑘 + 1. Since the derivations are similar, we only show the proof for (4.8) with 𝑖 = 𝑘 + 1.

For any 𝐹 ∈ Fint
ℎ , let 𝛾1 ∈ 𝑃𝑟−4𝑘−5(𝜔𝐹 ) be defined by ∆𝑚̃−𝑙𝛾1|𝐹 = 0 with 𝑙 = 𝑘+2, · · · , 𝑚̃, ∇∆𝑚̃−𝑙𝛾1 ·𝜈𝐹 |𝐹 =

0 with 𝑙 = 𝑘+ 3, · · · , 𝑚̃, ∇∆𝑚̃−𝑘−2𝛾1 · 𝜈𝐹 |𝐹 =
q
∆𝑚̃+𝑘+1𝑣

y
𝐽
|𝐹 . Here 𝛾1 can be similarly constructed as 𝜉1. Let

𝛾2 ∈ 𝐻𝑚
0 (𝜔𝐹 ) be a piecewise polynomial bubble function such that 𝛾2(𝑚𝐹 ) = 1, where 𝑚𝐹 is the barycenter of

𝐹 . Denote 𝜙 = 𝛾1𝛾2 on 𝜔𝐹 and extend it by zero on Ω ∖ 𝜔𝐹 . By integration by parts, we have

𝐶
⃦⃦q

∆𝑚̃+𝑘+1𝑣
y⃦⃦2

𝐿2(𝐹 )
≤
⟨︀q

∆𝑚̃+𝑘+1𝑣
y

𝐽
, 𝛾2∇∆𝑚̃−𝑘−2𝛾1 · 𝜈𝐹

⟩︀
𝐹

=
⟨︀q

∆𝑚̃+𝑘+1𝑣
y

𝐽
,∇∆𝑚̃−𝑘−2𝜙 · 𝜈𝐹

⟩︀
𝐹

=
(︀
∆𝑚̃+𝑘+1𝑣,∆𝑚̃−𝑘−1𝜙

)︀
𝜔𝐹

+
(︀
∇∆𝑚̃+𝑘+1𝑣,∇∆𝑚̃−𝑘−2𝜙

)︀
𝜔𝐹
. (4.19)

By the definition of 𝜙, integration by parts yields(︀
∇∆𝑚̃+𝑘+1𝑣,∇∆𝑚̃−𝑘−2𝜙

)︀
𝜔𝐹

= −
(︀
∆2𝑚̃𝑣, 𝜙

)︀
𝜔𝐹
. (4.20)

We also have (︀
∆𝑚̃+𝑘+1𝑣,∆𝑚̃−𝑘−1𝜙

)︀
𝜔𝐹

=
(︀
∆𝑚̃+𝑘𝑣,∆𝑚̃−𝑘𝜙

)︀
𝜔𝐹
−
∫︁

𝐹

q
∆𝑚̃+𝑘𝑣

y
𝐽
∇∆𝑚̃−𝑘−1𝜙 · 𝜈𝐹

+
∫︁

𝐹

q
∇∆𝑚̃+𝑘𝑣

y
∆𝑚̃−𝑘−1𝜙

:= 𝑇0 + 𝑇1 + 𝑇2. (4.21)

By the scaling argument, for 𝐾 ∈ 𝜔𝐹 , we have

‖𝛾1‖𝐿∞(𝐾) ≤ 𝐶ℎ
2𝑚̃−2𝑘− 5

2−
𝑑
2

𝐹

⃦⃦q
∆𝑚̃+𝑘+1𝑣

y⃦⃦
𝐿2(𝐹 )

,

which yields

‖𝜙‖𝐿2(𝐾) ≤ 𝐶ℎ
2𝑚̃−2𝑘− 5

2
𝐹

⃦⃦q
∆𝑚̃+𝑘+1𝑣

y⃦⃦
𝐿2(𝐹 )

. (4.22)

By the trace inequality, inverse estimate and (4.22), we obtain

𝑇1 ≤ 𝐶
⃦⃦q

∆𝑚̃+𝑘𝑣
y⃦⃦

𝐿2(𝐹 )
ℎ
− 1

2
𝐹

⃦⃦
∇∆𝑚̃−𝑘−1𝜙

⃦⃦
𝐿2(𝜔𝐹 )

≤ 𝐶
⃦⃦q

∆𝑚̃+𝑘𝑣
y⃦⃦

𝐿2(𝐹 )
ℎ
− 1

2
𝐹 ℎ

−(2𝑚̃−2𝑘−1)
𝐹 ‖𝜙‖𝐿2(𝜔𝐹 )

≤ 𝐶ℎ−2
𝐹

⃦⃦q
∆𝑚̃+𝑘𝑣

y⃦⃦
𝐿2(𝐹 )

⃦⃦q
∆𝑚̃+𝑘+1𝑣

y⃦⃦
𝐿2(𝐹 )

.

Similarly, by the trace inequality, inverse estimate and (4.22), we have

𝑇2 ≤ 𝐶ℎ−1
𝐹

⃦⃦q
∇∆𝑚̃+𝑘𝑣

y⃦⃦
𝐿2(𝐹 )

⃦⃦q
∆𝑚̃+𝑘+1𝑣

y⃦⃦
𝐿2(𝐹 )

.

For the estimate of 𝑇0, following integration by parts, the trace inequality, inverse estimate and (4.22) yields

𝑇0 =
(︀
∆𝑚̃𝑣,∆𝑚̃𝜙

)︀
𝜔𝐹
−

𝑘−1∑︁
𝑙=0

∫︁
𝐹

q
∆𝑚̃+𝑙𝑣

y
𝐽
∇∆𝑚̃−𝑙−1𝜙 · 𝜈𝐹 +

𝑘−1∑︁
𝑙=0

∫︁
𝐹

q
∇∆𝑚̃+𝑙𝑣

y
∆𝑚̃−𝑙−1𝜙,
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≤
(︀
∆𝑚̃𝑣,∆𝑚̃𝜙

)︀
𝜔𝐹

+ 𝐶

𝑘−1∑︁
𝑙=0

⃦⃦q
∆𝑚̃+𝑙𝑣

y⃦⃦
𝐿2(𝐹 )

ℎ
− 1

2
𝐹

⃦⃦
∇∆𝑚̃−𝑙−1𝜙

⃦⃦
𝐿2(𝜔𝐹 )

+ 𝐶

𝑘−1∑︁
𝑙=0

⃦⃦q
∇∆𝑚̃+𝑙𝑣

y⃦⃦
𝐿2(𝐹 )

ℎ
− 1

2
𝐹

⃦⃦
∆𝑚̃−𝑙−1𝜙

⃦⃦
𝐿2(𝜔𝐹 )

≤
(︀
∆𝑚̃𝑣,∆𝑚̃𝜙

)︀
𝜔𝐹

+ 𝐶

𝑘−1∑︁
𝑙=0

(︁
ℎ

2𝑙+ 1
2

𝐹

⃦⃦q
∇∆𝑚̃+𝑙𝑣

y⃦⃦
𝐿2(𝐹 )

+ ℎ
2𝑙+ 3

2
𝐹

⃦⃦q
∇∆𝑚̃+𝑙𝑣

y⃦⃦
𝐿2(𝐹 )

)︁
ℎ
−2𝑘− 5

2
𝐹

⃦⃦q
∆𝑚̃+𝑘+1𝑣

y⃦⃦
𝐿2(𝐹 )

.

Combining (4.19)–(4.21) and the upper bounds for 𝑇0, 𝑇1 and 𝑇2, we have

𝐶
⃦⃦q

∆𝑚̃+𝑘+1𝑣
y⃦⃦2

𝐿2(𝐹 )
≤ −(∆2𝑚̃𝑣, 𝜙)𝜔𝐹

+ (∆𝑚̃𝑣,∆𝑚̃𝜙)𝜔𝐹
(4.23)

+ 𝐶

𝑘−1∑︁
𝑙=0

(︁
ℎ

2𝑙+ 1
2

𝐹

⃦⃦q
∇∆𝑚̃+𝑙𝑣

y⃦⃦
𝐿2(𝐹 )

+ ℎ
2𝑙+ 3

2
𝐹

⃦⃦q
∇∆𝑚̃+𝑙𝑣

y⃦⃦
𝐿2(𝐹 )

)︁
ℎ
−2𝑘− 5

2
𝐹

⃦⃦q
∆𝑚̃+𝑘+1𝑣

y⃦⃦
𝐿2(𝐹 )

+ 𝐶ℎ−2
𝐹

⃦⃦q
∆𝑚̃+𝑘𝑣

y⃦⃦
𝐿2(𝐹 )

⃦⃦q
∆𝑚̃+𝑘+1𝑣

y⃦⃦
𝐿2(𝐹 )

+ 𝐶ℎ−1
𝐹

⃦⃦q
∇∆𝑚̃+𝑘𝑣

y⃦⃦
𝐿2(𝐹 )

⃦⃦q
∆𝑚̃+𝑘+1𝑣

y⃦⃦
𝐿2(𝐹 )

.

We note that

−
(︀
∆2𝑚̃𝑣, 𝜙

)︀
𝜔𝐹

+
(︀
∆𝑚̃𝑣,∆𝑚̃𝜙

)︀
𝜔𝐹

=
(︀
𝑓 −∆2𝑚̃𝑣, 𝜙

)︀
𝜔𝐹

+
(︀
∆𝑚̃𝑣 −∆𝑚̃𝑢,∆𝑚̃𝜙

)︀
𝜔𝐹
.

For any 𝐹 ∈ 𝜕Ω, we can derive the similar estimate as (4.23). Now combining (4.23), the Cauchy–Schwarz
inequality, the estimates of (4.8) and (4.9) with 𝑖 ≤ 𝑘, the inverse estimate and (4.22) and summing over all
𝐹 ∈ Fℎ, we can finally obtain (4.8) with 𝑖 = 𝑘 + 1. �

Now we can start to derive the upper bound for the second term on the right-hand side of (4.5). We provide
the estimate for the case of 𝑚 = 2𝑚̃, and the estimate for the case of 𝑚 = 2𝑚̃ + 1 can be similarly obtained.
For any 𝜑 ∈ 𝑉ℎ ∖ {0}, let 𝜁 = 𝜑− 𝐸ℎ𝜑. By the definition of 𝑎ℎ(·, ·) in (2.3) and integration by parts, we have

(𝑓, 𝜁)Ω − 𝑎ℎ(𝑣, 𝜁) = (𝑓, 𝜁)Ω −
(︀
∆𝑚̃𝑣,∆𝑚̃𝜁

)︀
Tℎ
− 𝐶ℎ(𝑣, 𝜁)− 𝐶ℎ(𝜁, 𝑣)− 𝜏𝑆ℎ(𝑣, 𝜁)

= (𝑓 − (−1)𝑚∆𝑚𝑣, 𝜁)Ω −
𝑚̃−1∑︁
𝑖=0

⟨︀{︀{︀
∆𝑚̃+𝑖𝑣

}︀}︀
,
q
∇∆𝑚̃−𝑖−1𝜁

y⟩︀
Fℎ

−
𝑚̃−1∑︁
𝑖=0

⟨︀q
∆𝑚̃+𝑖𝑣

y
,
{︀{︀
∇∆𝑚̃−𝑖−1𝜁

}︀}︀⟩︀
Fℎ

+
𝑚̃−2∑︁
𝑖=0

⟨︀{︀{︀
∇∆𝑚̃+𝑖𝑣

}︀}︀
,
q
∆𝑚̃−𝑖−1𝜁

y⟩︀
Fℎ

+
𝑚̃−1∑︁
𝑖=0

⟨︀q
∇∆𝑚̃+𝑖𝑣

y
,
{︀{︀

∆𝑚̃−𝑖−1𝜁
}︀}︀⟩︀

Fℎ

− 𝐶ℎ(𝑣, 𝜁)− 𝐶ℎ(𝜁, 𝑣)− 𝜏𝑆ℎ(𝑣, 𝜁).

By the definition of 𝐶ℎ(·, ·), the trace inequality, inverse estimate and (4.1), we further have

(𝑓, 𝜁)Ω − 𝑎ℎ(𝑣, 𝜁)

= (𝑓 − (−1)𝑚∆𝑚𝑣, 𝜁)Ω −
𝑚̃−1∑︁
𝑖=0

⟨︀q
∆𝑚̃+𝑖𝑣

y
,
{︀{︀
∇∆𝑚̃−𝑖−1𝜁

}︀}︀⟩︀
Fℎ

+
𝑚̃−1∑︁
𝑖=0

⟨︀q
∇∆𝑚̃+𝑖𝑣

y
,
{︀{︀

∆𝑚̃−𝑖−1𝜁
}︀}︀⟩︀

Fℎ

+
𝑚̃−1∑︁
𝑖=0

⟨︀{︀{︀
∆𝑚̃+𝑖𝜁

}︀}︀
,
q
∇∆𝑚̃−𝑖−1𝑣

y⟩︀
Fℎ
−

𝑚̃−2∑︁
𝑖=0

⟨︀{︀{︀
∇∆𝑚̃+𝑖𝜁

}︀}︀
,
q
∆𝑚̃−𝑖−1𝑣

y⟩︀
Fℎ
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− 𝜏

𝑚̃−1∑︁
𝑖=0

ℎ−(4𝑖+1)
⟨︀q
∇∆𝑚̃−𝑖−1𝑣

y
,
q
∇∆𝑚̃−𝑖−1𝜁

y⟩︀
Fℎ
− 𝜏

𝑚̃−2∑︁
𝑖=0

ℎ−(4𝑖+3)
⟨︀q

∆𝑚̃−𝑖−1𝑣
y
,
q
∆𝑚̃−𝑖−1𝜁

y⟩︀
Fℎ

≤ ‖𝑓 − (−1)𝑚∆𝑚𝑣‖𝐿2(Tℎ)‖𝜁‖𝐿2(Tℎ) + 𝐶

𝑚̃−1∑︁
𝑖=0

⃦⃦q
∆𝑚̃+𝑖𝑣

y⃦⃦
𝐿2(Fℎ)

ℎ−2𝑚̃+2𝑖+ 1
2 ‖𝜁‖𝐿2(Tℎ)

+ 𝐶

𝑚̃−1∑︁
𝑖=0

⃦⃦q
∇∆𝑚̃+𝑖𝑣

y⃦⃦
𝐿2(Fℎ)

ℎ−2𝑚̃+2𝑖+ 3
2 ‖𝜁‖𝐿2(Tℎ)

+ 𝐶

𝑚̃−1∑︁
𝑖=0

⃦⃦q
∇∆𝑚̃−𝑖−1𝑣

y⃦⃦
𝐿2(Fℎ)

ℎ−2𝑚̃−2𝑖− 1
2 ‖𝜁‖𝐿2(Tℎ)

+ 𝐶

𝑚̃−2∑︁
𝑖=0

⃦⃦q
∆𝑚̃−𝑖−1𝑣

y⃦⃦
𝐿2(Fℎ)

ℎ−2𝑚̃−2𝑖− 3
2 ‖𝜁‖𝐿2(Tℎ)

+ 𝐶

𝑚̃−1∑︁
𝑖=0

ℎ−(4𝑖+1)
⃦⃦q
∇∆𝑚̃−𝑖−1𝑣

y⃦⃦
𝐿2(Fℎ)

⃦⃦q
∇∆𝑚̃−𝑖−1𝜁

y⃦⃦
𝐿2(Fℎ)

+ 𝐶

𝑚̃−2∑︁
𝑖=0

ℎ−(4𝑖+3)
⃦⃦q

∆𝑚̃−𝑖−1𝑣
y⃦⃦

𝐿2(Fℎ)

⃦⃦q
∆𝑚̃−𝑖−1𝜁

y⃦⃦
𝐿2(Fℎ)

≤ 𝐶ℎ𝑚‖𝑓 − (−1)𝑚∆𝑚𝑣‖𝐿2(Tℎ)‖𝜑‖𝑚,ℎ + 𝐶

𝑚̃−1∑︁
𝑖=0

ℎ2𝑖+ 1
2
⃦⃦q

∆𝑚̃+𝑖𝑣
y⃦⃦

𝐿2(Fℎ)
‖𝜑‖𝑚,ℎ

+ 𝐶

𝑚̃−1∑︁
𝑖=0

ℎ2𝑖+ 3
2
⃦⃦q
∇∆𝑚̃+𝑖𝑣

y⃦⃦
𝐿2(Fℎ)

‖𝜑‖𝑚,ℎ + 𝐶

𝑚̃−1∑︁
𝑖=0

ℎ−2𝑖− 1
2
⃦⃦q
∇∆𝑚̃−𝑖−1𝑣

y⃦⃦
𝐿2(Fℎ)

‖𝜑‖𝑚,ℎ

+ 𝐶

𝑚̃−2∑︁
𝑖=0

ℎ−2𝑖− 3
2
⃦⃦q

∆𝑚̃−𝑖−1𝑣
y⃦⃦

𝐿2(Fℎ)
‖𝜑‖𝑚,ℎ

+ 𝐶

𝑚̃−1∑︁
𝑖=0

ℎ−(4𝑖+1)
⃦⃦q
∇∆𝑚̃−𝑖−1𝑣

y⃦⃦
𝐿2(Fℎ)

⃦⃦q
∇∆𝑚̃−𝑖−1𝜑

y⃦⃦
𝐿2(Fℎ)

+ 𝐶

𝑚̃−2∑︁
𝑖=0

ℎ−(4𝑖+3)
⃦⃦q

∆𝑚̃−𝑖−1𝑣
y⃦⃦

𝐿2(Fℎ)

⃦⃦q
∆𝑚̃−𝑖−1𝜑

y⃦⃦
𝐿2(Fℎ)

.

Combining the above estimate, Lemmas 4.1 and 4.2, we directly have

(𝑓, 𝜁)Ω − 𝑎ℎ(𝑣, 𝜁) ≤ 𝐶
(︁⃦⃦

∆𝑚̃(𝑢− 𝑣)
⃦⃦

Tℎ
+ osc𝑚(𝑓)

)︁
‖𝜑‖𝑚,ℎ,

which yields

sup
𝜑∈𝑉ℎ∖{0}

(𝑓, 𝜑− 𝐸ℎ𝜑)Ω − 𝑎ℎ(𝑣, 𝜑− 𝐸ℎ𝜑)
‖𝜑‖𝑚,ℎ

≤ 𝐶(‖𝑢− 𝑣‖𝑚,ℎ + osc𝑚(𝑓)). (4.24)

The above estimate (4.24) can be similarly deduced for the case of 𝑚 = 2𝑚̃+ 1 and we omit the details here.
Now by the estimates (4.5) and (4.24), we obtain the following convergence result for the 𝐶0 interior penalty

method for the 𝑚th-Laplace equation (1.1) with 𝑚 ≥ 2.

Theorem 4.3. For 𝑚 ≥ 2, we assume that the exact solution 𝑢 ∈ 𝐻𝑚
0 (Ω) for (1.1), 𝜏 ≥ 𝜏0 ≥ 1 where 𝜏0 is the

same as Theorem 3.6, and there exists an enriching operator 𝐸ℎ : 𝑉ℎ → 𝑉 𝑐
ℎ such that (4.1) holds true. Then
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Table 1. Example 5.1: errors with estimated rates of convergence when 𝑟 = 𝑚 and 𝑚 = 2, 3
and 4, respectively.

1/ℎ ‖𝑢− 𝑢ℎ‖2,ℎ Order ‖𝑢− 𝑢ℎ‖3,ℎ Order ‖𝑢− 𝑢ℎ‖4,ℎ Order

8 1.1095e− 1 − 4.5054e− 1 − 6.3198e− 1 −
16 5.9870e− 2 0.89 2.4651e− 1 0.87 3.5797e− 1 0.82
32 3.0564e− 2 0.97 1.2672e− 1 0.96 1.9051e− 1 0.91
64 1.5388e− 2 0.99 6.4245e− 2 0.98 9.7934e− 2 0.96

there is a positive constant 𝐶 independent of ℎ such that

‖𝑢− 𝑢ℎ‖𝑚,ℎ ≤ 𝐶 inf
𝑣∈𝑉ℎ

(‖𝑢− 𝑣‖𝑚,ℎ + osc𝑚(𝑓)). (4.25)

Here 𝑢ℎ ∈ 𝑉ℎ is the numerical solution of the method (2.2).

Now we immediately have the following estimates. Assuming the exact solution 𝑢 ∈ 𝐻𝑚
0 (Ω)∩𝐻𝑠(Ω) for (1.1),

𝑠 > 𝑚, we have
‖𝑢− 𝑢ℎ‖𝑚,ℎ ≤ 𝐶

(︁
ℎmin(𝑟+1−𝑚,𝑠−𝑚)‖𝑢‖𝐻𝑠(Ω) + osc𝑚(𝑓)

)︁
.

In particular, if the oscillation term osc𝑚(𝑓) is zero, we have

‖𝑢− 𝑢ℎ‖𝑚,ℎ ≤ 𝐶ℎmin(𝑟+1−𝑚,𝑠−𝑚)‖𝑢‖𝐻𝑠(Ω).

5. Numerical experiments and discussions

In this section, we provide several numerical experiments to verify the theoretical prediction of the 𝐶0 interior
penalty finite element method proposed in the previous sections in two and three dimensions. We calculate the
rate of convergence of ‖𝑢− 𝑢ℎ‖𝑚,ℎ in various discrete 𝐻𝑚 norms and compare each computed rate with its
theoretical estimate. It is pointed out that the estimated convergence rates have very little dependency on the
particular value when 𝜏 = 𝑂(1), so we choose 𝜏 = 1 in the following tests. All the numerical experiments are
carried out in C, and the resulting linear algebraic systems are solved using GMRES solvers from the PETSc
package [2].

Example 5.1. For this test, we solve (2.5)–(2.7), namely 𝑚 = 2, 3 and 4, respectively, using the standard 𝑟-th
order piecewise continuous 𝐻1-conforming finite element space 𝑉ℎ defined in Section 2 with Ω = (0, 1)2. We use
the following data:

𝑓(𝑥, 𝑦) =2𝑚𝜋2𝑚 sin(𝜋𝑥) sin(𝜋𝑦),

so that the exact solution is
𝑢(𝑥, 𝑦) = sin(𝜋𝑥) sin(𝜋𝑦),

which satisfies the 𝑚th-Laplace equation (1.1a) and homogeneous boundary conditions (1.1b).
We list the errors along with their estimated rates of convergence in Tables 1 and 2 when 𝑟 = 𝑚 and 𝑟 = 𝑚+1,

respectively. It is remarked that long double in C99 standard is used to represent extended precision floating
point value for the 4th-order Laplacian operator, which is accurate up to 10−20. The tables indicate the following
rates of convergence:

‖𝑢− 𝑢ℎ‖𝑚,ℎ = 𝑂(ℎ), when 𝑟 = 𝑚,

‖𝑢− 𝑢ℎ‖𝑚,ℎ = 𝑂(ℎ2), when 𝑟 = 𝑚+ 1.
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Table 2. Example 5.1: errors with estimated rates of convergence when 𝑟 = 𝑚+ 1 and 𝑚 = 2,
3 and 4, respectively.

1/ℎ ‖𝑢− 𝑢ℎ‖2,ℎ Order ‖𝑢− 𝑢ℎ‖3,ℎ Order ‖𝑢− 𝑢ℎ‖4,ℎ Order

8 2.5510e− 2 − 4.8538e− 2 − 9.0579e− 2 −
16 6.7880e− 3 1.91 1.3371e− 2 1.86 2.5477e− 2 1.83
32 1.7207e− 3 1.98 3.5090e− 3 1.93 6.8738e− 3 1.89
64 4.3317e− 4 1.99 8.9566e− 4 1.97 1.8039e− 3 1.93

Table 3. Example 5.2: errors with estimated rates of convergence when 𝑟 = 𝑚 = 3.

1/ℎ ‖𝑢1 − 𝑢1,ℎ‖3,ℎ,Ω1
Order ‖𝑢2 − 𝑢2,ℎ‖3,ℎ,Ω2

Order

8 7.7412e− 2 − 5.2910e− 1 −
16 4.1198e− 2 0.91 4.1801e− 1 0.34
32 2.1623e− 2 0.93 3.0600e− 2 0.45
64 1.0962e− 2 0.98 2.1488e− 2 0.51

Example 5.2. In the second example, we test the proposed method in which the solutions have partial regu-
larity on a convex domain [13] and a non-convex one [25], respectively. To this end, we solve the third-Laplace
equation

(−∆)3𝑢 = 𝑓.

The first solution is defined on the square domain Ω1 = (0, 1)2 with homogeneous Dirichlet boundary conditions.
The data 𝑓 is chosen such that the exact solution is given by

𝑢1(𝑥, 𝑦) =
(︀
𝑥2 + 𝑦2

)︀7.1/4(︀
𝑥− 𝑥2

)︀3(︀
𝑦 − 𝑦2

)︀3
.

Here 𝑢1 ∈ 𝐻𝑠(Ω1) and 4 ≤ 𝑠 < 4.1.
While the second solution is on the 2D L-shaped domain Ω2 = (−1, 1)2∖[0, 1)×(−1, 0] with Dirichlet boundary

conditions given explicitly by
𝑢2(𝑟, 𝜃) = 𝑟2.5 sin(2.5𝜃).

where (𝑟, 𝜃) are polar coordinates. Here 𝑓 = 0 and 𝑢2 ∈ 𝐻3+1/2(Ω2) due to the singularity at the origin.
In both cases, the observed errors of the proposed method converge asymptotically with the optimal order ℎ

and ℎ1/2, respectively, in the discrete 𝐻3 norm, as shown in Table 3.

Example 5.3. Our last example is a three-dimensional problem. We take the cubic domain (0, 1)3 as the
computational domain and the exact solution 𝑢 is given by

𝑢(𝑥, 𝑦, 𝑧) = sin(𝜋𝑥) sin(𝜋𝑦) sin(𝜋𝑧),

which satisfies the third-Laplace equation (1.1a) (𝑚 = 3) and homogeneous boundary conditions (1.1b).
We list the errors and rates of convergence in Table 4, which indicates that the computed solution converges

asymptotically linearly to the exact solution in the discrete 𝐻3 norm. The observed rate is in agreement with
Theorem 3.7.
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Table 4. Example 5.3: with estimated rates of convergence when 𝑟 = 𝑚 = 3.

1/ℎ ‖𝑢− 𝑢ℎ‖3,ℎ Order

8 3.1836e− 1 −
16 1.6594e− 1 0.94
32 8.5896e− 2 0.95
64 4.3247e− 2 0.99

6. Conclusion

A 𝐶0 interior penalty method is considered for𝑚th-Laplace equation on bounded Lipschitz polyhedral domain
in R𝑑 in this paper. In order to avoid computing 𝐷𝑚 of numerical solution on each element, we reformulate the
𝐶0 interior penalty method for the odd and even 𝑚 respectively, and only the gradient and Laplace operators
are used in the new method. A rigorous and detailed analysis is given for the key estimate that the discrete
𝐻𝑚-norm of the solution can be bounded by the natural energy semi-norm associated with our method. Then
the stability estimate and the optimal error estimates with respect to discrete 𝐻𝑚-norm are achieved. The
error estimate under the low regularity assumption of the exact solution is also provided. We believe that the
proposed 𝐶0 interior penalty method for 𝑚th-Laplace equation can be applied for the nonlinear high order
partial differential equations which will be our consideration in future.
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