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A C° INTERIOR PENALTY METHOD FOR mTH-LAPLACE EQUATION

HUANGXIN CHEN!, JINGzHI L1 AND WEIFENG QIu3*

Abstract. In this paper, we propose a C° interior penalty method for mth-Laplace equation on
bounded Lipschitz polyhedral domain in R?, where m and d can be any positive integers. The standard
H'-conforming piecewise 7-th order polynomial space is used to approximate the exact solution wu,
where r can be any integer greater than or equal to m. Unlike the interior penalty method in Gudi and
Neilan [IMA J. Numer. Anal. 31 (2011) 1734-1753], we avoid computing D™ of numerical solution on
each element and high order normal derivatives of numerical solution along mesh interfaces. Therefore
our method can be easily implemented. After proving discrete H™-norm bounded by the natural energy
semi-norm associated with our method, we manage to obtain stability and optimal convergence with
respect to discrete H™-norm. The error estimate under the low regularity assumption of the exact
solution is also obtained. Numerical experiments validate our theoretical estimate.
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1. INTRODUCTION

We consider the mth-Laplace equation

(—1)™A™y = f in (1.1a)
6U am—lu
_87_..._W_0 on 0N, (1.1b)

where m is an arbitrary positive integer, Q is a bounded Lipschitz polyhedral domain in R? (d = 1,2,3,---),
and v is the outward unit normal vector field along 9. The source term f € H— ().

Several works have been done to solve numerically (1.1). Standard H™ conforming finite elements space
requires C™~! continuity and leads to complicated construction of finite element space and lots of degrees of
freedom when m is large. Bramble and Zldmal [4] studied the H™ conforming finite elements space on the two
dimensional triangular meshes. Meanwhile, a H™ conforming finite element space is developed by Hu and Zhang
on rectangular grids for arbitrary d in [14]. Recently, Hu et al. introduce a H™-conforming finite element space
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on simplicial meshes for any d in [16]. The finite element space in [16] contains piecewise r-th order polynomials
with 7 > 29m + 1. Therefore, the polynomial order of finite element space in [16] is quite big. Though up to
this moment they have above mentioned restrictions, conforming H™ finite element spaces are desirable in both
theoretical analysis and practice. In order to simplify the construction of H™ finite element space, alternative H™
nonconforming finite element space is introduced in several works. In [22], a H™ nonconforming finite element
space (named Morley—Wang—Xu elements) is introduced for m < d. Besides, Hu and Zhang also considered the
H™ nonconforming finite element space in [15] on triangular meshes for d = 2. The finite element space in [22]
is generalized for m = d 4+ 1 by Wu and Xu [25]. Recently in [24], it is further generalized for arbitrary m and
d but with stabilization along mesh interface in order to balance the weak continuity and the penalty terms. In
order to obtain stability and optimal convergence in some discrete H™-norm, Wang and Xu [22], Wu and Xu
[24,25] propose to compute numerical approximation to D™u, such that their implementation may become quite
complicated as m is large. The finite element spaces in [4,14] can be used to solve numerically (1.1) with any
source term f € H~™(Q)). However, the implementation of these conforming and nonconforming finite element
spaces can be quite challenging for large m. Virtual element methods have been investigated for (1.1). In [1], a
conforming H™ virtual element method is introduced for convex polygonal domain in R2. The finite element
space in [1] contains piecewise r-th order polynomials, where r» > 2m — 1. The virtual element method in [1]
needs strong assumption on regularity of f (f € H"~™%1(Q)) to achieve optimal convergence (see [1], Thm. 4.2).
In [7], a nonconforming H™ virtual element method is developed for bounded Lipschitz polyhedral domain in
R?, where d can be any positive integer. The design of finite element space in [7], which contains piecewise r-th
(r > m) order polynomials, is based on a generalized Green’s identity for H™ inner product. It is assumed
that m < d in [7]. In [17], the virtual element method in [7] is extended for m > d. Besides above numerical
methods based on primary formulations of (1.1), a mixed formulation based on Helmholtz decomposition for
tensor valued function is introduced in [19] for two dimensional domain.

We propose a C? interior penalty method (2.2) for (1.1) for arbitrary positive integers m and d. The finite
element space of (2.2) is the standard H!-conforming piecewise 7-th order polynomials, where » > m. The
design of (2.2) avoids computing D™ of numerical solution on each element and high order normal derivatives of
numerical solution along mesh interfaces. In fact, equation (2.2) only gets involved with calculation of high order
multiplicity of Laplace of numerical solution (Auy, for 1 < i < m) and the gradient of high order multiplicity
of Laplace of numerical solution (VAiuh for 0 <4 < m — 1) on both elements and mesh interfaces. Therefore
our method (2.2) can be easily implemented, even when m is large and d = 3. After proving (Thm. 3.4) that
discrete H™-norm (see Def. 3.1) is bounded by the natural energy semi-norm associated with (2.2), we manage
to show our method (2.2) has stability and optimal convergence on bounded Lipschitz polyhedral domain in R¢
with respect to the discrete H™-norm, for any positive integers m and d. Roughly speaking, we have

[unllmn < Clflla— @),

||uh o u”m,h < thmin(r+17m,sfm)HUHHS(Q)7

where s > 2m — 1. We refer to Theorems 3.6 and 3.7 for detailed descriptions on stability and optimal conver-
gence. The design and analysis of our method (2.2) can be easily generalized for nonlinear partial differential
equations with (—1)™A™u as their leading term. We would like to point out that our method (2.2) is not a
generalization of the interior penalty method for sixth-order elliptic equation (m = 3) in (3.4), (3.5) of [13].
Actually, the method in [13] needs to calculate numerical approximation to D3u.

If the exact solution of (1.1) is under the low regularity assumption, Gudi et al. have applied the analysis
technique from the a posteriori error analysis to derive the error estimates for the interior penalty methods for
the 2nd-order, 4th-order and 6th-order elliptic equations under the low regularity assumptions in [12,13]. In
this paper, we shall extend the analysis by Gudi et al. for the proposed C? interior penalty methods for (1.1)
when m > 2. Assuming u € HJ*(2) for (1.1), we have

lu = unllm < C inf (Jlu = vllm.n + 05Cu(f),
veVy
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where V}, is the C° conforming finite element space and osc,, (f) is the oscillation term defined in (4.6).

The numerical method considered in this paper works for any positive integers m and d from theoretical
viewpoint. It can be applied to the practical high order equations. For instance, the modeling for plates in
linear elasticity results in consideration of fourth-order partial differential equations [11]. Modeling in material
science usually applies the fourth-order equation such as the Cahn-Hilliard equation [5,10] and the sixth-order
equation such as the thin-film equations [3] and the phase field crystal model [9,21,23]. Recently, an eighth-order
equation was considered for the nonlinear Schréodinger equation in [18]. As mentioned in [22], although there
are rare practical applications for general higher order equations, the elliptic equations of order m = d/2 in any
dimension have been used in differential geometry [6]. One can also extends the numerical methods and analysis
for the solution of nonlinear Hamilton—Jacobi—Bellman equation and other phase-field models.

In the next section, we present the C? interior penalty method. In Section 3, we prove stability and optimal
convergence with respect to discrete H™-norm (see Def. 3.1). In Section 4, we show the error estimates under
the low regularity assumption of the exact solution. In Section 5, we provide numerical experiments.

2. C° INTERIOR PENALTY METHOD

In this section, firstly we give notations to define the C? interior penalty method for (1.1). Then in Section 2.1,
we derive the C? interior penalty method for any m > 1. Finally in Section 2.2, we provide concrete examples
of the method for m =1,2,3,4.

Let T, be a quasi-uniform conforming simplicial mesh of Q. Here we define h = maxgeg, hx where hgx is
the diameter of the element K € Tj. We denote by F,, Fii* and F? the collections of all (d — 1)-dimensional
faces, interior faces and boundary faces of T}, respectively. Obviously, F;, = Fit U 3",?. For any positive integer
r, we define V3, = H} () N P.(T3,), where P,.(T3,) = {vs, € L2(Q) : vp|k € Pr(K),VK € T3, }.

We introduce some trace operators. For any interior face F' € ?};‘t, let K=, KT € T, be two elements sharing
F. We denote by v~ and v* the outward unit normal vectors along K~ and K™, respectively. For scalar
function v :  — R and vector field ¢ : @ — R, which may be discontinuous across Fint we define the following
quantities. For v~ :=v|g—, vt :=v|g+, ¢~ 1= ¢|x- and @1 := @|x+, we define

(=50 le+otle), {8 =5(67Ir+67Ir),

l=v v lp+vvte, [¢l=¢ v |r+é" vF|p
if ' € 0K NoQ, we define
{o}=v"p, {o}=0"Ir, [l=vvlp, [l=¢" v|r
We also define [v] ;|p = v~ |p — vT|F for F € F™ and [v] ;|p = vt|F for F € 0Q.
2.1. Derivation of C? interior penalty method
We assume the exact solution u € H*™~1(Q). For any v;, € Vj, via m-times integrating by parts,
((=1)™A™u, vn)q
(A7, AT wy) = S AT, B, AT oy, ST (0 AT, ATy
if m=2m (m is an even number);

(VAT U, VA, ) 4 ST ATy, 9, ATV ) o, — ST (0, A, ATy )

ifm=2m+1 (misan odd number).

Ty’

oTn’

Since u € H*™1(Q), for any v, € Vj,

(~1)"A™u, 1) (2.1)
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(A, AT vy) g = SN AT ), [VAT T ] )y + SR VAT Y, [AT T o)

if m=2m (m is an even number);

(VA™u, VA, )+ S {A™ ), [VAR= =y, ) = S (VALY [A ),
ifm=2m+1 (misan odd number).

Equation (2.1) inspires us to define the coupling term C}, in Definition 2.1.

Definition 2.1. For any wp, v, € Vi, we define the coupling term Cj,(wp, vy) along mesh interface F, by

Cr(wn, vn)
=X (A, [VATT T ] ) g+ S VAT o [ATT ] ) i = 22
Y (famritte, ), [VAT ) o = S VAT, [AT )Y, i m= 2+ 1.

In order to define C? interior penalty method, we need the stabilization term S}, in Definition 2.2.
Definition 2.2. For any wp, v, € Vj, we define the stabilization term Sp(wp, vp) along mesh interface Fj, by
Sn(wn, vn)

S DT AT ], [VAR T )y S AT ([AT ], [T o]

if m=2m (m is an even number);

221—01 h—(4i+3)< [[vAﬁL—i—lwh]] ’ [[VAm‘i‘lvh]] >§h + Zf:ol h—(4i+1)< [[Aﬁl—iwh]] ’ [[Am—ivh]] >5h7
ifm=2m+1 (m is an odd number).

We would like to point out that Sy, (wp,vp) =0 if m = 1.
The C° interior penalty method is to find uj, € V4, such that for any vy,

an(un,vr) = (f,vn)e; (2.2)
where
ap(up,vp) = (Aﬁ‘uh, Aﬁ’vh)m + Ch(up,vp) + Cp(vn, up) + 7Sh(up, vp), if m = 2m;
an(un,v) = (VA™u,, VAmvh)Th + Chr(un, vn) + Cr(vp,up) + 7Sk (up,v), ifm=2m+1.
Here the parameter 7 > 1 shall be large enough but independent of h.

2.2. Examples of C? interior penalty method

- m=1.
The C° interior penalty method for —Au = f is to find u; € Vj, satisfying

(Vuh, V’Uh)Q = (f, 'Uh)Q, Yo, € Vi (2.4)
- m=2.
The C° interior penalty method for A%y = f is to find uj, € V}, satisfying
(Auy, Avh)% — {Aun}, [[Vvhﬂ>?h — {Auv, }, [[Vuh]]>% (2.5)

+7h*1<[[Vuh]], [[V’Uh]bgh = (f, Uh)Q, Yoy, € V.

Actually, equation (2.5) is the C° interior penalty method which replaces the discontinuous finite element
spaces in [20] with C? finite element space.
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- m =3.
The C° interior penalty method for —A3u = f is to find u,, € V}, satisfying

(VAup, VAv,)g, + (<{{A2uh}}, [Voul)y, — ({VAur}, [[Avh]])gh> (2.6)

+ ((fa%n ) [Vunl) s, — {VA0Y [Aw)s, )
+ T(h73<[[vuhﬂ, [[VU;L]D%I + h71<[[Auh]], [[Avh]]>grh) = (f, ’Uh)Q, Yo, € Vi
It is easy to see that (2.6) is quite different from the interior penalty method in [13].

- m=4.
The C° interior penalty method for A*u = f is to find u;, € V}, satisfying

(A%, %)+ (~({ A%}, [Vod)y, + (VA2 [A0d)y, — ({82}, [VAul)g, ) (27)

+ (~(f A%} [Vud)y, + (VA% ) [Aunl)y, - (A%}, [VAw),, )
+7(h 3 ([Vu], [Vonl) g, + h=3([Auy], [Avi]) g, + Y[V Au], [[VAvh]D?h)
= (f7 Uh)Q7 Yo € Vi

3. ANALYSIS

In this section, firstly we prove Theorem 3.4, which states the discrete H™-norm (see Def. 3.1) bounded by
the natural energy semi-norm associated with the C interior penalty method (2.2). Then we prove Theorem 3.6,
which shows the energy estimate of (2.2). Finally, we prove Theorem 3.7, which gives optimal convergence of
numerical approximation to u in the discrete H™-norm. Throughout this paper, C' with or without a subscript
denotes a positive constant depending only on the property of 2, the shape regularity of the meshes and the
degree of polynomial spaces. The constant C' can take on different values in different occurrences.

Definition 3.1. For any integers m > 2, we define the discrete H™-norm ||v||,m,,» by

m—1
pen=2i=0 | [pi]

Jj=1

m
.9 2
Io]12,, = _EEHD%IILQW,L) + sz
-

m m—1
=3 S D + Yo S I [DI] 2, Vo € HEQ) A EH™ ().
i=0 KTy, j=1 FeF,

For any F' € 5"};“, there are two elements K~, Kt € T), sharing the common face F. We denote by v~ := v| -
and vt := v|g+. We define

2
SR | )
H[[ U]]J||L2(F) 1<k1;k]~<d wky Oz, g, U L2
2
o - _ +
o 1§k1;kj§dH(awkl a“"‘z 69”’“7'1} )‘F (8Ik181'k2 aw’CjU )‘F’ L2(F).
For any F' € 3",‘3, we define
H [[DJU]]JHLQ(F) - Z H Hax’“lax’% '”6””’“3‘ U]] J‘ L2(F) = Z H (a‘”kla‘”kz "'a””“j U) ‘F’ L2(F)

1<ky, - k;<d 1<ky, - k;<d
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3.1. Discrete H™-norm bounded by natural energy semi-norm

The main result of Section 3.1 is Theorem 3.4, which shows that the discrete H™-norm (see Def. 3.1) is
bounded by the natural energy semi-norm associated with the C? interior penalty method (2.2). The proof of
Theorem 3.4 is based on Lemmas 3.2 and 3.3.

Lemma 3.2. For any integers r > m > 2, there is a constant C > 0 such that
m—1
(2m—2j-1)
Zl h~ | [Davh]JHLw , < CSplon,on), Yo € Vi (3.1)
j=

Proof. We choose F' € JF}, arbitrarily. There is an orthonormal coordinate system {yk}gzl such that the yq-axis
is parallel to normal vector along F'. Therefore y;-axis, -- -, yq—1-axis are all parallel to F'.
We claim that for any 1 <[ < m, there is a positive integer C’ such that

1D, s < Zh )| gl

pei |2 YO E BT (3.2)

We prove (3.2) by induction. When [ = 1, it is easy to see

d d
”[[DﬁhﬂJHiZ(F) = Z”[[arkﬁh]]JH;(F) = ZH[[ayk@hﬂJHQL?(F)'
k=1 k=1

By discrete inverse inequality and the fact that y;-axis, - - -, y4_1-axis are all parallel to F', we have that

Z“[[aykﬁhﬂj|’i2(p) < Ch_Q”[[f}hﬂJ”iﬁ(F)

Therefore we have
~ 2 _ ~ 2 ~ 2
1ID3] 2y < C (2001132 ) + 1 100nd s |y )-

Thus (3.2) holds when [ = 1. We assume that (3.2) holds for any I < m. Then by discrete inverse inequality
and the fact that y,-axis, - - -, yq_1-axis are all parallel to F',

d d
~ 2 - 2
SEN S | AV N O | CAP=EA
= k=1

_ 2
SC’(h 2|H[Dl h]]]”m(p +H[[ (9ya0n) HJ||L2(F)>'
Since 9y, € P.(Th), then 9,0, € Pr(T3). Since we assume (3.2) holds for I, we have
!

f [[Dl(aydﬁh)ﬂJHQLz‘(F) s¢ th(ZHJ)H 193, wydﬂh)M L (F)
j=0

7

2}|[[DlﬁhﬂJ||L2 <C Zh (2(+1)— QJ)H Uh

= HLZ(F)

Therefore (3.2) holds for [ 4+ 1. Thus we can conclude that the claim (3.2) is true.



C% INTERIOR PENALTY METHOD FOR MTH-LAPLACE EQUATION 2087

Now we start to prove (3.1) by induction. Since |[[Oy,vr] ;|l2(r)y = [[[VUR]llL2(F), (3.2) and the fact v, €
H; () imply

1D 2y = Vo]l 2o, (3:3)

Since F' € JF}, is chosen arbitrarily, (3.3) implies that (3.1) holds when m = 2.
Applying (3.2) with [ = 2, we have

)

;(F)). (3.4)

The last equality in (3.4) holds since v, € Hj(Q) and ||[0y,vn] ;|I2(r) = |[Vor]|lL2(r)- We notice that

1[D20n] ey = C(h“‘ll[[vhﬂ,]lliz(p) T | M e [ R

—C< 2||[[Vvh]]||L2(F)+H[[8 vh] ‘

A'Uh = <8§1vh + -+ Bgd 1’Uh) + 8§d'l}h. (35)
Since yi-axis, - - -, yq_1-axis are all parallel to F, discrete inverse inequality implies

2 2

H[CARES LA

L2(F) - H H(@;lvh + +a§d Y )]]J‘ L2(F)

< Oh72||[[DUh]]JHiz(F) = Ch72||[[vvhﬂ||i2(1r)~

v (3.5) and the above inequality, we have

Yd

< C(h2Ivondl3 oy + IEAWDI ) )- (3.6)
By (3.4), (3.6), we have

2 _ 2 2
H [[DQUhﬂJHLz(F) < C(h 2\|[[VUh]]||L2(F) + H[[Avh]]HL?(F))' (3.7)
Since F' € F}, is chosen arbitrarily, equations (3.3), (3.7) imply that (3.1) holds when m = 3.
We assume that 1 <[ < m is an odd number, [ = 2/ + 1 and

-1

2 -
h—(4i+2)H [[Al—i ]H
L2(F) + Z Uh

=0

2

[p]

I
2 Y
I [DlvhﬂJ’|L2(F) =C ;h ’ L2(F)

Then by applying (3.8) for each 0y, vy, we have

2
H[[Dlﬂvh]]JHL?(F) ZH[[D (9z,vn) JHL2 ZMD (9yivn) J||L2(F

d [ B 9 -1 } 9
e -4 I[vAlfi 8, v, ]H i h—(4i+2)H [[Alfi o, v, ]H
; ;‘) O ||| . ; CrD] |
Here 20 + 1 = [. Since y1-axis, - - -, yg—1-axis are all parallel to F', discrete inverse inequality implies

I

| o] oy < © Z

2

9 -1 }
f—(4i42) H [[Alfi ]] ‘
L) + ; Vp

el

L2(F)



2088 H. CHEN ET AL.

2

[[v&—i(aydvh)]] ‘

L2(F)

el S T

Again by the fact that y;-axis, - - -, yq_1-axis are all parallel to F', we have that for any 0 < ¢ < l~,
H [[VAiii(aydvh)]l ’ :V (aydAllivhﬂ] JlL2(r)
- ( ’ [[5‘3,1 (@”A[ﬂ'vh): J’ ;(F) e H [[ayd’l (aydAiiivh)]] J‘ 2L2(F)>
+ ‘ Hajd (Ai_ivhﬂ] J‘ ;(F)
o(wamatrul [, + 1 ()] o)
<c(w?[vamn], I, + 15 ()] i)
. 2 - 2
< c<h2 [var-iu,] ‘ Aty | Lzm).

|
Jlr2(m
We have applied (3.6) for A[_ivh to obtain last inequality. We also notice that for any 0 < i < -1,

S [P A | A

2 N
L2(F) J‘ L2(F)
Therefore we have that (3.8) implies

2 2

L2(F)

IN

)

U l
1+1 2 —4i I—i+1 2 —(4i+2) [[ i—i ]] 2
1D on] ey < € ;h o] o ;h D[vatu]L,, ] 69
where [ = 2] + 1. }
Now we assume that 1 <[ < m is an even number, [ = 2/ and
) -1 } 9 -1 ( : . 9
! < —4i [[ I—i ]H —(4i+2 H[[ i—i—1 ]H '
1D n] 2y < © ; U T | ;) h VAT || (3.10)
Then by similar argument in last paragraph, we have that (3.10) implies
) l : 9 -1 . 9
pht! <c| S| [variu]| po2)| ATy, ]| 3.11
Il “h]]JHL2(F) = ; Uh L2(F) T ; Uh L2(F) (3.11)
where [ = 21.
According to (3.3), (3.7)—(3.11) and the fact that F' € J}, is chosen arbitrarily, we can conclude that the proof
is complete. (Il

According to (3.1c) in Theorem 3.1 of [8], there is a constant C' > 0 such that

- ~ 2 ~ _ ~ _ ~ ~
||Vvh||2L2(7h) + HDZUhHLz(th) < C(HAvhHQLz(Th) +h 1||[[vvhm|i2(:;h) +h 3||[[vhﬂ||2LQ(iTh))7 Vo € Pr(Th),
(3.12)

where 77 > 2 is a positive integer.
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Lemma 3.3. We define 2m + 1 = m if m is an odd number, while 2m = m if m is an even number. Then
there is a positive constant C such that

C(HAmvhHig(m + Y R eme2iD)| [[Djvh]]JHig(gh)), if m = 2m;

ID™ a3, < : . . | (3.13)
’ C(HVAmUhHi%‘Ih) + Z;‘nzll h—(2m—2j—1)|| [[D]Uh]] JHiﬂ(&"h))’ ifm=2m+1,
for any v, € V.
Proof. It is easy to see that (3.13) holds when m = 1. By (3.12), (3.13) holds when m = 2.
It is easy to see
2 ¢ 2
HD?’U’LHLZ‘(%) = ZHDQ(E)MU;Z)HB(%).
k=1
Applying (3.12) to each 9,, vj, we have
2 4 2 2
||D3’Uh||L2(‘J‘;L) < CZ(HA(aIkU’I)”QL?(Th) + h73||[[amkvh]]JHL2(:Th) + hil||[[D(8mkvh)]]J||L2($h))
k=1
_ c(||vmh||;m) + b3 [Dunl e,y + 7Y [[Dzvhﬂjuizm)).
Thus (3.13) holds when m = 3.
For any 2 <1 < m, we have
2 _ 2
HDZU’LHL?(%) = HD2(Dl th)H‘Ih'
Applying (3.12) to each component of D'~2vj,, we have
2 _ 2 _ _ 2 _ _ 2
S 1 A W AR [ AW Ay R

According to (3.14) and the fact (3.13) holds for m = 1,2, 3, we can conclude that the proof is complete. O

According to Lemmas 3.2, 3.3 and the discrete Poincaré inequality, we immediately have the following
Theorem 3.4.

Theorem 3.4. For any integers v > m > 1, there is a constant C' > 0 such that

I ||2 C(HAmvhHiz(‘J'h) —I—Sh(vh,vh)), if m = 2m;
Vhllm,n < i
h C(HVAmvhHQLz(arh) —|—Sh(vh,vh)>, if = 2 + 1,

for any vy, € Vi ||vp|lm,n is introduced in Definition 3.1. We point out that the right hand side of the above
inequality is the natural energy semi-norm associated with the method (2.2).

3.2. Energy estimate of C? interior penalty method

We provide Theorem 3.6, which shows energy estimate of C? interior penalty method (2.2) with respect to
the discrete H™-norm (see Def. 3.1). Before we prove Theorem 3.6, we introduce Lemma 3.5.
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Lemma 3.5. For any integers r > m > 2 and any spatial dimension d > 1, there is a positive number 19 > 1
such that for any vy, € Vy,

HAﬁ’vhHiQ(%) + 705k (vn, vr), if m=2m (m is an even number);
4|Ch(vn,vn)| < o (3.15)
HVA’”U;LHLQ(%) + 70Sn (vn, vp), if m=2m+1 (m is an odd number).

Proof. We prove (3.15) for m = 2/m (m is an even number) in the following. It is similar to prove (3.15) for m
which is an odd number.

According to Definition 2.1, discrete trace inequality and inverse inequality,

m—1 m—2
|Ch vh,vh Z {{Aﬁwﬂvh}}, [[VAmiiilvh]D?h + Z <{{VAm+i’Uh}}, [Amiiil’uh:ﬂ >5Fh
1=0
H{*{Am+’vh}}HLz @ [IVA™ on] | 12 s,

1=0
-2

3o

+ 2 VAT o} o,

[a™ ™ on] ] s,

1M

3
L

<C YR AT 0| o VAT 0] s

i=

(Fn)

O

m—2

+C Z BV A™ ol o [ 1™ ] oo,
2

m—1

<C ho it )HA vhHLZ(‘J’;, [VAT= = u,] HL2(3";L)
i=0
m—2 o i o
+C p(2it3) HAmvhHIﬂ(‘Ih) [[a™ " o] ||L2(§h)
i=0
1 m = % m—i— p 1 m—i— 2
SN +c(z S [OAP ]2 3 0 [ MM)
=0 =0
By Definition 2.2, it is easy to see that (3.15) holds. Therefore the proof is complete. O

Theorem 3.6. When m = 1, the method (2.2) is well-posed such that

”uh”Hl(Q) < C”fHH—l(Q)' (3.16)

For any m > 2, there is a positive number 19 > 1 which is the same as Lemma 3.5, such that if T > 19, then
the method (2.2) is well-posed such that

||“h||m h < CHfHH Q)" (3.17)
Here uy, € V}, is the numerical solution of the method (2.2).

Proof. By (2.4), the method is the standard finite element method for Poisson equation when m = 1. Therefore,
the method (2.2) is well-posed and (3.16) holds, when m = 1.
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Now we consider m > 2. By the definition of the bilinear form ap(-,-), Theorem 3.4 and Lemma 3.5, the
coercivity and the continuity of ay(-,-) are obtained which imply the well-posedness of the method (2.2). We
assume m = 27 to be an even number. By taking vy, = uy, in the method (2.2), we have

1A un |2 (q,) + 2Ch (wn, un) + 78h (un, un) = (f, un)o.

We choose 7y the same as Lemma 3.5. Then Lemma 3.5 implies

1 m T
SlAa unl|7z2(a,y + 5 on(un un) < (f,un)a < IFlla-1 (o) lunlla @) < 1 F1la-1 @) lunllmn,

if 7 > 79. Then by Theorem 3.4 and the above inequality, we obtain (3.17) when m is an even number.
It is similar to show that (3.17) holds when m is an odd number. Thus we can conclude that the proof is
complete. 0

3.3. Error analysis of C? interior penalty method

We provide Theorem 3.7, which gives error analysis of C¥ interior penalty method (2.2) with respect to the
discrete H™-norm (see Def. 3.1).

Theorem 3.7. We assume that the exact solution w € H*(Q) N H*(Y) where s > 2m — 1. When m = 1, we
have

[ — up |1y < CR™ D |yl g .- (3.18)
For m > 2, we assume that T > 19 > 1 where g9 is the same as Theorem 3.6. Then we have
[t — wp ||, < CR™ROTLZMS=M) ) ). (3.19)
Here uy, € V), is the numerical solution of the method (2.2).

Proof. When m = 1, the method (2.2) is the standard finite element method (2.4) for Poisson equation with
homogeneous Dirichlet boundary condition. So it is easy to see that (3.18) holds. In the following, we assume
m > 2.

By Theorem 3.6, the method (2.2) has the unique numerical solution u;, € V.

Since u € HJ(12), it is easy to see that for any 0 < j < m — 1, every component of DJu is continuous across
any face F' € Fi'* and is equal to zero along 9. Therefore by Definitions 2.1 and 2.2, we have

C’h(vh,u) = Sh(u,vh) =0, Yoy, € Vi, (3.20)

We denote by IIu € V3, the standard L2-orthogonal projection of u into Vj,. We define e,, = IIpu — u;, and
0y = Ipu — u. Since u € H*(Q2) and s > 2m — 1, we have

1D76ull 12, < Chmextmin(H =35m0 || ), VO <G < 2m— 1. (3.21)
We assume m = 2m to be an even number. By (2.1), (3.20) and the method (2.2), we have

~ 2 ~ ~
||Ameu||L2(Th) + 2Ch(€u, eu) + TSh(ew, eu) = (A™dy, Ameu)(‘rh + Cr(0u,€e4) + Chlew, 6u) + 7Sk (0w, €4)-
(3.22)

By Lemma 3.5 and (3.22), we have

1 - _ _
5 A e, |[3a0 | + %Sh(eu, eu) < (A™8,, A e,) o+ Cp(8usew) + Chlews 0u) + 7S (0, €u). (3.23)

(Tn)
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It is easy to see that
(A7 60, AT eu) g, < [|AT 80 2, [|A™
m—1
=T Z h—(4i+1)< [vAm—i—léuﬂ , [[VATh—i—leu]] >3~h
i=0

m—2

4T Z h—(4i+3)< [[Aﬁz—i—l(su]]? [[Am—i—leu]] >§h

i=0

i M—i— 2 H —(4i m—i— 2
TZ(h VAT [ag,) (I NITAT ] g, )
i=0

eully, < CRMRCHITETINT | ] sy TSR (Bus €0)

,_.

N

b7 S (A ) (A e )

=0
< Crpmintrtl=ms=—m)(g, (¢ %))% l[ull g (-

We have used trace inequality and (3.21) to obtain the last inequality above.
By trace inequality and (3.21) again, we have

Ch(8uy ) = mz (famtis, g, [vam—=le,]), + Z({{VA’”“& b [ eu])y,

7

i m+1 % — (44 m—i— 2 %
(h“lu{m 0 ay) (O TA™ ] [as)

3 gMS

K2

i i 30 (4 M—i— 2 3
+ 3 (VA8 Lagg,) T (P IA™ e g, )

@
I
=

-1

3

~(
(hM+1 (r 1A 6o, + RIA™ 6l o)) : (DA™ e g, )

1—2 1
1 — m-1 2 M4 2 2
+c e (h4 v (h H[vamr 5U||L2(7h,) +hfvamt 5uHH1(irh))>

<C

L[]

(=)

=

m

=

1
—(4i m—i— 2 2
< () A ] ags,)
< CpminrH=msm (G (e e,)) ¥ [ul e

By inverse inequality and discrete trace inequality,

m—1
Cilew8.) = — S (fA™e, ), [VA™15,]), + Z(ﬁVAm“eu}} [A™8u]) 4,
1=0
m—1 1 3
i m+i 2 — (44 m—i— 2 :
< 3 (1 A e H ) (NP ] s, )
=0
m—2 1 3
i m+1i 2 — (4 m—i— 2 ?
+ (h4 +3H{{VA +eu}}HLz(&"n)) (h “ +3)H[[A 15“H||L2(?h)>
=0
m—1 1 3

i m+i 2 2 —(4i i 2 :
<€y (WA eula,,) (W NVAT 6] )

N
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-2 1 3

; i 112 20 (4 i 2 2

+ O3 (WA e[y, ) (AT 0] [, )
i=0

m—1

<OY (18"l fay) (P 9A™ 0] s, )

1
2

m—2

1
-~ 2 b3 _ . = s 2
O (1%l y,) (D (A1) s,
0

Nl

< Chmin(r—i—l—m,s—m) HAmeu Hiﬁ(g'h) HU’”HS(Q)

Combing (3.23) with above estimates, we have
1A eu |,y + TSh(eus €u) < CREMIIHIT=mM g3 o)
We have used the fact that 7 is independent of h to obtain the above inequality. Then by Theorem 3.4, we have

lewlln < CIA™eul|Z2(,) + TSh(ews eu) ) < CRZMRUHIZmS=m 4|5 .
(

Now we obtain the error estimate (3.19) when m > 2 is an even number. It is similar to show that (3.19) holds
when m > 2 is an odd number. Therefore we can conclude that the proof is complete. O

4. ERROR ANALYSIS UNDER THE LOW REGULARITY ASSUMPTION

In the above section, we assume the exact solution v € HJ*(Q) N H* () with s > 2m — 1. Since this regularity
assumption may be high for the realistic problems, we further deduce the error analysis in this section for the
exact solution under the low regularity assumption, i.e., u € HJ*(£2). In this case, the Galerkin orthogonality
does not hold true for the C? interior penalty method if m > 2. We derive the error analysis by the technique
developed by Gudi in [12] which utilizes the analysis idea from the a posteriori error analysis.

Let V := H§*(Q2) and V)¢ be the H™-conforming finite element space in V. One can refer to the construction of
H™-conforming finite element space in V' in any dimension according to a recent work in [16]. For any v,w € V,
let a(v,w) = (A™v, A™w)q if m = 2m and a(v,w) = (VA™v, VA™w)q if m = 2/ + 1. As the three abstract
assumptions in [12], firstly we assume there exists an enriching operator Ej, : Vj, — V¢ such that

S "o = Buvlage + 1Ewoll} < Cllell?,, Vo € Vi (4.3)
KeTy,

Actually, for the cases of m = 2 and 3, this enriching operator E}, has been constructed by averaging technique
and the above estimate has been derived in [12,13].

Secondly, by the definition of ay(-,-) in (2.3) and Lemma 3.5, choosing 7 as in Theorem 3.6, we easily have
that

[onllZ, 5 < Can(vn,vn), Vou € Vi (4.2)
Thirdly, we have the following estimate: for any v € V, w € V)¢ and v, € V4, it holds that
|a(v, w) — an(vn, w)| < Cllv = vpllm.nllw]yv. (4.3)
Actually, for m = 2m, due to the fact that w € V;’ and v € V, we can derive

a(v,w) — ap(vp, w) = (Amv, Amw) - (Amvh, Amw) — Ch(vp,w) — Cr(w,vp) — 78K (vp, w)

= (A" (v — wvp,), A™w) — Cp(w,vp,)
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= (A" (v —vy), A™w) — Cp(w,v — vy,). (4.4)

By the trace inequality and inverse estimate, we have

Cp(w,v —vp) = Z {Am“w}} [[VAm i 1(1}—’Uh —|—Z {VAmJ”w}} [[Am i 1(U—vh)]]>?
=0

3o
I
N

<O Y AWy, A2 2 [VA™ T 0 — )] |1,

%

I
o

m—2
+C ) A" wlly, A2 [A™ T 0 = wn)] ||,

=0

which, together with (4.4), yields the estimate (4.3). For the case of m = 2m + 1, one can similarly derive (4.3)
and we omit the details here.
By the estimates (4.1)—(4.3) and following Lemma 2.1 in [12], we have

Hu_uh”mh < C lnf ||U_U||mh+ sup (f7¢_Eh¢)Q _ah(vﬂ¢_Eh¢) . (45)
eV \{0} 1@ llm.n

In order to get the upper bound for the second term on the right-hand side of (4.5), we first provide two lemmas.

Lemma 4.1. Let v € V},. There exists a positive constant C independent of mesh size such that

{(nm 0|2, +osc(f)),  if m=2m,

h2m —(=1)TA™ 22 <
2 NS = DA < C(IVA™(u—v)[|3, +o0sc2,(f), if m=2m+1,

KeTy,

where

2

= K>) | o)

Prf'rn(K)

0SCrm (f ( Z h2m

KeTy

Proof. We provide the proof for the case of m = 2m, and the case of m = 2/m + 1 can be similarly deduced.
Let bx € Pras1)(K) N Hy*(K) be the bubble function defined on K such that bx(xx) = 1, where xx is the
barycenter of the element K. Let ¢ = by (f — (—1)"A™v) on K € Tj, and ¢ = 0 on  \ K. We easily have that

CillF = (=1)™A™ 0|2 (k) < [¥ll2x) < Callf — (=1)"A™ 0| 12(k). (4.7)

It follows integration by parts that

(f = (~)™A™0,0) ;e = (—1)"A™u — (~1)™A™0,0) ;e = (A7 (u — v), A7) .
By the inverse estimate, we further have
Cl[f = (=nmamy HL2 < (F=(=D"A"0,9)
F=F)x +(f = (1) A0, 9)
f=F)k + (A" (u—v),A™)
= C(Hf - ?HL2(K) +hi" | AT (u — U)HL2(K)) 112 k).
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which, together with (4.7), yields that
k- (*l)mAmUHp(K) < C( ®lf - f||L2(K) +[| A (u - “)||L2(K))'
By the above estimate and the triangular inequality, we directly obtain
m mAm, |2 m 7112 m 2
h2 ||f - (_1) A U”LZ(K) < C<h%( ||f - f||L2(K) + ||A (u - U)HLQ(K))’
which yields the desired estimate. O

Lemma 4.2. Let v € V}. For m = 2m, there exists a positive constant C independent of mesh size such that,
fori=0,--- m—1,

Z B[ [AT ] H;(F) < C’(HAm(u — U)H?Th + oscfn(f)>, (4.8)
FeJy
Z B3| [T AT+ ] ||iZ(F) < C(HA’%(U — U)HZ,Ih + oscfn(f)) (4.9)
FedFy

For m = 2m + 1, there exists a positive constant C independent of mesh size such that

S AT ]y < C(IVA w0, Fosh (1), =01, (410
FeFy ’

Z h‘#““ [VA™ ] Hiz(F) < C(HVAm(u - v)Hih + oscfn(f)), i=0,--+,m. (4.11)
FedF,

Proof. For brevity, we only provide the proof for the case of m = 2/m. The estimates (4.10) and (4.11) for the
case of m = 2m + 1 can be similarly deduced. The proof is based on the induction approach.

Now we prove (4.8) with ¢ = 0. For any F € F", we denote wp = K~ U KT where 90K~ N 0K+ = F. Let
vr be the unit normal vector along F pointing from K~ to K. Let &1 € Pr_1(wr) be defined by

Am7i€1|F:0, 1= ]_7 7T7L, (412)
VAT - vp|p =0, i=2,---,m, (4.13)
VAL |y = [[Amv]]JlF_ (4.14)

For the construction of &;, we can firstly assume r = m. Let )\;H and A, be the linear basis functions
at the nodes opposite to the face F' on Kt and K~ respectively. We choose &1|g+ = C’*()\(L_l)m’l and
&ilg- =C (Mg, )™ !, where C* and C~ are constants. It is obviously that & satisfies (4.12) and (4.13). One
can easily choose CT and C~ such that

C+VAm71(>\;r+l)m71 “Vrlog+tnr = C7VATh71()\;+1)m71 “Vilog-nF = [[Aﬁ’vﬂﬂp.

For 7 > m, one can similarly construct &ifp+ = (AL, )™ ' and &|g- = (Mg )™ &, where & €
P, (K1),& € Po_,,(K™) such that & satisfies (4.12)-(4.14).

Let & € H{"(wp) be a piecewise polynomial bubble function such that & (mp) = 1, where mp is the
barycenter of F. Denote ¢ = £1&2 on wp and extend it by zero on 2\ wp. It follows from the definitions of &,
&, and integration by parts that

CH [[Amvﬂ H;(F) = <[[Amvﬂ J,§2VA’7L_1§1 ' VF>F
([A70] VA" 6 vr)

F
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= (AT, A™¢) + (VAT VAT 19)
- (A’%,A’%ﬁ)w — (A%v,gb)w
= (A™(0 —u), AT9), +(f = A"v,9),,.

By the scaling argument, for K € wp, we have

WF

m—i_—4d " m—1i m
€1l x) < Chp 2 2|[A U]]J||L2(F):ChF S A v]]HL?(F)’

which directly yields that

[8ll2x) < CliSallnoe (ro)lI€2ll L2 (i) < Chr? HTA™0] || 2 - (4.15)
By the inverse estimate, we have
ITA™ ]Iy < P> (R | A™ (= )| o ey + 1 = A0 2 ) 19250 (4.16)
Cwr
Combining (4.15) and (4.16) yields
NSy =€ (1870 gy 4471~ 870l (a7
CwF

The above estimate (4.17) can be similarly deduced for the case of F' € 9. Now combining (4.17), Lemma 4.1
and summing over all F' € F,, we get the estimate (4.8) with ¢ = 0.

Next we prove (4.9) with i = 0. For any F € F" let 1 € P,_3(wp) be defined by A™ i |p = 0,
VA" ip - vp|lp = 0 with i = 2,--- ., and A™ Iy |p = [[VAmvﬂ |. Here 1 can be similarly constructed
as &1. Let 72 € H"(wp) be a piecewise polynomial bubble function such that nz(mp) = 1, where mp is the
barycenter of F'. Denote 1 = 11712 on wp and extend it by zero on 2\ wr. By integration by parts, we have

" 2 " —
CIVA™ ] [y < ([VA™ O] 12A™ ),
= ([va™], a7 1y)
_ (VAﬁLU,VAm_l’l/J)

F
+ (A77L+IU7A771—1¢)

- —(aream), - 3 | A g9am )+ (420,
= (A™(u—v),A™)) + K%;F /BK [Amo] fvAm =iyl + (A% — fo) .

By the scaling argument, for K € wp, we have
m_3_d .
Iz ) < Chip 22 [[[VA™ V] || 2 ey
which yields
m—32 m
[PllL2) < Chp || HVA U]] HL?(F)' (4.18)

By the inverse estimate and the trace inequality, we get

B IV A™0] [ fa iy < C 30 (187w = ) ey + EIF = A"l pacrey + BENTA™ ][ 2oy ) 2™ 10l 22 cac-
Kewp
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The above estimate can be similarly deduced for the case of F' € 9. Combining the above estimate with (4.18),
(4.17), Lemma 4.1 and summing over all F' € F,, we obtain the estimate (4.9) with ¢ = 0.

We assume (4.8) and (4.9) hold true for 0 < ¢ =k < m — 2, we would like to prove that (4.8) and (4.9) hold
true with ¢ = k + 1. Since the derivations are similar, we only show the proof for (4.8) with i = k + 1.

For any F € 9'}{“, let v1 € Pr_ap_5(wr) be defined by A™ !y |p = 0 with | = k+2,--- ,m, VAT ly .vp|p =
Owithl=k+3,---,m, VAm_k_2W1 Vp|lp = [[Am‘*"“‘*‘lvﬂ J|F. Here 1 can be similarly constructed as &;. Let
Y2 € HJ*(wr) be a piecewise polynomial bubble function such that y2(mpg) = 1, where mp is the barycenter of
F'. Denote ¢ = 172 on wr and extend it by zero on Q \ wp. By integration by parts, we have

C[A™ 0] [y < ([A™ 0] 172 VAF 201 )
= <[[Am+k+11}]] 7 VAm_k_Qgp . I/F>

F

F

_ (Aﬁz+k+1v7 Aﬁ%kflsﬁ)w + (vAﬁz+k+1U7 VAmik*QSD)wF- (4.19)
By the definition of ¢, integration by parts yields
(VAT Ly TATE20) = — (A0, 0) . (4.20)
We also have
(AerkHv,Am*k*lga)wF _ (Aﬁ”kv, Am*k@)wF _ / [[Am+k,l}]] JVAm*kflga v
F
+/ IIvAﬁthvII Amfkrflso
F
= T() + Tl —|— TQ. (421)
By the scaling argument, for K € wp, we have
2m—2k—32—¢ "
||'71||L°°(K) < Cth : 2 H [A +k+1vﬂ HL2(F)’
which yields
2m—2k—32 "
H‘PHLQ(K) < Chp 2”[[A +k+1“]]HL2(F)' (422)

By the trace inequality, inverse estimate and (4.22), we obtain

Ty < O|[[A™ o] || o oy e * (VAT |

(F) (wr)

< O [A™ 0] [ o b e o
< Ch}Q H HAerk’Uﬂ [[Am+k+1’l_)ﬂ

(wr)
iz [
Similarly, by the trace inequality, inverse estimate and (4.22), we have

Ty < Chy'||[VA™ 4] [amthtiy]

Iz 2y

For the estimate of Tp, following integration by parts, the trace inequality, inverse estimate and (4.22) yields

k-l k—1
Ty = (Amy,Afnw)w _ Z/F[[Amﬂv]] JVA’ﬁ*lflgo Up Z/F[[VAmHU]] A==,
1=0 1=0
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k—1

- ~ ~ 1 ~
< (A0, A7)+ CY ATl oy he? VAT o,
=0
k—1

+C Y IIVA™ )| oy he 1A™ 7 0 o
1=0
< (A’huAmap)

WF

k—1
F O (WA ] |y + IV 0] | V™ E [T 0]

Combining (4.19)—(4.21) and the upper bounds for Ty, T7 and Tz, we have

o|[amti —(AM0, )y + (A0, AT ), (4.23)

o] HL2(F)
k—1
1 N 3 - Cok_s N
+C Z(h;“w | [VA™ ] HL?(F) + hZFlJr2 I [VA™ ] HLZ‘(F))hFQk 2|l [Aamtr] HL?(F)
1=0

+ Ol [ [A™ ]| o [ TA™ T 0] | oy + ChE [ [VA™ 0] [am =]

2 2y

We note that

—(AQf”v,(p)WF + (Amv,Amgo)WF = (f — Azmv,go)wp + (Amv — Amu,Amgo)

u)p'

For any F' € 0f), we can derive the similar estimate as (4.23). Now combining (4.23), the Cauchy—Schwarz
inequality, the estimates of (4.8) and (4.9) with ¢ < k, the inverse estimate and (4.22) and summing over all
F € 3, we can finally obtain (4.8) with ¢ =k + 1. O

Now we can start to derive the upper bound for the second term on the right-hand side of (4.5). We provide
the estimate for the case of m = 2m, and the estimate for the case of m = 2m + 1 can be similarly obtained.
For any ¢ € Vj, \ {0}, let ( = ¢ — Ep¢. By the definition of ay(-,-) in (2.3) and integration by parts, we have

(£, —an(v,¢) = (f,()a — (A™v, Am() = Ch(v,¢) = Cr(¢,v) = 78h(v, ()
m—1

= (f = (=)"A™0,Qa = (Ao}, [VATT ),

=0

- Z([{Am“ Avarich),,

m—

+ Z<{{VAm+iv}}, [[Am—vz 1 o+ Z [[vAm-H {Am i 1C}}>?h
i=0 i=0
- Ch('U, C) - Ch(C7 U) - ’TSh('U, C)
By the definition of C}(-,-), the trace inequality, inverse estimate and (4.1), we further have

(fu C)Q - ah(v <)
m—1 m—1
_ (f _ ( mAmU C Z Aerz,U]] {{VAm i— 1C}} + Z [[VAeri’U]], {{Aﬁwfiflc}}>?h
1=0 i=0

,_.

+ 5 (e rarng),, - S (gvarcy ),
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1 m

2
- h7(4i+1)<[[VAm7i71'Uﬂ, HVAﬁzfiflg}]){}“h —r Z h— (4i43) <[[Am i— IUH [[Am i— 1<—]]>
] =0

3

1=0 =
m—1
<Nf = (0™ Al g 1€ 2y + C D ITA™ 0] o, 22" 21C 2o,
1=0
+C Z IIVA™ 0] | oy B2 221 oo,
1=0

.
M

H[[VA’” S | PR ] (Y PE

=0
m—2
+ O DA™ 0l | o 2222 G 2o
1=0
m—1 , _ n—1i
+O Y WU [VAT ] g [T9A™ g,

v
Il
o

3 -
.‘o

+CO 3 I ATT ]| o
0

N | P

.
I

< ORI f = (1) A™| L2 gy [ Bl + C Z WP [A™ 0] | o 100
i=0

?

m—1 m—
O S R [TA™ ] g O 3 52BN TAP ] s
=0

=0
2

1

+C . _2i_%’|[Am_i_1vﬂHL2(5th)||¢||m,h

-
Il
o

3
|

1
LC ‘ h*(“H)H[[VAm”’lv]]||Lz(5rh)H[[VAmililgb]]HLQ(?h)

3o
o
N} o

+C Y RS AMT T A ] ] oy
=0

~.

Combining the above estimate, Lemmas 4.1 and 4.2, we directly have
(fa C)Q - ah(va C) < C(HAm(u - U)H‘J’h + OSCm(f)) ||¢Hm,h7

which yields

sup (fa¢—Eh¢)Q _ah(’U7¢_Eh¢) S C(HU—UHm,h +OSCm(f)). (424)
$€Vi\{0} | @l

The above estimate (4.24) can be similarly deduced for the case of m = 2/m + 1 and we omit the details here.
Now by the estimates (4.5) and (4.24), we obtain the following convergence result for the C° interior penalty
method for the mth-Laplace equation (1.1) with m > 2.

Theorem 4.3. Form > 2, we assume that the exact solution u € HJ*(Q) for (1.1), 7 > 19 > 1 where 1y is the
same as Theorem 3.6, and there exists an enriching operator Ej, : Vi, — V& such that (4.1) holds true. Then
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TABLE 1. Example 5.1: errors with estimated rates of convergence when r = m and m = 2, 3
and 4, respectively.

1/h  |lu—wunlly, Order |lu—unlz, Order [u—wua|,;, Order

8 1.1095e —1 — 4.5054e —1 — 6.3198e —1 —

16 5.9870e —2  0.89 2.465le—1 0.87 3.5797e —1  0.82
32 3.0564e —2  0.97 1.2672e —1 0.96 1.9051le—1 0.91
64 1.5388e —2  0.99 6.4245¢ —2  0.98 9.7934e —2  0.96

there is a positive constant C independent of h such that

lu = unllmn < € mf (Ju = vlmn + oscm(f)). (4.25)
IS

Here up, € Vi, is the numerical solution of the method (2.2).

Now we immediately have the following estimates. Assuming the exact solution u € H§*(Q)NH*(Q2) for (1.1),
s > m, we have

lu —upllmn < C<hmin(’“+17m’sfm) lull &7+ ) + OSCm(f))-
In particular, if the oscillation term osc,,(f) is zero, we have

= upllm,p < CRERFEZIST g .

5. NUMERICAL EXPERIMENTS AND DISCUSSIONS

In this section, we provide several numerical experiments to verify the theoretical prediction of the C? interior
penalty finite element method proposed in the previous sections in two and three dimensions. We calculate the
rate of convergence of ||u — usl,, , in various discrete H™ norms and compare each computed rate with its
theoretical estimate. It is pointed out that the estimated convergence rates have very little dependency on the
particular value when 7 = O(1), so we choose 7 = 1 in the following tests. All the numerical experiments are
carried out in C, and the resulting linear algebraic systems are solved using GMRES solvers from the PETSc

package [2].

Example 5.1. For this test, we solve (2.5)—(2.7), namely m = 2, 3 and 4, respectively, using the standard r-th
order piecewise continuous H!-conforming finite element space Vj, defined in Section 2 with € = (0,1)2. We use
the following data:

f(z,y) =2"7*™ sin(rzx) sin(ry),

so that the exact solution is
u(zx,y) = sin(mrz) sin(my),

which satisfies the mth-Laplace equation (1.1a) and homogeneous boundary conditions (1.1b).

We list the errors along with their estimated rates of convergence in Tables 1 and 2 when r = m and r = m+1,
respectively. It is remarked that long double in C99 standard is used to represent extended precision floating
point value for the 4th-order Laplacian operator, which is accurate up to 1072°. The tables indicate the following
rates of convergence:

|u—wunll,,, = O(h), when r=m,
lu —upll,, , = O(h?), when 7 =m+1.
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TABLE 2. Example 5.1: errors with estimated rates of convergence when r = m+1 and m = 2,
3 and 4, respectively.

1/h  |lu—wunlly, Order |lu—unlz, Order [u—wua|,;, Order

8 2.5510e =2 — 4.8538e —2 — 9.0579%¢ —2 —

16 6.7880e —3  1.91 1.337le—2 1.86 2.5477e —2 1.83
32 1.7207e —3 1.98 3.5090e —3 1.93 6.8738¢ —3 1.89
64 4.3317e —4  1.99 8.9566e —4  1.97 1.8039¢e —3  1.93

TABLE 3. Example 5.2: errors with estimated rates of convergence when r» = m = 3.

1/h  flui —uinllzy o, Order  |luz —usnllz; o, Order
8 7.7412e — 2 - 5.2910e — 1 —

16 4.1198e — 2 0.91 4.1801e — 1 0.34
32 2.1623e — 2 0.93 3.0600e — 2 0.45
64 1.0962¢ — 2 0.98 2.1488e — 2 0.51

Example 5.2. In the second example, we test the proposed method in which the solutions have partial regu-
larity on a convex domain [13] and a non-convex one [25], respectively. To this end, we solve the third-Laplace
equation

(—=A)3u = f.

The first solution is defined on the square domain £2; = (0, 1)? with homogeneous Dirichlet boundary conditions.
The data f is chosen such that the exact solution is given by

u(z,y) = (22 + )" (@ - 22)’ (v - 12)°.

Here u; € H*(Q;) and 4 < s < 4.1.
While the second solution is on the 2D L-shaped domain 5 = (—1,1)2\[0, 1) x (=1, 0] with Dirichlet boundary
conditions given explicitly by
us(r,0) = r*? sin(2.50).

where (r,0) are polar coordinates. Here f = 0 and uy € H3T1/2(Qy) due to the singularity at the origin.
In both cases, the observed errors of the proposed method converge asymptotically with the optimal order h
and h'/2, respectively, in the discrete H> norm, as shown in Table 3.

Example 5.3. Our last example is a three-dimensional problem. We take the cubic domain (0,1)% as the
computational domain and the exact solution u is given by

u(z,y, z) = sin(rzx) sin(mry) sin(mz),

which satisfies the third-Laplace equation (1.1a) (m = 3) and homogeneous boundary conditions (1.1b).

We list the errors and rates of convergence in Table 4, which indicates that the computed solution converges
asymptotically linearly to the exact solution in the discrete H® norm. The observed rate is in agreement with
Theorem 3.7.
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TABLE 4. Example 5.3: with estimated rates of convergence when r =m = 3.

/b ||lu—wunll3, Order

8 3.1836e —1 —

16 1.6594e —1 0.94
32 8.5896e —2  0.95
64 4.3247e —2  0.99

6. CONCLUSION

A CV interior penalty method is considered for mth-Laplace equation on bounded Lipschitz polyhedral domain
in R? in this paper. In order to avoid computing D™ of numerical solution on each element, we reformulate the
C? interior penalty method for the odd and even m respectively, and only the gradient and Laplace operators
are used in the new method. A rigorous and detailed analysis is given for the key estimate that the discrete
H™-norm of the solution can be bounded by the natural energy semi-norm associated with our method. Then
the stability estimate and the optimal error estimates with respect to discrete H™-norm are achieved. The
error estimate under the low regularity assumption of the exact solution is also provided. We believe that the
proposed C© interior penalty method for mth-Laplace equation can be applied for the nonlinear high order
partial differential equations which will be our consideration in future.
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