Discontinuous Galerkin discretization in time of systems of second-order nonlinear hyperbolic equations
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 6, pp. 2255-2296

In this paper we study the finite element approximation of systems of second-order nonlinear hyperbolic equations. The proposed numerical method combines a hp-version discontinuous Galerkin finite element approximation in the time direction with an H1(Ω)-conforming finite element approximation in the spatial variables. Error bounds at the temporal nodal points are derived under a weak restriction on the temporal step size in terms of the spatial mesh size. Numerical experiments are presented to verify the theoretical results.

DOI : 10.1051/m2an/2022066
Classification : 65M60, 65M12, 35L72, 35L53
Keywords: Numerical analysis, finite element method, discontinuous Galerkin method, second-order nonlinear hyperbolic PDEs, nonlinear systems of PDEs, nonlinear elastodynamics equations
@article{M2AN_2022__56_6_2255_0,
     author = {Shao, Aili},
     title = {Discontinuous {Galerkin} discretization in time of systems of second-order nonlinear hyperbolic equations},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {2255--2296},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {6},
     doi = {10.1051/m2an/2022066},
     mrnumber = {4519224},
     zbl = {1522.65178},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2022066/}
}
TY  - JOUR
AU  - Shao, Aili
TI  - Discontinuous Galerkin discretization in time of systems of second-order nonlinear hyperbolic equations
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2022
SP  - 2255
EP  - 2296
VL  - 56
IS  - 6
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2022066/
DO  - 10.1051/m2an/2022066
LA  - en
ID  - M2AN_2022__56_6_2255_0
ER  - 
%0 Journal Article
%A Shao, Aili
%T Discontinuous Galerkin discretization in time of systems of second-order nonlinear hyperbolic equations
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2022
%P 2255-2296
%V 56
%N 6
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2022066/
%R 10.1051/m2an/2022066
%G en
%F M2AN_2022__56_6_2255_0
Shao, Aili. Discontinuous Galerkin discretization in time of systems of second-order nonlinear hyperbolic equations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 6, pp. 2255-2296. doi: 10.1051/m2an/2022066

[1] T. Kato, Quasi-linear equations of evolution, with applications to partial differential equations, in Spectral Theory and Differential Equations. Springer (1975) 25–70. | MR | Zbl | DOI

[2] T. J. R. Hughes, T. Kato and J. E. Marsden, Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity. Arch. Ration. Mech. Anal. 63 (1976) 273–294. | MR | Zbl | DOI

[3] C. M. Dafermos and W. J. Hrusa, Energy methods for quasilinear hyperbolic initial-boundary value problems: applications to elastodynamics. Arch. Ration. Mech. Anal. 87 (1985) 267–292. | MR | Zbl | DOI

[4] C. P. Chen and W. Von Wahl, Das Rand-Anfangswertproblem für quasilineare Wellengleichungen in Sobolevräumen niedriger Ordnung. J. Reine Angew. Math. 337 (1982) 77–112. | MR | Zbl

[5] G. A. Baker, V. A. Dougalis and S. M. Serbin, High order accurate two-step approximations for hyperbolic equations. RAIRO Anal. Numér. 13 (1979) 201–226. | MR | Zbl | Numdam | DOI

[6] L. A. Bales, Semidiscrete and single step fully discrete approximations for second order hyperbolic equations with time-dependent coefficients. Math. Comp. 43 (1984) 383–414. | MR | Zbl | DOI

[7] G. A. Baker and J. H. Bramble, Semidiscrete and single step fully discrete approximations for second order hyperbolic equations. RAIRO Anal. Numér. 13 (1979) 75–100. | MR | Zbl | Numdam | DOI

[8] L. A. Bales and V. A. Dougalis, Cosine methods for nonlinear second-order hyperbolic equations. Math. Comp. 52299–319 (1989) S15–S33. | MR | Zbl | DOI

[9] L. A. Bales, Higher order single step fully discrete approximations for second order hyperbolic equations with time dependent coefficients. SIAM J. Numer. Anal. 23 (1986) 27–43. | MR | Zbl | DOI

[10] T. Dupont, L 2 -estimates for Galerkin methods for second order hyperbolic equations. SIAM J. Numer. Anal. 10 (1973) 880–889. | MR | Zbl | DOI

[11] J. E. Dendy Jr., Galerkin’s method for some highly nonlinear problems. SIAM J. Numer. Anal. 14 (1977) 327–347. | MR | Zbl | DOI

[12] C. G. Makridakis, Finite element approximations of nonlinear elastic waves. Math. Comp. 61 (1993) 569–594. | MR | Zbl | DOI

[13] C. Ortner and E. Süli, Discontinuous Galerkin finite element approximation of nonlinear second-order elliptic and hyperbolic systems. SIAM J. Numer. Anal. 45 (2007) 1370–1397. | MR | Zbl | DOI

[14] M. Hochbruck and B. Maier, Error analysis for space discretizations of quasilinear wave-type equations. IMA J. Numer. Anal. 42 (2021) 1963–1990. | MR | Zbl | DOI

[15] S. S. Antman, Nonlinear Problems of Elasticity 2nd edition. Vol. 107 of Applied Mathematical Sciences. Springer, , New York (2005). | MR | Zbl

[16] M. E. Gurtin, An Introduction to Continuum Mechanics. Vol. 158 of Mathematics in Science and Engineering. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London (1981). | MR | Zbl

[17] W. H. Reed and T. R. Hill, Triangular mesh methods for the neutron transport equation. Tech. report, Los Alamos Scientific Lab., N. Mex. (USA) (1973).

[18] P. Lasaint and P.-A. Raviart, On a finite element method for solving the neutron transport equation, in Mathematical Aspects of Finite Elements in Partial Differential Equations: Proceedings of a Symposium Conducted by the Mathematics Research Center, the University of Wisconsin–Madison, 1974. Academic Press (2014). | MR | Zbl

[19] I. Babuška and M. Zlámal, Nonconforming elements in the finite element method with penalty. SIAM J. Numer. Anal. 10 (1973) 863–875. | MR | Zbl | DOI

[20] G. A. Baker, Finite element methods for elliptic equations using nonconforming elements. Math. Comp. 31 (1977) 45–59. | MR | Zbl | DOI

[21] M. F. Wheeler, An elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal. 15 (1978) 152–161. | MR | Zbl | DOI

[22] D. N. Arnold, An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19 (1982) 742–760. | MR | Zbl | DOI

[23] B. Rivière, Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation. SIAM (2008). | MR | Zbl | DOI

[24] P. F. Antonietti, I. Mazzieri, M. Muhr, V. Nikolić and B. Wohlmuth, A high-order discontinuous Galerkin method for nonlinear sound waves. J. Comput. Phys. 415 (2020) 109484. | MR | Zbl | DOI

[25] M. Muhr, B. Wohlmuth and V. Nikolić, A discontinuous Galerkin coupling for nonlinear elasto-acoustics, IMA J. Numer. Anal.. Preprint (2021). | arXiv | MR | Zbl

[26] P. F. Antonietti, I. Mazzieri, N. Dal Santo and A. Quarteroni, A high-order discontinuous Galerkin approximation to ordinary differential equations with applications to elastodynamics. IMA J. Numer. Anal. 38 (2018) 1709–1734. | MR | Zbl | DOI

[27] C. Ortner and E. Süli, Discontinuous Galerkin finite element approximation of nonlinear second-order elliptic and hyperbolic systems. Tech. report, Oxford University Computing Laboratory, London (2006). | MR | Zbl

[28] K. Zhang, On the coercivity of elliptic systems in two-dimensional spaces. Bull. Aust. Math. Soc. 54 (1996) 423–430. | MR | Zbl | DOI

[29] V. Šverák, Rank-one convexity does not imply quasiconvexity. Proc. R. Soc. Edinburgh Sect. A 120 (1992) 185–189. | MR | Zbl | DOI

[30] B. Dacorogna, P. Marcellini,A counterexample in the vectorial calculus of variations, in Material Instabilities in Continuum Mechanics (Edinburgh, 1985–1986). Oxford Sci. Publ., Oxford Univ. Press, New York (1988) 77–83. | MR | Zbl

[31] C. B. Morrey Jr., Multiple Integrals in the Calculus of Variations. Die Grundlehren der mathematischen Wissenschaften, Band 130, Springer-Verlag New York, Inc., New York (1966). | MR | Zbl

[32] C. Bernardi, Optimal finite-element interpolation on curved domains. SIAM J. Numer. Anal. 26 (1989) 1212–1240. | MR | Zbl | DOI

[33] M. Dobrowolski and R. Rannacher, Finite element methods for nonlinear elliptic systems of second order. Math. Nachr. 94 (1980) 155–172. | MR | Zbl | DOI

[34] R. Rannacher, On finite element approximation of general boundary value problems in nonlinear elasticity. Calcolo 17 (1980) 175–193. | MR | Zbl | DOI

[35] D. Schötzau and C. Schwab, Time discretization of parabolic problems by the h p -version of the discontinuous Galerkin finite element method. SIAM J. Numer. Anal. 38 (2000) 837–875. | MR | Zbl | DOI

[36] A. Shao, A high-order discontinuous galerkin in time discretization for second-order hyperbolic equations. Preprint (2021). | arXiv

[37] Y.-Z. Chen and L.-C. Wu, Second Order Elliptic Equations and Elliptic Systems. Vol. 174 of Translations of Mathematical Monographs. American Mathematical Society, Providence, RI (1998). Translated from the 1991 Chinese original by Bei Hu. | MR | Zbl | DOI

[38] R. Rannacher and R. Scott, Some optimal error estimates for piecewise linear finite element approximations. Math. Comp. 38 (1982) 437–445. | MR | Zbl | DOI

[39] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, 3rd edition. Vol. 15 of Texts in Applied Mathematics. Springer, New York (2008). | MR | Zbl | DOI

[40] C. G. Makridakis, Galerkin/finite element methods for the equations of elastodynamics. Ph.D. thesis, Univ. of Cretex, Greek (1989).

[41] C. G. Makridakis, Finite element approximations of nonlinear elastic waves. Tech. report, Dept. of Mathematics, Univ. of Crete (1992). | MR | Zbl

Cité par Sources :