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DISCONTINUOUS GALERKIN DISCRETIZATION IN TIME OF SYSTEMS OF
SECOND-ORDER NONLINEAR HYPERBOLIC EQUATIONS

Aili Shao*

Abstract. In this paper we study the finite element approximation of systems of second-order nonlin-
ear hyperbolic equations. The proposed numerical method combines a ℎ𝑝-version discontinuous Galerkin
finite element approximation in the time direction with an 𝐻1(Ω)-conforming finite element approxi-
mation in the spatial variables. Error bounds at the temporal nodal points are derived under a weak
restriction on the temporal step size in terms of the spatial mesh size. Numerical experiments are
presented to verify the theoretical results.
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1. Introduction

This paper aims to show how a discontinuous Galerkin time-stepping method can be used to approximate
solutions of second-order quasilinear hyperbolic systems, which arise in a range of relevant applications, namely
elastodynamics and general relativity. There has been a substantial body of research devoted to both the
theoretical and numerical analysis of solutions of second-order hyperbolic equations. In particular, Kato [1]
established the existence of solutions to the initial-boundary-value problem for quasilinear hyperbolic equations
using semigroup theory. Building on Kato’s work [1], Hughes et al. [2] analyzed the existence, uniqueness and
well-posedness for a more general class of quasilinear second-order hyperbolic systems on a short time interval.
They also applied these results to elastodynamics and Einstein’s equations for the Lorentz metric 𝑔𝛼,𝛽 on R4,
0 ≤ 𝛼, 𝛽 ≤ 3. In contrast to the semigroup approach, Dafermos and Hrusa [3] used energy methods to establish
local in time existence of smooth solutions to initial-boundary-value problems for such hyperbolic systems on
a bounded domain Ω ⊆ R𝑑 where 𝑑 = 1, 2, 3. In the case of 𝑑 = 3, Chen and Von Wahl proved an existence
theorem for similar initial-boundary-value problems in [4]. Concerning numerical approximations of second-order
hyperbolic equations, fully discrete schemes based on Galerkin finite element approximations in space for the
linear case can be found in [5–7]. These time-discrete schemes are generated from the rational approximations
to either the cosine or the exponential and were later generalized by Bales and Dougalis [8, 9] to approximate
nonlinear hyperbolic problems. In [9], Bales considered a scalar nonlinear wave equation and introduced a class
of single-step fully discrete schemes, which have temporal accuracy up to fourth-order. Dupont [10] and Dendy
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[11] also showed optimal-order 𝐿2 and 𝐻1 error estimates for scalar nonlinear wave equations in semi-discrete
Galerkin schemes. Makridakis [12] proved optimal 𝐿2 error estimates for both a semi-discrete and a class of fully
discrete schemes for systems of second-order nonlinear hyperbolic equations. In [13], Ortner and Süli developed
the convergence analysis of semidiscrete discontinuous Galerkin finite element approximations of second-order
quasilinear hyperbolic systems. Hockbruck and Maier [14] proved error estimates for space discretizations of
a general class of first- and second-order quasilinear wave-type problems. In this paper, we will focus on the
equations of nonlinear elastodynamics, though the ideas and techniques can be easily generalized to other
second-order nonlinear hyperbolic equations, for instance, the Einstein’s equations, provided the assumptions
on the nonlinearity assumed herein are satisfied.

We begin by formulating the time-dependent problem resulting from nonlinear elasticity. Let Ω be a bounded
domain in R𝑑 for 𝑑 = 1, 2, 3, with sufficiently smooth boundary 𝜕Ω, and let 0 < 𝑇 < ∞. We consider the
following initial-boundary-value problem:

𝑢̈𝑖(𝑥, 𝑡)−
𝑑∑︁

𝛼=1

𝜕𝛼𝑆𝑖𝛼(∇u(𝑥, 𝑡)) = 𝑓𝑖(𝑥, 𝑡) in Ω× (0, 𝑇 ], (1)

for each 𝑖 = 1, . . . , 𝑑, where u = [𝑢1, . . . , 𝑢𝑑]T represents the displacement field and f = [𝑓1, . . . , 𝑓𝑑]T is the given
body force which is sufficiently smooth, and

u(𝑥, 𝑡) = 0 on 𝜕Ω× (0, 𝑇 ], (2)

u(𝑥, 0) = u0(𝑥) ∈
[︀
𝐻1

0 (Ω)
]︀𝑑 ∩ [𝐻𝑚(Ω)]𝑑, u̇(𝑥, 0) = u1(𝑥) ∈

[︀
𝐻𝑚−1(Ω)

]︀𝑑
, (3)

are prescribed boundary and initial conditions, and 𝑚 is an integer which will be specified later. Here the dots
over u denote differentiation with respect to time 𝑡, and 𝜕𝛼 is the partial derivative with respect to 𝑥𝛼. 𝑆 is
a given smooth 𝑑 × 𝑑 matrix-valued function defined on R𝑑×𝑑, which characterizes the Piola–Kirchhoff stress
tensor. For a complete discussion of the relevant mechanical background, we refer the reader to [15,16].

For hyperelastic materials, 𝑆 is the gradient of a scalar-valued ‘stored energy function’. Hence, if

𝐴𝑖𝛼𝑗𝛽(𝜂) :=
𝜕

𝜕𝜂𝑗𝛽
𝑆𝑖𝛼(𝜂), 𝜂 ∈ R𝑑×𝑑,

the elasticities 𝐴𝑖𝛼𝑗𝛽 satisfy
𝐴𝑖𝛼𝑗𝛽 = 𝐴𝑗𝛽𝑖𝛼, 1 ≤ 𝑖, 𝛼, 𝑗, 𝛽 ≤ 𝑑. (S1a)

We assume that 𝐴𝑖𝛼𝑗𝛽 satisfy the strict Legendre–Hadamard condition

𝑑∑︁
𝑖,𝛼,𝛽,𝑗=1

𝐴𝑖𝛼𝑗𝛽(𝜂)𝜁𝛼𝜁𝛽𝜉𝑖𝜉𝑗 ≥𝑀0|𝜁|2|𝜉|2 for all 𝜂 ∈ 𝒪 and 𝜁, 𝜉 ∈ R𝑑, (S1b)

for some real number 𝑀0 > 0, where 𝒪 is the domain of definition of 𝐴𝑖𝛼𝑗𝛽 and here | · | denotes the Euclidean
norm on R𝑑. This condition (S1b) is indeed satisfied by the constitutive relations of the standard material
models on sizeable portions of the displacement gradient space [3].

The initial-boundary-value problem (1)–(3) does not have a global smooth solution as a result of breaking
waves and shocks no matter how smooth u0, u1 and f are. It was proved by Dafermos and Hrusa [3] that there
exists a unique local solution to the problem (1)–(3) provided that (S1a,b) are satisfied. We summarize this
existence result in the following theorem.

Theorem 1.1. Let Ω be a bounded domain in R𝑑 with smooth boundary 𝜕Ω. Assume that (S1a,b) hold, that
𝐴𝑖𝛼𝑗𝛽 and f are sufficiently smooth, and that u0 ∈ [𝐻𝑚(Ω)]𝑑 and u1 ∈

[︀
𝐻𝑚−1(Ω)

]︀𝑑 for some integer 𝑚 ≥
[︀

𝑑
2

]︀
+3.
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Assume further that the initial values of the time derivatives of u up to order 𝑚 − 1 vanish on 𝜕Ω and that
∇u0

[︀
Ω
]︀
⊂ 𝒪. Then, there exists a finite time 𝑇 > 0 for which (1)–(3) has a unique solution u such that

u ∈
𝑚⋂︁

𝑠=0

𝐶𝑚−𝑠
(︁

[0, 𝑇 ]; [𝐻𝑠(Ω)]𝑑
)︁
. (4)

By the Sobolev embedding theorem, (4) implies that

u ∈
[︀
𝐶𝛽
(︀
[0, 𝑇 ]× Ω

)︀]︀𝑑
:=

𝛽⋂︁
𝑠=0

𝐶𝛽−𝑠
(︁

[0, 𝑇 ];𝐶𝑠
(︀
Ω
)︀𝑑)︁

,

where 𝛽 = 𝑚 −
[︀

𝑑
2

]︀
− 1. Note that the assumption on 𝑚 implies that 𝛽 ≥ 2. We shall assume throughout the

paper that the above assumptions are satisfied for 𝑚 sufficiently large so that a unique solution of (1) exists.
In fact, by Theorem 1.1, this unique solution satisfies

u ∈ 𝐶1
(︁

[0, 𝑇 ],
[︀
𝐻𝑚−1(Ω)

]︀𝑑)︁ ∩ 𝐶(︁[0, 𝑇 ], [𝐻𝑚(Ω)]𝑑
)︁
.

There have been a few contributions to the literature discussing the numerical approximations of (1)–(3). In
particular, Makridakis [12] proved an optimal 𝐿2 error estimate for the classical conforming method under the
assumption that 𝑝 > 𝑑

2 , where 𝑝 is the polynomial degree in space, and for appropriate initial approximations.
In [13], Süli and Ortner showed an optimal error estimate based on the broken 𝐻1 norm for the semi-discrete
discontinuous Galerkin finite element approximations of a similar problem, but with mixed Dirichlet-Neumann
boundary conditions and weaker Lipschitz assumptions on the nonlinear term. Following [8,9], Makridakis also
proposed and analyzed two different fully discrete schemes to approximate (1)–(3). The first scheme is based on
second-order accurate approximations of the cosine while the second group of fully discrete methods that have
temporal order of accuracy up to fourth-order are based on rational approximations of the exponential function.
Discontinuous Galerkin in time methods, which are the focus of this paper are, however, arbitrarily high-order
accurate. In contrast with the above-mentioned finite difference time integration schemes, for which the solution
at the current time step depends on the previous steps, this discontinuous-in-time scheme on the time interval
(𝑡𝑛, 𝑡𝑛+1] only depends on the solution at 𝑡−𝑛 . Since the local polynomial degree is free to vary between time
steps, this method is also naturally suited for an adaptive choice of the time discretization parameters. To the
best of our knowledge, the analysis of a fully discrete scheme based on such discontinuous-in-time discretization
of second-order quasilinear hyperbolic systems has not been previously considered in the literature.

Discontinuous Galerkin methods [17,18] have been widely and successfully used for the numerical approxima-
tions of PDEs. They have been first introduced by Reed and Hill [17] to solve the hyperbolic neutron transport
equations. Simultaneously, but independently, they were proposed as non-standard numerical schemes for solv-
ing elliptic and parabolic problems by Babuška & Zlámal [19], Baker [20], Wheeler [21], Arnold [22] and Rivière
[23] etc. In recent years, there has been considerable interest in applying discontinuous Galerkin finite element
methods to nonlinear hyperbolic PDEs. In particular, Antonietti et al. [24] developed a high-order discontinu-
ous Galerkin scheme for the spatial discretization of nonlinear acoustic waves. Muhr et al. [25] also proposed
and analyzed a hybrid discontinuous Galerkin coupling approach for the semi-discrete nonlinear elasto-acoustic
problem. However, there has been little work on the construction and mathematical analysis of fully discrete
discontinuous Galerkin schemes for second-order nonlinear hyperbolic PDEs. In this article, a high-order dis-
continuous Galerkin finite element method for the time integration will be proposed and analyzed. To construct
such a scheme, we first discretize with respect to the spatial variables by the means of a Galerkin finite element
method, which results in a system of ordinary differential equations (ODEs) in time; then we discretize the
resulting ODE system using discontinuous Galerkin method in time (e.g. see [26]). The resulting weak formula-
tion in time is based on weakly imposing the continuity of the approximate displacements and velocities between
time steps by penalizing jumps in these quantities in the definition of the numerical method.
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The paper is structured as follows. The next section sets up the assumptions required for the numerical
approximation. Section 3 dicusses the construction of a fully discrete scheme for the approximations of (1)–
(3) using a time-discontinuous Galerkin method. In Section 4, we perform the convergence analysis of the
discontinuous-in-time scheme under the hypotheses (S2a,b). Building on the work of Makridakis [12], this
convergence proof is based on Banach’s fixed point theorem and a nonlinear elliptic projection operator whose
approximation properties will be analyzed in Appendix B. Finally, numerical experiments are presented in
Section 5 to verify the theoretical results.

2. Definition and assumptions

In order to find a numerical approximation to the solution of the hyperbolic system (1)–(3), we discretize it
in space using a continuous Galerkin method, and then apply a discontinuous Galerkin method in time. For the
sake of showing the well-posedness of the resulting numerical method, we consider the substitution u = e𝛾𝑡v,
with 𝛾 > 0, resulting in the equivalent equation:

𝑣𝑖(𝑥, 𝑡) + 2𝛾𝑣̇𝑖(𝑥, 𝑡) + 𝛾2𝑣𝑖(𝑥, 𝑡)− e−𝛾𝑡
𝑑∑︁

𝛼=1

𝜕𝛼𝑆𝑖𝛼

(︀
e𝛾𝑡∇v(𝑥, 𝑡)

)︀
= 𝑓𝑖(𝑥, 𝑡) in Ω× (0, 𝑇 ], (5)

for each 𝑖 = 1, . . . , 𝑑, where f̃ = e−𝛾𝑡f , 𝛾 > 0 is a fixed constant,

v(𝑥, 𝑡) = 0 on 𝜕Ω× (0, 𝑇 ], (6)

v(𝑥, 0) = v0(𝑥) ∈ [𝐻𝑚(Ω)]𝑑 ∩
[︀
𝐻1

0 (Ω)
]︀𝑑
, v̇(𝑥, 0) = v1(𝑥) ∈

[︀
𝐻𝑚−1(Ω)

]︀𝑑
, (7)

where v0(𝑥) = u0(𝑥) and v1(𝑥) = u1(𝑥) − 𝛾u0(𝑥). From now on, we focus on the system of equations (5)–(7)
only. By Theorem 1.1, we have

v = ue−𝛾𝑡 ∈ 𝐶1
(︁

[0, 𝑇 ],
[︀
𝐻𝑚−1(Ω)

]︀𝑑)︁ ∩ 𝐶(︁[0, 𝑇 ], [𝐻𝑚(Ω)]𝑑
)︁
.

This shows that the initial conditions stated as (7) in the above definition are meaningful.
Before describing its discretization, we first fix the notation. We use the symbol := to indicate an equality in

which the left hand side is defined by the right hand side. We denote by (·, ·)𝐿2 the inner product in 𝐿2(Ω) and[︀
𝐿2(Ω)

]︀𝑑. Following standard notational conventions, we shall write 𝑊 𝑠,𝑝 := [𝑊 𝑠,𝑝(Ω)]𝑑 for 𝑠 ∈ Z, 𝑝 ∈ R+∪{∞},
and put 𝐻𝑠 := 𝑊 𝑠,2. Similarly, 𝐻1

0 :=
[︀
𝐻1

0 (Ω)
]︀𝑑 and 𝐿2 :=

[︀
𝐿2(Ω)

]︀𝑑
.

We define the following time-dependent semilinear form

𝑎(v(𝑡),𝜙) :=
𝑑∑︁

𝑖,𝛼=1

e−𝛾𝑡
(︀
𝑆𝑖𝛼

(︀
𝑒𝛾𝑡∇v(𝑡)

)︀
, 𝜕𝛼𝜙𝑖

)︀
𝐿2 , for 𝜙 ∈ 𝐻1

0 .

Since we also need to approximate the gradient of the solution ∇u = e𝛾𝑡∇v, we assume that there exists an
open convex set ℳ with ℳ ⊂ 𝒪 such that ∇u

(︀[︀
Ω× [0, 𝑇 ]

]︀)︀
⊂ ℳ. If the distance of ℳ from 𝜕𝒪 is 𝛿, we

consider the set

ℳ𝛿 :=
{︂
𝜂 ∈ R𝑑×𝑑 : inf

𝜎∈ℳ
|𝜂 − 𝜎| ≤ 𝛿

}︂
, (8)

where | · | denotes the Frobenius norm on R𝑑×𝑑 defined, for 𝜂 ∈ R𝑑×𝑑, by |𝜂| = (𝜂 : 𝜂)
1
2 . Notice that the set ℳ𝛿

is convex (cf. [27], Lem. 1). Since we only require 𝑆 to be locally Lipschitz continuous in ℳ𝛿, we define the
local Lipschitz constant of 𝑆 in ℳ𝛿 by

𝐾𝛿 := sup
𝜂∈ℳ𝛿

⎛⎝ 𝑑∑︁
𝑖,𝛼,𝑗,𝛽=1

|𝐴𝑖𝛼𝑗𝛽(𝜂)|2
⎞⎠ 1

2

, (9)
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and the local Lipschitz constant of the fourth-order elasticity tensor 𝐴 = ∇𝑆 by

𝐿𝛿 := sup
𝜂1,𝜂2∈ℳ𝛿, 𝜂1 ̸=𝜂2

|𝜂1 − 𝜂2|−1

⎛⎝ 𝑑∑︁
𝑖,𝛼,𝑗,𝛽=1

|𝐴𝑖𝛼𝑗𝛽(𝜂1)−𝐴𝑖𝛼𝑗𝛽(𝜂2)|2
⎞⎠ 1

2

. (10)

Since the set ℳ𝛿 is a compact subset of R𝑑×𝑑 for every 𝛿 > 0 and 𝐴𝑖𝛼𝑗𝛽 is sufficiently smooth (and in particular
continuously differentiable on ℳ𝛿), it follows that 𝐾𝛿 and 𝐿𝛿 are finite. We also define

𝒵𝛿 :=
{︁

Φ ∈ 𝐿∞
(︀
Ω
)︀𝑑×𝑑

: Φ(𝑥) ∈ℳ𝛿, 𝑥 ∈ Ω
}︁
. (11)

This set 𝒵𝛿 is expected to contain the gradients of approximations of u. We define

𝑎̃(𝜙;𝜑,𝜓) :=
𝑑∑︁

𝑖,𝛼,𝑗,𝛽=1

(𝐴𝑖𝛼𝑗𝛽(∇𝜙)𝜕𝛽𝜑𝑗 , 𝜕𝛼𝜓𝑖)𝐿2 , for 𝜙,𝜑,𝜓 ∈ 𝐻1
0 . (12)

By the definition of 𝒵𝛿 and (S1a), we have

𝑎̃(𝜙;𝜑,𝜓) = 𝑎̃(𝜙;𝜓,𝜑), for 𝜙,𝜑,𝜓 ∈ 𝐻1
0 ,∇𝜙 ∈ 𝒵𝛿. (S2a)

We also assume that there exists a real number 𝑀1 > 0 such that

𝑎̃(𝜙;𝜑,𝜑) ≥𝑀1‖∇𝜑‖2𝐿2 , for 𝜙,𝜑 ∈ 𝐻1
0 ,∇𝜙 ∈ 𝒵𝛿. (S2b)

Note that (S2b) is a stronger assumption than (S1b). In general, (S1b) does not imply (S2b) for 𝑑 > 1. We refer
the reader to [28–30] for counterexamples. In fact, (S1b) only implies the following G̊arding’s inequality:

𝑎̃(𝜙;𝜑,𝜑) ≥ 1
2
𝑀0‖∇𝜑‖2𝐿2 − 𝜇‖𝜑‖2𝐿2 for 𝜇 ≥ 0,𝜙,𝜑 ∈ 𝐻1

0 ,∇𝜙 ∈ 𝒵𝛿, (13)

cf. Theorem 6.5.1 in [31] and Lemma 5 in [27]. We note that the techniques of this paper can be extended so
that our results are still valid under this weak condition.

3. Numerical scheme

3.1. Semi-discrete approximation

We shall discretize the problem (5)–(7) in space using a continuous Galerkin method. For the spatial dis-
cretization parameter ℎ ∈ (0, 1), we define 𝒱ℎ to be a given family of finite-dimensional subspaces of 𝐻1

0 ∩𝐻𝑚

with polynomial degree 𝑝 ≥ 1. We shall assume that the triangulation {𝒯ℎ}ℎ>0 of Ω into 𝑑-dimensional sim-
plices, which are possibly curved along the boundary 𝜕Ω, is shape-regular and quasi-uniform. It follows from
Bernardi’s work [32] that

inf
vℎ∈𝒱ℎ

{‖v − vℎ‖𝐿2 + ℎ‖v − vℎ‖𝐻1} ≤ 𝐶ℎ𝑟+1‖v‖𝐻𝑟+1 , 1 ≤ 𝑟 ≤ min(𝑝,𝑚− 1), v ∈ 𝐻𝑚 ∩𝐻1
0 . (i)

Further, the following inverse inequalities follow directly from the quasi-uniformity of the triangulation.
There exists a positive constant 𝐶0 such that, for every vℎ ∈ 𝒱ℎ,

‖∇vℎ‖𝐿2 ≤ 𝐶0ℎ
−1‖vℎ‖𝐿2 and ‖∇vℎ‖𝐿∞ ≤ 𝐶0ℎ

−1‖vℎ‖𝐿∞ . (ii,a)

There exists a positive constant 𝐶1 such that, for every vℎ ∈ 𝒱ℎ,

‖∇vℎ‖𝐿∞ ≤ 𝐶1ℎ
− 𝑑

2 ‖∇vℎ‖𝐿2 and ‖vℎ‖𝐿∞ ≤ 𝐶1ℎ
− 𝑑

2 ‖vℎ‖𝐿2 . (ii,b)
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With the above assumptions, we are ready to construct the continuous-in-time finite element approximation
vℎ of v. The semi-discrete approximation vℎ : [0, 𝑇 ] → 𝒱ℎ of the solution of (5)–(7) satisfies the following
initial-value problem in 𝒱ℎ:

(v̈ℎ(𝑡),𝜙)𝐿2 + 𝑎(vℎ(𝑡),𝜙) + 2𝛾(v̇ℎ(𝑡),𝜙)𝐿2 + 𝛾2(vℎ(𝑡),𝜙)𝐿2 =
(︁
f̃(𝑡),𝜙

)︁
𝐿2

(14)

for all 𝜙 ∈ 𝒱ℎ, 0 ≤ 𝑡 ≤ 𝑇,
vℎ(0) = v0,ℎ ∈ 𝒱ℎ, v̇ℎ(0) = v1,ℎ ∈ 𝒱ℎ, (15)

where v0,ℎ and v1,ℎ are specially chosen initial values. It was proved by Makridakis [12] that the semi-discrete
problem (14), (15) with 𝛾 = 0 (the semi-discrete form based on a continuous finite element approximation of
the original problem (1)–(3)) has a locally unique solution and that the optimal-order 𝐿2 error estimate

max
0≤𝑡≤𝑇

‖v(𝑡)− vℎ(𝑡)‖𝐿2 ≤ 𝐶(v)ℎ𝑝+1 (16)

holds for sufficiently smooth initial data. Here 𝑝 is the polynomial degree of the elements of the finite-dimensional
space 𝒱ℎ, which satisfies 𝑝 > 𝑑

2 . The proofs of these assertions for 𝛾 > 0 are completely analogous and are
therefore omitted.

3.2. Discontinuous-in-time fully discrete scheme

In this section we shall construct a fully discrete approximation of the solution of (5)–(7) by applying a
discontinuous Galerkin method in time. For this purpose, we partition the time interval 𝐼 = (0, 𝑇 ] into 𝑁
sub-intervals 𝐼𝑛 = (𝑡𝑛−1, 𝑡𝑛] having length 𝑘𝑛 = 𝑡𝑛 − 𝑡𝑛−1 for 𝑛 = 1, 2, . . . , 𝑁 , with 𝑡0 = 0 and 𝑡𝑁 = 𝑇. To deal
with the discontinuity at each 𝑡𝑛 in the numerical approximation to v, we introduce the jump operator

[vℎ]𝑛 := vℎ

(︀
𝑡+𝑛
)︀
− vℎ

(︀
𝑡−𝑛
)︀

for 𝑛 = 0, 1, . . . , 𝑁 − 1,

where
vℎ

(︀
𝑡±𝑛
)︀

:= lim
𝜀→0±

vℎ(𝑡𝑛 + 𝜀) for 𝑛 = 0, 1, . . . , 𝑁 − 1.

By convention, we assume that vℎ(0−) = v0,ℎ and v̇ℎ(0−) = v1,ℎ. Moreover, we define v+
ℎ,𝑛 := vℎ(𝑡+𝑛 ) and

v−ℎ,𝑛 := vℎ(𝑡−𝑛 ). To deal with the nonlinear term, we apply Taylor’s theorem with an integral remainder to have

𝑆𝑖𝛼

(︀
∇vℎ(𝑡)e𝛾𝑡

)︀
= 𝑆𝑖𝛼(0) +

𝑑∑︁
𝑗,𝛽=1

𝜕𝛽vℎ,𝑗(𝑡)e𝛾𝑡

∫︁ 1

0

𝐴𝑖𝛼𝑗𝛽

(︀
𝜏∇vℎ(𝑡)e𝛾𝑡

)︀
d𝜏.

By assuming that 𝑆(0) = 0, we can write the semilinear term as∫︁ 𝑡𝑛

𝑡𝑛−1

𝑑∑︁
𝑖,𝛼=1

e−𝛾𝑡
(︀
𝑆𝑖𝛼

(︀
∇vℎ(𝑡)e𝛾𝑡

)︀
, 𝜕𝛼v̇ℎ,𝑖(𝑡)

)︀
𝐿2 d𝑡

=
∫︁ 𝑡𝑛

𝑡𝑛−1

𝑑∑︁
𝑖,𝛼,𝑗,𝛽=1

(︂
𝜕𝛽vℎ,𝑗(𝑡)

∫︁ 1

0

𝐴𝑖𝛼𝑗𝛽

(︀
𝜏∇vℎ(𝑡)e𝛾𝑡

)︀
d𝜏, 𝜕𝛼v̇ℎ,𝑖(𝑡)

)︂
𝐿2

d𝑡

=
∫︁ 𝑡𝑛

𝑡𝑛−1

∫︁ 1

0

𝑑∑︁
𝑖,𝛼,𝑗,𝛽=1

(︀
𝐴𝑖𝛼𝑗𝛽

(︀
𝜏∇vℎ(𝑡)e𝛾𝑡

)︀
𝜕𝛽vℎ,𝑗(𝑡), 𝜕𝛼v̇ℎ,𝑖(𝑡)

)︀
𝐿2 d𝜏 d𝑡

=
∫︁ 𝑡𝑛

𝑡𝑛−1

{︂∫︁ 1

0

𝑎̃
(︀
𝜏vℎ(𝑡)e𝛾𝑡; vℎ(𝑡), v̇ℎ(𝑡)

)︀
d𝜏
}︂

d𝑡,
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where

𝑎̃
(︀
𝜏vℎ(𝑡)e𝛾𝑡; vℎ(𝑡), v̇ℎ(𝑡)

)︀
:=

𝑑∑︁
𝑖,𝛼,𝑗,𝛽=1

(︀
𝐴𝑖𝛼𝑗𝛽

(︀
𝜏∇vℎ(𝑡)e𝛾𝑡

)︀
𝜕𝛽vℎ,𝑗(𝑡), 𝜕𝛼v̇ℎ,𝑖(𝑡)

)︀
𝐿2 .

We focus on the generic time interval 𝐼𝑛 and assume that the solution on 𝐼𝑛−1 is known. Following the
discontinuous-in-time numerical scheme introduced in [26], we first test the equation (5) against 𝜙̇ for
𝜙 ∈ 𝐻1

(︀
𝐼𝑛;𝐻1

0

)︀
and integrate on 𝐼𝑛 to obtain the following weak formulation:∫︁ 𝑡𝑛

𝑡𝑛−1

(v̈(𝑡), 𝜙̇(𝑡))𝐿2 d𝑡+
∫︁ 𝑡𝑛

𝑡𝑛−1

𝑑∑︁
𝑖,𝛼=1

e−𝛾𝑡
(︀
𝑆𝑖𝛼

(︀
∇v(𝑡)e𝛾𝑡

)︀
, 𝜕𝛼𝜙̇𝑖(𝑡)

)︀
𝐿2 d𝑡+ 2𝛾

∫︁ 𝑡𝑛

𝑡𝑛−1

(v̇(𝑡), 𝜙̇(𝑡))𝐿2 d𝑡

+ 𝛾2

∫︁ 𝑡𝑛

𝑡𝑛−1

(v(𝑡), 𝜙̇(𝑡))𝐿2 d𝑡 =
∫︁ 𝑡𝑛

𝑡𝑛−1

(︁
f̃(𝑡), 𝜙̇(𝑡)

)︁
𝐿2

d𝑡. (17)

Now we rewrite (17) by adding suitable (strongly consistent) terms:∫︁ 𝑡𝑛

𝑡𝑛−1

(v̈(𝑡), 𝜙̇(𝑡))𝐿2 d𝑡+
(︀
[v̇(𝑡)]𝑛−1, 𝜙̇

(︀
𝑡+𝑛−1

)︀)︀
𝐿2 +

∫︁ 𝑡𝑛

𝑡𝑛−1

𝑑∑︁
𝑖,𝛼=1

𝑒−𝛾𝑡
(︀
𝑆𝑖𝛼

(︀
∇v(𝑡)𝑒𝛾𝑡

)︀
, 𝜕𝛼𝜙̇𝑖(𝑡)

)︀
𝐿2 d𝑡

+
1
2

{︂∫︁ 1

0

𝑎̃
(︁
𝜏v+

ℎ,𝑛−1e𝛾𝑡𝑛−1 ; v+
ℎ,𝑛−1,v

+
ℎ,𝑛−1

)︁
d𝜏 −

∫︁ 1

0

𝑎̃
(︁
𝜏v−ℎ,𝑛−1e𝛾𝑡𝑛−1 ; v−ℎ,𝑛−1,v

−
ℎ,𝑛−1

)︁
d𝜏
}︂

+ 2𝛾
∫︁ 𝑡𝑛

𝑡𝑛−1

(v̇(𝑡), 𝜙̇(𝑡))𝐿2 d𝑡+ 𝛾2

∫︁ 𝑡𝑛

𝑡𝑛−1

(v(𝑡), 𝜙̇(𝑡))𝐿2 d𝑡+ 𝛾2
(︀
[v(𝑡)]𝑛−1,𝜙

+
𝑛−1

)︀
𝐿2

=
∫︁ 𝑡𝑛

𝑡𝑛−1

(︁
f̃(𝑡), 𝜙̇(𝑡)

)︁
𝐿2

d𝑡. (18)

Summing over all time intervals in (18) leads us to define the following semilinear form 𝒜 : ℋ × ℋ → R with
ℋ := 𝐻2

(︀
0, 𝑇 ;𝐻𝑚 ∩𝐻1

0

)︀
by

𝒜(v,𝜙) :=
𝑁∑︁

𝑛=1

∫︁ 𝑡𝑛

𝑡𝑛−1

(v̈(𝑡), 𝜙̇(𝑡))𝐿2 d𝑡+
𝑁−1∑︁
𝑛=1

(︀
[v̇(𝑡)]𝑛, 𝜙̇

(︀
𝑡+𝑛
)︀)︀

𝐿2 +
(︀
v̇
(︀
𝑡+0
)︀
, 𝜙̇
(︀
𝑡+0
)︀)︀

𝐿2

+
𝑁∑︁

𝑛=1

∫︁ 𝑡𝑛

𝑡𝑛−1

𝑑∑︁
𝑖,𝛼=1

e−𝛾𝑡
(︀
𝑆𝑖𝛼

(︀
∇v(𝑡)e𝛾𝑡

)︀
, 𝜕𝛼𝜙̇𝑖(𝑡)

)︀
𝐿2 d𝑡+

1
2

∫︁ 1

0

𝑎̃
(︀
𝜏v+

0 ; v+
0 ,𝜙

+
0

)︀
d𝜏

+
𝑁−1∑︁
𝑛=1

1
2

{︂∫︁ 1

0

𝑎̃
(︀
𝜏v+

𝑛 e𝛾𝑡𝑛 ; v+
𝑛 ,𝜙

(︀
𝑡+𝑛
)︀)︀

d𝜏 −
∫︁ 1

0

𝑎̃
(︀
𝜏v−𝑛 e𝛾𝑡𝑛 ; v−𝑛 ,𝜙

(︀
𝑡−𝑛
)︀)︀

d𝜏
}︂

+ 2𝛾
𝑁∑︁

𝑛=1

∫︁ 𝑡𝑛

𝑡𝑛−1

(v̇(𝑡), 𝜙̇(𝑡))𝐿2 d𝑡+ 𝛾2
𝑁∑︁

𝑛=1

∫︁ 𝑡𝑛

𝑡𝑛−1

(v(𝑡), 𝜙̇(𝑡))𝐿2 d𝑡+ 𝛾2
𝑁−1∑︁
𝑛=1

(︀
[v(𝑡)]𝑛,𝜙

+
𝑛

)︀
𝐿2

+ 𝛾2
(︀
v+

0 ,𝜙
+
0

)︀
𝐿2

for 𝜙 ∈ ℋ. Let, further, 𝐹 be the linear functional defined by

𝐹 (𝜙) :=
𝑁∑︁

𝑛=1

∫︁ 𝑡𝑛

𝑡𝑛−1

(︁
f̃(𝑡), 𝜙̇(𝑡)

)︁
𝐿2

d𝑡+
(︀
v1, 𝜙̇

+
0

)︀
𝐿2 + 𝛾2

(︀
v0,𝜙

+
0

)︀
𝐿2 +

1
2

∫︁ 1

0

𝑎̃
(︀
𝜏v0; v0,𝜙

−
0

)︀
d𝜏.

Now we introduce the finite-dimensional space

𝒱𝑞𝑛

𝑘ℎ :=

⎧⎨⎩v : [0, 𝑇 ] → 𝒱ℎ; v|𝐼𝑛
=

𝑞𝑛∑︁
𝑗=0

v𝑗𝑡
𝑗 ,v𝑗 ∈ 𝒱ℎ

⎫⎬⎭,
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with 𝑞𝑛 ≥ 2 for each 1 ≤ 𝑛 ≤ 𝑁. For q := [𝑞1, 𝑞2, . . . , 𝑞𝑁 ]𝑇 ∈ N𝑁 , we then define the space

𝒱q
𝑘ℎ := {v : [0, 𝑇 ] → 𝒱ℎ; v|𝐼𝑛

∈ 𝒱𝑞𝑛

𝑘ℎ for 𝑛 = 1, 2, . . . , 𝑁}.

Then, the discontinuous-in-time fully discrete approximation of the problem reads as follows: find vDG ∈ 𝒱q
𝑘ℎ

such that
𝒜(vDG,𝜙) = 𝐹 (𝜙) for all 𝜙 ∈ 𝒱q

𝑘ℎ, (19)

where 𝐹 is a modified version of 𝐹 defined as

𝐹 (𝜙) :=
𝑁∑︁

𝑛=1

∫︁ 𝑡𝑛

𝑡𝑛−1

(︁
f̃(𝑡), 𝜙̇(𝑡)

)︁
𝐿2

d𝑡+
(︀
v1,ℎ, 𝜙̇

+
0

)︀
𝐿2 + 𝛾2

(︀
v0ℎ,𝜙

+
0

)︀
𝐿2 +

1
2

∫︁ 1

0

𝑎̃
(︀
𝜏v0ℎ; v0ℎ,𝜙

−
0

)︀
d𝜏.

4. Convergence analysis

By using the ideas introduced in [12] based on Banach’s fixed point theorem, we will show the existence and
uniqueness of vDG. We shall also prove a priori error estimates as summarized in the following theorem.

Theorem 4.1. Let v ∈ 𝑊 𝑠,∞(︀[0, 𝑇 ];𝐻𝑚 ∩𝐻1
0

)︀
, with 𝑑

2 + 1 < 𝑟 ≤ min(𝑝,𝑚− 1), 𝑠 ≥ 𝑞𝑖 + 1 for each 𝑖 =

1, 2, . . . 𝑁 , be the solution of (5)–(7). Assume that 𝑘𝑞𝑖− 1
2

𝑖 = 𝑜
(︁
ℎ

𝑑
2 +1
)︁

and there exist positive constants 𝜇𝑖, 𝜈𝑖

such that 𝜇𝑖𝑘𝑖 ≤ ℎ2 ≤ 𝜈𝑖𝑘𝑖 for each 𝑖 = 1, 2, . . . 𝑁 . Suppose that we choose the initial data v0,ℎ, v1,ℎ ∈ 𝒱ℎ to be

v1,ℎ = W(0), v1,ℎ = Ẇ(0), (20)

where W(𝑡) ∈ 𝒱ℎ is the nonlinear elliptic projection of v(𝑡) such that

𝑎(W(𝑡),𝜙) = 𝑎(v(𝑡),𝜙) for all 𝜙 ∈ 𝒱ℎ. (21)

Then we have for the solutions of (19) that

⃦⃦
vDG

(︀
𝑡−𝑗
)︀
− v

(︀
𝑡−𝑗
)︀⃦⃦

𝐿2 +
⃦⃦
v̇DG

(︀
𝑡−𝑗
)︀
− v̇

(︀
𝑡−𝑗
)︀⃦⃦

𝐿2 ≤ 𝐶(v)

(︃
ℎ2𝑟+2 +

𝑗∑︁
𝑛=1

𝑘2𝑞𝑛+1
𝑛

𝑞
2(𝑠−1)
𝑛

)︃ 1
2

(22)

for each 𝑗 = 1, . . . , 𝑁, where 𝐶(v) is a positive constant depending on the solution v.

Remark 4.2. If we use uniform time intervals 𝑘𝑛 = 𝑘 = ℎ2, and uniform polynomial degrees 𝑞𝑛 = 𝑞 ≥ 2, for
𝑛 = 1, . . . , 𝑁 , then the error bound at the end nodal point becomes⃦⃦

vDG

(︀
𝑡−𝑁
)︀
− v

(︀
𝑡−𝑁
)︀⃦⃦

𝐿2 +
⃦⃦
v̇DG

(︀
𝑡−𝑁
)︀
− v̇

(︀
𝑡−𝑁
)︀⃦⃦

𝐿2 ≤ 𝐶(v)
(︁
𝑘

𝑟+1
2 + 𝑘𝑞

)︁
.

Remark 4.3. The assumptions that 𝑘𝑞𝑖− 1
2

𝑖 = 𝑜
(︁
ℎ1+ 𝑑

2

)︁
and 𝜇𝑖𝑘𝑖 ≤ ℎ2 ≤ 𝜈𝑖𝑘𝑖 for each 𝑖 = 1, . . . 𝑁 require that

𝑞𝑖 > 1 + 𝑑
4 for each 𝑖 = 1, . . . , 𝑁. That is, we need the polynomial degree in time satisfies 𝑞𝑖 ≥ 2 for 𝑑 = 1, 2, 3

on each time interval 𝐼𝑖, with 𝑖 = 1, . . . , 𝑁.

Remark 4.4. By the Sobolev embedding theorem, v ∈ 𝑊 𝑠,∞([0, 𝑇 ];𝐻𝑚) for 𝑚 > 𝑑
2 + 2 implies that v ∈

𝑊 𝑠,∞
(︁

[0, 𝑇 ];𝐶2,𝛼
(︀
Ω
)︀𝑑)︁

for some 𝛼 ∈ (0, 1). Note that the assumption 𝑚 > 𝑑
2 + 2 is consistent with the

assumption 𝑚 ≥
[︀

𝑑
2

]︀
+ 3 in Theorem 1.1. That is, we need 𝑚 ≥ 3 for 𝑑 = 1 and 𝑚 ≥ 4 for 𝑑 = 2, 3.

It will be assumed throughout the convergence analysis that

v ∈𝑊 𝑠,∞(︀[0, 𝑇 ];𝐻𝑚 ∩𝐻1
0

)︀
.



DG IN TIME DISCRETIZATION OF NONLINEAR HYPERBOLIC SYSTEMS 2263

4.1. Definition of the fixed point map

It is known, see [33, 34], that (21) has, for ℎ sufficiently small, a locally unique solution W(𝑡) ∈ 𝒱ℎ for
0 ≤ 𝑡 ≤ 𝑇 . Furthermore, W satisfies the following properties, which are established in Appendix B.

There exists a constant 𝐶𝑟(v) depending on v such that, for 𝑑
2 + 1 < 𝑟 ≤ min(𝑝,𝑚− 1),⃦⃦⃦

∇v(𝑗)(𝑡)−∇W(𝑗)(𝑡)
⃦⃦⃦

𝐿2
≤ 𝐶𝑟(v)ℎ𝑟, 0 ≤ 𝑡 ≤ 𝑇, (iii,a)

for 𝑗 = 0, 1, where v(𝑗) := d𝑗v
d𝑡𝑗 . In addition, we shall prove for the time-derivatives of W there holds⃦⃦⃦

v(𝑗)(𝑡)−W(𝑗)(𝑡)
⃦⃦⃦

𝐿2
≤ 𝐶𝑟(v)ℎ𝑟+1, 0 ≤ 𝑡 ≤ 𝑇, (iii,b)

for 𝑗 = 0, 1, 2. We can also show that there exist constants 𝑐0 and 𝑐1, independent of ℎ, such that

‖∇W(𝑡)‖𝐿∞ ≤ 𝑐0 and
⃦⃦⃦
∇Ẇ(𝑡)

⃦⃦⃦
𝐿∞

≤ 𝑐1, 0 ≤ 𝑡 ≤ 𝑇. (iii,c)

Let Π𝑘 = Π𝑞𝑛

𝐼𝑛
denote the modified 𝐿2-projector in time direction. That is, for each 𝑛 = 1, 2, . . . , 𝑁 ,

(Π𝑘W −W)
(︀
𝑥, 𝑡+𝑛−1

)︀
= 0; (23)

(Π𝑘W −W)
(︀
𝑥, 𝑡−𝑛

)︀
= 0; (24)

𝜕𝑡(Π𝑘W −W)
(︀
𝑥, 𝑡−𝑛

)︀
= 0; (25)∫︁ 𝑡𝑛

𝑡𝑛−1

(𝜕𝑡(Π𝑘W −W),𝜒)𝐿2 d𝑡 = 0 for 𝜒 ∈ 𝒱𝑞𝑛−2
𝑘ℎ . (26)

It was first proved in [35] and further studied in [36] that for each W ∈ 𝐻𝑠
(︀
𝐼𝑛;𝐿2

)︀
, there exists a positive

constant 𝐶 such that, ∫︁ 𝑡𝑛

𝑡𝑛−1

‖𝜕𝑡𝑡(W(·, 𝑡)−Π𝑘W(·, 𝑡))‖2𝐿2 d𝑡 ≤ 𝐶
𝑘

2(𝜇−2)
𝑛

𝑞
2(𝑠−3)
𝑛

‖W‖2𝐻𝑠(𝐼𝑛,𝐿2), (27)

∫︁ 𝑡𝑛

𝑡𝑛−1

‖𝜕𝑡(W(·, 𝑡)−Π𝑘W(·, 𝑡))‖2𝐿2 d𝑡 ≤ 𝐶
𝑘

2(𝜇−1)
𝑛

𝑞
2(𝑠−1)
𝑛

‖W‖2𝐻𝑠(𝐼𝑛,𝐿2), (28)∫︁ 𝑡𝑛

𝑡𝑛−1

‖W(·, 𝑡)−Π𝑘W(·, 𝑡)‖2𝐿2 d𝑡 ≤ 𝐶
𝑘2𝜇

𝑛

𝑞
2(𝑠−1)
𝑛

‖W‖2𝐻𝑠(𝐼𝑛,𝐿2), (29)

where 𝜇 = min(𝑞𝑛 + 1, 𝑠) and 𝑞𝑛 is the polynomial degree with respect to the variable 𝑡. If we change the
spatial function space from 𝐿2 to 𝐻1

0 in (27)–(29), analogous estimates follow. Note that we can also get inverse
inequalities with respect to the time derivatives in an analogous manner as (ii,a). That is, there exists a positive
constant 𝐶2 such that, for each fixed 𝑥 ∈ Ω, for every 𝜙 ∈ 𝒱q

𝑘ℎ,

‖𝜕𝑡𝜙(𝑥, ·)‖𝐿2(𝐼𝑛) ≤ 𝐶2𝑘
−1
𝑛 ‖𝜙(𝑥, ·)‖𝐿2(𝐼𝑛) (30)

‖𝜕𝑡𝜙(𝑥, ·)‖𝐿∞(𝐼𝑛) ≤ 𝐶2𝑘
−1
𝑛 ‖𝜙(𝑥, ·)‖𝐿∞(𝐼𝑛), (31)

for each 𝑛 = 1, 2, . . . , 𝑁. We now decompose the error as

vDG(𝑡)− v(𝑡) = (vDG(𝑡)−Π𝑘W(𝑡)) + (Π𝑘W(𝑡)−W(𝑡)) + (W(𝑡)− v(𝑡))
:= 𝜃(𝑡) + 𝜌1(𝑡) + 𝜌2(𝑡)
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for 𝑡 ∈ 𝐼𝑛, 𝑛 = 1, 2, . . . , 𝑁. First note that∫︁ 𝑡𝑛

𝑡𝑛−1

⃦⃦⃦
𝜌

(𝑗)
1 (𝑡)

⃦⃦⃦2

𝐿2
d𝑡 =

∫︁ 𝑡𝑛

𝑡𝑛−1

⃦⃦⃦
Π𝑘W(𝑗)(𝑡)−W(𝑗)(𝑡)

⃦⃦⃦2

𝐿2
d𝑡 ≤ 𝐶

𝑘
2(𝜇−𝑗)
𝑛

𝑞
2(𝑠−1)
𝑛

∫︁ 𝑡𝑛

𝑡𝑛−1

𝑠∑︁
𝛼=0

⃦⃦⃦
W(𝛼)(𝑡)

⃦⃦⃦2

𝐿2
d𝑡

≤ 𝐶1(v)
𝑘

2(𝜇−𝑗)+1
𝑛

𝑞
2(𝑠−1)
𝑛

for 𝑗 = 0, 1, (32)

where we have applied (28) and (29). Here 𝜇 = min(𝑠, 𝑞𝑛 + 1) and Π𝑘W(𝑗) = d𝑗Π𝑘W
d𝑡𝑗 , W(𝑗) = d𝑗W

d𝑡𝑗 , with
𝑗 = 0, 1. If we assume that the solution v ∈ 𝑊 𝑠,∞(︀[0, 𝑇 ];𝐻𝑚 ∩𝐻1

0

)︀
of (5)–(7) is sufficiently smooth (i.e.

𝑠 > 𝑞𝑛 + 1), then we can write∫︁ 𝑡𝑛

𝑡𝑛−1

⃦⃦⃦
𝜌

(𝑗)
1 (𝑡)

⃦⃦⃦2

𝐿2
d𝑡 ≤ 𝐶

𝑘
2(𝑞𝑛+1−𝑗)
𝑛

𝑞
2(𝑠−1)
𝑛

∫︁ 𝑡𝑛

𝑡𝑛−1

𝑠∑︁
𝛼=0

⃦⃦⃦
W(𝛼)(𝑡)

⃦⃦⃦2

𝐿2
d𝑡 ≤ 𝐶1(v)

𝑘
2(𝑞𝑛+1−𝑗)+1
𝑛

𝑞
2(𝑠−1)
𝑛

(33)

for 𝑗 = 0, 1. By the property (iii,b) of the elliptic projection, we know that∫︁ 𝑡𝑛

𝑡𝑛−1

⃦⃦⃦
𝜌

(𝑗)
2 (𝑡)

⃦⃦⃦2

𝐿2
d𝑡 =

∫︁ 𝑡𝑛

𝑡𝑛−1

⃦⃦⃦
W(𝑗)(𝑡)− v(𝑗)(𝑡)

⃦⃦⃦2

𝐿2
d𝑡 ≤ 𝐶2(v)𝑘𝑛ℎ

2𝑟+2 (34)

for 𝑗 = 0, 1, 2. Here 𝐶𝑖(v) for 𝑖 = 1, 2 are constants depending on the exact solution v. Recall that the fully
discrete scheme is

𝑁∑︁
𝑛=1

∫︁ 𝑡𝑛

𝑡𝑛−1

(v̈DG(𝑡), 𝜙̇(𝑡))𝐿2 d𝑡+
𝑁−1∑︁
𝑛=1

(︀
[v̇DG(𝑡)]𝑛, 𝜙̇

(︀
𝑡+𝑛
)︀)︀

𝐿2 +
(︀
v̇DG

(︀
𝑡+0
)︀
, 𝜙̇
(︀
𝑡+0
)︀)︀

𝐿2

+ 𝛾2
𝑁∑︁

𝑛=1

∫︁ 𝑡𝑛

𝑡𝑛−1

(vDG(𝑡), 𝜙̇(𝑡))𝐿2 d𝑡+ 𝛾2
𝑁−1∑︁
𝑛=1

(︀
[vDG(𝑡)]𝑛,𝜙

(︀
𝑡+𝑛
)︀)︀

𝐿2 + 𝛾2
(︀
vDG

(︀
𝑡+0
)︀
,𝜙
(︀
𝑡+0
)︀)︀

𝐿2

+
𝑁∑︁

𝑛=1

∫︁ 𝑡𝑛

𝑡𝑛−1

𝑑∑︁
𝑖,𝛼=1

e−𝛾𝑡
(︀
𝑆𝑖𝛼

(︀
∇vDG(𝑡)e𝛾𝑡

)︀
, 𝜕𝛼𝜙̇𝑖(𝑡)

)︀
𝐿2 d𝑡+ 2𝛾

𝑁∑︁
𝑛=1

∫︁ 𝑡𝑛

𝑡𝑛−1

(v̇DG(𝑡), 𝜙̇(𝑡))𝐿2 d𝑡

+
𝑁−1∑︁
𝑛=0

1
2

{︂∫︁ 1

0

𝑎̃
(︀
𝜏vDG

(︀
𝑡+𝑛
)︀
e𝛾𝑡𝑛 ; vDG

(︀
𝑡+𝑛
)︀
,𝜙
(︀
𝑡+𝑛
)︀)︀

d𝜏 −
∫︁ 1

0

𝑎̃
(︀
𝜏vDG

(︀
𝑡−𝑛
)︀
e𝛾𝑡𝑛 ; vDG

(︀
𝑡−𝑛
)︀
,𝜙
(︀
𝑡−𝑛
)︀)︀

d𝜏
}︂

=
(︀
v1,ℎ, 𝜙̇

(︀
𝑡+0
)︀)︀

𝐿2 + 𝛾2
(︀
v0,ℎ,𝜙

(︀
𝑡+0
)︀)︀

𝐿2 +
𝑁∑︁

𝑛=1

∫︁ 𝑡𝑛

𝑡𝑛−1

(︁
f̃(𝑡), 𝜙̇(𝑡)

)︁
𝐿2

d𝑡, for 𝜙 ∈ 𝒱q
𝑘ℎ. (35)

The variational form of the original problem is written as

𝑁∑︁
𝑛=1

∫︁ 𝑡𝑛

𝑡𝑛−1

(v̈(𝑡), 𝜙̇(𝑡))𝐿2 d𝑡+
𝑁−1∑︁
𝑛=1

(︀
[v̇(𝑡)]𝑛, 𝜙̇

(︀
𝑡+𝑛
)︀)︀

𝐿2 +
(︀
v̇
(︀
𝑡+0
)︀
, 𝜙̇
(︀
𝑡+0
)︀)︀

𝐿2

+ 𝛾2
𝑁∑︁

𝑛=1

∫︁ 𝑡𝑛

𝑡𝑛−1

(v(𝑡), 𝜙̇(𝑡))𝐿2 d𝑡+ 𝛾2
𝑁−1∑︁
𝑛=1

(︀
[v(𝑡)]𝑛,𝜙

(︀
𝑡+𝑛
)︀)︀

𝐿2 + 𝛾2
(︀
v
(︀
𝑡+0
)︀
,𝜙
(︀
𝑡+0
)︀)︀

𝐿2

+
𝑁∑︁

𝑛=1

∫︁ 𝑡𝑛

𝑡𝑛−1

𝑑∑︁
𝑖,𝛼=1

e−𝛾𝑡
(︀
𝑆𝑖𝛼

(︀
∇v(𝑡)e𝛾𝑡

)︀
, 𝜕𝛼𝜙̇𝑖(𝑡)

)︀
𝐿2 d𝑡+ 2𝛾

𝑁∑︁
𝑛=1

∫︁ 𝑡𝑛

𝑡𝑛−1

(v̇(𝑡), 𝜙̇(𝑡))𝐿2 d𝑡

+
𝑁−1∑︁
𝑛=0

1
2

{︂∫︁ 1

0

𝑎̃
(︀
𝜏v
(︀
𝑡+𝑛
)︀
e𝛾𝑡𝑛 ; v

(︀
𝑡+𝑛
)︀
,𝜙
(︀
𝑡+𝑛
)︀)︀

d𝜏 −
∫︁ 1

0

𝑎̃
(︀
𝜏v
(︀
𝑡−𝑛
)︀
e𝛾𝑡𝑛 ; v

(︀
𝑡−𝑛
)︀
,𝜙
(︀
𝑡−𝑛
)︀)︀

d𝜏
}︂
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=
(︀
v1, 𝜙̇

(︀
𝑡+0
)︀)︀

𝐿2 + 𝛾2
(︀
v0,𝜙

(︀
𝑡+0
)︀)︀

𝐿2 +
𝑁∑︁

𝑛=1

∫︁ 𝑡𝑛

𝑡𝑛−1

(︁
f̃(𝑡), 𝜙̇(𝑡)

)︁
𝐿2

d𝑡, for 𝜙 ∈ 𝒱q
𝑘ℎ. (36)

By considering the nonlinear elliptic projection of v(𝑡) (cf. equality (21)), we can replace

𝑑∑︁
𝑖,𝛼=1

e−𝛾𝑡
(︀
𝑆𝑖𝛼

(︀
∇v(𝑡)e𝛾𝑡

)︀
, 𝜕𝛼𝜙̇𝑖(𝑡)

)︀
𝐿2 d𝑡 by

𝑑∑︁
𝑖,𝛼=1

e−𝛾𝑡
(︀
𝑆𝑖𝛼

(︀
∇W(𝑡)e𝛾𝑡

)︀
, 𝜕𝛼𝜙̇𝑖(𝑡)

)︀
𝐿2 d𝑡

in (36). Using the continuity of v(𝑡) and W(𝑡) in time, we can also replace

𝑁−1∑︁
𝑛=0

{︂∫︁ 1

0

𝑎̃
(︀
𝜏v
(︀
𝑡+𝑛
)︀
e𝛾𝑡𝑛 ; v

(︀
𝑡+𝑛
)︀
,𝜙
(︀
𝑡+𝑛
)︀)︀

d𝜏 −
∫︁ 1

0

𝑎̃
(︀
𝜏v
(︀
𝑡−𝑛
)︀
e𝛾𝑡𝑛 ; v

(︀
𝑡−𝑛
)︀
,𝜙
(︀
𝑡−𝑛
)︀)︀

d𝜏
}︂

by

𝑁−1∑︁
𝑛=0

{︂∫︁ 1

0

𝑎̃
(︀
𝜏W

(︀
𝑡+𝑛
)︀
e𝛾𝑡𝑛 ; W

(︀
𝑡+𝑛
)︀
,𝜙
(︀
𝑡+𝑛
)︀)︀

d𝜏 −
∫︁ 1

0

𝑎̃
(︀
𝜏W

(︀
𝑡−𝑛
)︀
e𝛾𝑡𝑛 ; W

(︀
𝑡−𝑛
)︀
,𝜙
(︀
𝑡−𝑛
)︀)︀

d𝜏
}︂

in (36). Subtracting the resulting equality from (35), we have

𝑁∑︁
𝑛=1

∫︁ 𝑡𝑛

𝑡𝑛−1

(︁
𝜃(𝑡) + 𝜌1(𝑡) + 𝜌2(𝑡), 𝜙̇(𝑡)

)︁
𝐿2

d𝑡+
𝑁−1∑︁
𝑛=1

(︁[︁
𝜃̇(𝑡) + 𝜌̇1(𝑡) + 𝜌̇2(𝑡)

]︁
𝑛
, 𝜙̇
(︀
𝑡+𝑛
)︀)︁

𝐿2

+
(︀
v̇DG

(︀
𝑡+0
)︀
− v̇

(︀
𝑡+0
)︀
, 𝜙̇
(︀
𝑡+0
)︀)︀

𝐿2 + 2𝛾
𝑁∑︁

𝑛=1

∫︁ 𝑡𝑛

𝑡𝑛−1

(︁
𝜃̇(𝑡) + 𝜌̇1(𝑡) + 𝜌̇2(𝑡), 𝜙̇(𝑡)

)︁
𝐿2

d𝑡

+ 𝛾2
𝑁∑︁

𝑛=1

∫︁ 𝑡𝑛

𝑡𝑛−1

(𝜃(𝑡) + 𝜌1(𝑡) + 𝜌2(𝑡), 𝜙̇(𝑡))𝐿2 d𝑡+ 𝛾2
𝑁−1∑︁
𝑛=1

(︀
[𝜃(𝑡) + 𝜌1(𝑡) + 𝜌2(𝑡)]𝑛,𝜙

(︀
𝑡+𝑛
)︀)︀

𝐿2

+ 𝛾2
(︀
vDG

(︀
𝑡+0
)︀
− v

(︀
𝑡+0
)︀
,𝜙
(︀
𝑡+0
)︀)︀

𝐿2 +
𝑁∑︁

𝑛=1

∫︁ 𝑡𝑛

𝑡𝑛−1

𝑑∑︁
𝑖,𝛼=1

e−𝛾𝑡
(︀
𝑆𝑖𝛼

(︀
∇vDG(𝑡)e𝛾𝑡

)︀
− 𝑆𝑖𝛼

(︀
∇W(𝑡)e𝛾𝑡

)︀
, 𝜕𝛼𝜙̇𝑖

)︀
𝐿2 d𝑡

+
𝑁−1∑︁
𝑛=0

1
2

{︂∫︁ 1

0

𝑎̃
(︀
𝜏vDG

(︀
𝑡+𝑛
)︀
e𝛾𝑡𝑛 ; vDG

(︀
𝑡+𝑛
)︀
,𝜙
(︀
𝑡+𝑛
)︀)︀

d𝜏 −
∫︁ 1

0

𝑎̃
(︀
𝜏W

(︀
𝑡+𝑛
)︀
e𝛾𝑡𝑛 ; W

(︀
𝑡+𝑛
)︀
,𝜙
(︀
𝑡+𝑛
)︀)︀

d𝜏
}︂

+
𝑁−1∑︁
𝑛=0

1
2

{︂∫︁ 1

0

𝑎̃
(︀
𝜏W

(︀
𝑡−𝑛
)︀
e𝛾𝑡𝑛 ; W

(︀
𝑡−𝑛
)︀
,𝜙
(︀
𝑡−𝑛
)︀)︀

d𝜏 −
∫︁ 1

0

𝑎̃
(︀
𝜏vDG

(︀
𝑡−𝑛
)︀
e𝛾𝑡𝑛 ; vDG

(︀
𝑡−𝑛
)︀
,𝜙
(︀
𝑡−𝑛
)︀)︀

d𝜏
}︂

=
(︀
v1,ℎ − v1, 𝜙̇

(︀
𝑡+0
)︀)︀

𝐿2 + 𝛾2
(︀
v0,ℎ − v,𝜙

(︀
𝑡+0
)︀)︀

𝐿2 , for 𝜙 ∈ 𝒱q
𝑘ℎ. (37)

Now we consider the integral on 𝐼𝑛 = (𝑡𝑛−1, 𝑡𝑛] only,∫︁ 𝑡𝑛

𝑡𝑛−1

(︁
𝜃(𝑡), 𝜙̇(𝑡)

)︁
𝐿2

d𝑡+
(︂[︁
𝜃̇(𝑡)

]︁
𝑛−1

, 𝜙̇
(︀
𝑡+𝑛−1

)︀)︂
𝐿2

+ 2𝛾
∫︁ 𝑡𝑛

𝑡𝑛−1

(︁
𝜃̇(𝑡), 𝜙̇(𝑡)

)︁
𝐿2

+ 𝛾2

∫︁ 𝑡𝑛

𝑡𝑛−1

(𝜃(𝑡), 𝜙̇(𝑡))𝐿2 d𝑡

+ 𝛾2
(︀
[𝜃(𝑡)]𝑛−1,𝜙

(︀
𝑡+𝑛−1

)︀)︀
𝐿2 +

∫︁ 𝑡𝑛

𝑡𝑛−1

𝑑∑︁
𝑖,𝛼=1

e−𝛾𝑡
(︀
𝑆𝑖𝛼

(︀
∇vDG(𝑡)e𝛾𝑡

)︀
− 𝑆𝑖𝛼

(︀
∇W(𝑡)e𝛾𝑡

)︀
, 𝜕𝛼𝜙̇𝑖(𝑡)

)︀
𝐿2 d𝑡

+
1
2

{︂∫︁ 1

0

𝑎̃
(︀
𝜏vDG

(︀
𝑡+𝑛−1

)︀
e𝛾𝑡𝑛−1 ; vDG

(︀
𝑡+𝑛−1

)︀
,𝜙
(︀
𝑡+𝑛−1

)︀)︀
d𝜏 −

∫︁ 1

0

𝑎̃
(︀
𝜏W

(︀
𝑡+𝑛−1

)︀
e𝛾𝑡𝑛−1 ; W

(︀
𝑡+𝑛−1

)︀
,𝜙
(︀
𝑡+𝑛−1

)︀)︀
d𝜏
}︂
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+
1
2

{︂∫︁ 1

0

𝑎̃
(︀
𝜏W

(︀
𝑡−𝑛−1

)︀
e𝛾𝑡𝑛−1 ; W

(︀
𝑡−𝑛−1

)︀
,𝜙
(︀
𝑡−𝑛−1

)︀)︀
d𝜏 −

∫︁ 1

0

𝑎̃
(︀
𝜏vDG

(︀
𝑡−𝑛−1

)︀
e𝛾𝑡𝑛−1 ; vDG

(︀
𝑡−𝑛−1

)︀
,𝜙
(︀
𝑡−𝑛−1

)︀)︀
d𝜏
}︂

= −
∫︁ 𝑡𝑛

𝑡𝑛−1

(𝜌1(𝑡), 𝜙̇(𝑡))𝐿2 d𝑡− 𝛾2

∫︁ 𝑡𝑛

𝑡𝑛−1

(𝜌1(𝑡), 𝜙̇(𝑡))𝐿2 d𝑡− 2𝛾
∫︁ 𝑡𝑛

𝑡𝑛−1

(𝜌̇1(𝑡), 𝜙̇(𝑡))𝐿2 d𝑡

−
(︀
[𝜌̇1]𝑛−1, 𝜙̇

(︀
𝑡+𝑛−1

)︀)︀
𝐿2 − 𝛾2

(︀
[𝜌1]𝑛−1,𝜙

(︀
𝑡+𝑛−1

)︀)︀
𝐿2

−
∫︁ 𝑡𝑛

𝑡𝑛−1

(𝜌2(𝑡), 𝜙̇(𝑡))𝐿2 d𝑡− 𝛾2

∫︁ 𝑡𝑛

𝑡𝑛−1

(𝜌2(𝑡), 𝜙̇(𝑡))𝐿2 d𝑡− 2𝛾
∫︁ 𝑡𝑛

𝑡𝑛−1

(𝜌̇2(𝑡), 𝜙̇(𝑡))𝐿2 d𝑡

=
∫︁ 𝑡𝑛

𝑡𝑛−1

(𝜌̇1(𝑡),𝜙(𝑡))𝐿2 d𝑡− 𝛾2

∫︁ 𝑡𝑛

𝑡𝑛−1

(𝜌1(𝑡), 𝜙̇(𝑡))𝐿2 d𝑡− 2𝛾
∫︁ 𝑡𝑛

𝑡𝑛−1

(𝜌̇1(𝑡), 𝜙̇(𝑡))𝐿2 d𝑡

−
(︀
𝜌̇1

(︀
𝑡−𝑛
)︀
, 𝜙̇
(︀
𝑡−𝑛
)︀)︀

𝐿2 +
(︀
𝜌̇1

(︀
𝑡−𝑛−1

)︀
, 𝜙̇
(︀
𝑡+𝑛−1

)︀)︀
𝐿2 − 𝛾2

(︀
[𝜌1]𝑛−1,𝜙

(︀
𝑡+𝑛−1

)︀)︀
𝐿2

−
∫︁ 𝑡𝑛

𝑡𝑛−1

(𝜌2(𝑡), 𝜙̇(𝑡))𝐿2 d𝑡− 𝛾2

∫︁ 𝑡𝑛

𝑡𝑛−1

(𝜌2(𝑡), 𝜙̇(𝑡))𝐿2 d𝑡− 2𝛾
∫︁ 𝑡𝑛

𝑡𝑛−1

(𝜌̇2(𝑡), 𝜙̇(𝑡))𝐿2 d𝑡

= −𝛾2

∫︁ 𝑡𝑛

𝑡𝑛−1

(𝜌1(𝑡), 𝜙̇(𝑡))𝐿2 d𝑡− 2𝛾
∫︁ 𝑡𝑛

𝑡𝑛−1

(𝜌̇1(𝑡), 𝜙̇(𝑡))𝐿2 d𝑡−
∫︁ 𝑡𝑛

𝑡𝑛−1

(𝜌2(𝑡), 𝜙̇(𝑡))𝐿2 d𝑡

− 𝛾2

∫︁ 𝑡𝑛

𝑡𝑛−1

(𝜌2(𝑡), 𝜙̇(𝑡))𝐿2 d𝑡− 2𝛾
∫︁ 𝑡𝑛

𝑡𝑛−1

(𝜌̇2(𝑡), 𝜙̇(𝑡))𝐿2 d𝑡, (38)

where we have used the fact that 𝜌2(𝑡) and 𝜌̇2(𝑡) are continuous in time and properties (23)–(26). By Taylor’s
theorem with an integral remainder, we have

𝑆𝑖𝛼

(︀
∇vDG(𝑡)e𝛾𝑡

)︀
= 𝑆𝑖𝛼

(︀
∇W(𝑡)e𝛾𝑡

)︀
+

𝑑∑︁
𝑗,𝛽=1

e𝛾𝑡𝜕𝛽(vDG(𝑡)−W(𝑡))𝑗

∫︁ 1

0

𝜕

𝜕𝜂𝑗𝛽
𝑆𝑖𝛼

(︀
∇W(𝑡)e𝛾𝑡 + 𝜏(∇vDG(𝑡)−∇W(𝑡))e𝛾𝑡

)︀
d𝜏.

If ∇vDG(𝑡)e𝛾𝑡 ∈ 𝒵𝛿,∇W(𝑡)e𝛾𝑡 ∈ 𝒵𝛿 for each 𝑡 ∈ [0, 𝑇 ], we have ∇W(𝑡)e𝛾𝑡 + 𝜏(∇vDG(𝑡)−∇W(𝑡))e𝛾𝑡 ∈ 𝒵𝛿 for
0 ≤ 𝜏 ≤ 1 by the convexity of 𝒵𝛿. This implies that the term in the integral remainder is well-defined. Thus,
we can write

𝑑∑︁
𝑖,𝛼=1

e−𝛾𝑡
(︀
𝑆𝑖𝛼

(︀
∇vDG(𝑡)e𝛾𝑡

)︀
− 𝑆𝑖𝛼

(︀
∇W(𝑡)e𝛾𝑡

)︀
, 𝜕𝛼𝜙̇𝑖(𝑡)

)︀
𝐿2 d𝑡

=
∫︁ 1

0

𝑑∑︁
𝑖,𝛼,𝑗,𝛽=1

(︁
𝐴𝑖𝛼𝑗𝛽

(︀
∇W(𝑡)e𝛾𝑡 + 𝜏(∇𝜑(𝑡)−∇W(𝑡))e𝛾𝑡

)︀
𝜕𝛽(vDG(𝑡)−W(𝑡))𝑗 , 𝜕𝛼𝜙̇𝑖(𝑡)

)︁
𝐿2

d𝜏

=
∫︁ 1

0

𝑎̃
(︀
W(𝑡)e𝛾𝑡 + 𝜏(vDG(𝑡)−W(𝑡))e𝛾𝑡; vDG(𝑡)−W(𝑡), 𝜙̇(𝑡)

)︀
d𝜏.

For simplicity of notation, we write

A
(︀
vDG(𝑡)e𝛾𝑡; vDG(𝑡)−W(𝑡), 𝜙̇(𝑡)

)︀
:=
∫︁ 1

0

𝑎̃
(︀
W(𝑡)e𝛾𝑡 + 𝜏(vDG(𝑡)−W(𝑡))e𝛾𝑡; vDG(𝑡)−W(𝑡), 𝜙̇(𝑡)

)︀
d𝜏.

Analogously,∫︁ 1

0

𝑎̃
(︀
𝜏vDG

(︀
𝑡±𝑛−1

)︀
e𝛾𝑡𝑛−1 ; vDG

(︀
𝑡±𝑛−1

)︀
,𝜙
(︀
𝑡±𝑛−1

)︀)︀
d𝜏 −

∫︁ 1

0

𝑎̃
(︀
𝜏W

(︀
𝑡±𝑛−1

)︀
e𝛾𝑡𝑛−1 ; W

(︀
𝑡±𝑛−1

)︀
,𝜙
(︀
𝑡±𝑛−1

)︀)︀
d𝜏
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=
𝑑∑︁

𝑖,𝛼=1

e−𝛾𝑡𝑛−1
{︀(︀
𝑆𝑖𝛼

(︀
∇vDG

(︀
𝑡±𝑛−1

)︀
e𝛾𝑡𝑛−1

)︀
, 𝜕𝛼𝜙𝑖

(︀
𝑡±𝑛−1

)︀)︀
𝐿2 −

(︀
𝑆𝑖𝛼

(︀
∇W

(︀
𝑡±𝑛−1

)︀
e𝛾𝑡𝑛−1

)︀
, 𝜕𝛼𝜙𝑖

(︀
𝑡±𝑛−1

)︀)︀
𝐿2

}︀
=

𝑑∑︁
𝑖,𝛼=1

e−𝛾𝑡𝑛−1
(︀
𝑆𝑖𝛼

(︀
∇vDG

(︀
𝑡±𝑛−1

)︀
e𝛾𝑡𝑛−1

)︀
− 𝑆𝑖𝛼

(︀
∇W

(︀
𝑡±𝑛−1

)︀
e𝛾𝑡𝑛−1

)︀
, 𝜕𝛼𝜙𝑖

(︀
𝑡±𝑛−1

)︀)︀
𝐿2

= A
(︀
vDG

(︀
𝑡±𝑛−1

)︀
e𝛾𝑡𝑛−1 ; vDG

(︀
𝑡±𝑛−1

)︀
−W

(︀
𝑡±𝑛−1

)︀
,𝜙
(︀
𝑡±𝑛−1

)︀)︀
.

Since W(𝑡±𝑛 )−Π𝑘W(𝑡±𝑛 ) = 0 for each 𝑛 = 1, 2, . . . , 𝑁 , our equation (38) becomes∫︁ 𝑡𝑛

𝑡𝑛−1

(︁
𝜃(𝑡), 𝜙̇(𝑡)

)︁
𝐿2

d𝑡+
(︂[︁
𝜃̇(𝑡)

]︁
𝑛−1

, 𝜙̇
(︀
𝑡+𝑛−1

)︀)︂
𝐿2

+ 2𝛾
∫︁ 𝑡𝑛

𝑡𝑛−1

(︁
𝜃̇(𝑡), 𝜙̇(𝑡)

)︁
𝐿2

d𝑡

+ 𝛾2

∫︁ 𝑡𝑛

𝑡𝑛−1

(𝜃(𝑡), 𝜙̇(𝑡))𝐿2 d𝑡+ 𝛾2
(︀
[𝜃(𝑡)]𝑛−1,𝜙

(︀
𝑡+𝑛−1

)︀)︀
𝐿2

+
∫︁ 𝑡𝑛

𝑡𝑛−1

A
(︀
vDG(𝑡)e𝛾𝑡; vDG(𝑡)−Π𝑘W(𝑡), 𝜙̇(𝑡)

)︀
d𝑡+

1
2
A
(︀
vDG

(︀
𝑡+𝑛−1

)︀
e𝛾𝑡𝑛−1 ;𝜃

(︀
𝑡+𝑛−1

)︀
,𝜙
(︀
𝑡+𝑛−1

)︀)︀
= − 𝛾2

∫︁ 𝑡𝑛

𝑡𝑛−1

(𝜌1(𝑡), 𝜙̇(𝑡))𝐿2 d𝑡− 2𝛾
∫︁ 𝑡𝑛

𝑡𝑛−1

(𝜌̇1(𝑡), 𝜙̇(𝑡))𝐿2 d𝑡−
∫︁ 𝑡𝑛

𝑡𝑛−1

(𝜌2(𝑡), 𝜙̇(𝑡))𝐿2 d𝑡

− 𝛾2

∫︁ 𝑡𝑛

𝑡𝑛−1

(𝜌2(𝑡), 𝜙̇(𝑡))𝐿2 d𝑡− 2𝛾
∫︁ 𝑡𝑛

𝑡𝑛−1

(𝜌̇2(𝑡), 𝜙̇(𝑡))𝐿2 d𝑡

+
∫︁ 𝑡𝑛

𝑡𝑛−1

A
(︀
vDG(𝑡)e𝛾𝑡; W(𝑡)−Π𝑘W(𝑡), 𝜙̇(𝑡)

)︀
d𝑡+

1
2
A
(︀
vDG

(︀
𝑡−𝑛−1

)︀
e𝛾𝑡𝑛−1 ;𝜃

(︀
𝑡−𝑛−1

)︀
,𝜙
(︀
𝑡−𝑛−1

)︀)︀
for 𝜙 ∈ 𝒱q

𝑘ℎ. Consider the following subset of 𝒱q
𝑘ℎ defined by

ℱ :=

{︃
𝜓 ∈ 𝒱q

𝑘ℎ | for each 𝑗 = 1, 2, . . . , 𝑁,
⃦⃦
𝜓
(︀
𝑡−𝑗
)︀
−Π𝑘W

(︀
𝑡−𝑗
)︀⃦⃦2

𝐻1 +
⃦⃦
𝜕𝑡

(︀
𝜓
(︀
𝑡−𝑗
)︀
−Π𝑘W

(︀
𝑡−𝑗
)︀)︀⃦⃦2

𝐿2

+
𝑗∑︁

𝑛=1

∫︁ 𝑡𝑛

𝑡𝑛−1

‖𝜕𝑡(𝜓(𝑡)−Π𝑘W(𝑡))‖2𝐿2 d𝑡 ≤ 𝐶*(v)

(︃
𝑗∑︁

𝑛=1

𝑘𝑛ℎ
2𝑟+2 +

𝑘2𝑞𝑛+1
𝑛

𝑞
2(𝑠−1)
𝑛

)︃
, e𝛾𝑡∇𝜓(𝑡) ∈ 𝒵𝛿

}︃
,

where 𝐶*(v) is a positive constant depending on the solution v, which will be specified later. First note that ℱ
is non-empty since Π𝑘W ∈ ℱ . In addition, ℱ is a closed and convex subset of 𝒱q

𝑘ℎ in the topology induced by
the norm ‖ · ‖ℱ , which is defined by

‖𝜙‖ℱ = max
𝑡∈𝐼𝑛,1≤𝑛≤𝑁

(‖𝜙(𝑡)‖𝐻1 + ‖𝜙̇(𝑡)‖𝐿2)

for 𝜙 ∈ 𝒱q
𝑘ℎ. With this notation, we are ready to define a fixed point mapping 𝒩 on ℱ as follows: if 𝜑 ∈ ℱ , the

image v𝜑 := 𝒩 (𝜑) is given by the relation

v𝜑(0) = v0,ℎ, v̇𝜑(0) = v1,ℎ, (39)

∫︁ 𝑡𝑛

𝑡𝑛−1

(︁
𝜃𝜑(𝑡), 𝜙̇(𝑡)

)︁
𝐿2

d𝑡+
(︂[︁
𝜃̇𝜑(𝑡)

]︁
𝑛−1

, 𝜙̇
(︀
𝑡+𝑛−1

)︀)︂
𝐿2

+ 2𝛾
∫︁ 𝑡𝑛

𝑡𝑛−1

(︁
𝜃̇𝜑(𝑡), 𝜙̇(𝑡)

)︁
𝐿2

d𝑡

+ 𝛾2

∫︁ 𝑡𝑛

𝑡𝑛−1

(𝜃𝜑(𝑡), 𝜙̇(𝑡))𝐿2 d𝑡+ 𝛾2
(︁

[𝜃𝜑(𝑡)]𝑛−1,𝜙
(︀
𝑡+𝑛−1

)︀)︁
𝐿2
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+
∫︁ 𝑡𝑛

𝑡𝑛−1

A
(︀
𝜑(𝑡)e𝛾𝑡;𝜃𝜑(𝑡), 𝜙̇(𝑡)

)︀
d𝑡+

1
2
A
(︀
𝜑
(︀
𝑡+𝑛−1

)︀
e𝛾𝑡𝑛−1 ;𝜃𝜑

(︀
𝑡+𝑛−1

)︀
,𝜙
(︀
𝑡+𝑛−1

)︀)︀
= − 𝛾2

∫︁ 𝑡𝑛

𝑡𝑛−1

(𝜌1(𝑡), 𝜙̇(𝑡))𝐿2 d𝑡− 2𝛾
∫︁ 𝑡𝑛

𝑡𝑛−1

(𝜌̇1(𝑡), 𝜙̇(𝑡))𝐿2 d𝑡−
∫︁ 𝑡𝑛

𝑡𝑛−1

(𝜌2(𝑡), 𝜙̇(𝑡))𝐿2 d𝑡 (40)

− 𝛾2

∫︁ 𝑡𝑛

𝑡𝑛−1

(𝜌2(𝑡), 𝜙̇(𝑡))𝐿2 d𝑡− 2𝛾
∫︁ 𝑡𝑛

𝑡𝑛−1

(𝜌̇2(𝑡), 𝜙̇(𝑡))𝐿2 d𝑡

+
∫︁ 𝑡𝑛

𝑡𝑛−1

A
(︀
𝜑(𝑡)e𝛾𝑡; W(𝑡)−Π𝑘W(𝑡), 𝜙̇(𝑡)

)︀
d𝑡+

1
2
A
(︀
𝜑
(︀
𝑡−𝑛−1

)︀
e𝛾𝑡𝑛−1 ;𝜃𝜑

(︀
𝑡−𝑛−1

)︀
,𝜙
(︀
𝑡−𝑛−1

)︀)︀
,

where 𝜃𝜑 = v𝜑 −Π𝑘W.

In order to complete the proof of the theorem, it suffices to show that, for each 𝑛 = 1, . . . , 𝑁 , the map 𝒩
defined by (40) has a unique fixed point in ℱ . If vDG ∈ ℱ is this fixed point, then vDG is a solution to (19).

4.2. Auxiliary results

If we take 𝜙 = 𝜃𝜑 in (40), then the nonlinear term inside the integral becomes

A
(︀
𝜑(𝑡)e𝛾𝑡;𝜃𝜑(𝑡), 𝜙̇(𝑡)

)︀
= A

(︁
𝜑(𝑡)e𝛾𝑡;𝜃𝜑(𝑡), 𝜃̇𝜑(𝑡)

)︁
.

Following the proof in [12], it is crucial to replace the expression A
(︁
𝜑(𝑡)e𝛾𝑡;𝜃𝜑(𝑡), 𝜃̇𝜑(𝑡)

)︁
by

1
2

d
d𝑡

A
(︀
𝜑(𝑡)e𝛾𝑡;𝜃𝜑(𝑡),𝜃𝜑(𝑡)

)︀
− 1

2

𝑑∑︁
𝑖,𝛼,𝑗,𝛽=1

∫︁ 1

0

(︀
𝜕𝑡𝐴

𝜏
𝑖𝛼𝑗𝛽𝜕𝛽𝜃𝜑,𝑗(𝑡), 𝜕𝛼𝜃𝜑,𝑖(𝑡)

)︀
𝐿2 d𝜏,

where 𝐴𝜏
𝑖𝛼𝑗𝛽 := 𝐴𝑖𝛼𝑗𝛽(∇W(𝑡)e𝛾𝑡 + 𝜏(∇𝜑(𝑡)−∇W(𝑡))e𝛾𝑡) and 𝑡 ∈ 𝐼𝑛, 𝑛 = 1, 2 . . . 𝑁. We shall need an estimate

on the expression

A𝑡

(︀
𝜑(𝑡)e𝛾𝑡;𝜙(𝑡),𝜓(𝑡)

)︀
:=

1
2

𝑑∑︁
𝑖,𝛼,𝑗,𝛽=1

∫︁ 1

0

(︀
𝜕𝑡𝐴

𝜏
𝑖𝛼𝑗𝛽𝜕𝛽𝜙𝑗(𝑡), 𝜕𝛼𝜓𝑖(𝑡)

)︀
𝐿2 d𝜏

for 𝜙,𝜓 ∈ 𝒱q
ℎ𝑘, 𝑡 ∈ 𝐼𝑛, 𝑛 = 1, 2, . . . 𝑁.

Lemma 4.5. Under the assumptions stated in Theorem 4.1, there exists a constant 𝐶𝜏 > 0 such that, for
𝑡 ∈ 𝐼𝑛, 𝑛 = 1, 2 . . . 𝑁 , ⃒⃒

A𝑡

(︀
𝜑(𝑡)e𝛾𝑡;𝜙(𝑡),𝜓(𝑡)

)︀⃒⃒
≤ 𝐶𝜏‖∇𝜙(𝑡)‖𝐿2‖∇𝜓(𝑡)‖𝐿2 . (41)

Proof. See Appendix A. �

4.3. Convergence proof

We will establish the existence of a unique fixed point in ℱ by showing that the pair ℱ and 𝒩 satisfies the
assumptions of Banach’s fixed point theorem, namely that

(a) 𝒩 (ℱ) ⊂ ℱ .
(b) 𝒩 is a contraction with respect to 𝑑(·, ·) where for 𝜑,𝜙 ∈ ℱ ,

𝑑(𝜑,𝜙) := max
𝑡∈𝐼𝑛,1≤𝑛≤𝑁

(︁
‖𝜑(𝑡)−𝜙(𝑡)‖𝐻1 +

⃦⃦⃦
𝜑̇(𝑡)− 𝜙̇(𝑡)

⃦⃦⃦
𝐿2

)︁
.
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4.3.1. Existence of a fixed point of 𝒩 in ℱ
For (a), we first observe that 𝒩 is well-defined. Indeed, if 𝜑 ∈ ℱ , since ∇We𝛾𝑡 ∈ 𝒵𝛿, ∇We𝛾𝑡 +

𝜏(∇𝜑−∇W)e𝛾𝑡 ∈ 𝒵𝛿 for 0 ≤ 𝜏 ≤ 1, and the bilinear form A(𝜑(𝑡)e𝛾𝑡; ·, ·) is symmetric and positive defi-
nite. Taking 𝜙 = 𝜃𝜑 in (40) and replacing A

(︁
𝜑(𝑡)e𝛾𝑡;𝜃𝜑(𝑡), 𝜃̇𝜑(𝑡)

)︁
by

1
2

d
d𝑡

A
(︀
𝜑(𝑡)e𝛾𝑡;𝜃𝜑(𝑡),𝜃𝜑(𝑡)

)︀
− 1

2

𝑑∑︁
𝑖,𝛼,𝑗,𝛽=1

∫︁ 1

0

(︀
𝜕𝑡𝐴

𝜏
𝑖𝛼𝑗𝛽𝜕𝛽𝜃𝜑,𝑗(𝑡), 𝜕𝛼𝜃𝜑,𝑖(𝑡)

)︀
𝐿2 d𝜏,

we obtain⃦⃦⃦
𝜃̇𝜑

(︀
𝑡−𝑛
)︀⃦⃦⃦2

𝐿2
+
⃦⃦⃦
𝜃̇𝜑

(︀
𝑡+𝑛−1

)︀⃦⃦⃦2

𝐿2
+ 𝛾2

⃦⃦
𝜃𝜑

(︀
𝑡−𝑛
)︀⃦⃦2

𝐿2 + 𝛾2
⃦⃦
𝜃𝜑

(︀
𝑡+𝑛−1

)︀⃦⃦2

𝐿2 + 4𝛾
∫︁ 𝑡𝑛

𝑡𝑛−1

⃦⃦⃦
𝜃̇𝜑(𝑡)

⃦⃦⃦2

𝐿2
d𝑡

+ A
(︀
𝜑
(︀
𝑡−𝑛
)︀
e𝛾𝑡𝑛 ;𝜃𝜑

(︀
𝑡−𝑛
)︀
,𝜃𝜑

(︀
𝑡−𝑛
)︀)︀
− A

(︀
𝜑
(︀
𝑡−𝑛−1

)︀
𝑒𝛾𝑡𝑛−1 ;𝜃𝜑

(︀
𝑡−𝑛−1

)︀
,𝜃𝜑

(︀
𝑡−𝑛−1

)︀)︀
= −2𝛾2

∫︁ 𝑡𝑛

𝑡𝑛−1

(︁
𝜌1(𝑡), 𝜃̇𝜑(𝑡)

)︁
𝐿2

d𝑡− 4𝛾
∫︁ 𝑡𝑛

𝑡𝑛−1

(︁
𝜌̇1(𝑡), 𝜃̇𝜑(𝑡)

)︁
𝐿2

d𝑡 (42)

− 2
∫︁ 𝑡𝑛

𝑡𝑛−1

(︁
𝜌2(𝑡), 𝜃̇𝜑(𝑡)

)︁
𝐿2

d𝑡− 2𝛾2

∫︁ 𝑡𝑛

𝑡𝑛−1

(︁
𝜌2(𝑡), 𝜃̇𝜑(𝑡)

)︁
𝐿2

d𝑡− 4𝛾
∫︁ 𝑡𝑛

𝑡𝑛−1

(︁
𝜌̇2(𝑡), 𝜃̇𝜑(𝑡)

)︁
𝐿2

d𝑡

+ 2
(︁
𝜃̇𝜑

(︀
𝑡−𝑛−1

)︀
, 𝜃̇𝜑

(︀
𝑡+𝑛−1

)︀)︁
𝐿2

+ 2𝛾2
(︀
𝜃𝜑

(︀
𝑡−𝑛−1

)︀
,𝜃𝜑

(︀
𝑡+𝑛−1

)︀)︀
𝐿2

+ 2
∫︁ 𝑡𝑛

𝑡𝑛−1

A
(︁
𝜑(𝑡)e𝛾𝑡; W(𝑡)−Π𝑘W(𝑡), 𝜃̇𝜑(𝑡)

)︁
d𝑡+

𝑑∑︁
𝑖,𝛼,𝑗,𝛽=1

∫︁ 𝑡𝑛

𝑡𝑛−1

∫︁ 1

0

(︀
𝜕𝑡𝐴

𝜏
𝑖𝛼𝑗𝛽𝜕𝛽𝜃𝜑,𝑗(𝑡), 𝜕𝛼𝜃𝜑,𝑖(𝑡)

)︀
𝐿2 d𝜏 d𝑡.

Now we need to bound the terms on the right-hand side of equation (42). By using (33), (34) and Young’s
inequality, we have⃒⃒⃒⃒

⃒−2𝛾2

∫︁ 𝑡𝑛

𝑡𝑛−1

(︁
𝜌1(𝑡), 𝜃̇𝜑(𝑡)

)︁
𝐿2

d𝑡− 4𝛾
∫︁ 𝑡𝑛

𝑡𝑛−1

(︁
𝜌̇1(𝑡), 𝜃̇𝜑(𝑡)

)︁
𝐿2

d𝑡− 2
∫︁ 𝑡𝑛

𝑡𝑛−1

(︁
𝜌2(𝑡), 𝜃̇𝜑(𝑡)

)︁
𝐿2

d𝑡

− 2𝛾2

∫︁ 𝑡𝑛

𝑡𝑛−1

(︁
𝜌2(𝑡), 𝜃̇𝜑(𝑡)

)︁
𝐿2

d𝑡− 4𝛾
∫︁ 𝑡𝑛

𝑡𝑛−1

(︁
𝜌̇2(𝑡), 𝜃̇𝜑(𝑡)

)︁
𝐿2

d𝑡

⃒⃒⃒⃒
⃒

≤ 3𝛾
∫︁ 𝑡𝑛

𝑡𝑛−1

⃦⃦⃦
𝜃̇𝜑(𝑡)

⃦⃦⃦2

𝐿2
d𝑡+ 𝐶1(𝛾)

∫︁ 𝑡𝑛

𝑡𝑛−1

(︂
‖𝜌̇1(𝑡)‖2𝐿2 + ‖𝜌1(𝑡)‖2𝐿2

)︂
d𝑡

+ 𝐶2(𝛾)
∫︁ 𝑡𝑛

𝑡𝑛−1

(︂
‖𝜌2(𝑡)‖2𝐿2 + ‖𝜌̇2(𝑡)‖2𝐿2 + ‖𝜌2(𝑡)‖2𝐿2

)︂
d𝑡

≤ 3𝛾
∫︁ 𝑡𝑛

𝑡𝑛−1

⃦⃦⃦
𝜃̇𝜑(𝑡)

⃦⃦⃦2

𝐿2
d𝑡+ 𝑐1(𝛾,v)

𝑘2𝑞𝑛+1
𝑛

𝑞
2(𝑠−1)
𝑛

+ 𝑐2(𝛾,v)𝑘𝑛ℎ
2𝑟+2

≤ 3𝛾
∫︁ 𝑡𝑛

𝑡𝑛−1

⃦⃦⃦
𝜃̇𝜑(𝑡)

⃦⃦⃦2

𝐿2
d𝑡+ 𝐶(𝛾,v)

(︃
𝑘𝑛ℎ

2𝑟+2 +
𝑘2𝑞𝑛+1

𝑛

𝑞
2(𝑠−1)
𝑛

)︃
, (43)

where 𝐶𝑖(𝛾) for 𝑖 = 1, 2 are constants depending on 𝛾 only, while 𝐶(𝛾,v) and 𝑐𝑖(𝛾,v) for 𝑖 = 1, 2 are constants
depending on both 𝛾 and the exact solution v. By Cauchy–Schwarz inequality, we obtain

2
(︁
𝜃̇𝜑

(︀
𝑡−𝑛−1

)︀
, 𝜃̇𝜑

(︀
𝑡+𝑛−1

)︀)︁
𝐿2
≤
⃦⃦⃦
𝜃̇𝜑

(︀
𝑡+𝑛−1

)︀⃦⃦⃦2

𝐿2
+
⃦⃦⃦
𝜃̇𝜑

(︀
𝑡−𝑛−1

)︀⃦⃦⃦2

𝐿2
, (44)
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and

2𝛾2
(︀
𝜃𝜑

(︀
𝑡−𝑛−1

)︀
,𝜃𝜑

(︀
𝑡+𝑛−1

)︀)︀
𝐿2 ≤ 𝛾2

⃦⃦
𝜃𝜑

(︀
𝑡+𝑛−1

)︀⃦⃦2

𝐿2 + 𝛾2
⃦⃦
𝜃𝜑

(︀
𝑡−𝑛−1

)︀⃦⃦2

𝐿2 . (45)

Note that

A
(︁
𝜑(𝑡)e𝛾𝑡; W(𝑡)−Π𝑘W(𝑡), 𝜃̇𝜑(𝑡)

)︁
=

d
d𝑡

A
(︀
𝜑(𝑡)e𝛾𝑡; W(𝑡)−Π𝑘W(𝑡),𝜃𝜑(𝑡)

)︀
− A

(︀
𝜑(𝑡)e𝛾𝑡; 𝜕𝑡(W(𝑡)−Π𝑘W(𝑡)),𝜃𝜑(𝑡)

)︀
−

𝑑∑︁
𝑖,𝛼,𝑗,𝛽=1

∫︁ 1

0

(︁
𝜕𝑡𝐴

𝜏
𝑖𝛼𝑗𝛽𝜕𝛽(W −Π𝑘W)𝑗 , 𝜕𝛼𝜃𝜑,𝑖(𝑡)

)︁
𝐿2

d𝜏.

Using the fact that (W −Π𝑘W)(𝑡−𝑛 ) = (W −Π𝑘W)
(︀
𝑡+𝑛−1

)︀
= 0 for 𝑛 = 1, 2, . . . , 𝑁, we have∫︁ 𝑡𝑛

𝑡𝑛−1

A
(︁
𝜑(𝑡)e𝛾𝑡; W(𝑡)−Π𝑘W(𝑡), 𝜃̇𝜑(𝑡)

)︁
d𝑡 = −

∫︁ 𝑡𝑛

𝑡𝑛−1

A
(︀
𝜑(𝑡)e𝛾𝑡; 𝜕𝑡(W(𝑡)−Π𝑘W(𝑡)),𝜃𝜑(𝑡)

)︀
d𝑡

−
∫︁ 𝑡𝑛

𝑡𝑛−1

𝑑∑︁
𝑖,𝛼,𝑗,𝛽=1

∫︁ 1

0

(︁
𝜕𝑡𝐴

𝜏
𝑖𝛼𝑗𝛽𝜕𝛽(W(𝑡)−Π𝑘W(𝑡))𝑗 , 𝜕𝛼𝜃𝜑,𝑖(𝑡)

)︁
𝐿2

d𝜏 d𝑡. (46)

Then⃒⃒⃒⃒
⃒
∫︁ 𝑡𝑛

𝑡𝑛−1

A
(︁
𝜑(𝑡)e𝛾𝑡; W(𝑡)−Π𝑘W(𝑡), 𝜃̇𝜑(𝑡)

)︁
d𝑡

⃒⃒⃒⃒
⃒ ≤

⃒⃒⃒⃒
⃒−
∫︁ 𝑡𝑛

𝑡𝑛−1

A
(︀
𝜑(𝑡)e𝛾𝑡; 𝜕𝑡(W(𝑡)−Π𝑘W(𝑡)),𝜃𝜑(𝑡)

)︀
d𝑡

⃒⃒⃒⃒
⃒

+

⃒⃒⃒⃒
⃒⃒∫︁ 𝑡𝑛

𝑡𝑛−1

𝑑∑︁
𝑖,𝛼,𝑗,𝛽=1

∫︁ 1

0

(︁
𝜕𝑡𝐴𝑖𝛼𝑗𝛽𝜕𝛽(W(𝑡)−Π𝑘W(𝑡))𝑗 , 𝜕𝛼𝜃𝜑,𝑖(𝑡)

)︁
𝐿2

d𝜏 d𝑡

⃒⃒⃒⃒
⃒⃒

≤
∫︁ 𝑡𝑛

𝑡𝑛−1

𝐾𝛿‖∇𝜕𝑡(W(𝑡)−Π𝑘W(𝑡))‖𝐿2‖∇𝜃𝜑(𝑡)‖𝐿2 d𝑡+ 𝐶𝜏

∫︁ 𝑡𝑛

𝑡𝑛−1

‖∇(W(𝑡)−Π𝑘W(𝑡))‖𝐿2‖∇𝜃𝜑(𝑡)‖𝐿2 d𝑡

≤
(︂
𝐾𝛿

2
+
𝐶𝜏

2

)︂∫︁ 𝑡𝑛

𝑡𝑛−1

‖∇𝜃𝜑(𝑡)‖2𝐿2 d𝑡+
𝐾𝛿

2

∫︁ 𝑡𝑛

𝑡𝑛−1

‖∇(𝜕𝑡(W(𝑡)−Π𝑘W(𝑡)))‖2𝐿2 d𝑡

+
𝐶𝜏

2

∫︁ 𝑡𝑛

𝑡𝑛−1

‖∇(W(𝑡)−Π𝑘W(𝑡))‖2𝐿2 d𝑡

≤
(︂
𝐾𝛿

2
+
𝐶𝜏

2

)︂∫︁ 𝑡𝑛

𝑡𝑛−1

‖∇𝜃𝜑(𝑡)‖2𝐿2 d𝑡+ 𝐶(v)
𝑘2𝑞𝑛+1

𝑛

𝑞
2(𝑠−1)
𝑛

for W ∈𝑊 𝑠,∞(︀[0, 𝑇 ];𝐻1
0

)︀
. (47)

To bound the terms involving 𝜕𝑡𝐴
𝜏
𝑖𝛼𝑗𝛽 , we apply Lemma 4.5 to get⃒⃒⃒⃒

⃒⃒∫︁ 𝑡𝑛

𝑡𝑛−1

𝑑∑︁
𝑖,𝛼,𝑗,𝛽=1

∫︁ 1

0

(︀
𝜕𝑡𝐴

𝜏
𝑖𝛼𝑗𝛽𝜕𝛽𝜃𝜑,𝑗(𝑡), 𝜕𝛼𝜃𝜑,𝑖(𝑡)

)︀
𝐿2 d𝜏 d𝑡

⃒⃒⃒⃒
⃒⃒ ≤ 𝐶𝜏

∫︁ 𝑡𝑛

𝑡𝑛−1

‖∇𝜃𝜑(𝑡)‖2𝐿2 d𝑡. (48)

Combining (42)–(48), we obtain⃦⃦⃦
𝜃̇𝜑

(︀
𝑡−𝑛
)︀⃦⃦⃦2

𝐿2
+ 𝛾2

⃦⃦
𝜃𝜑

(︀
𝑡−𝑛
)︀⃦⃦2

𝐿2 + 𝛾

∫︁ 𝑡𝑛

𝑡𝑛−1

⃦⃦⃦
𝜃̇𝜑(𝑡)

⃦⃦⃦2

𝐿2
d𝑡+ A

(︀
𝜑
(︀
𝑡−𝑛
)︀
e𝛾𝑡𝑛 ;𝜃𝜑

(︀
𝑡−𝑛
)︀
,𝜃𝜑

(︀
𝑡−𝑛
)︀)︀

≤ A
(︀
𝜑
(︀
𝑡−𝑛−1

)︀
;𝜃𝜑

(︀
𝑡−𝑛−1

)︀
,𝜃𝜑

(︀
𝑡−𝑛−1

)︀)︀
+ 𝐶

∫︁ 𝑡𝑛

𝑡𝑛−1

‖∇𝜃𝜑(𝑡)‖2𝐿2 d𝑡+
⃦⃦⃦
𝜃̇𝜑

(︀
𝑡−𝑛−1

)︀⃦⃦⃦2

𝐿2
+ 𝛾2‖𝜃𝜑

(︀
𝑡−𝑛−1

)︀
‖2𝐿2
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+ 𝐶(𝛾,v)

(︃
𝑘𝑛ℎ

2𝑟+2 +
𝑘2𝑞𝑛+1

𝑛

𝑞
2(𝑠−1)
𝑛

)︃
+ 𝐶(v)

𝑘2𝑞𝑛+1
𝑛

𝑞
2(𝑠−1)
𝑛

· (49)

Summing up over 𝑛 = 1, . . . , 𝑗, we obtain

⃦⃦⃦
𝜃̇𝜑

(︀
𝑡−𝑗
)︀⃦⃦⃦2

𝐿2
+ 𝛾2

⃦⃦
𝜃𝜑

(︀
𝑡−𝑗
)︀⃦⃦2

𝐿2 + 𝛾

𝑗∑︁
𝑛=1

∫︁ 𝑡𝑛

𝑡𝑛−1

⃦⃦⃦
𝜃̇𝜑(𝑡)

⃦⃦⃦2

𝐿2
d𝑡+ A

(︀
𝜑
(︀
𝑡−𝑗
)︀
e𝛾𝑡𝑗 ;𝜃𝜑

(︀
𝑡−𝑗
)︀
,𝜃𝜑

(︀
𝑡−𝑗
)︀)︀

≤ 𝐶

𝑗∑︁
𝑛=1

∫︁ 𝑡𝑛

𝑡𝑛−1

‖∇𝜃𝜑(𝑡)‖2𝐿2 d𝑡+ 𝐶(v)
𝑗∑︁

𝑛=1

(︃
𝑘𝑛ℎ

2𝑟+2 +
𝑘2𝑞𝑛+1

𝑛

𝑞
2(𝑠−1)
𝑛

)︃
· (50)

Using the the coercivity of A
(︀
𝜑
(︀
𝑡−𝑗
)︀
e𝛾𝑡𝑛 ;𝜃𝜑

(︀
𝑡−𝑗
)︀
,𝜃𝜑

(︀
𝑡−𝑗
)︀)︀

(i.e. assumption (S2b)), we have

⃦⃦⃦
𝜃̇𝜑

(︀
𝑡−𝑗
)︀⃦⃦⃦2

𝐿2
+ 𝛾2

⃦⃦
𝜃𝜑

(︀
𝑡−𝑗
)︀⃦⃦2

𝐿2 + 𝛾

𝑗∑︁
𝑛=1

∫︁ 𝑡𝑛

𝑡𝑛−1

⃦⃦⃦
𝜃̇𝜑(𝑡)

⃦⃦⃦2

𝐿2
d𝑡+𝑀1

⃦⃦
∇𝜃𝜑

(︀
𝑡−𝑗
)︀⃦⃦2

𝐿2

≤ 𝐶

𝑗∑︁
𝑛=1

∫︁ 𝑡𝑛

𝑡𝑛−1

‖∇𝜃𝜑(𝑡)‖2𝐿2 d𝑡+ 𝐶(v)
𝑗∑︁

𝑛=1

(︃
𝑘𝑛ℎ

2𝑟+2 +
𝑘2𝑞𝑛+1

𝑛

𝑞
2(𝑠−1)
𝑛

)︃
· (51)

By the fundamental theorem of calculus and the triangle inequality, we have for each 𝑡 ∈ 𝐼𝑛, with 𝑛 = 1, . . . 𝑁 ,

‖∇𝜃𝜑(𝑡)‖2𝐿2 ≤

(︃⃦⃦
∇𝜃𝜑

(︀
𝑡−𝑛
)︀⃦⃦

𝐿2 +
∫︁ 𝑡𝑛

𝑡𝑛−1

⃦⃦⃦
∇𝜃̇𝜑(𝑡)

⃦⃦⃦
𝐿2

d𝑡

)︃2

≤ 2
⃦⃦
∇𝜃𝜑

(︀
𝑡−𝑛
)︀⃦⃦2

𝐿2 + 2𝐶2
0ℎ
−2𝑘𝑛

∫︁ 𝑡𝑛

𝑡𝑛−1

⃦⃦⃦
𝜃̇𝜑(𝑡)

⃦⃦⃦2

𝐿2
d𝑡.

(52)

Substituting (62) into (51), we have

⃦⃦⃦
𝜃̇𝜑

(︀
𝑡−𝑗
)︀⃦⃦⃦2

𝐿2
+ 𝛾2

⃦⃦
𝜃𝜑

(︀
𝑡−𝑗
)︀⃦⃦2

𝐿2 + 𝛾

𝑗∑︁
𝑛=1

∫︁ 𝑡𝑛

𝑡𝑛−1

⃦⃦⃦
𝜃̇𝜑(𝑡)

⃦⃦⃦2

𝐿2
d𝑡+𝑀1

⃦⃦
∇𝜃𝜑

(︀
𝑡−𝑗
)︀⃦⃦2

𝐿2

≤ 2𝐶
𝑗−1∑︁
𝑛=1

𝑘𝑛

⃦⃦
∇𝜃𝜑

(︀
𝑡−𝑛
)︀⃦⃦2

𝐿2 + 2𝐶𝑘𝑗

⃦⃦
∇𝜃𝜑

(︀
𝑡−𝑗
)︀⃦⃦2

𝐿2 + 2𝐶𝐶2
0

𝑗∑︁
𝑛=1

ℎ−2𝑘2
𝑛

∫︁ 𝑡𝑛

𝑡𝑛−1

⃦⃦⃦
𝜃̇𝜑(𝑡)

⃦⃦⃦2

𝐿2
d𝑡

+ 𝐶(v)
𝑗∑︁

𝑛=1

(︃
𝑘𝑛ℎ

2𝑟+2 +
𝑘2𝑞𝑛+1

𝑛

𝑞
2(𝑠−1)
𝑛

)︃

≤ 2𝐶
𝑗−1∑︁
𝑛=1

𝑘𝑛

⃦⃦
∇𝜃𝜑

(︀
𝑡−𝑛
)︀⃦⃦2

𝐿2 + 2𝐶𝑘𝑗

⃦⃦
∇𝜃𝜑

(︀
𝑡−𝑗
)︀⃦⃦2

𝐿2 + 𝐶

𝑗∑︁
𝑛=1

𝑘𝑛

∫︁ 𝑡𝑛

𝑡𝑛−1

⃦⃦⃦
𝜃̇𝜑(𝑡)

⃦⃦⃦2

𝐿2
d𝑡

+ 𝐶(v)
𝑗∑︁

𝑛=1

(︃
𝑘𝑛ℎ

2𝑟+2 +
𝑘2𝑞𝑛+1

𝑛

𝑞
2(𝑠−1)
𝑛

)︃
, (53)

where the last inequality follows from the assumption that 𝜇𝑖𝑘𝑖 ≤ ℎ2 for each 𝑖 = 1, . . . , 𝑁 , with 𝐶 =
2𝐶𝐶2

0 max1≤𝑖≤𝑗
1
𝜇𝑖
. The term 2𝐶𝑘𝑗

⃦⃦
∇𝜃𝜑

(︀
𝑡−𝑗
)︀⃦⃦2

𝐿2 and the sum of integrals on the right-hand side of (53) can
be absorbed into the third and fourth terms of the left-hand side of (53) if we choose each time step 𝑘𝑛 is
sufficiently small. That is,

⃦⃦⃦
𝜃̇𝜑

(︀
𝑡−𝑗
)︀⃦⃦⃦2

𝐿2
+ 𝛾2

⃦⃦
𝜃𝜑

(︀
𝑡−𝑗
)︀⃦⃦2

𝐿2 +
𝑗∑︁

𝑛=1

(︁
𝛾 − 𝐶𝑘𝑛

)︁∫︁ 𝑡𝑛

𝑡𝑛−1

⃦⃦⃦
𝜃̇𝜑(𝑡)

⃦⃦⃦2

𝐿2
d𝑡+

(︁
𝑀1 − 2𝐶𝑘𝑛

)︁⃦⃦
∇𝜃𝜑

(︀
𝑡−𝑛
)︀⃦⃦2

𝐿2
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≤ 2𝐶
𝑗−1∑︁
𝑛=1

𝑘𝑛

⃦⃦
∇𝜃𝜑

(︀
𝑡−𝑛
)︀⃦⃦2

𝐿2 + 𝐶(v)
𝑗∑︁

𝑛=1

(︃
𝑘𝑛ℎ

2𝑟+2 +
𝑘2𝑞𝑛+1

𝑛

𝑞
2(𝑠−1)
𝑛

)︃
· (54)

By choosing 𝑘𝑛 ≤ min
{︁

𝛾

2𝐶
, 𝑀1

4𝐶

}︁
for each 𝑛 = 1, . . . , 𝑁 and applying the discrete Grönwall lemma, we have

⃦⃦⃦
𝜃̇𝜑

(︀
𝑡−𝑗
)︀⃦⃦⃦2

𝐿2
+
⃦⃦
𝜃𝜑

(︀
𝑡−𝑗
)︀⃦⃦2

𝐿2 +
𝑗∑︁

𝑛=1

∫︁ 𝑡𝑛

𝑡𝑛−1

⃦⃦⃦
𝜃̇𝜑(𝑡)

⃦⃦⃦2

𝐿2
d𝑡+

⃦⃦
∇𝜃𝜑

(︀
𝑡−𝑗
)︀⃦⃦2

𝐿2

≤ 𝐶𝑗(v) exp

(︃
𝐶

𝑗∑︁
𝑛=1

𝑘𝑛

)︃
𝑗∑︁

𝑛=1

(︃
𝑘𝑛ℎ

2𝑟+2 +
𝑘2𝑞𝑛+1

𝑛

𝑞
2(𝑠−1)
𝑛

)︃
≤ 𝐶max(v)

𝑗∑︁
𝑛=1

(︃
𝑘𝑛ℎ

2𝑟+2 +
𝑘2𝑞𝑛+1

𝑛

𝑞
2(𝑠−1)
𝑛

)︃
, (55)

where 𝐶max(v) = max1≤𝑛≤𝑁 𝐶𝑛(v) exp(𝐶𝑇 ). Now tracing back constants through the previous estimates, we
notice that 𝐶max(v) does not depend on 𝐶*(v), so we can define 𝐶*(v) := 𝐶max(v). Note that

‖∇v𝜑(𝑡)−∇v(𝑡)‖𝐿∞ ≤ ‖∇v𝜑(𝑡)−∇W(𝑡)‖𝐿∞ + ‖∇v(𝑡)−∇W(𝑡)‖𝐿∞ .

By the inverse estimate (ii,b), the error bound (iii,a), and the approximation properties of 𝒫ℎ in the 𝑊 1,∞ and
𝐻1 semi-norms, we can find an ℎ1 > 0 such that, for ℎ < ℎ1,

‖∇W(𝑡)−∇v(𝑡)‖𝐿∞ ≤ ‖∇W(𝑡)−∇𝒫ℎv(𝑡)‖𝐿∞ + ‖∇𝒫ℎv(𝑡)− v(𝑡)‖𝐿∞

≤ 𝐶1ℎ
− 𝑑

2 ‖∇(W(𝑡)− 𝒫ℎv(𝑡))‖𝐿2 + 𝐶(v)ℎ𝑟− 𝑑
2 (by (ii,b))

≤ 𝐶1ℎ
− 𝑑

2 ‖∇(W(𝑡)− v(𝑡))‖𝐿2 + 𝐶1ℎ
− 𝑑

2 ‖∇(𝒫ℎv(𝑡)− v(𝑡))‖𝐿2 + 𝐶(v)ℎ𝑟− 𝑑
2

≤ 𝐶(v)ℎ𝑟− 𝑑
2 ≤ 𝛿

2
e−𝛾𝑇 .

Since 𝑟 > 𝑑
2 + 1, 𝑘𝑞𝑖− 1

2
𝑖 = 𝑜

(︁
ℎ1+ 𝑑

2

)︁
and 𝜇𝑖𝑘𝑖 ≤ ℎ2 for each 𝑖 = 1, . . . 𝑁 , we can also choose ℎ2 > 0 such that, for

𝑡 ∈ 𝐼𝑛, 𝑛 = 1, 2 . . . , 𝑁, for ℎ < ℎ2,

‖∇v𝜑(𝑡)−∇W(𝑡)‖𝐿∞ ≤ 𝐶1ℎ
− 𝑑

2

(︂
‖∇𝜃𝜑(𝑡)‖𝐿2 + ‖∇Π𝑘W(𝑡)−∇W(𝑡)‖𝐿2

)︂
≤ 𝐶1ℎ

− 𝑑
2

(︂
‖∇𝜃𝜑

(︀
𝑡−𝑛
)︀
‖𝐿2 +

∫︁ 𝑡𝑛

𝑡𝑛−1

‖𝜕𝑡∇𝜃𝜑(𝑡)‖𝐿2 d𝑡

+ ‖∇Π𝑘W
(︀
𝑡−𝑛
)︀
−∇W

(︀
𝑡−𝑛
)︀
‖𝐿2 +

∫︁ 𝑡𝑛

𝑡𝑛−1

‖𝜕𝑡(∇Π𝑘W −∇W)(𝑡)‖𝐿2 d𝑡
)︂

≤ 𝐶1ℎ
− 𝑑

2

(︂
‖∇𝜃𝜑

(︀
𝑡−𝑛
)︀
‖𝐿2 +

∫︁ 𝑡𝑛

𝑡𝑛−1

‖𝜕𝑡∇𝜃𝜑(𝑡)‖𝐿2 d𝑡
)︂

+ 𝐶1ℎ
− 𝑑

2
√︀
𝑘𝑛

(︃∫︁ 𝑡𝑛

𝑡𝑛−1

‖𝜕𝑡(∇Π𝑘W −∇W)(𝑡)‖2𝐿2 d𝑡

)︃ 1
2

≤ 𝐶1ℎ
− 𝑑

2

(︂
‖∇𝜃𝜑

(︀
𝑡−𝑛
)︀
‖𝐿2 + 𝐶0ℎ

−1
√︀
𝑘𝑛

∫︁ 𝑡𝑛

𝑡𝑛−1

‖𝜕𝑡𝜃𝜑(𝑡)‖2𝐿2 d𝑡
)︂ 1

2

+ 𝐶(W)ℎ−
𝑑
2
𝑘𝑞𝑛+1

𝑛

𝑞𝑠−1
𝑛

≤ 𝐶(v)ℎ−
𝑑
2

(︃
𝑛∑︁

𝑖=1

𝑘𝑖ℎ
2𝑟+2 +

𝑘2𝑞𝑖+1
𝑖

𝑞
2(𝑠−1)
𝑖

)︃ 1
2

<
𝛿

2
e−𝛾𝑇 .

By choosing ℎ < ℎ* = min{ℎ0, ℎ1, ℎ2}, we obtain ∇v𝜑e𝛾𝑡 ∈ 𝒵𝛿.
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4.3.2. Verification that 𝒩 is a contraction mapping

To show the contraction property (b), we consider R = 𝜑−𝜑′ and Θ = v𝜑−v𝜑′ where 𝜑,𝜑′ ∈ ℱ . Replacing
𝜑 in (40) by 𝜑′ and subtracting the new equation from (40), we have∫︁ 𝑡𝑛

𝑡𝑛−1

(︁
Θ̈(𝑡), 𝜙̇(𝑡)

)︁
𝐿2

d𝑡+
(︂[︁

Θ̇(𝑡)
]︁

𝑛−1
, 𝜙̇
(︀
𝑡+𝑛−1

)︀)︂
𝐿2

+ 2𝛾
∫︁ 𝑡𝑛

𝑡𝑛−1

(︁
Θ̇(𝑡), 𝜙̇(𝑡)

)︁
𝐿2

d𝑡+ 𝛾2

∫︁ 𝑡𝑛

𝑡𝑛−1

(Θ(𝑡), 𝜙̇(𝑡))𝐿2 d𝑡

+ 𝛾2
(︀
[Θ(𝑡)]𝑛−1,𝜙

(︀
𝑡+𝑛−1

)︀)︀
𝐿2 +

∫︁ 𝑡𝑛

𝑡𝑛−1

(︂
A
(︀
𝜑(𝑡)e𝛾𝑡;𝜃𝜑(𝑡), 𝜙̇(𝑡)

)︀
− A

(︀
𝜑′(𝑡)e𝛾𝑡;𝜃𝜑′(𝑡), 𝜙̇(𝑡)

)︀)︂
d𝑡

+
1
2
{︀
A
(︀
𝜑
(︀
𝑡+𝑛−1

)︀
e𝛾𝑡𝑛−1 ;𝜃𝜑

(︀
𝑡+𝑛−1

)︀
,𝜙
(︀
𝑡+𝑛−1

)︀)︀
− A

(︀
𝜑′(︀𝑡+𝑛−1

)︀
e𝛾𝑡𝑛−1 ;𝜃𝜑′

(︀
𝑡+𝑛−1

)︀
,𝜙
(︀
𝑡+𝑛−1

)︀)︀}︀
=
∫︁ 𝑡𝑛

𝑡𝑛−1

(︀
A
(︀
𝜑(𝑡)e𝛾𝑡; W(𝑡)−Π𝑘W(𝑡), 𝜙̇(𝑡)

)︀
− A

(︀
𝜑′(𝑡)e𝛾𝑡; W(𝑡)−Π𝑘W(𝑡), 𝜙̇(𝑡)

)︀)︀
d𝑡

+
1
2
{︀
A
(︀
𝜑
(︀
𝑡−𝑛−1

)︀
e𝛾𝑡𝑛−1 ;𝜃𝜑

(︀
𝑡−𝑛−1

)︀
,𝜙
(︀
𝑡−𝑛−1

)︀)︀
− A

(︀
𝜑′(︀𝑡−𝑛−1

)︀
e𝛾𝑡𝑛−1 ;𝜃𝜑′

(︀
𝑡−𝑛−1

)︀
,𝜙
(︀
𝑡−𝑛−1

)︀)︀}︀
. (56)

Taking 𝜙 = Θ in equation (56), replacing

A
(︁
𝜑(𝑡)e𝛾𝑡;𝜃𝜑(𝑡), Θ̇(𝑡)

)︁
− A

(︁
𝜑′(𝑡)e𝛾𝑡;𝜃𝜑′(𝑡), Θ̇(𝑡)

)︁
by

A
(︁
𝜑(𝑡)e𝛾𝑡; Θ(𝑡), Θ̇(𝑡)

)︁
+ A

(︁
𝜑(𝑡)e𝛾𝑡;𝜃𝜑′(𝑡), Θ̇(𝑡)

)︁
− A

(︁
𝜑′(𝑡)e𝛾𝑡;𝜃𝜑′(𝑡), Θ̇(𝑡)

)︁
,

and writing∫︁ 𝑡𝑛

𝑡𝑛−1

A
(︁
𝜑(𝑡)e𝛾𝑡; Θ(𝑡), Θ̇(𝑡)

)︁
d𝑡 =

1
2

∫︁ 𝑡𝑛

𝑡𝑛−1

d
d𝑡

A
(︀
𝜑(𝑡)e𝛾𝑡; Θ(𝑡),Θ(𝑡)

)︀
d𝑡

− 1
2

∫︁ 𝑡𝑛

𝑡𝑛−1

∫︁ 1

0

𝑑∑︁
𝑖,𝛼,𝑗,𝛽=1

(︀
𝜕𝑡𝐴

𝜏
𝑖𝛼𝑗𝛽𝜕𝛽Θ𝑗(𝑡), 𝜕𝛼Θ𝑖(𝑡)

)︀
𝐿2 d𝜏 d𝑡,

we have⃦⃦⃦
Θ̇
(︀
𝑡−𝑛
)︀⃦⃦⃦2

𝐿2
+
⃦⃦⃦
Θ̇
(︀
𝑡+𝑛−1

)︀⃦⃦⃦2

𝐿2
+ 𝛾2

⃦⃦
Θ
(︀
𝑡−𝑛
)︀⃦⃦2

𝐿2 + 𝛾2
⃦⃦
Θ
(︀
𝑡+𝑛−1

)︀⃦⃦2

𝐿2 + 4𝛾
∫︁ 𝑡𝑛

𝑡𝑛−1

⃦⃦⃦
Θ̇(𝑡)

⃦⃦⃦2

𝐿2
d𝑡

+ A
(︀
𝜑
(︀
𝑡−𝑛
)︀
e𝛾𝑡𝑛 ; Θ

(︀
𝑡−𝑛
)︀
,Θ
(︀
𝑡−𝑛
)︀)︀
− A

(︀
𝜑
(︀
𝑡−𝑛−1

)︀
e𝛾𝑡𝑛−1 ; Θ

(︀
𝑡−𝑛−1

)︀
,Θ
(︀
𝑡−𝑛−1

)︀)︀
= 2
(︁
Θ̇
(︀
𝑡−𝑛−1

)︀
, Θ̇
(︀
𝑡+𝑛−1

)︀)︁
𝐿2

+ 2𝛾2
(︀
Θ
(︀
𝑡−𝑛−1

)︀
,Θ
(︀
𝑡+𝑛−1

)︀)︀
𝐿2

+
∫︁ 𝑡𝑛

𝑡𝑛−1

∫︁ 1

0

𝑑∑︁
𝑖,𝛼,𝑗,𝛽=1

(︂
𝜕𝑡𝐴

𝜏
𝑖𝛼𝑗𝛽𝜕𝛽Θ𝑗(𝑡), 𝜕𝛼Θ𝑖(𝑡)

)︂
𝐿2

d𝜏 d𝑡

+ 2
∫︁ 𝑡𝑛

𝑡𝑛−1

(︁
A
(︁
𝜑(𝑡)e𝛾𝑡; W(𝑡)−Π𝑘W(𝑡), Θ̇(𝑡)

)︁
− A

(︁
𝜑′(𝑡)e𝛾𝑡; W(𝑡)−Π𝑘W(𝑡), Θ̇(𝑡)

)︁)︁
d𝑡

+ 2
∫︁ 𝑡𝑛

𝑡𝑛−1

(︂
A
(︁
𝜑′(𝑡)e𝛾𝑡;𝜃𝜑′(𝑡), Θ̇(𝑡)

)︁
− A

(︁
𝜑(𝑡)e𝛾𝑡;𝜃𝜑′(𝑡), Θ̇(𝑡)

)︁)︂
d𝑡

+
(︀
A
(︀
𝜑′(︀𝑡+𝑛−1

)︀
e𝛾𝑡𝑛−1 ;𝜃𝜑′

(︀
𝑡+𝑛−1

)︀
,Θ
(︀
𝑡+𝑛−1

)︀)︀
− A

(︀
𝜑
(︀
𝑡+𝑛−1

)︀
e𝛾𝑡𝑛−1 ;𝜃𝜑′

(︀
𝑡+𝑛−1

)︀
,Θ
(︀
𝑡+𝑛−1

)︀)︀)︀
+
(︀
A
(︀
𝜑
(︀
𝑡−𝑛−1

)︀
e𝛾𝑡𝑛−1 ;𝜃𝜑′

(︀
𝑡−𝑛−1

)︀
,Θ
(︀
𝑡−𝑛−1

)︀)︀
− A

(︀
𝜑′(︀𝑡−𝑛−1

)︀
e𝛾𝑡𝑛−1 ;𝜃𝜑′

(︀
𝑡−𝑛−1

)︀
,Θ
(︀
𝑡−𝑛−1

)︀)︀)︀
.
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Note that∫︁ 𝑡𝑛

𝑡𝑛−1

A
(︁
𝜑′(𝑡)e𝛾𝑡;𝜃𝜑′(𝑡), Θ̇(𝑡)

)︁
d𝑡+ A

(︀
𝜑′(︀𝑡+𝑛−1

)︀
e𝛾𝑡𝑛−1 ;𝜃𝜑′

(︀
𝑡+𝑛−1

)︀
,Θ
(︀
𝑡+𝑛−1

)︀)︀
− A

(︀
𝜑′(︀𝑡−𝑛−1

)︀
e𝛾𝑡𝑛−1 ;𝜃𝜑′

(︀
𝑡−𝑛−1

)︀
,Θ
(︀
𝑡−𝑛−1

)︀)︀
= −

∫︁ 𝑡𝑛

𝑡𝑛−1

A
(︁
𝜑′(𝑡)e𝛾𝑡; 𝜃̇𝜑′(𝑡),Θ(𝑡)

)︁
d𝑡−

∫︁ 𝑡𝑛

𝑡𝑛−1

∫︁ 1

0

𝑑∑︁
𝑖,𝛼,𝑗,𝛽=1

(︂
𝜕𝑡𝐴

𝜏
𝑖𝛼𝑗𝛽𝜕𝛽𝜃𝜑′,𝑗(𝑡), 𝜕𝛼Θ𝑖(𝑡)

)︂
𝐿2

d𝜏 d𝑡

+ A
(︀
𝜑′(︀𝑡−𝑛 )︀e𝛾𝑡𝑛 ;𝜃𝜑′

(︀
𝑡−𝑛
)︀
,Θ
(︀
𝑡−𝑛
)︀)︀
− A

(︀
𝜑′(︀𝑡−𝑛−1

)︀
e𝛾𝑡𝑛−1 ;𝜃𝜑′

(︀
𝑡−𝑛−1

)︀
,Θ
(︀
𝑡−𝑛−1

)︀)︀
,

where 𝐴𝜏
𝑖𝛼𝑗𝛽 := 𝐴𝑖𝛼𝑗𝛽(∇W(𝑡)e𝛾𝑡 + 𝜏(∇𝜑′(𝑡)−∇W(𝑡))e𝛾𝑡). Analogously, we have

−
∫︁ 𝑡𝑛

𝑡𝑛−1

A
(︁
𝜑(𝑡)e𝛾𝑡;𝜃𝜑′(𝑡), Θ̇(𝑡)

)︁
d𝑡− A

(︀
𝜑
(︀
𝑡+𝑛−1

)︀
e𝛾𝑡𝑛−1 ;𝜃𝜑′

(︀
𝑡+𝑛−1

)︀
,Θ
(︀
𝑡+𝑛−1

)︀)︀
+ A

(︀
𝜑
(︀
𝑡−𝑛−1

)︀
e𝛾𝑡𝑛−1 ;𝜃𝜑′

(︀
𝑡−𝑛−1

)︀
,Θ
(︀
𝑡−𝑛−1

)︀)︀
=
∫︁ 𝑡𝑛

𝑡𝑛−1

A
(︁
𝜑(𝑡)e𝛾𝑡; 𝜃̇𝜑′(𝑡),Θ(𝑡)

)︁
d𝑡+

∫︁ 𝑡𝑛

𝑡𝑛−1

∫︁ 1

0

𝑑∑︁
𝑖,𝛼,𝑗,𝛽=1

(︂
𝜕𝑡𝐴

𝜏
𝑖𝛼𝑗𝛽𝜕𝛽𝜃𝜑′,𝑗(𝑡), 𝜕𝛼Θ𝑖(𝑡)

)︂
𝐿2

d𝜏 d𝑡

− A
(︀
𝜑
(︀
𝑡−𝑛
)︀
e𝛾𝑡𝑛 ;𝜃𝜑′

(︀
𝑡−𝑛
)︀
,Θ
(︀
𝑡−𝑛
)︀)︀

+ A
(︀
𝜑
(︀
𝑡−𝑛−1

)︀
e𝛾𝑡𝑛−1 ;𝜃𝜑′

(︀
𝑡−𝑛−1

)︀
,Θ
(︀
𝑡−𝑛−1

)︀)︀
.

This implies that⃦⃦⃦
Θ̇
(︀
𝑡−𝑛
)︀⃦⃦⃦2

𝐿2
+
⃦⃦⃦
Θ̇
(︀
𝑡+𝑛−1

)︀⃦⃦⃦2

𝐿2
+ 𝛾2

⃦⃦
Θ
(︀
𝑡−𝑛
)︀⃦⃦2

𝐿2 + 𝛾2
⃦⃦
Θ
(︀
𝑡+𝑛−1

)︀⃦⃦2

𝐿2 + 4𝛾
∫︁ 𝑡𝑛

𝑡𝑛−1

⃦⃦⃦
Θ̇(𝑡)

⃦⃦⃦2

𝐿2
d𝑡

+ A
(︀
𝜑
(︀
𝑡−𝑛
)︀
e𝛾𝑡𝑛 ; Θ

(︀
𝑡−𝑛
)︀
,Θ
(︀
𝑡−𝑛
)︀)︀
− A

(︀
𝜑
(︀
𝑡−𝑛−1

)︀
e𝛾𝑡𝑛−1 ; Θ

(︀
𝑡−𝑛−1

)︀
,Θ
(︀
𝑡−𝑛−1

)︀)︀
= 2
(︁
Θ̇
(︀
𝑡−𝑛−1

)︀
, Θ̇
(︀
𝑡+𝑛−1

)︀)︁
𝐿2

+ 2𝛾2
(︀
Θ
(︀
𝑡−𝑛−1

)︀
,Θ
(︀
𝑡+𝑛−1

)︀)︀
𝐿2 (57)

+
∫︁ 𝑡𝑛

𝑡𝑛−1

∫︁ 1

0

𝑑∑︁
𝑖,𝛼,𝑗,𝛽=1

(︂
𝜕𝑡𝐴

𝜏
𝑖𝛼𝑗𝛽𝜕𝛽Θ𝑗(𝑡), 𝜕𝛼Θ𝑖(𝑡)

)︂
𝐿2

d𝜏 d𝑡

+
∫︁ 𝑡𝑛

𝑡𝑛−1

(︂
A
(︁
𝜑′(𝑡)e𝛾𝑡;𝜃𝜑′(𝑡), Θ̇(𝑡)

)︁
− A

(︁
𝜑(𝑡)e𝛾𝑡;𝜃𝜑′(𝑡), Θ̇(𝑡)

)︁)︂
d𝑡

+
∫︁ 𝑡𝑛

𝑡𝑛−1

(︂
A
(︁
𝜑(𝑡)e𝛾𝑡; 𝜃̇𝜑′(𝑡),Θ(𝑡)

)︁
− A

(︁
𝜑′(𝑡)e𝛾𝑡; 𝜃̇𝜑′(𝑡),Θ(𝑡)

)︁)︂
d𝑡

+ 2
∫︁ 𝑡𝑛

𝑡𝑛−1

(︁
A
(︁
𝜑(𝑡)e𝛾𝑡; W(𝑡)−Π𝑘W(𝑡), Θ̇(𝑡)

)︁
− A

(︁
𝜑′(𝑡)e𝛾𝑡; W(𝑡)−Π𝑘W(𝑡), Θ̇(𝑡)

)︁)︁
d𝑡

+
∫︁ 𝑡𝑛

𝑡𝑛−1

∫︁ 1

0

𝑑∑︁
𝑖,𝛼,𝑗,𝛽=1

(︂(︁
𝜕𝑡𝐴

𝜏
𝑖𝛼𝑗𝛽 − 𝜕𝑡𝐴

𝜏
𝑖𝛼𝑗𝛽

)︁
𝜕𝛽𝜃𝜑′,𝑗(𝑡), 𝜕𝛼Θ𝑖(𝑡)

)︂
𝐿2

d𝜏 d𝑡

+ A
(︀
𝜑′(︀𝑡−𝑛 )︀e𝛾𝑡𝑛 ;𝜃𝜑′

(︀
𝑡−𝑛
)︀
,Θ
(︀
𝑡−𝑛
)︀)︀
− A

(︀
𝜑′(︀𝑡−𝑛−1

)︀
e𝛾𝑡𝑛−1 ;𝜃𝜑′

(︀
𝑡−𝑛−1

)︀
,Θ
(︀
𝑡−𝑛−1

)︀)︀
− A

(︀
𝜑
(︀
𝑡−𝑛
)︀
e𝛾𝑡𝑛 ;𝜃𝜑′

(︀
𝑡−𝑛
)︀
,Θ
(︀
𝑡−𝑛
)︀)︀

+ A
(︀
𝜑
(︀
𝑡−𝑛−1

)︀
e𝛾𝑡𝑛−1 ;𝜃𝜑′

(︀
𝑡−𝑛−1

)︀
,Θ
(︀
𝑡−𝑛−1

)︀)︀
.

Again, we need to bound the terms on the right-hand side of the equation (57). By the Cauchy–Schwarz
inequality, we have

2
(︁
Θ̇
(︀
𝑡−𝑛−1

)︀
, Θ̇
(︀
𝑡+𝑛−1

)︀)︁
𝐿2
≤
⃦⃦⃦
Θ̇
(︀
𝑡−𝑛−1

)︀⃦⃦⃦2

𝐿2
+
⃦⃦⃦
Θ̇
(︀
𝑡+𝑛−1

)︀⃦⃦⃦2

𝐿2
, (58)
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2𝛾2
(︀
Θ
(︀
𝑡−𝑛−1

)︀
,Θ
(︀
𝑡+𝑛−1

)︀)︀
𝐿2 ≤ 𝛾2

⃦⃦
Θ
(︀
𝑡−𝑛−1

)︀⃦⃦2

𝐿2 + 𝛾2
⃦⃦
Θ
(︀
𝑡+𝑛−1

)︀⃦⃦2

𝐿2 . (59)

By Lemma 4.5, for 𝜑 ∈ ℱ , we have⃒⃒⃒⃒
⃒⃒∫︁ 𝑡𝑛

𝑡𝑛−1

∫︁ 1

0

𝑑∑︁
𝑖,𝛼,𝑗,𝛽=1

(︀
𝜕𝑡𝐴

𝜏
𝑖𝛼𝑗𝛽𝜕𝛽Θ𝑗(𝑡), 𝜕𝛼Θ𝑖(𝑡)

)︀
𝐿2 d𝜏 d𝑡

⃒⃒⃒⃒
⃒⃒ ≤ 𝐶𝜏

∫︁ 𝑡𝑛

𝑡𝑛−1

‖∇Θ(𝑡)‖2𝐿2 d𝑡. (60)

Recalling that the values of ∇W(𝑡)e𝛾𝑡 + 𝜏∇(𝜑(𝑡)−W(𝑡))e𝛾𝑡 and ∇W(𝑡)e𝛾𝑡 + 𝜏∇(𝜑′(𝑡)−W(𝑡))e𝛾𝑡 belong to
the convex set ℳ𝛿, and that 𝐴𝑖𝛼𝑗𝛽 is Lipschitz continuous on ℳ𝛿, we have⃒⃒⃒⃒

⃒
∫︁ 𝑡𝑛

𝑡𝑛−1

A
(︁
𝜑′(𝑡)e𝛾𝑡;𝜃𝜑′(𝑡), Θ̇(𝑡)

)︁
− A

(︁
𝜑(𝑡)e𝛾𝑡;𝜃𝜑′(𝑡), Θ̇(𝑡)

)︁
d𝑡

⃒⃒⃒⃒
⃒

≤
∫︁ 𝑡𝑛

𝑡𝑛−1

⃒⃒⃒
A
(︁
𝜑′(𝑡)e𝛾𝑡;𝜃𝜑′(𝑡), Θ̇(𝑡)

)︁
− A

(︁
𝜑(𝑡)e𝛾𝑡;𝜃𝜑′(𝑡), Θ̇(𝑡)

)︁⃒⃒⃒
d𝑡

≤ 𝐿𝛿

∫︁ 𝑡𝑛

𝑡𝑛−1

‖∇𝜑(𝑡)−∇𝜑′(𝑡)‖𝐿2‖∇𝜃𝜑′(𝑡)‖𝐿∞

⃦⃦⃦
∇Θ̇(𝑡)

⃦⃦⃦
𝐿2

d𝑡

≤ 𝐿𝛿𝐶0𝐶1

∫︁ 𝑡𝑛

𝑡𝑛−1

‖∇R(𝑡)‖𝐿2ℎ−1− 𝑑
2 ‖∇𝜃𝜑′(𝑡)‖𝐿2

⃦⃦⃦
Θ̇(𝑡)

⃦⃦⃦
𝐿2

d𝑡

≤ 2𝛾
∫︁ 𝑡𝑛

𝑡𝑛−1

⃦⃦⃦
Θ̇(𝑡)

⃦⃦⃦2

𝐿2
d𝑡+ 𝐶(𝛾) max

𝑡∈𝐼𝑛

‖∇R(𝑡)‖2𝐿2ℎ
−2−𝑑

∫︁ 𝑡𝑛

𝑡𝑛−1

‖∇𝜃𝜑′(𝑡)‖2𝐿2 d𝑡, (61)

where we have used the inverse inequalities (ii,a) and (ii,b), Young’s inequality. To approximate the ∇𝜃𝜑′ term,
we apply the fundamental theorem of calculus as in the proof of (a) to have∫︁ 𝑡𝑛

𝑡𝑛−1

‖∇𝜃𝜑′(𝑡)‖2𝐿2 d𝑡 ≤ 2𝑘𝑛

⃦⃦
∇𝜃𝜑′

(︀
𝑡−𝑛
)︀⃦⃦2

𝐿2 + 2𝐶2
0𝑘

2
𝑛ℎ
−2

∫︁ 𝑡𝑛

𝑡𝑛−1

⃦⃦⃦
𝜃̇𝜑′(𝑡)

⃦⃦⃦2

𝐿2
d𝑡. (62)

Substituting (62) into inequality (61) gives⃒⃒⃒⃒
⃒
∫︁ 𝑡𝑛

𝑡𝑛−1

A
(︁
𝜑′(𝑡)e𝛾𝑡;𝜃𝜑′(𝑡), Θ̇(𝑡)

)︁
− A

(︁
𝜑(𝑡)e𝛾𝑡;𝜃𝜑′(𝑡), Θ̇(𝑡)

)︁
d𝑡

⃒⃒⃒⃒
⃒

≤ 2𝛾
∫︁ 𝑡𝑛

𝑡𝑛−1

⃦⃦⃦
Θ̇(𝑡)

⃦⃦⃦2

𝐿2
d𝑡+ 𝐶 max

𝑡∈𝐼𝑛

‖∇R(𝑡)‖2𝐿2ℎ
−2−𝑑𝑘𝑛

(︃⃦⃦
∇𝜃𝜑′

(︀
𝑡−𝑛
)︀⃦⃦2

𝐿2 +
∫︁ 𝑡𝑛

𝑡𝑛−1

⃦⃦⃦
𝜃̇𝜑′(𝑡)

⃦⃦⃦2

𝐿2
d𝑡

)︃
, (63)

where we have used the assumption that 𝜇𝑖𝑘𝑖 ≤ ℎ2 for each 𝑖 = 1, . . . , 𝑁. Here 𝐶 is a generic positive constant.
Analogously, we obtain⃒⃒⃒⃒

⃒
∫︁ 𝑡𝑛

𝑡𝑛−1

A
(︁
𝜑′(𝑡)e𝛾𝑡; 𝜃̇𝜑′(𝑡),Θ(𝑡)

)︁
− A

(︁
𝜑(𝑡)e𝛾𝑡; 𝜃̇𝜑′(𝑡),Θ(𝑡)

)︁
d𝑡

⃒⃒⃒⃒
⃒

≤
∫︁ 𝑡𝑛

𝑡𝑛−1

⃒⃒⃒
A
(︁
𝜑′(𝑡)e𝛾𝑡; 𝜃̇𝜑′(𝑡),Θ(𝑡)

)︁
− A

(︁
𝜑(𝑡)e𝛾𝑡; 𝜃̇𝜑′(𝑡),Θ(𝑡)

)︁⃒⃒⃒
d𝑡

≤ 𝐿𝛿

∫︁ 𝑡𝑛

𝑡𝑛−1

‖∇𝜑(𝑡)−∇𝜑′(𝑡)‖𝐿2

⃦⃦⃦
∇𝜃̇𝜑′(𝑡)

⃦⃦⃦
𝐿∞
‖∇Θ(𝑡)‖𝐿2 d𝑡

≤ 𝐿𝛿𝐶1

∫︁ 𝑡𝑛

𝑡𝑛−1

‖∇R(𝑡)‖𝐿2ℎ−
𝑑
2

⃦⃦⃦
∇𝜃̇𝜑′(𝑡)

⃦⃦⃦
𝐿2
‖∇Θ(𝑡)‖𝐿2 d𝑡
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≤ 𝐶

∫︁ 𝑡𝑛

𝑡𝑛−1

‖∇Θ(𝑡)‖2𝐿2 d𝑡+ 𝐶 max
𝑡∈𝐼𝑛

‖∇R(𝑡)‖2𝐿2ℎ−𝑑−2

(︃∫︁ 𝑡𝑛

𝑡𝑛−1

⃦⃦⃦
𝜃̇𝜑′(𝑡)

⃦⃦⃦2

𝐿2
d𝑡

)︃
. (64)

Applying the Lipschitz continuity of 𝐴𝑖𝛼𝑗𝛽 again, we have

2

⃒⃒⃒⃒
⃒
∫︁ 𝑡𝑛

𝑡𝑛−1

(︁
A
(︁
𝜑(𝑡)e𝛾𝑡; W(𝑡)−Π𝑘W(𝑡), Θ̇(𝑡)

)︁
− A

(︁
𝜑′(𝑡)e𝛾𝑡; W(𝑡)−Π𝑘W(𝑡), Θ̇(𝑡)

)︁)︁
d𝑡

⃒⃒⃒⃒
⃒

≤ 2
∫︁ 𝑡𝑛

𝑡𝑛−1

⃒⃒⃒(︁
A
(︁
𝜑(𝑡)e𝛾𝑡; W(𝑡)−Π𝑘W(𝑡), Θ̇(𝑡)

)︁
− A

(︁
𝜑′(𝑡)e𝛾𝑡; W(𝑡)−Π𝑘W(𝑡), Θ̇(𝑡)

)︁)︁⃒⃒⃒
d𝑡

≤ 2𝐿𝛿

∫︁ 𝑡𝑛

𝑡𝑛−1

‖∇R(𝑡)‖𝐿2‖∇W(𝑡)−∇(Π𝑘W)(𝑡)‖𝐿∞

⃦⃦⃦
∇Θ̇(𝑡)

⃦⃦⃦
𝐿2

d𝑡

≤ 2𝐿𝛿𝐶0𝐶1ℎ
− 𝑑

2−1

∫︁ 𝑡𝑛

𝑡𝑛−1

‖∇R(𝑡)‖𝐿2‖∇W(𝑡)−∇(Π𝑘W)(𝑡)‖𝐿2

⃦⃦⃦
Θ̇(𝑡)

⃦⃦⃦
𝐿2

d𝑡

≤ 𝐶(𝛾)ℎ−𝑑−2 max
𝑡∈𝐼𝑛

‖∇R(𝑡)‖2𝐿2

∫︁ 𝑡𝑛

𝑡𝑛−1

‖∇W(𝑡)−∇(Π𝑘W)(𝑡)‖2𝐿2 d𝑡+ 𝛾

∫︁ 𝑡𝑛

𝑡𝑛−1

⃦⃦⃦
Θ̇(𝑡)

⃦⃦⃦2

𝐿2
d𝑡

≤ 𝛾

∫︁ 𝑡𝑛

𝑡𝑛−1

⃦⃦⃦
Θ̇(𝑡)

⃦⃦⃦2

𝐿2
d𝑡+ 𝐶(𝛾,W)ℎ−𝑑−2 𝑘

2(𝑞𝑛+1)+1
𝑛

𝑞
2(𝑠−1)
𝑛

max
𝑡∈𝐼𝑛

‖∇R(𝑡)‖2𝐿2 , for W ∈𝑊 𝑠,∞(︀[0, 𝑇 ];𝐻1
0

)︀
, (65)

where 𝐶(𝛾,W) is a positive constant depending on both 𝛾 and the nonlinear projection W. Next, we need to
bound the term involving

(︁
𝜕𝑡𝐴

𝜏
𝑖𝛼𝑗𝛽 − 𝜕𝑡𝐴

𝜏
𝑖𝛼𝑗𝛽

)︁
. Recall that

𝜕𝑡𝐴
𝜏
𝑖𝛼𝑗𝛽 := 𝜕𝑡𝐴𝑖𝛼𝑗𝛽

(︀
∇W(𝑡)e𝛾𝑡 + 𝜏(∇𝜑(𝑡)−∇W(𝑡))e𝛾𝑡

)︀
and

𝜕𝑡𝐴
𝜏
𝑖𝛼𝑗𝛽 := 𝜕𝑡𝐴𝑖𝛼𝑗𝛽

(︀
∇W(𝑡)e𝛾𝑡 + 𝜏(∇𝜑′(𝑡)−∇W(𝑡))e𝛾𝑡

)︀
.

By Taylor’s theorem with an integral remainder, we have

𝜕𝑡𝐴
𝜏
𝑖𝛼𝑗𝛽 − 𝜕𝑡𝐴

𝜏
𝑖𝛼𝑗𝛽 =

∫︁ 1

0

𝑑∑︁
𝑘,𝛾,𝑙,𝛿=1

𝜕2

𝜕𝜂𝑘𝛾𝜕𝜂𝑙𝛿
𝐴𝑖𝛼𝑗𝛽

(︀
∇W(𝑡)e𝛾𝑡 + 𝜏(∇𝜑′(𝑡)−∇W(𝑡))e𝛾𝑡 + 𝜏𝜏(∇𝜑−∇𝜑′)e𝛾𝑡

)︀
× 𝜕𝑡𝜕𝛿

(︀
W𝑙(𝑡)e𝛾𝑡 + 𝜏(𝜑′

𝑙(𝑡)−W𝑙(𝑡))e𝛾𝑡 + 𝜏𝜏(𝜑𝑙 − 𝜑′
𝑙)e

𝛾𝑡
)︀
𝜏𝜕𝛾(𝜑𝑘(𝑡)− 𝜑′

𝑘(𝑡)) d𝜏 .

Since 𝐴𝑖𝛼𝑗𝛽 is sufficiently smooth (in particular, twice continuously differentiable), we can estimate the above
difference term by⃒⃒⃒

𝜕𝑡𝐴
𝜏
𝑖𝛼𝑗𝛽 − 𝜕𝑡𝐴

𝜏
𝑖𝛼𝑗𝛽

⃒⃒⃒
≤ 𝐶‖∇R(𝑡)‖𝐿∞

(︁
‖∇W(𝑡)‖𝐿∞ +

⃦⃦⃦
∇Ẇ(𝑡)

⃦⃦⃦
𝐿∞

)︁
+ 𝐶‖∇R(𝑡)‖𝐿∞

(︁
‖∇𝜑(𝑡)−∇𝜑′(𝑡)‖𝐿∞ +

⃦⃦⃦
∇𝜑̇(𝑡)−∇𝜑̇′(𝑡)

⃦⃦⃦
𝐿∞

)︁
+ 𝐶‖∇R(𝑡)‖𝐿∞

(︁
‖∇𝜑′ −∇W(𝑡)‖𝐿∞ +

⃦⃦⃦
∇𝜑̇′(𝑡)−∇Ẇ(𝑡)

⃦⃦⃦
𝐿∞

)︁
.

Similarly to the proof of Lemma 4.5, we can show that

‖∇𝜑′ −∇W(𝑡)‖𝐿∞ +
⃦⃦⃦
∇𝜑̇′(𝑡)−∇Ẇ(𝑡)

⃦⃦⃦
𝐿∞

≤ 𝐶𝜏 . (66)

Property (iii,c) of the nonlinear projection W implies that

‖∇W‖𝐿∞ +
⃦⃦⃦
∇Ẇ(𝑡)

⃦⃦⃦
𝐿∞

≤ 𝑐0 + 𝑐1. (67)
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In the view of the triangle inequality, we have

‖∇𝜑(𝑡)−∇𝜑′(𝑡)‖𝐿∞ +
⃦⃦⃦
∇𝜑̇(𝑡)−∇𝜑̇′(𝑡)

⃦⃦⃦
𝐿∞

≤ ‖∇𝜑(𝑡)−∇W(𝑡)‖𝐿∞ + ‖∇𝜑′(𝑡)−∇W(𝑡)‖𝐿∞ +
⃦⃦⃦
∇𝜑̇(𝑡)−∇Ẇ(𝑡)

⃦⃦⃦
𝐿∞

+
⃦⃦⃦
∇𝜑̇′(𝑡)−∇Ẇ(𝑡)

⃦⃦⃦
𝐿∞

≤ 2𝐶𝜏 . (68)

Combining (66)–(68) and applying the inverse inequality (ii,b), Young’s inequality, we obtain⃒⃒⃒⃒
⃒⃒∫︁ 𝑡𝑛

𝑡𝑛−1

∫︁ 1

0

𝑑∑︁
𝑖,𝛼,𝑗,𝛽=1

(︁(︁
𝜕𝑡𝐴

𝜏
𝑖𝛼𝑗𝛽 − 𝜕𝑡𝐴

𝜏
𝑖𝛼𝑗𝛽

)︁
𝜕𝛽𝜃𝜑′,𝑗(𝑡), 𝜕𝛼Θ𝑖(𝑡)

)︁
𝐿2

d𝜏 d𝑡

⃒⃒⃒⃒
⃒⃒

≤ 𝐶Lip

∫︁ 𝑡𝑛

𝑡𝑛−1

‖∇R(𝑡)‖𝐿∞‖∇𝜃𝜑′(𝑡)‖𝐿2‖∇Θ(𝑡)‖𝐿2 d𝑡

≤ 𝐶Lip𝐶1ℎ
− 𝑑

2

∫︁ 𝑡𝑛

𝑡𝑛−1

‖∇R(𝑡)‖𝐿2‖∇𝜃𝜑′(𝑡)‖𝐿2‖∇Θ(𝑡)‖𝐿2 d𝑡

≤ 𝐶

∫︁ 𝑡𝑛

𝑡𝑛−1

‖∇Θ(𝑡)‖2𝐿2 d𝑡+ 𝐶ℎ−𝑑

∫︁ 𝑡𝑛

𝑡𝑛−1

‖∇R(𝑡)‖2𝐿2‖∇𝜃𝜑′(𝑡)‖2𝐿2 d𝑡

≤ 𝐶

∫︁ 𝑡𝑛

𝑡𝑛−1

‖∇Θ(𝑡)‖2𝐿2 d𝑡+ 2𝐶 max
𝑡∈𝐼𝑛

‖∇R(𝑡)‖2𝐿2ℎ−𝑑𝑘𝑛

(︃⃦⃦
∇𝜃𝜑′

(︀
𝑡−𝑛
)︀⃦⃦2

𝐿2 +
∫︁ 𝑡𝑛

𝑡𝑛−1

⃦⃦⃦
𝜃̇𝜑′(𝑡)

⃦⃦⃦2

𝐿2
d𝑡

)︃
, (69)

where 𝐶Lip = 𝐶(3𝐶𝜏 + 𝑐0 + 𝑐1) and 𝐶 is a generic positive constant. Combining the estimates (58)–(65) and
(69), we obtain⃦⃦⃦
Θ̇
(︀
𝑡−𝑛
)︀⃦⃦⃦2

𝐿2
+ 𝛾2

⃦⃦
Θ
(︀
𝑡−𝑛
)︀⃦⃦2

𝐿2 + A
(︀
𝜑
(︀
𝑡−𝑛
)︀
e𝛾𝑡𝑛 ; Θ

(︀
𝑡−𝑛
)︀
,Θ
(︀
𝑡−𝑛
)︀)︀

+ 𝛾

∫︁ 𝑡𝑛

𝑡𝑛−1

⃦⃦⃦
Θ̇(𝑡)

⃦⃦⃦2

𝐿2
d𝑡

≤ A
(︀
𝜑
(︀
𝑡−𝑛−1

)︀
e𝛾𝑡𝑛−1 ; Θ

(︀
𝑡−𝑛−1

)︀
,Θ
(︀
𝑡−𝑛−1

)︀)︀
+
⃦⃦⃦
Θ̇
(︀
𝑡−𝑛−1

)︀⃦⃦⃦2

𝐿2
+ 𝛾2

⃦⃦
Θ
(︀
𝑡−𝑛−1

)︀⃦⃦2

𝐿2 + 𝐶

∫︁ 𝑡𝑛

𝑡𝑛−1

‖∇Θ(𝑡)‖2𝐿2 d𝑡

+ 𝐶
(︀
ℎ−𝑑−2 + ℎ−𝑑

)︀
𝑘𝑛

(︃⃦⃦
∇𝜃𝜑′

(︀
𝑡−𝑛
)︀⃦⃦2

𝐿2 +
∫︁ 𝑡𝑛

𝑡𝑛−1

⃦⃦⃦
𝜃̇𝜑′(𝑡)

⃦⃦⃦2

𝐿2
d𝑡

)︃
max
𝑡∈𝐼𝑛

‖∇R(𝑡)‖2𝐿2

+ 𝐶ℎ−𝑑−2

(︃∫︁ 𝑡𝑛

𝑡𝑛−1

⃦⃦⃦
𝜃̇𝜑′(𝑡)

⃦⃦⃦2

𝐿2
d𝑡

)︃
max
𝑡∈𝐼𝑛

‖∇R(𝑡)‖2𝐿2 + 𝐶(𝛾,W)ℎ−𝑑−2 𝑘
2𝑞𝑛+3
𝑛

𝑞
2(𝑠−1)
𝑛

max
𝑡∈𝐼𝑛

‖∇R(𝑡)‖2𝐿2

+ A
(︀
𝜑′(︀𝑡−𝑛 )︀e𝛾𝑡𝑛 ;𝜃𝜑′

(︀
𝑡−𝑛
)︀
,Θ
(︀
𝑡−𝑛
)︀)︀
− A

(︀
𝜑′(︀𝑡−𝑛−1

)︀
e𝛾𝑡𝑛−1 ;𝜃𝜑′

(︀
𝑡−𝑛−1

)︀
,Θ
(︀
𝑡−𝑛−1

)︀)︀
− A

(︀
𝜑
(︀
𝑡−𝑛
)︀
e𝛾𝑡𝑛 ;𝜃𝜑′

(︀
𝑡−𝑛
)︀
,Θ
(︀
𝑡−𝑛
)︀)︀

+ A
(︀
𝜑
(︀
𝑡−𝑛−1

)︀
e𝛾𝑡𝑛−1 ;𝜃𝜑′

(︀
𝑡−𝑛−1

)︀
,Θ
(︀
𝑡−𝑛−1

)︀)︀
. (70)

Summing up over 𝑛 = 1, . . . , 𝑗, we have

⃦⃦⃦
Θ̇
(︀
𝑡−𝑗
)︀⃦⃦⃦2

𝐿2
+ 𝛾2

⃦⃦
Θ
(︀
𝑡−𝑗
)︀⃦⃦2

𝐿2 + A
(︀
𝜑
(︀
𝑡−𝑗
)︀
e𝛾𝑡𝑗 ; Θ

(︀
𝑡−𝑗
)︀
,Θ
(︀
𝑡−𝑗
)︀)︀

+ 𝛾

𝑗∑︁
𝑛=1

∫︁ 𝑡𝑛

𝑡𝑛−1

⃦⃦⃦
Θ̇(𝑡)

⃦⃦⃦2

𝐿2
d𝑡

≤ 𝐶

𝑗∑︁
𝑛=1

∫︁ 𝑡𝑛

𝑡𝑛−1

‖∇Θ(𝑡)‖2𝐿2 d𝑡+ 𝐶
(︀
ℎ−𝑑−2 + ℎ−𝑑

)︀(︃ 𝑗∑︁
𝑛=1

𝑘𝑛

⃦⃦
∇𝜃𝜑′

(︀
𝑡−𝑛−1

)︀⃦⃦2

𝐿2

)︃
max

𝑡∈𝐼𝑛,1≤𝑛≤𝑗
‖∇R(𝑡)‖2𝐿2
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+ 𝐶
(︀
ℎ−𝑑−2 + ℎ−𝑑

)︀(︃ 𝑗∑︁
𝑛=1

𝑘𝑛

∫︁ 𝑡𝑛

𝑡𝑛−1

⃦⃦⃦
𝜃̇𝜑′

⃦⃦⃦2

𝐿2
d𝑡

)︃
max

𝑡∈𝐼𝑛,1≤𝑛≤𝑗
‖∇R(𝑡)‖2𝐿2

+ 𝐶ℎ−𝑑−2

(︃
𝑗∑︁

𝑛=1

∫︁ 𝑡𝑛

𝑡𝑛−1

⃦⃦⃦
𝜃̇𝜑′(𝑡)

⃦⃦⃦2

𝐿2
d𝑡

)︃
max
𝑡∈𝐼𝑛

‖∇R(𝑡)‖2𝐿2 + 𝐶(𝛾,W)ℎ−𝑑−2

𝑗∑︁
𝑛=1

𝑘2𝑞𝑛+3
𝑛

𝑞
2(𝑠−1)
𝑛

max
𝑡∈𝐼𝑛

‖∇R(𝑡)‖2𝐿2

+ A
(︀
𝜑′(︀𝑡−𝑗 )︀e𝛾𝑡𝑗 ;𝜃𝜑′

(︀
𝑡−𝑗
)︀
,Θ
(︀
𝑡−𝑗
)︀)︀
− A

(︀
𝜑
(︀
𝑡−𝑗
)︀
e𝛾𝑡𝑗 ;𝜃𝜑′

(︀
𝑡−𝑗
)︀
,Θ
(︀
𝑡−𝑗
)︀)︀

≤ 𝐶

𝑗∑︁
𝑛=1

∫︁ 𝑡𝑛

𝑡𝑛−1

‖∇Θ(𝑡)‖2𝐿2 d𝑡+ 𝐶(v)
(︀
ℎ−𝑑−2 + ℎ−𝑑

)︀(︃ 𝑗∑︁
𝑛=1

𝑘𝑛ℎ
2𝑟+2 +

𝑘2𝑞𝑛+1
𝑛

𝑞
2(𝑠−1)
𝑛

)︃
max

𝑡∈𝐼𝑛,1≤𝑛≤𝑗
‖∇R(𝑡)‖2𝐿2

+ 𝐶(v)
(︀
ℎ−𝑑−2 + ℎ−𝑑

)︀
max

1≤𝑛≤𝑗
𝑘𝑛

(︃
𝑗∑︁

𝑛=1

𝑘𝑛ℎ
2𝑟+2 +

𝑘2𝑞𝑛+1
𝑛

𝑞
2(𝑠−1)
𝑛

)︃
max

𝑡∈𝐼𝑛,1≤𝑛≤𝑗
‖∇R(𝑡)‖2𝐿2

+ 𝐶ℎ−𝑑−2

(︃
𝑗∑︁

𝑛=1

∫︁ 𝑡𝑛

𝑡𝑛−1

⃦⃦⃦
𝜃̇𝜑′(𝑡)

⃦⃦⃦2

𝐿2
d𝑡

)︃
max
𝑡∈𝐼𝑛

‖∇R(𝑡)‖2𝐿2 + 𝐶(𝛾,W)ℎ−𝑑−2

𝑗∑︁
𝑛=1

𝑘2𝑞𝑛+3
𝑛

𝑞
2(𝑠−1)
𝑛

× max
𝑡∈𝐼𝑛,1≤𝑛≤𝑗

‖∇R(𝑡)‖2𝐿2 + A
(︀
𝜑′(︀𝑡−𝑗 )︀e𝛾𝑡𝑗 ;𝜃𝜑′

(︀
𝑡−𝑗
)︀
,Θ
(︀
𝑡−𝑗
)︀)︀
− A

(︀
𝜑
(︀
𝑡−𝑗
)︀
e𝛾𝑡𝑗 ;𝜃𝜑′

(︀
𝑡−𝑗
)︀
,Θ
(︀
𝑡−𝑗
)︀)︀

≤ 𝐶

𝑗∑︁
𝑛=1

∫︁ 𝑡𝑛

𝑡𝑛−1

‖∇Θ(𝑡)‖2𝐿2 d𝑡+ 𝐶(v)ℎ−𝑑−2

(︃
𝑗∑︁

𝑛=1

𝑘𝑛ℎ
2𝑟+2 +

𝑘2𝑞𝑛+1
𝑛

𝑞
2(𝑠−1)
𝑛

)︃
max

𝑡∈𝐼𝑛,1≤𝑛≤𝑗
‖∇R(𝑡)‖2𝐿2

+ A
(︀
𝜑′(︀𝑡−𝑗 )︀e𝛾𝑡𝑗 ;𝜃𝜑′

(︀
𝑡−𝑗
)︀
,Θ
(︀
𝑡−𝑗
)︀)︀
− A

(︀
𝜑
(︀
𝑡−𝑗
)︀
e𝛾𝑡𝑗 ;𝜃𝜑′

(︀
𝑡−𝑗
)︀
,Θ
(︀
𝑡−𝑗
)︀)︀
, (71)

where 𝐶 is a generic positive constant and 𝐶(v) is a positive constant depending on the exact solution v. These
constants may change from line to line. Using the Lipschitz continuity of 𝐴

(︀
·;𝜃𝜑′

(︀
𝑡−𝑗
)︀
,Θ
(︀
𝑡−𝑗
)︀)︀

and the inverse
inequality (ii,b), we obtain⃒⃒

𝐴
(︀
𝜑′(︀𝑡−𝑗 )︀e𝛾𝑡𝑗 ;𝜃𝜑′

(︀
𝑡−𝑗
)︀
,Θ
(︀
𝑡−𝑗
)︀)︀
−𝐴

(︀
𝜑
(︀
𝑡−𝑗
)︀
e𝛾𝑡𝑗 ;𝜃𝜑′

(︀
𝑡−𝑗
)︀
,Θ
(︀
𝑡−𝑗
)︀)︀⃒⃒

≤ 𝐿𝛿

⃦⃦
∇R

(︀
𝑡−𝑗
)︀⃦⃦

𝐿2

⃦⃦
∇𝜃𝜑′

(︀
𝑡−𝑗
)︀⃦⃦

𝐿∞

⃦⃦
∇Θ

(︀
𝑡−𝑗
)︀⃦⃦

𝐿2

≤ 𝐶(v)ℎ−
𝑑
2

(︃
𝑗∑︁

𝑛=1

𝑘𝑛ℎ
2𝑟+2 +

𝑘2𝑞𝑛+1
𝑛

𝑞
2(𝑠−1)
𝑛

)︃ 1
2

max
𝑡∈𝐼𝑛,1≤𝑛≤𝑗

‖∇R(𝑡)‖𝐿2

⃦⃦
∇Θ

(︀
𝑡−𝑗
)︀⃦⃦

𝐿2 . (72)

Combining the estimates (71) and (72) and applying the assumption (S2b) to A
(︀
𝜑
(︀
𝑡−𝑗
)︀
e𝛾𝑡𝑗 ; Θ

(︀
𝑡−𝑗
)︀
,Θ
(︀
𝑡−𝑗
)︀)︀

on
the left-hand-side of the resulting inequality yield

⃦⃦⃦
Θ̇
(︀
𝑡−𝑗
)︀⃦⃦⃦2

𝐿2
+ 𝛾2

⃦⃦
Θ
(︀
𝑡−𝑗
)︀⃦⃦2

𝐿2 +𝑀1

⃦⃦
∇Θ

(︀
𝑡−𝑗
)︀⃦⃦2

+ 𝛾

𝑗∑︁
𝑛=1

∫︁ 𝑡𝑛

𝑡𝑛−1

⃦⃦⃦
Θ̇(𝑡)

⃦⃦⃦2

𝐿2
d𝑡

≤ 𝐶

𝑗∑︁
𝑛=1

∫︁ 𝑡𝑛

𝑡𝑛−1

‖∇Θ(𝑡)‖2𝐿2 d𝑡+ 𝐶(v)ℎ−𝑑−2

(︃
𝑗∑︁

𝑛=1

𝑘𝑛ℎ
2𝑟+2 +

𝑘2𝑞𝑛+1
𝑛

𝑞
2(𝑠−1)
𝑛

)︃
max

𝑡∈𝐼𝑛, 1≤𝑛≤𝑗
‖∇R(𝑡)‖2𝐿2

+ 𝐶(v)ℎ−
𝑑
2

(︃
𝑗∑︁

𝑛=1

𝑘𝑖ℎ
2𝑟+2 +

𝑘2𝑞𝑖+1
𝑖

𝑞
2(𝑠−1)
𝑖

)︃ 1
2

max
𝑡∈𝐼𝑛,1≤𝑛≤𝑗

‖∇R(𝑡)‖𝐿2

⃦⃦
∇Θ

(︀
𝑡−𝑗
)︀⃦⃦

𝐿2 . (73)

By applying Young’s inequality on the right-hand side of (73), we have

⃦⃦⃦
Θ̇
(︀
𝑡−𝑗
)︀⃦⃦⃦2

𝐿2
+ 𝛾2

⃦⃦
Θ
(︀
𝑡−𝑗
)︀⃦⃦2

𝐿2 +𝑀1

⃦⃦
∇Θ

(︀
𝑡−𝑗
)︀⃦⃦2

+ 𝛾

𝑗∑︁
𝑛=1

∫︁ 𝑡𝑛

𝑡𝑛−1

⃦⃦⃦
Θ̇(𝑡)

⃦⃦⃦2

𝐿2
d𝑡
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≤ 𝐶

𝑗∑︁
𝑛=1

∫︁ 𝑡𝑛

𝑡𝑛−1

‖∇Θ(𝑡)‖2𝐿2 d𝑡+ 𝐶(v)ℎ−𝑑−2

(︃
𝑗∑︁

𝑛=1

𝑘𝑛ℎ
2𝑟+2 +

𝑘2𝑞𝑛+1
𝑛

𝑞
2(𝑠−1)
𝑛

)︃
max

𝑡∈𝐼𝑛, 1≤𝑛≤𝑗
‖∇R(𝑡)‖2𝐿2

+ 𝐶(𝑀1,v)ℎ−𝑑

(︃
𝑗∑︁

𝑛=1

𝑘𝑖ℎ
2𝑟+2 +

𝑘2𝑞𝑖+1
𝑖

𝑞
2(𝑠−1)
𝑖

)︃
max

𝑡∈𝐼𝑛, 1≤𝑛≤𝑗
‖∇R(𝑡)‖2𝐿2 +

𝑀1

2

⃦⃦
∇Θ

(︀
𝑡−𝑗
)︀⃦⃦2

𝐿2 , (74)

where 𝐶(𝑀1,v) is a constant depending on 𝑀1 and the exact solution v. This implies that

⃦⃦⃦
Θ̇
(︀
𝑡−𝑗
)︀⃦⃦⃦2

𝐿2
+ 𝛾2

⃦⃦
Θ
(︀
𝑡−𝑗
)︀⃦⃦2

𝐿2 +
𝑀1

2

⃦⃦
∇Θ

(︀
𝑡−𝑗
)︀⃦⃦2

+ 𝛾

𝑗∑︁
𝑛=1

∫︁ 𝑡𝑛

𝑡𝑛−1

⃦⃦⃦
Θ̇(𝑡)

⃦⃦⃦2

𝐿2
d𝑡

≤ 𝐶

𝑗∑︁
𝑛=1

∫︁ 𝑡𝑛

𝑡𝑛−1

‖∇Θ(𝑡)‖2𝐿2 d𝑡+ 𝐶(v)ℎ−𝑑−2

(︃
𝑗∑︁

𝑛=1

𝑘𝑛ℎ
2𝑟+2 +

𝑘2𝑞𝑛+1
𝑛

𝑞
2(𝑠−1)
𝑛

)︃
max

𝑡∈𝐼𝑛, 1≤𝑛≤𝑗
‖∇R(𝑡)‖2𝐿2

+ 𝐶(𝑀1,v)ℎ−𝑑

(︃
𝑗∑︁

𝑛=1

𝑘𝑖ℎ
2𝑟+2 +

𝑘2𝑞𝑖+1
𝑖

𝑞
2(𝑠−1)
𝑖

)︃
max

𝑡∈𝐼𝑛, 1≤𝑛≤𝑗
‖∇R(𝑡)‖2𝐿2

≤ 𝐶

𝑗∑︁
𝑛=1

∫︁ 𝑡𝑛

𝑡𝑛−1

‖∇Θ(𝑡)‖2𝐿2 d𝑡+ 𝐶(v)ℎ−𝑑−2

(︃
𝑗∑︁

𝑛=1

𝑘𝑛ℎ
2𝑟+2 +

𝑘2𝑞𝑛+1
𝑛

𝑞
2(𝑠−1)
𝑛

)︃
max

𝑡∈𝐼𝑛, 1≤𝑛≤𝑗
‖∇R(𝑡)‖2𝐿2 . (75)

By an analogous application of the discrete Grönwall lemma as in the proof of (a), we can deduce that, for 𝑘𝑛

sufficiently small for each 𝑛 = 1, . . . , 𝑗,

⃦⃦⃦
Θ̇
(︀
𝑡−𝑗
)︀⃦⃦⃦2

𝐿2
+
⃦⃦
Θ
(︀
𝑡−𝑗
)︀⃦⃦2

𝐿2 +
⃦⃦
∇Θ

(︀
𝑡−𝑗
)︀⃦⃦2

+
𝑗∑︁

𝑛=1

∫︁ 𝑡𝑛

𝑡𝑛−1

⃦⃦⃦
Θ̇(𝑡)

⃦⃦⃦2

𝐿2
d𝑡

≤ 𝐶(v)ℎ−𝑑−2

(︃
𝑗∑︁

𝑛=1

𝑘𝑛ℎ
2𝑟+2 +

𝑘2𝑞𝑛+1
𝑛

𝑞
2(𝑠−1)
𝑛

)︃
max

𝑡∈𝐼𝑛, 1≤𝑛≤𝑗
‖∇R(𝑡)‖2𝐿2 , (76)

where 𝐶(v) is a positive constant depending on v which may vary from line to line. By the fundamental theorem
of calculus and the triangle inequality, we have for each 𝑡 ∈ 𝐼𝑛, with 𝑛 = 1, . . . 𝑁 ,

‖∇Θ(𝑡)‖𝐿2 ≤
⃦⃦
∇Θ

(︀
𝑡−𝑛
)︀⃦⃦

𝐿2 +
∫︁ 𝑡𝑛

𝑡𝑛−1

⃦⃦⃦
∇Θ̇(𝑡)

⃦⃦⃦
𝐿2

d𝑡

≤
⃦⃦
∇Θ

(︀
𝑡−𝑛
)︀⃦⃦

𝐿2 + 𝐶0ℎ
−1

∫︁ 𝑡𝑛

𝑡𝑛−1

⃦⃦⃦
Θ̇(𝑡)

⃦⃦⃦
𝐿2

d𝑡

≤
⃦⃦
∇Θ

(︀
𝑡−𝑛
)︀⃦⃦

𝐿2 + 𝐶0ℎ
−1𝑘

− 1
2

𝑛

(︃∫︁ 𝑡𝑛

𝑡𝑛−1

⃦⃦⃦
Θ̇(𝑡)

⃦⃦⃦2

𝐿2
d𝑡

)︃ 1
2

.

This implies that, for each 𝑡 ∈ 𝐼𝑛 with 1 ≤ 𝑛 ≤ 𝑁 ,

‖∇Θ(𝑡)‖𝐿2 ≤
(︁

1 + 𝐶0ℎ
−1𝑘

− 1
2

𝑛

)︁
𝐶(v)

1
2ℎ−

𝑑
2−1

(︃
𝑁∑︁

𝑖=1

𝑘𝑖ℎ
2𝑟+2 +

𝑘2𝑞𝑖+1
𝑖

𝑞
2(𝑠−1)
𝑖

)︃ 1
2

max
𝑡∈𝐼𝑛, 1≤𝑛≤𝑁

‖∇R(𝑡)‖𝐿2

≤ 𝐶1(v)ℎ−
𝑑
2−1

(︃
𝑁∑︁

𝑖=1

𝑘𝑖ℎ
2𝑟+2 +

𝑘2𝑞𝑖+1
𝑖

𝑞
2(𝑠−1)
𝑖

)︃ 1
2

max
𝑡∈𝐼𝑛, 1≤𝑛≤𝑁

‖∇R(𝑡)‖𝐿2 , (77)
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where the last inequality follows from the assumption that 𝜇𝑖𝑘𝑖 ≤ ℎ2 for each 1 ≤ 𝑖 ≤ 𝑁. Analogously, we have

‖Θ(𝑡)‖𝐿2 ≤ ‖Θ(𝑡𝑛)‖𝐿2 + 𝑘
1
2
𝑛

(︃∫︁ 𝑡𝑛

𝑡𝑛−1

⃦⃦⃦
Θ̇(𝑡)

⃦⃦⃦2

𝐿2
d𝑡

)︃ 1
2

≤ 𝐶2(v)ℎ−
𝑑
2−1

(︃
𝑁∑︁

𝑖=1

𝑘𝑖ℎ
2𝑟+2 +

𝑘2𝑞𝑖+1
𝑖

𝑞
2(𝑠−1)
𝑖

)︃ 1
2

max
𝑡∈𝐼𝑛, 1≤𝑛≤𝑁

‖∇R(𝑡)‖𝐿2 , (78)

and ⃦⃦⃦
Θ̇(𝑡)

⃦⃦⃦
𝐿2
≤
⃦⃦⃦
Θ̇(𝑡𝑛)

⃦⃦⃦
𝐿2

+
∫︁ 𝑡𝑛

𝑡𝑛−1

⃦⃦⃦
Θ̈(𝑡)

⃦⃦⃦
𝐿2

d𝑡

≤
⃦⃦⃦
Θ̇(𝑡𝑛)

⃦⃦⃦
𝐿2

+ 𝐶2𝑘
− 1

2
𝑛

(︃∫︁ 𝑡𝑛

𝑡𝑛−1

⃦⃦⃦
Θ̇(𝑡)

⃦⃦⃦2

𝐿2
d𝑡

)︃ 1
2

≤ 𝐶3(v)ℎ−
𝑑
2−1𝑘

− 1
2

𝑛

(︃
𝑁∑︁

𝑖=1

𝑘𝑖ℎ
2𝑟+2 +

𝑘2𝑞𝑖+1
𝑖

𝑞
2(𝑠−1)
𝑖

)︃ 1
2

max
𝑡∈𝐼𝑛, 1≤𝑛≤𝑁

‖∇R(𝑡)‖𝐿2 , (79)

Summing up (77)–(79) and taking maximum on the left-hand for 𝑡 ∈ 𝐼𝑛, with 1 ≤ 𝑛 ≤ 𝑁 , we have

max
𝑡∈𝐼𝑛,1≤𝑛≤𝑁

(︁
‖Θ(𝑡)‖𝐻1 +

⃦⃦⃦
Θ̇(𝑡)

⃦⃦⃦
𝐿2

)︁
≤ ̂︀𝐶(v)ℎ−

𝑑
2−1 max

1≤𝑛≤𝑁
𝑘
− 1

2
𝑛

(︃
𝑁∑︁

𝑖=1

𝑘𝑖ℎ
2𝑟+2 +

𝑘2𝑞𝑖+1
𝑖

𝑞
2(𝑠−1)
𝑖

)︃ 1
2

max
𝑡∈𝐼𝑛,1≤𝑛≤𝑁

‖∇R(𝑡)‖𝐿2 .

(80)

By choosing the mesh size ℎ and time steps {𝑘𝑖}𝑁
𝑖=1 < 1 for each 𝑖 = 1, 2, . . . , 𝑁 small enough, and 𝑟 and {𝑞𝑖}𝑁

𝑖=1

for each 𝑖 = 1, 2, . . . , 𝑁 large enough such that

̂︀𝐶(v)ℎ−
𝑑
2−1 max

1≤𝑛≤𝑁
𝑘
− 1

2
𝑛

(︃
𝑁∑︁

𝑖=1

𝑘𝑖ℎ
2𝑟+2 +

𝑘2𝑞𝑖+1
𝑖

𝑞
2(𝑠−1)
𝑖

)︃ 1
2

< 1, (81)

we obtain
max

𝑡∈𝐼𝑛,1≤𝑛≤𝑁

(︁
‖Θ(𝑡)‖𝐻1 +

⃦⃦⃦
Θ̇(𝑡)

⃦⃦⃦
𝐿2

)︁
< max

𝑡∈𝐼𝑛,1≤𝑛≤𝑁

(︁
‖R(𝑡)‖𝐻1 +

⃦⃦⃦
Ṙ(𝑡)

⃦⃦⃦
𝐿2

)︁
. (82)

Indeed, the inequality (81) follows from our assumptions that 𝑟 > 𝑑
2 + 1, 𝑘𝑞𝑖− 1

2
𝑖 = 𝑜

(︁
ℎ1+ 𝑑

2

)︁
for each 𝑖 =

1, 2, . . . , 𝑁 . Therefore, by Banach’s fixed point theorem, vDG = v𝜑 is the unique solution to (19). By the
triangle inequality, equations (23), (26) and property (iii,b) of the nonlinear projection W, we have⃦⃦

vDG

(︀
𝑡−𝑗
)︀
− v

(︀
𝑡−𝑗
)︀⃦⃦

𝐿2 +
⃦⃦
v̇DG

(︀
𝑡−𝑗
)︀
− v̇

(︀
𝑡−𝑗
)︀⃦⃦

𝐿2

≤
⃦⃦
𝜃
(︀
𝑡−𝑗
)︀⃦⃦

𝐿2 +
⃦⃦⃦
𝜃̇
(︀
𝑡−𝑗
)︀⃦⃦⃦

𝐿2
+
⃦⃦
W
(︀
𝑡−𝑗
)︀
− v

(︀
𝑡−𝑗
)︀⃦⃦

𝐿2 +
⃦⃦⃦
Ẇ
(︀
𝑡−𝑗
)︀
− v̇

(︀
𝑡−𝑗
)︀⃦⃦⃦

𝐿2

≤ 𝐶*(v)
(︂ 𝑗∑︁

𝑛=1

𝑘𝑛ℎ
2𝑟+2 +

𝑘2𝑞𝑛+1
𝑛

𝑞
2(𝑠−1)
𝑛

)︂ 1
2

+ 2𝐶𝑟(v)ℎ𝑟+1 (by (iii,b))

≤ 𝐶(v)
(︂
ℎ2𝑟+2 +

𝑗∑︁
𝑛=1

𝑘2𝑞𝑛+1
𝑛

𝑞
2(𝑠−1)
𝑛

)︂ 1
2

.
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5. Numerical experiments

In this section, we show some numerical experiments on a simple version of the nonlinear elastodynamics
equation to verify the error estimates proved in Section 4.

5.1. Numerical results for a one-dimensional nonlinear elastodynamics problem

We consider the one-dimensional nonlinear equation

𝑢̈(𝑥, 𝑡) + 2𝛾𝑢̇(𝑥, 𝑡) + 𝛾2𝑢(𝑥, 𝑡)− 𝜕𝑥[𝑆(𝜕𝑥𝑢(𝑥, 𝑡))] = 𝑓(𝑥, 𝑡) in (0, 1)× (0, 𝑇 ], (83)
𝑢(0, 𝑡) = 𝑢(1, 𝑡) = 0 for all 𝑡 ∈ (0, 𝑇 ], (84)
𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑢̇(𝑥, 0) = 𝑢1(𝑥). (85)

We take 𝑆(𝜕𝑥𝑢) = 1
3𝜕𝑥𝑢

3 and the time interval to be 𝐼 = (0, 𝑇 ] with 𝑇 = 1. Let 𝑢0, 𝑢1 and 𝑓 be chosen such
that the exact solution is

𝑢(𝑥, 𝑡) = sin
(︁√

2𝜋𝑡
)︁

sin(𝜋𝑥).

That is, 𝑢0(𝑥) ≡ 0, 𝑢1(𝑥) =
√

2𝜋 sin(𝜋𝑥), and

𝑓(𝑥, 𝑡) =
[︁(︀
−2𝜋2 + 𝛾2

)︀
sin
(︁√

2𝜋𝑡
)︁

+ 2
√

2𝛾𝜋 cos
(︁√

2𝜋𝑡
)︁]︁

sin(𝜋𝑥) + 𝜋4 sin3
(︁√

2𝜋𝑡
)︁

cos2(𝜋𝑥) sin(𝜋𝑥).

We first discretize the problem in the spatial direction using continuous piecewise polynomials of degree 𝑝 ≥ 1.
Let 𝒱ℎ be the finite element function space with ℎ being the spatial discretization parameter. The numerical
approximation of the nonlinear wave-type equation following a Picard-type linearization in the nonlinear term
is the following: find 𝑢ℎ ∈ 𝒱ℎ such that∫︁

Ω

𝑢̈ℎ · 𝑣ℎ d𝑥+
∫︁

Ω

2𝛾𝑢̇ℎ · 𝑣ℎ d𝑥+
∫︁

Ω

𝛾2𝑢ℎ · 𝑣ℎ d𝑥+
1
3

∫︁
Ω

(𝜕𝑥𝑢
*
ℎ)2𝜕𝑥𝑢ℎ · 𝜕𝑥𝑣ℎ d𝑥 =

∫︁
Ω

𝑓 · 𝑣ℎ d𝑥,

for all 𝑣ℎ ∈ 𝒱ℎ. Here we assume that 𝜕𝑥𝑢
*
ℎ is known at each time step 𝐼𝑛 either as an initial guess by using 𝑢ℎ

over the previous time interval, or as a previous iterate in the Picard iteration. Now the problem results in the
following second-order differential system for the nodal displacement U(𝑡):{︃

𝑀̃Ü(𝑡) + 2𝛾𝑀̃U̇(𝑡) + 𝛾2𝑀̃U(𝑡) + 1
3𝐾̃(𝑡)U(𝑡) = F(𝑡), 𝑡 ∈ (0, 𝑇 ],

U̇(0) = U1, U(0) = U0,

where U0 = [0, . . . , 0]T ∈ R𝑑 and U1 is the 𝑑-vector corresponding to 𝑢1 at the grid points, Ü(𝑡) (respectively
U̇(𝑡)) represents the vector of nodal acceleration (respectively velocity) and F(𝑡) is the vector of externally
applied loads. 𝑀̃ is the mass matrix which is defined as

𝑀̃𝑖𝑗 :=
∫︁ 1

0

𝜓𝑖(𝑥)𝜓𝑗(𝑥) d𝑥.

The time-dependent stiffness matrix 𝐾̃(𝑡) is defined as

𝐾̃𝑖𝑗(𝑡) :=
∫︁ 1

0

(𝜕𝑥𝑢
*
ℎ(𝑡))2𝜕𝑥𝜓𝑖(𝑥)𝜕𝑥𝜓𝑗(𝑥) d𝑥,

where {𝜓𝑖}𝑑
𝑖=1 are the basis functions in the spatial direction.

Multiplying the above algebraic formulation by 𝑀̃− 1
2 and setting Z(𝑡) = 𝑀̃

1
2 U(𝑡), we obtain

Z̈(𝑡) + 𝐿Ż(𝑡) +𝐾0Z(𝑡) +𝐾(𝑡)Z(𝑡) = G(𝑡), 𝑡 ∈ (0, 𝑇 ], (86)
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Ż(0) = 𝑀̃
1
2 U1, Z(0) = 𝑀̃

1
2 U0. (87)

Here

𝐿 = 2𝛾Id, 𝐾0 = 𝛾2Id,

𝐾(𝑡) =
1
3
𝑀̃− 1

2 𝐾̃(𝑡)𝑀̃− 1
2 , G(𝑡) = 𝑀̃− 1

2 F(𝑡).

Note that both 𝐾̃(𝑡) and 𝐾(𝑡) are time-dependent. We subdivided [0, 𝑇 ) into 𝑁 subintervals 𝐼𝑛, for 𝑛 = 1, . . . , 𝑁,
of uniform length 𝑘. We assume that the polynomial degree in time is constant at each time step. That is,
𝑞1 = · · · = 𝑞𝑁 ≥ 2. If we consider the time integration on a generic time interval 𝐼𝑛 for each 𝑛 = 1, . . . 𝑁 , our
discontinuous-in-time formulation reads as: find Z ∈ 𝒱𝑞𝑛

𝑘ℎ such that(︁
Z̈(𝑡), v̇

)︁
𝐿2(𝐼𝑛)

+
(︁
𝐿Ż(𝑡), v̇

)︁
𝐿2(𝐼𝑛)

+ (𝐾0Z(𝑡), v̇)𝐿2(𝐼𝑛) + (𝐾(𝑡)Z(𝑡), v̇)𝐿2(𝐼𝑛)

+ Ż
(︀
𝑡+𝑛−1

)︀
· v̇
(︀
𝑡+𝑛−1

)︀
+𝐾0Z

(︀
𝑡+𝑛−1

)︀
· v
(︀
𝑡+𝑛−1

)︀
+𝐾

(︀
𝑡+𝑛−1

)︀
Z
(︀
𝑡+𝑛−1

)︀
· v
(︀
𝑡+𝑛−1

)︀
= (G(𝑡), v̇)𝐿2(𝐼𝑛) + Ż

(︀
𝑡−𝑛−1

)︀
· v̇
(︀
𝑡+𝑛−1

)︀
+𝐾0Z

(︀
𝑡−𝑛−1

)︀
· v
(︀
𝑡+𝑛−1

)︀
+𝐾

(︀
𝑡−𝑛−1

)︀
Z
(︀
𝑡−𝑛−1

)︀
· v
(︀
𝑡+𝑛−1

)︀
, (88)

for all v ∈ 𝒱𝑞𝑛

𝑘ℎ, where on the right-hand side the values Ż
(︀
𝑡−𝑛−1

)︀
and Z

(︀
𝑡−𝑛−1

)︀
computed for 𝐼𝑛−1 are used as

initial conditions for the current time interval. For 𝐼1, we set Ż
(︀
𝑡−0
)︀

= Ż(0) and Z
(︀
𝑡−0
)︀

= Z(0). Focusing on the
generic time interval 𝐼𝑛, we introduce the basis functions in the time direction

{︀
𝜑𝑗(𝑡)

}︀𝑞𝑛+1

𝑗=1
for the polynomial

space P𝑞𝑛(𝐼𝑛) and define 𝐷 = 𝑑(𝑞𝑛 + 1), the dimension of the local finite element space 𝒱𝑞𝑛

𝑘ℎ. We also introduce
the vectorial basis

{︀
Φ𝑗

𝑚(𝑡)
}︀𝑗=1,...,𝑞𝑛+1

𝑚=1,...,𝑑
, where Φ𝑗

𝑚(𝑡) is the 𝑑-dimensional vector whose 𝑚-th component is 𝜑𝑗(𝑡)
and the other components are zero. We write

Z(𝑡) =
𝑑∑︁

𝑚=1

𝑞𝑛+1∑︁
𝑗=1

𝛼𝑗
𝑚Φ𝑗

𝑚(𝑡), (89)

where 𝛼𝑗
𝑚 ∈ R for 𝑚 = 1, . . . , 𝑑, 𝑗 = 1, . . . , 𝑞𝑛 + 1. By choosing v(𝑡) = Φ𝑗

𝑚(𝑡) for each 𝑚 = 1, . . . , 𝑑, 𝑗 =
1, . . . , 𝑞𝑛 + 1, we obtain the following algebraic system

Az = b, (90)

where z ∈ R𝐷 = R(𝑞𝑛+1)𝑑 is the solution vector (whose entries are the values of 𝛼𝑗
𝑚); b ∈ R𝐷 corresponds to

the right-hand side, which is given componentwise as

b𝑗
𝑚 =

(︁
G(𝑡), Φ̇𝑗

𝑚

)︁
𝐿2(𝐼𝑛)

+ Ż
(︀
𝑡−𝑛−1

)︀
· Φ̇𝑗

𝑚

(︀
𝑡+𝑛−1

)︀
+𝐾0Z

(︀
𝑡−𝑛−1

)︀
· Φ𝑗

𝑚

(︀
𝑡+𝑛−1

)︀
+𝐾

(︀
𝑡−𝑛−1

)︀
Z
(︀
𝑡−𝑛−1

)︀
· Φ𝑗

𝑚

(︀
𝑡+𝑛−1

)︀
, (91)

for 𝑚 = 1, . . . , 𝑑, 𝑗 = 1, . . . , 𝑞𝑛 + 1. A is the local stiffness matrix defined with its structure being discussed
below. For 𝑙, 𝑗 = 1, . . . , 𝑞𝑛 + 1,

𝑀1
𝑙𝑗 =

(︁
𝜑𝑗 , 𝜑̇𝑙

)︁
𝐿2(𝐼𝑛)

, 𝑀2
𝑙𝑗 =

(︁
𝜑̇𝑗 , 𝜑̇𝑙

)︁
𝐿2(𝐼𝑛)

, 𝑀3
𝑙𝑗 =

(︁
𝜑𝑗 , 𝜑̇𝑙

)︁
𝐿2(𝐼𝑛)

,

𝑀̃3
𝑙𝑗 =

(︁
𝐾(𝑡)𝜑𝑗 , 𝜑̇𝑙

)︁
𝐿2(𝐼𝑛)

, 𝑀4
𝑙𝑗 = 𝜑̇𝑗

(︀
𝑡+𝑛−1

)︀
· 𝜑̇𝑙
(︀
𝑡+𝑛−1

)︀
,

𝑀5
𝑙𝑗 = 𝜑𝑗

(︀
𝑡+𝑛−1

)︀
· 𝜑𝑙
(︀
𝑡+𝑛−1

)︀
, 𝑀̃5

𝑙𝑗 = 𝐾
(︀
𝑡+𝑛−1

)︀
𝜑𝑗
(︀
𝑡+𝑛−1

)︀
· 𝜑𝑙
(︀
𝑡+𝑛−1

)︀
.

Setting

𝑀 = 𝑀1 +𝑀4, 𝐵𝑖𝑗 = 𝐿𝑖𝑗𝑀
2 +𝐾0𝑖𝑗

(︀
𝑀3 +𝑀5

)︀
+
(︁
𝑀̃3 + 𝑀̃5

)︁
,
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with 𝑀,𝐵𝑖𝑗 ∈ R(𝑞𝑛+1)×(𝑞𝑛+1) for any 𝑖, 𝑗 = 1, . . . , 𝑑, we can rewrite the matrix A as

A =

⎡⎢⎢⎣
𝑀 0 0 · · · 0
0 𝑀 0 · · · 0
...

. . . . . . . . .
...

0 0 0 · · · 𝑀

⎤⎥⎥⎦+

⎡⎢⎢⎢⎣
𝐵1,1 𝐵1,2 · · · 𝐵1,𝑑

𝐵2,1 𝐵2,2 · · · 𝐵2,𝑑
...

. . . . . .
...

𝐵𝑑,1 𝐵𝑑,2 · · · 𝐵𝑑,𝑑

⎤⎥⎥⎥⎦.

For each time interval 𝐼𝑛 = (𝑡𝑛−1, 𝑡𝑛], we use the following shifted Legendre polynomials {𝜑𝑖} as the basis
polynomial for the discontinuous Galerkin formulation:

𝜑1(𝑡) = 1, 𝜑2(𝑡) =
2
(︀
𝑡− 𝑡+𝑛−1

)︀
𝑘𝑛

− 1, 𝜑3(𝑡) =
6
(︀
𝑡− 𝑡+𝑛−1

)︀2
𝑘2

𝑛

−
6
(︀
𝑡− 𝑡+𝑛−1

)︀
𝑘𝑛

+ 1

𝜑4(𝑡) =
20
(︀
𝑡− 𝑡+𝑛−1

)︀3
𝑘3

𝑛

−
30
(︀
𝑡− 𝑡+𝑛−1

)︀2
𝑘2

𝑛

+
12
(︀
𝑡− 𝑡+𝑛−1

)︀
𝑘𝑛

− 1

𝜑5(𝑡) =
70
(︀
𝑡− 𝑡+𝑛−1

)︀4
𝑘4

𝑛

−
140
(︀
𝑡− 𝑡+𝑛−1

)︀3
𝑘3

𝑛

+
90
(︀
𝑡− 𝑡+𝑛−1

)︀2
𝑘2

𝑛

−
20
(︀
𝑡− 𝑡+𝑛−1

)︀
𝑘𝑛

+ 1.

In order to compute the time-dependent matrices 𝑀̃3(𝑡) and 𝑀̃5(𝑡), which also depend on the gradient of the
solution, we apply a Picard iteration at each time interval. We set the maximal number of Picard iterations to
be 30 at each time step and the tolerance to be 1e− 10. The details of the algorithm are summarized below.

Algorithm 1. Iterative Algorithm (Multiple Picard iterations at each time interval).
Initialization: 𝜕𝑥𝑢

*
ℎ = 𝜕𝑥𝑢0 and

[︁
𝐾̃0
]︁

𝑖𝑗
=

∫︁ 1

0

(𝜕𝑥𝑢0)
2𝜕𝑥𝜓𝑖(𝑥)𝜕𝑥𝜓𝑗(𝑥) d𝑥.

Iteration: On each interval 𝐼𝑛 = (𝑡𝑛−1, 𝑡𝑛] for 𝑛 = 1, 2, . . . , 𝑁 , we solve

𝑀̃Ü(𝑡) + 2𝛾𝑀̃U̇(𝑡) + 𝛾2𝑀̃U(𝑡) +
1

3
𝐾̃𝑛(𝑡)U(𝑡) = F(𝑡)

iteratively (using Picard iterations) by applying the discontinuous-in-time integration. Here

[︁
𝐾̃𝑛

0

]︁

𝑖𝑗
=

∫︁ 1

0

[︀
𝜕𝑥𝑢

𝑛−1
DG (𝑡)

]︀2
𝜕𝑥𝜓𝑖(𝑥)𝜕𝑥𝜓𝑗(𝑥) d𝑥,

where 𝑢𝑛−1
DG (𝑡) is the solution we obtained from the previous time interval 𝐼𝑛−1.

[︁
𝐾̃𝑛

𝑘

]︁

𝑖𝑗
=

∫︁ 1

0

[︁
𝜕𝑥𝑢

𝑛−1,𝑘−1
DG (𝑡)

]︁2
𝜕𝑥𝜓𝑖(𝑥)𝜕𝑥𝜓𝑗(𝑥) d𝑥,

for 𝑘 = 1, 2, . . . , where 𝑢𝑛−1,𝑘−1
DG (𝑡) is computed from the previous Picard iteration by using the stiffness matrix[︁

𝐾̃𝑛
𝑘−1

]︁

𝑖𝑗
.

Update:
[︁
𝐾̃𝑛+1

0

]︁

𝑖𝑗
=

∫︁ 1

0

[𝜕𝑥𝑢
𝑛
DG(𝑡)]2𝜕𝑥𝜓𝑖(𝑥)𝜕𝑥𝜓𝑗(𝑥) d𝑥,

where 𝜕𝑥𝑢
𝑛
DG(𝑡) is computed using

[︁
𝐾̃𝑛

𝑘end

]︁
. Here 𝑘end is either the maximal (final) Picard iteration number or the

iteration at which a certain tolerance is achieved.
Now move to the next time interval 𝐼𝑛+1.
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Table 1.
⃦⃦
𝑢(𝑇 )− 𝑢DG

(︀
𝑡−𝑁
)︀⃦⃦

𝐿2 +
⃦⃦
𝑢̇(𝑇 )− 𝑢̇DG

(︀
𝑡−𝑁
)︀⃦⃦

𝐿2 and corresponding convergence rates
with respect to polynomial degrees 𝑞 = 2, 3, 4.

𝑞 ℎ 𝑘 = ℎ2 𝐿2-error rate

2 2.50000e− 1 6.25000e− 2 1.2123e− 2 —
2.00000e− 1 4.00000e− 2 4.9774e− 3 1.9948
1.25000e− 1 1.56250e− 2 1.1643e− 3 1.5455
6.25000e− 2 3.90625e− 3 1.2454e− 4 1.6124

3 2.50000e− 1 6.25000e− 2 4.1533e− 4 —
2.00000e− 1 4.00000e− 2 1.8590e− 4 1.8012
1.25000e− 1 1.56250e− 2 2.5283e− 5 2.1224
6.25000e− 2 3.90625e− 3 1.5609e− 6 2.0089

4 2.50000e− 1 6.25000e− 2 2.5498e− 5 —
2.00000e− 1 4.00000e− 2 8.3999e− 6 2.4881
1.25000e− 1 1.56250e− 2 9.7790e− 7 2.2878
6.25000e− 2 3.90625e− 3 3.1115e− 8 2.4870

Take 𝑞 = 2 as an example; we note that on each time interval 𝐼𝑛 the solution U(𝑡)𝑛 can be defined using the
Legendre basis via

U(𝑡)𝑛 = 𝑀̃− 1
2 Z𝑛(𝑡) = 𝑀̃− 1

2
(︀
𝛼𝑛

1𝜑
1(𝑡) +𝛼𝑛

2𝜑
2(𝑡) +𝛼𝑛

3𝜑
3(𝑡)

)︀
.

Here 𝛼𝑛
𝑖 for 𝑖 = 1, 2 and 3 are the coefficient vectors computed by extracting appropriate entries from z. This

implies that we can formulate 𝐾̃𝑛+1(𝑡) by considering

𝐾̃𝑛+1(𝑡) =
∫︁ 1

0

|∇U𝑛(𝑡)|2𝜕𝑥𝜓𝑖𝜕𝑥𝜓𝑗 d𝑥

=
∫︁ 1

0

⃒⃒⃒
𝑀̃− 1

2 grad(𝛼𝑛
1 )𝜑1(𝑡) + 𝑀̃− 1

2 grad(𝛼𝑛
2 )𝜑2(𝑡) + 𝑀̃− 1

2 grad(𝛼𝑛
3 )𝜑3(𝑡)

⃒⃒⃒2
𝜕𝑥𝜓𝑖𝜕𝑥𝜓𝑗 d𝑥

=
∫︁ 1

0

⃒⃒⃒
𝑀̃− 1

2 grad(𝛼𝑛
1 )𝜑1(𝑡)

⃒⃒⃒2
𝜕𝑥𝜓𝑖𝜕𝑥𝜓𝑗 d𝑥+

∫︁ 1

0

⃒⃒⃒
𝑀̃− 1

2 grad(𝛼𝑛
2 )𝜑2(𝑡)

⃒⃒⃒2
𝜕𝑥𝜓𝑖𝜕𝑥𝜓𝑗 d𝑥

+
∫︁ 1

0

⃒⃒⃒
𝑀̃− 1

2 grad(𝛼𝑛
3 )𝜑3(𝑡)

⃒⃒⃒2
𝜕𝑥𝜓𝑖𝜕𝑥𝜓𝑗 d𝑥

+
∫︁ 1

0

2
(︁
𝑀̃− 1

2 grad(𝛼𝑛
1 )𝜑1(𝑡) · 𝑀̃− 1

2 grad(𝛼𝑛
2 )𝜑2(𝑡)

)︁
𝜕𝑥𝜓𝑖𝜕𝑥𝜓𝑗 d𝑥

+
∫︁ 1

0

2
(︁
𝑀̃− 1

2 grad(𝛼𝑛
1 )𝜑1(𝑡) · 𝑀̃− 1

2 grad(𝛼𝑛
3 )𝜑3(𝑡)

)︁
𝜕𝑥𝜓𝑖𝜕𝑥𝜓𝑗 d𝑥

+
∫︁ 1

0

2
(︁
𝑀̃− 1

2 grad(𝛼𝑛
2 )𝜑2(𝑡) · 𝑀̃− 1

2 grad(𝛼𝑛
3 )𝜑3(𝑡)

)︁
𝜕𝑥𝜓𝑖𝜕𝑥𝜓𝑗 d𝑥

:= 𝐾𝑛+1
11 (𝑡) +𝐾𝑛+1

22 (𝑡) +𝐾𝑛+1
33 (𝑡) +𝐾𝑛+1

12 (𝑡) +𝐾𝑛+1
13 (𝑡) +𝐾𝑛+1

23 (𝑡).

We use CG–𝑝 elements where 𝑝 = 𝑞 in space with 𝑘 = ℎ2, 𝑇 = 1 and 𝛾 = 1, and compute the errors⃦⃦
𝑢(𝑇 )− 𝑢DG

(︀
𝑡−𝑁
)︀⃦⃦

𝐿2 +
⃦⃦
𝑢̇(𝑇 )− 𝑢̇DG

(︀
𝑡−𝑁
)︀⃦⃦

𝐿2 versus 𝑘 for 𝑘 = ℎ2 = 6.25000e− 2, 4.00000e− 2, 1.56250e− 2 and
3.90625e − 3 with respect to polynomial degrees 2, 3, 4 in Table 1. Note that here we use ℎ = 2.50000e − 1,
2.00000e− 2, 1.25000e− 1 and 6.25000e− 2 instead of the conventional halving procedure; this is to avoid the
accumulation of any unnecessary floating point errors resulting from a large number of time steps while still
having sufficient data to compute the convergence rates. The computed errors are shown in Figure 1 in a log–log
scale. As expected, the error decreases as we increase the polynomial degree 𝑞 or decrease the time step 𝑘. By
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Figure 1. Computed error
⃦⃦
𝑢(𝑇 )− 𝑢DG

(︀
𝑡−𝑁
)︀⃦⃦

𝐿2 +
⃦⃦
𝑢̇(𝑇 )− 𝑢̇DG

(︀
𝑡−𝑁
)︀⃦⃦

𝐿2 plotted against 1/𝑘
for polynomial degrees 𝑞 = 2, 3, 4.

Remark 4.2, we expect convergence rates of order 1.5, 2.0 and 2.5 for 𝑞 = 𝑝 = 2, 3 and 4 respectively, which are
consistent with the numerical results shown in Table 1.

Appendix A. Proof of the auxiliary lemma

Lemma A.1. Under the assumptions stated in Theorem 4.1, there exists a constant 𝐶𝜏 > 0 such that, for
𝑡 ∈ 𝐼𝑛, 𝑛 = 1, 2 . . . 𝑁 , ⃒⃒

A𝑡

(︀
𝜑(𝑡)e𝛾𝑡;𝜙(𝑡),𝜓(𝑡)

)︀⃒⃒
≤ 𝐶𝜏‖∇𝜙(𝑡)‖𝐿2‖∇𝜓(𝑡)‖𝐿2 . (A.1)

Proof. Note that for 𝑡 ∈ 𝐼𝑛, 𝑛 = 1, 2, . . . , 𝑁 ,

𝜕𝑡

[︀
𝐴𝑖𝛼𝑗𝛽

(︀
∇W(𝑡)e𝛾𝑡 + 𝜏(∇𝜑(𝑡)−∇W(𝑡))e𝛾𝑡

)︀]︀
=

𝑑∑︁
𝑘,𝑚=1

𝜕𝐴𝑖𝛼𝑗𝛽

𝜕𝜂𝑘𝑚

(︀
∇W(𝑡)𝑒𝛾𝑡 + 𝜏∇(𝜑(𝑡)−W(𝑡))e𝛾𝑡

)︀
𝜕𝑚

(︀
𝜕𝑡

(︀
W𝑘(𝑡)e𝛾𝑡

)︀
+ 𝜏𝜕𝑡

(︀
(𝜑𝑘(𝑡)−W𝑘(𝑡))e𝛾𝑡

)︀)︀
.

Since the values of the function ∇W(𝑡)e𝛾𝑡 +𝜏∇(𝜑(𝑡)−W(𝑡))e𝛾𝑡 for 𝑡 ∈ [0, 𝑇 ], 𝜏 ∈ (0, 1), belong to the compact
convex subsetℳ𝛿 of R𝑑×𝑑, and because 𝐴𝑖𝛼𝑗𝛽 is sufficiently smooth (and in particular continuously differentiable
on ℳ𝛿), we have⃒⃒⃒⃒

⃒⃒ 𝑑∑︁
𝑖,𝛼,𝑗,𝛽=1

1
2

∫︁ 1

0

(︀
𝜕𝑡

[︀
𝐴𝑖𝛼𝑗𝛽

(︀
∇W(𝑡)e𝛾𝑡 + 𝜏∇(𝜑(𝑡)−W(𝑡))e𝛾𝑡

)︀]︀
𝜕𝑗𝜙𝛽(𝑡), 𝜕𝑖𝜓𝛼(𝑡)

)︀
𝐿2 d𝜏

⃒⃒⃒⃒
⃒⃒

≤ 𝑐
(︁⃦⃦⃦
∇Ẇ(𝑡)

⃦⃦⃦
𝐿∞

+ ‖∇W(𝑡)‖𝐿∞

)︁
‖∇𝜙(𝑡)‖𝐿2‖∇𝜓(𝑡)‖𝐿2

+ 𝑐
(︁⃦⃦⃦
∇
(︁
𝜑̇(𝑡)− Ẇ(𝑡)

)︁⃦⃦⃦
𝐿∞

+ ‖∇(𝜑(𝑡)−W(𝑡))‖𝐿∞

)︁
‖∇𝜙(𝑡)‖𝐿2‖∇𝜓(𝑡)‖𝐿2

≤ 𝐶ℎ−
𝑑
2

(︁⃦⃦⃦
∇
(︁
𝜑̇(𝑡)− Ẇ(𝑡)

)︁⃦⃦⃦
𝐿2

+ ‖∇(𝜑(𝑡)−W(𝑡))‖𝐿2

)︁
‖∇𝜙(𝑡)‖𝐿2‖∇𝜓(𝑡)‖𝐿2
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+ 𝐶‖∇𝜙(𝑡)‖𝐿2‖∇𝜓(𝑡)‖𝐿2 ,

where we have applied the inverse inequality (ii,b) and property (iii,c) of the nonlinear projection W. We
shall bound

⃦⃦⃦
∇
(︁
𝜑̇(𝑡)− Ẇ(𝑡)

)︁⃦⃦⃦
𝐿2

and ‖∇(𝜑(𝑡)−W(𝑡))‖𝐿2 for 𝑡 ∈ 𝐼𝑛, 𝑛 = 1, 2 . . . , 𝑁 . Applying the triangle
inequality, we have

‖∇(𝜑(𝑡)−W(𝑡))‖𝐿2 ≤ ‖∇(𝜑(𝑡)−Π𝑘W(𝑡))‖𝐿2 + ‖∇(Π𝑘W(𝑡)−W(𝑡))‖𝐿2 .

Note that for 𝑡 ∈ 𝐼𝑛, 𝑛 = 1, 2 . . . 𝑁 ,

‖∇(𝜑(𝑡)−Π𝑘W(𝑡))‖𝐿2 ≤
⃦⃦
∇
(︀
𝜑
(︀
𝑡−𝑛
)︀
−Π𝑘W

(︀
𝑡−𝑛
)︀)︀⃦⃦

𝐿2 +
∫︁ 𝑡𝑛

𝑡

‖𝜕𝑠(∇𝜑(𝑠)−∇Π𝑘W(𝑠))‖𝐿2 d𝑠

≤
⃦⃦
∇
(︀
𝜑
(︀
𝑡−𝑛
)︀
−Π𝑘W

(︀
𝑡−𝑛
)︀)︀⃦⃦

𝐿2 +
∫︁ 𝑡𝑛

𝑡𝑛−1

‖𝜕𝑡(∇𝜑(𝑡)−∇Π𝑘W(𝑡))‖𝐿2 d𝑡

≤
⃦⃦
∇
(︀
𝜑
(︀
𝑡−𝑛
)︀
−Π𝑘W

(︀
𝑡−𝑛
)︀)︀⃦⃦

𝐿2 + 𝐶0ℎ
−1
√︀
𝑘𝑛

(︃∫︁ 𝑡𝑛

𝑡𝑛−1

‖𝜕𝑡(𝜑(𝑡)−Π𝑘W(𝑡))‖2𝐿2 d𝑡

)︃ 1
2

≤ 𝐶(v)

(︃
𝑛∑︁

𝑖=1

𝑘𝑖ℎ
2𝑟+2 +

𝑘2𝑞𝑖+1
𝑖

𝑞
2(𝑠−1)
𝑖

)︃ 1
2

,

where we have used the inverse inequality (ii,a), Hölder’s inequality, the fact that 𝜑 ∈ ℱ and the assumption
that 𝜇𝑖𝑘𝑖 ≤ ℎ2 for each 𝑖 = 1, . . . , 𝑁 . Here 𝐶(v) denotes a constant depending on v, which may vary throughout
this proof. On the other hand,

‖∇(Π𝑘W(𝑡)−W(𝑡))‖𝐿2 ≤
⃦⃦
∇
(︀
Π𝑘W

(︀
𝑡−𝑛
)︀
−W

(︀
𝑡−𝑛
)︀)︀⃦⃦

𝐿2 +
∫︁ 𝑡𝑛

𝑡

‖𝜕𝑠(∇Π𝑘W(𝑠)−∇W(𝑠))‖𝐿2 d𝑠

≤
∫︁ 𝑡𝑛

𝑡𝑛−1

‖𝜕𝑡(∇Π𝑘W(𝑡)−∇W(𝑡))‖𝐿2 d𝑡
(︀
since Π𝑘W

(︀
𝑡−𝑛
)︀

= W
(︀
𝑡−𝑛
)︀)︀

≤
√︀
𝑘𝑛

(︂∫︁ 𝑡𝑛

𝑡𝑛−1

‖𝜕𝑡(∇Π𝑘W(𝑡)−∇W(𝑡))‖2𝐿2 d𝑡
)︂ 1

2

≤ 𝐶
𝑘

𝑞𝑛+ 1
2

𝑛

𝑞𝑠−1
𝑛

‖W‖𝐻𝑠(𝐼𝑛;𝐻1
0), for W ∈ 𝐻𝑠

(︀
[0, 𝑇 ];𝐻1

0

)︀
,

where we have used inequality (28) with the 𝐿2 norm in space replaced by the 𝐻1 semi-norm. Thus,

max
𝑡∈𝐼𝑛,1≤𝑛≤𝑁

‖∇(𝜑(𝑡)−W(𝑡))‖𝐿2 ≤ 𝐶(v)

(︃
𝑛∑︁

𝑖=1

𝑘𝑖ℎ
2𝑟+2 +

𝑘2𝑞𝑖+1
𝑖

𝑞
2(𝑠−1)
𝑖

)︃ 1
2

+ 𝐶
𝑘

𝑞𝑛+ 1
2

𝑛

𝑞𝑠−1
𝑛

‖W‖𝐻𝑠(𝐼𝑛;𝐻1
0). (A.2)

Applying the triangle inequality to the time derivative term, we have⃦⃦⃦
∇
(︁
𝜑̇(𝑡)− Ẇ(𝑡)

)︁⃦⃦⃦
𝐿2
≤ ‖𝜕𝑡(∇𝜑(𝑡)−∇Π𝑘W(𝑡))‖𝐿2 + ‖𝜕𝑡(∇Π𝑘W(𝑡)−∇W(𝑡))‖𝐿2 .

Note that for 𝑡 ∈ 𝐼𝑛, 𝑛 = 1, 2, . . . 𝑁 ,

‖𝜕𝑡(∇𝜑(𝑡)−∇Π𝑘W(𝑡))‖𝐿2 ≤ 𝐶0ℎ
−1‖𝜕𝑡(𝜑(𝑡)−Π𝑘W(𝑡))‖𝐿2

≤ 𝐶0ℎ
−1
⃦⃦
𝜕𝑡

(︀
𝜑
(︀
𝑡−𝑛
)︀
−Π𝑘W

(︀
𝑡−𝑛
)︀)︀⃦⃦

𝐿2 + 𝐶0ℎ
−1

∫︁ 𝑡𝑛

𝑡

‖𝜕𝑠𝑠(𝜑(𝑠)−Π𝑘W(𝑠))‖𝐿2 d𝑠
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≤ 𝐶0ℎ
−1
⃦⃦
𝜕𝑡

(︀
𝜑
(︀
𝑡−𝑛
)︀
−Π𝑘W

(︀
𝑡−𝑛
)︀)︀⃦⃦

𝐿2 + 𝐶0ℎ
−1

∫︁ 𝑡𝑛

𝑡𝑛−1

‖𝜕𝑡𝑡(𝜑(𝑡)−Π𝑘W(𝑡))‖𝐿2 d𝑡.

Since 𝜑 ∈ ℱ , we have

⃦⃦
𝜕𝑡

(︀
𝜑
(︀
𝑡−𝑛
)︀
−Π𝑘W

(︀
𝑡−𝑛
)︀)︀⃦⃦

𝐿2 ≤ 𝐶*(v)

(︃
𝑛∑︁

𝑖=1

𝑘𝑖ℎ
2𝑟+2 +

𝑘2𝑞𝑖+1
𝑖

𝑞
2(𝑠−1)
𝑖

)︃ 1
2

.

Using the inverse inequality in time (30), we obtain

∫︁ 𝑡𝑛

𝑡𝑛−1

‖𝜕𝑡𝑡(𝜑(𝑡)−Π𝑘W(𝑡))‖𝐿2 d𝑡 ≤
√︀
𝑘𝑛

(︃∫︁ 𝑡𝑛

𝑡𝑛−1

‖𝜕𝑡𝑡(𝜑(𝑡)−Π𝑘W(𝑡))‖2𝐿2 d𝑡

)︃ 1
2

≤ 𝐶2
1√
𝑘𝑛

(︃∫︁ 𝑡𝑛

𝑡𝑛−1

‖𝜕𝑡(𝜑(𝑡)−Π𝑘W(𝑡))‖2𝐿2 d𝑡

)︃ 1
2

≤ 𝐶(v)
1√
𝑘𝑛

(︃
𝑛∑︁

𝑖=1

𝑘𝑖ℎ
2𝑟+2 +

𝑘2𝑞𝑖+1
𝑖

𝑞
2(𝑠−1)
𝑖

)︃ 1
2

·

On the other hand, for 𝑡 ∈ 𝐼𝑛, 𝑛 = 1, 2, . . . , 𝑁 , we have

‖𝜕𝑡(∇Π𝑘W(𝑡)−∇W(𝑡))‖𝐿2 ≤
⃦⃦
𝜕𝑡

(︀
∇Π𝑘W

(︀
𝑡−𝑛
)︀
−∇W

(︀
𝑡−𝑛
)︀)︀⃦⃦

𝐿2 +
∫︁ 𝑡𝑛

𝑡

‖𝜕𝑠𝑠(∇Π𝑘W(𝑠)−∇W(𝑠))‖𝐿2 d𝑠

≤
∫︁ 𝑡𝑛

𝑡𝑛−1

‖𝜕𝑡𝑡(∇Π𝑘W(𝑡)−∇W(𝑡))‖𝐿2 d𝑡
(︀

since Π𝑘W
(︀
𝑡−𝑛
)︀

= W
(︀
𝑡−𝑛
)︀)︀

≤
√︀
𝑘𝑛

(︃∫︁ 𝑡𝑛

𝑡𝑛−1

‖𝜕𝑡𝑡(∇Π𝑘W(𝑡)−∇W(𝑡))‖2𝐿2 d𝑡

)︃ 1
2

≤ 𝐶
𝑘

𝑞𝑛− 1
2

𝑛

𝑞𝑠−3
𝑛

‖W‖𝐻𝑠(𝐼𝑛;𝐻1
0), for W ∈ 𝐻𝑠

(︀
[0, 𝑇 ];𝐻1

0

)︀
.

Thus

max
𝑡∈𝐼𝑛,1≤𝑛≤𝑁

⃦⃦⃦
∇𝜑̇(𝑡)−∇Ẇ(𝑡)

⃦⃦⃦
𝐿2
≤ 𝐶(v)

(︁
ℎ−1 + ℎ−1𝑘

− 1
2

𝑛

)︁(︃ 𝑛∑︁
𝑖=1

𝑘𝑖ℎ
2𝑟+2 +

𝑘2𝑞𝑖+1
𝑖

𝑞
2(𝑠−1)
𝑖

)︃ 1
2

+ 𝐶
𝑘

𝑞𝑛− 1
2

𝑛

𝑞𝑠−3
𝑛

‖W‖𝐻𝑠([0,𝑇 ];𝐻1
0). (A.3)

Combining (A.2) and (A.3), we have

𝐶ℎ−
𝑑
2 max

𝑡∈𝐼𝑛,1≤𝑛≤𝑁

(︁
‖∇𝜑(𝑡)−∇W(𝑡)‖𝐿2 +

⃦⃦⃦
∇𝜑̇(𝑡)−∇Ẇ(𝑡)

⃦⃦⃦
𝐿2

)︁
≤ 𝐶ℎ−

𝑑
2𝐶(v)

(︁
1 + ℎ−1 + ℎ−1𝑘

− 1
2

𝑛

)︁(︃ 𝑛∑︁
𝑖=1

𝑘𝑖ℎ
2𝑟+2 +

𝑘2𝑞𝑖+1
𝑖

𝑞
2(𝑠−1)
𝑖

)︃ 1
2

+ 𝐶ℎ−
𝑑
2𝐶

(︃
𝑘

𝑞𝑛+ 1
2

𝑛

𝑞𝑠−1
𝑛

+
𝑘

𝑞𝑛− 1
2

𝑛

𝑞𝑠−3
𝑛

)︃
‖W‖𝐻𝑠([0,𝑇 ];𝐻1

0). (A.4)
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Since 𝑟 > 𝑑
2 + 1, 𝑘𝑞𝑖− 1

2
𝑖 = 𝑜

(︁
ℎ1+ 𝑑

2

)︁
and 𝜇𝑘𝑖 ≤ ℎ2 ≤ 𝜈𝑖𝑘𝑖 for each 𝑖 = 1, 2, . . . 𝑁, we can choose ℎ0 > 0 such that

for ℎ ≤ ℎ0, the right-hand side of (A.4) is bounded by 1. Thus, equation (41) follows by taking 𝐶𝜏 = 𝐶 + 1.
The constant 𝐶𝜏 defined in this way does not depend on 𝐶*(v). �

Appendix B. Approximation properties of the elliptic projection

Here we derive the properties (iii,a)–(iii,c) of the nonlinear projection W. We write 𝑎 . 𝑏 if there exists a
universal constant 𝐶 > 0 independent of the spatial discretization parameter ℎ such that 𝑎 ≤ 𝐶𝑏.

B.1. 𝐿2 bound on ∇(v − W) and 𝐿∞ bound on ∇W

Recall that for each 𝑡 ∈ [0, 𝑇 ], 𝑎(W(𝑡),𝜙) = 𝑎(v(𝑡),𝜙) for all 𝜙 ∈ 𝒱ℎ. Let 𝒫ℎ : 𝐿2 → 𝒱ℎ denote the standard
𝐿2-projection operator in the spatial direction. Then we have

𝑎(W(𝑡),𝜙)− 𝑎(𝒫ℎv(𝑡),𝜙) = 𝑎(v(𝑡),𝜙)− 𝑎(𝒫ℎv(𝑡),𝜙) for all 𝜙 ∈ 𝒱ℎ. (B.5)

That is, ∫︁ 1

0

𝑎̃
(︀
𝒫ℎv(𝑡)e𝛾𝑡 + 𝜏(W(𝑡)− 𝒫ℎv(𝑡))e𝛾𝑡; W(𝑡)− 𝒫ℎv(𝑡),𝜙

)︀
d𝜏

=
∫︁ 1

0

𝑎̃
(︀
𝒫ℎv(𝑡)e𝛾𝑡 + 𝜏(v(𝑡)− 𝒫ℎv(𝑡))e𝛾𝑡; v(𝑡)− 𝒫ℎv(𝑡),𝜙

)︀
d𝜏.

Define the following subset of 𝐻1
0 ,

ℱ =
{︂
𝜑 ∈ 𝒱ℎ : ‖∇(𝜑− 𝒫ℎv)‖𝐿2 ≤ 𝐶*ℎ

𝑟‖v‖𝐻𝑟+1 for
𝑑

2
< 𝑟 ≤ min(𝑝,𝑚− 1)

}︂
where 𝐶* is a constant independent of ℎ. The set ℱ is non-empty since for each fixed 𝑡 ∈ [0, 𝑇 ], 𝒫ℎv(𝑡) ∈ ℱ .
Furthermore, ℱ is a closed and convex subset of 𝐻1

0 . We define the fixed point mapping 𝒩 on ℱ as follows.
Given 𝜑 ∈ ℱ , we denote by W𝜑 ∈ 𝒱ℎ, the solution to the following linear variational problem: find W𝜑 ∈ 𝒱ℎ

such that ∫︁ 1

0

𝑎̃
(︀
𝒫ℎv(𝑡)e𝛾𝑡 + 𝜏(𝜑(𝑡)− 𝒫ℎv(𝑡))e𝛾𝑡; W𝜑(𝑡)− 𝒫ℎv(𝑡),𝜙

)︀
d𝜏

=
∫︁ 1

0

𝑎̃
(︀
𝒫ℎv(𝑡)e𝛾𝑡 + 𝜏(v(𝑡)− 𝒫ℎv(𝑡))e𝛾𝑡; v(𝑡)− 𝒫ℎv(𝑡),𝜙

)︀
d𝜏 for all 𝜙 ∈ 𝒱ℎ.

Since 𝒱ℎ is a finite dimensional linear space, the existence and uniqueness of W𝜑(𝑡) ∈ 𝒱ℎ for each 𝑡 ∈ [0, 𝑇 ]
follows if we can show that

∫︀ 1

0
𝑎̃(𝒫ℎv(𝑡)e𝛾𝑡 + 𝜏(𝜑(𝑡)− 𝒫ℎv(𝑡)); ·, ·) is coercive on 𝒱ℎ×𝒱ℎ in the | · |𝐻1 semi-norm.

This is indeed true in view of the assumption (S2b). For each 𝑡 ∈ [0, 𝑇 ], if we take W(𝑡) = W𝜑(𝑡), we have

‖∇(W(𝑡)− 𝒫ℎv(𝑡))‖𝐿2 ≤ 𝐶*ℎ
𝑟‖v(𝑡)‖𝐻𝑟+1 ,

𝑑

2
< 𝑟 ≤ min(𝑝,𝑚− 1). (B.6)

By the approximation properties of 𝒫ℎ in the | · |𝐻1 semi-norm, we have

‖∇(v(𝑡)− 𝒫ℎv(𝑡))‖𝐿2 . ℎ𝑟‖v(𝑡)‖𝐻𝑟+1 ,
𝑑

2
< 𝑟 ≤ min(𝑝,𝑚− 1). (B.7)

It follows from the triangle inequality that

‖∇(W(𝑡)− v(𝑡))‖𝐿2 . ℎ𝑟‖v(𝑡)‖𝐻𝑟+1 ,
𝑑

2
< 𝑟 ≤ min(𝑝,𝑚− 1). (B.8)
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By the approximation properties of 𝒫ℎ in the | · |𝑊 1,∞ semi-norm, we have

‖∇(v(𝑡)− 𝒫ℎv(𝑡))‖𝐿∞ . ℎ
𝑟− 𝑑

2 ‖v(𝑡)‖𝐻𝑟+1 ,
𝑑

2
< 𝑟 ≤ min(𝑝,𝑚− 1). (B.9)

Combining (B.8) and (B.9), we obtain

‖∇W(𝑡)‖𝐿∞ ≤ ‖∇v(𝑡)‖𝐿∞ + ‖∇(W(𝑡)− v(𝑡))‖𝐿∞

≤ ‖∇v(𝑡)‖𝐿∞ + ‖∇(W(𝑡)− 𝒫ℎv(𝑡))‖𝐿∞ + ‖∇(𝒫ℎv(𝑡)− v(𝑡))‖𝐿∞

≤ ‖∇v(𝑡)‖𝐿∞ + 𝐶1ℎ
− 𝑑

2 ‖∇(W(𝑡)− 𝒫ℎv(𝑡))‖𝐿2 + 𝐶(v)ℎ𝑟− 𝑑
2

≤ 𝑐0,

for some constant 𝑐0. The last inequality follows from the boundedness of ∇v and the fact that 𝑟 > 𝑑
2 , while

the second last line follows from (ii,b) and (B.9).

B.2. 𝐿2 bound on ∇
(︁
Ẇ − v̇

)︁
and 𝐿∞ bound on ∇Ẇ

For the estimate of the 𝐿2 bound on ∇
(︁
Ẇ − v̇

)︁
, we follow the proof from Section 6 in [27]. We need to

show that 𝑡 ↦→ W(𝑡) is differentiable with respect to 𝑡. For U ∈ 𝒱ℎ and 𝑡 ∈ [0, 𝑇 ], we notice that the mapping
𝜙 ↦→ 𝑎(U,𝜙) − 𝑎(v(𝑡),𝜙) is a bounded linear functional on 𝒱ℎ; hence by Riesz representation theorem, there
exists a unique 𝒜(𝑡,U) ∈ 𝒱ℎ such that

(𝒜(𝑡,U),𝜙) = 𝑎(U,𝜙)− 𝑎(v(𝑡),𝜙).

It follows from the linearization process that the derivative of the nonlinear mapping (𝑡,U) ↦→ 𝒜(𝑡,U) with
respect to U, evaluated at U = W(𝑡), exists and is invertible for any 𝑡 ∈ [0, 𝑇 ]. We also have 𝒜(𝑡,W(𝑡)) = 0.
Since v(𝑡) is differentiable with respect to 𝑡, it follows that 𝒜(𝑡,U) is differentiable in a neighbourhood of
(𝑡0,W(𝑡0)) for any 𝑡0 ∈ (0, 𝑇 ). We then deduce from the implicit function theorem that 𝑡 ↦→ W(𝑡) is differentiable
in (0, 𝑇 ). Next, we derive the error bound of

⃦⃦⃦
∇
(︁
Ẇ(𝑡)− v̇(𝑡)

)︁⃦⃦⃦
𝐿2
. By definition of W(𝑡), we have

∫︁ 1

0

𝑎̃
(︀
𝒫ℎv(𝑡)e𝛾𝑡 + 𝜏(W(𝑡)− 𝒫ℎv(𝑡))e𝛾𝑡; W(𝑡)− 𝒫ℎv(𝑡),𝜙

)︀
d𝜏

=
∫︁ 1

0

𝑎̃
(︀
𝒫ℎv(𝑡)e𝛾𝑡 + 𝜏(v(𝑡)− 𝒫ℎv(𝑡))e𝛾𝑡; v(𝑡)− 𝒫ℎv(𝑡),𝜙

)︀
d𝜏 for all 𝜙 ∈ 𝒱ℎ.

After differentiation with respect to 𝑡, we have∫︁ 1

0

𝑎̃
(︁
𝒫ℎv(𝑡)e𝛾𝑡 + 𝜏(W(𝑡)− 𝒫ℎv(𝑡))e𝛾𝑡; Ẇ(𝑡)− 𝒫ℎv̇(𝑡),𝜙

)︁
d𝜏

+
∫︁ 1

0

∫︁
Ω

𝑑∑︁
𝑖,𝛼,𝑗,𝛽,𝑘,𝑚=1

(︂{︂
𝜕𝐴𝑖𝛼𝑗𝛽

𝜕𝜂𝑘𝑚

(︀
∇𝒫ℎv(𝑡)e𝛾𝑡 + 𝜏(∇W(𝑡)−∇𝒫ℎv(𝑡))e𝛾𝑡

)︀
× 𝜕𝑚

(︀
𝜕𝑡

[︀
𝒫ℎv𝑘(𝑡)e𝛾𝑡

]︀
+ 𝜏𝜕𝑡

[︀
(W𝑘(𝑡)− 𝒫ℎv𝑘(𝑡))e𝛾𝑡

]︀)︀}︂
𝜕𝑗(W − 𝒫ℎv)𝛽 , 𝜕𝑗𝜙𝛼

)︂
𝐿2

d𝑥d𝜏

=
∫︁ 1

0

𝑎̃
(︀
𝒫ℎv(𝑡)e𝛾𝑡 + 𝜏(v(𝑡)− 𝒫ℎv(𝑡))e𝛾𝑡; v̇(𝑡)− 𝒫ℎv̇(𝑡),𝜙

)︀
d𝜏

+
∫︁ 1

0

∫︁
Ω

𝑑∑︁
𝑖,𝛼,𝑗,𝛽,𝑘,𝑚=1

(︂{︂
𝜕𝐴𝑖𝛼𝑗𝛽

𝜕𝜂𝑘,𝑚

(︀
∇𝒫ℎv(𝑡)e𝛾𝑡 + 𝜏(∇v(𝑡)−∇𝒫ℎv(𝑡))e𝛾𝑡

)︀
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× 𝜕𝑚

(︀
𝜕𝑡

[︀
𝒫ℎv𝑘(𝑡)e𝛾𝑡

]︀
+ 𝜏𝜕𝑡

[︀
(v𝑘(𝑡)− 𝒫ℎv𝑘(𝑡))e𝛾𝑡

]︀)︀}︂
𝜕𝑗(v − 𝒫ℎv)𝛽 , 𝜕𝑗𝜙𝛼

)︂
𝐿2

d𝑥 d𝜏,

for all 𝜙 ∈ 𝒱ℎ. Rearranging gives∫︁ 1

0

𝑎̃
(︁
𝒫ℎv(𝑡)e𝛾𝑡 + 𝜏(W(𝑡)− 𝒫ℎv(𝑡))e𝛾𝑡; Ẇ(𝑡)− 𝒫ℎv̇(𝑡),𝜙

)︁
d𝜏

=
∫︁ 1

0

𝑎̃
(︀
𝒫ℎv(𝑡)e𝛾𝑡 + 𝜏(v(𝑡)− 𝒫ℎv(𝑡))e𝛾𝑡; v̇(𝑡)− 𝒫ℎv̇(𝑡),𝜙

)︀
d𝜏

+
∫︁ 1

0

∫︁
Ω

𝑑∑︁
𝑖,𝛼,𝑗,𝛽,𝑘,𝑚=1

(︂{︂
𝜕𝐴𝑖𝛼𝑗𝛽

𝜕𝜂𝑘,𝑚

(︀
∇𝒫ℎv(𝑡)e𝛾𝑡 + 𝜏(∇v(𝑡)−∇𝒫ℎv(𝑡))e𝛾𝑡

)︀
× 𝜕𝑚

(︀
𝜕𝑡

[︀
𝒫ℎv𝑘(𝑡)e𝛾𝑡

]︀
+ 𝜏𝜕𝑡

[︀
(v𝑘(𝑡)− 𝒫ℎv𝑘(𝑡))e𝛾𝑡

]︀)︀}︂
𝜕𝑗(v − 𝒫ℎv)𝛽 , 𝜕𝑗𝜙𝛼

)︂
𝐿2

d𝑥d𝜏

−
∫︁ 1

0

∫︁
Ω

𝑑∑︁
𝑖,𝛼,𝑗,𝛽,𝑘,𝑚=1

(︂{︂
𝜕𝐴𝑖𝛼𝑗𝛽

𝜕𝜂𝑘,𝑚

(︀
∇𝒫ℎv(𝑡)e𝛾𝑡 + 𝜏(∇W(𝑡)−∇𝒫ℎv(𝑡))e𝛾𝑡

)︀
× 𝜕𝑚

(︀
𝜕𝑡

[︀
𝒫ℎv𝑘(𝑡)e𝛾𝑡

]︀
+ 𝜏𝜕𝑡

[︀
(W𝑘(𝑡)− 𝒫ℎv𝑘(𝑡))e𝛾𝑡

]︀)︀}︀
𝜕𝑗(W − 𝒫ℎv)𝛽 , 𝜕𝑗𝜙𝛼

)︂
𝐿2

d𝑥d𝜏

:= 𝑇1 + 𝑇2 + 𝑇3.

Taking 𝜙(𝑡) = Ẇ(𝑡)− 𝒫ℎv̇(𝑡), we have

𝑇1 . ℎ
𝑟‖v̇(𝑡)‖𝐻𝑟+1

⃦⃦⃦
∇
(︁
Ẇ(𝑡)− 𝒫ℎv̇(𝑡)

)︁⃦⃦⃦
𝐿2

𝑇2 .

(︂
‖∇𝒫ℎv̇(𝑡)‖𝐿∞ + ‖∇(v̇(𝑡)− 𝒫ℎv̇(𝑡))‖𝐿∞ + ‖∇𝒫ℎv(𝑡)‖𝐿∞ + ‖∇(v(𝑡)− 𝒫ℎv(𝑡))‖𝐿∞

)︂
× ‖∇v(𝑡)−∇𝒫ℎv(𝑡)‖𝐿2

⃦⃦⃦
∇
(︁
Ẇ(𝑡)− 𝒫ℎv̇(𝑡)

)︁⃦⃦⃦
𝐿2

. ℎ𝑟‖v(𝑡)‖𝐻𝑟+1

⃦⃦⃦
∇
(︁
Ẇ(𝑡)− 𝒫ℎv̇(𝑡)

)︁⃦⃦⃦
𝐿2
.

𝑇3 .

(︂
‖∇𝒫ℎv̇(𝑡)‖𝐿∞ +

⃦⃦⃦
∇
(︁
Ẇ(𝑡)− 𝒫ℎv̇(𝑡)

)︁⃦⃦⃦
𝐿∞

+ ‖∇𝒫ℎv(𝑡)‖𝐿∞ + ‖∇(W(𝑡)− 𝒫ℎv(𝑡))‖𝐿∞

)︂
× ‖∇(W(𝑡)− 𝒫ℎv(𝑡))‖𝐿2

⃦⃦⃦
∇
(︁
Ẇ(𝑡)− 𝒫ℎv̇(𝑡)

)︁⃦⃦⃦
𝐿2

. ℎ𝑟‖v(𝑡)‖𝐻𝑟+1

(︂
‖∇𝒫ℎv̇(𝑡)‖𝐿∞ +

⃦⃦⃦
∇
(︁
Ẇ(𝑡)− 𝒫ℎv̇(𝑡)

)︁⃦⃦⃦
𝐿∞

+ ‖∇𝒫ℎv(𝑡)‖𝐿∞

+ ‖∇(W(𝑡)− 𝒫ℎv(𝑡))‖𝐿∞

)︂
×
⃦⃦⃦
∇
(︁
Ẇ(𝑡)− 𝒫ℎv̇(𝑡)

)︁⃦⃦⃦
𝐿2

. ℎ𝑟‖v(𝑡)‖𝐻𝑟+1

(︂
‖∇v̇(𝑡)‖𝐿∞ + ‖∇(v̇(𝑡)− 𝒫ℎv̇(𝑡))‖𝐿∞ + ‖∇v(𝑡)‖𝐿∞ + ‖∇(v(𝑡)− 𝒫ℎv(𝑡))‖𝐿∞

)︂
×
⃦⃦⃦
∇
(︁
Ẇ(𝑡)− 𝒫ℎv̇(𝑡)

)︁⃦⃦⃦
𝐿2

+ ℎ𝑟− 𝑑
2 ‖v(𝑡)‖𝐻𝑟+1‖∇(W(𝑡)− 𝒫ℎv(𝑡))‖𝐿2

⃦⃦⃦
∇
(︁
Ẇ(𝑡)− 𝒫ℎv̇(𝑡)

)︁⃦⃦⃦
𝐿2

+ ℎ𝑟− 𝑑
2 ‖v(𝑡)‖𝐻𝑟+1

⃦⃦⃦
∇
(︁
Ẇ(𝑡)− 𝒫ℎv̇(𝑡)

)︁⃦⃦⃦2

𝐿2

. ℎ𝑟‖v(𝑡)‖𝐻𝑟+1

⃦⃦⃦
∇
(︁
Ẇ(𝑡)− 𝒫ℎv̇(𝑡)

)︁⃦⃦⃦
𝐿2

+ ℎ𝑟− 𝑑
2 ‖v(𝑡)‖𝐻𝑟+1‖∇(W(𝑡)− 𝒫ℎv(𝑡))‖𝐿2

⃦⃦⃦
∇
(︁
Ẇ(𝑡)− 𝒫ℎv̇(𝑡)

)︁⃦⃦⃦
𝐿2
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+ ℎ𝑟− 𝑑
2 ‖v(𝑡)‖𝐻𝑟+1

⃦⃦⃦
∇
(︁
Ẇ(𝑡)− 𝒫ℎv̇(𝑡)

)︁⃦⃦⃦2

𝐿2
.

Combining the estimates for 𝑇1, 𝑇2 and 𝑇3, we have∫︁ 1

0

𝑎̃
(︁
𝒫ℎv(𝑡)e𝛾𝑡 + 𝜏(W(𝑡)− 𝒫ℎv(𝑡))e𝛾𝑡; Ẇ(𝑡)− 𝒫ℎv̇(𝑡),𝜙

)︁
d𝜏

. ℎ𝑟(‖v(𝑡)‖𝐻𝑟+1 + ‖v̇‖𝐻𝑟+1)
⃦⃦⃦
∇
(︁
Ẇ − 𝒫ℎv̇(𝑡)

)︁⃦⃦⃦
𝐿2

(B.10)

+ ℎ𝑟− 𝑑
2 ‖v‖𝐻𝑟+1‖∇(W(𝑡)− 𝒫ℎv(𝑡))‖𝐿2

⃦⃦⃦
∇
(︁
Ẇ(𝑡)− 𝒫ℎv̇(𝑡)

)︁⃦⃦⃦
𝐿2

+ ℎ𝑟− 𝑑
2 ‖v‖𝐻𝑟+1

⃦⃦⃦
∇
(︁
Ẇ(𝑡)− 𝒫ℎv̇(𝑡)

)︁⃦⃦⃦2

𝐿2
.

Applying the strong ellipticity condition (S2b) on the left-hand side of (B.10), we have

𝑀1

⃦⃦⃦
∇
(︁
Ẇ(𝑡)− 𝒫ℎv̇(𝑡)

)︁⃦⃦⃦2

𝐿2
. ℎ𝑟(‖v(𝑡)‖𝐻𝑟+1 + ‖v̇‖𝐻𝑟+1)

⃦⃦⃦
∇
(︁
Ẇ − 𝒫ℎv̇(𝑡)

)︁⃦⃦⃦
𝐿2

+ ℎ𝑟− 𝑑
2 ‖v‖𝐻𝑟+1‖∇(W(𝑡)− 𝒫ℎv(𝑡))‖𝐿2

⃦⃦⃦
∇
(︁
Ẇ(𝑡)− 𝒫ℎv̇(𝑡)

)︁⃦⃦⃦
𝐿2

+ ℎ𝑟− 𝑑
2 ‖v‖𝐻𝑟+1

⃦⃦⃦
∇
(︁
Ẇ(𝑡)− 𝒫ℎv̇(𝑡)

)︁⃦⃦⃦2

𝐿2
.

Dividing by
⃦⃦⃦
∇
(︁
Ẇ(𝑡)− 𝒫ℎv̇(𝑡)

)︁⃦⃦⃦
𝐿2

on both sides yields

𝑀1

⃦⃦⃦
∇
(︁
Ẇ(𝑡)− 𝒫ℎv̇(𝑡)

)︁⃦⃦⃦
𝐿2
. ℎ𝑟(‖v(𝑡)‖𝐻𝑟+1 + ‖v̇‖𝐻𝑟+1) + ℎ𝑟− 𝑑

2 ‖v‖𝐻𝑟+1‖∇(W(𝑡)− 𝒫ℎv(𝑡))‖𝐿2

+ ℎ𝑟− 𝑑
2 ‖v‖𝐻𝑟+1

⃦⃦⃦
∇
(︁
Ẇ(𝑡)− 𝒫ℎv̇(𝑡)

)︁⃦⃦⃦
𝐿2
.

Since 𝑟 > 𝑑
2 , we can choose ℎ sufficiently small such that the last term on the right-hand side can be absorbed

into the term on the left-hand side. This yields⃦⃦⃦
∇
(︁
Ẇ(𝑡)− 𝒫ℎv̇(𝑡)

)︁⃦⃦⃦
𝐿2
. ℎ𝑟(‖v(𝑡)‖𝐻𝑟+1 + ‖v̇(𝑡)‖𝐻𝑟+1). (B.11)

Again, by the approximation property of 𝒫ℎ, we have, for each 𝑡 ∈ [0, 𝑇 ],

‖∇(v̇(𝑡)− 𝒫ℎv̇(𝑡))‖𝐿2 . ℎ𝑟‖v̇(𝑡)‖𝐻𝑟+1 ,
𝑑

2
< 𝑟 ≤ min(𝑝,𝑚− 1). (B.12)

It follows from the triangle inequality that, for each 𝑡 ∈ [0, 𝑇 ],⃦⃦⃦
∇Ẇ(𝑡)−∇v̇(𝑡)

⃦⃦⃦
𝐿2
. ℎ𝑟(‖v(𝑡)‖𝐻𝑟+1 + ‖v̇(𝑡)‖𝐻𝑟+1),

𝑑

2
< 𝑟 ≤ min(𝑝,𝑚− 1). (B.13)

By a similar argument as in the previous section, we can show that there exists a constant 𝑐1 > 0 such that⃦⃦⃦
∇Ẇ(𝑡)

⃦⃦⃦
𝐿∞

≤ 𝑐1. (B.14)

B.3. 𝐿2 bounds on (v − W),
(︁
v̇ − Ẇ

)︁
and

(︁
v̈ − Ẅ

)︁
It was proved by Dobrowolski and Rannacher in [33] that for each 𝑡 ∈ [0, 𝑇 ],

‖v(𝑡)−W(𝑡)‖𝐿2 ≤ 𝐶𝑟(v)ℎ𝑟+1,
𝑑

2
< 𝑟 ≤ min(𝑝,𝑚− 1). (B.15)
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We shall focus on proving the 𝐿2 error bound of the time derivative using a duality argument in this section.
Consider the following boundary value problem: for a given g ∈ 𝐿2, solve 𝜓 ∈ 𝐻1

0 such that

𝑎̃(v;𝜓,𝜑) = (g,𝜑)𝐿2 for all 𝜑 ∈ 𝐻1
0 , (B.16)

where v is the solution of (5)–(7) and

𝑎̃(v;𝜓,𝜑) =
𝑑∑︁

𝑖,𝛼,𝑗,𝛽=1

(𝐴𝑖𝛼𝑗𝛽(∇v)𝜕𝛽𝜓, 𝜕𝛼𝜑𝑖)𝐿2 . (B.17)

Since 𝐴𝑖𝛼𝑗𝛽(∇v) ∈ 𝑊 1,∞ provided that 𝐴𝑖𝛼𝑗𝛽 is sufficiently smooth and ∇𝑣 ∈ 𝐶2,𝛼 (cf. Rem. 4.4), the
adjoint problem (B.16) has a unique solution which satisfies the following elliptic regularity conditions, cf.
Theorems 1.1 and 2.6 of Chapter 8 in [37],

‖𝜓‖𝐻2 ≤ 𝑐(‖𝜓‖𝐿2 + ‖g‖𝐿2) (B.18)

for some positive constant 𝑐. Taking 𝜑 = 𝜓 ∈ 𝐻1
0 in (B.17) and applying the coercive condition (S2b), we have

𝑀1‖∇𝜓‖2𝐿2 ≤ ‖g‖𝐿2‖𝜓‖𝐿2 . (B.19)

Applying Poincaré’s inequality in (B.19), we deduce that

‖𝜓‖𝐿2 ≤𝑀−1
1 𝐶poin‖g‖𝐿2 .

Thus
‖𝜓‖𝐻2 ≤ 𝑐‖g‖𝐿2 , (B.20)

for some positive constant 𝑐. The corresponding discrete problem is formulated as: find 𝜓ℎ ∈ 𝒱ℎ such that

𝑎̃(v;𝜓ℎ,𝜑) = (g,𝜑)𝐿2 , for all 𝜑 ∈ 𝒱ℎ. (B.21)

It is known that we have, cf., e.g. [33],

‖𝜓 −𝜓ℎ‖𝐿2 + ℎ‖𝜓 −𝜓ℎ‖𝐻1 ≤ 𝐶ℎ𝑟+1‖𝜓‖𝐻𝑟+1 , (B.22)

for some constant 𝐶. Let g = v̇ − Ẇ, then (B.16) becomes

𝑎̃(v,𝜓,𝜑) =
(︁
v̇ − Ẇ,𝜑

)︁
𝐿2
. (B.23)

Plugging 𝜑 = v̇ − Ẇ into (B.23), we obtain⃦⃦⃦
v̇ − Ẇ

⃦⃦⃦2

𝐿2
= 𝑎̃

(︁
v;𝜓, v̇ − Ẇ

)︁
. (B.24)

Using (S2a) and the definition of the elliptic projection, we have,

𝑎̃
(︁
v;𝜓, v̇ − Ẇ

)︁
= 𝑎̃

(︁
v;𝜓 −𝜓ℎ, v̇ − Ẇ

)︁
+ 𝑎̃
(︁
v;𝜓ℎ, v̇ − Ẇ

)︁
= 𝑎̃

(︁
v;𝜓 −𝜓ℎ, v̇ − Ẇ

)︁
+ 𝑎̃
(︁
v; v̇ − Ẇ,𝜓ℎ

)︁
= 𝑎̃

(︁
v;𝜓 −𝜓ℎ, v̇ − Ẇ

)︁
+ 𝑎̃
(︁
W; Ẇ,𝜓ℎ

)︁
− 𝑎̃
(︁
v; Ẇ,𝜓ℎ

)︁
. (B.25)
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By (iii,a), (B.20) and (B.22), we have⃒⃒⃒
𝑎̃
(︁
v;𝜓 −𝜓ℎ, v̇ − Ẇ

)︁⃒⃒⃒
≤ 𝐾𝛿

⃦⃦⃦
∇
(︁
v̇ − Ẇ

)︁⃦⃦⃦
𝐿2
‖∇(𝜓 −𝜓ℎ)‖𝐿2

≤ 𝐾𝛿𝐶𝑟(v)ℎ𝑟 · 𝐶ℎ‖𝜓‖𝐻2 (by (iii,a) and (B.22))

≤ 𝐾𝛿𝑐𝐶𝑟(v)𝐶ℎ𝑟+1
⃦⃦⃦
v̇ − Ẇ

⃦⃦⃦
𝐿2

(by (B.20)).

For the remaining terms in (B.25), we observe that⃒⃒⃒
𝑎̃
(︁
W; Ẇ,𝜓ℎ

)︁
− 𝑎̃
(︁
v; Ẇ,𝜓ℎ

)︁⃒⃒⃒
≤
⃒⃒⃒
𝑎̃
(︁
W; Ẇ,𝜓ℎ −𝜓

)︁
− 𝑎̃
(︁
v; Ẇ,𝜓ℎ −𝜓

)︁⃒⃒⃒
+
⃒⃒⃒
𝑎̃
(︁
W; Ẇ − v̇,𝜓

)︁
− 𝑎̃
(︁
v; Ẇ − v̇,𝜓

)︁⃒⃒⃒
+ |𝑎̃(W; v̇,𝜓)− 𝑎̃(v; v̇,𝜓)|

:= 𝑇4 + 𝑇5 + 𝑇6.

By Lipschitz continuity of 𝐴𝑖𝛼𝑗𝛽 , we have

𝑇4 ≤ 𝐿𝛿‖∇(W − v)‖𝐿2

⃦⃦⃦
∇Ẇ

⃦⃦⃦
𝐿∞
‖∇(𝜓ℎ −𝜓)‖𝐿2

≤ 𝐶𝑟(v)ℎ𝑟𝑐1‖∇(𝜓ℎ −𝜓)‖𝐿2 ( by (iii,a) and (iii,c))
≤ 𝐶𝑟(v)𝑐1ℎ𝑟 · 𝐶ℎ‖𝜓‖𝐻2 (by (B.22))

≤ 𝑐𝐶𝐶𝑟(v)𝑐1ℎ𝑟+1
⃦⃦⃦
Ẇ − v̇

⃦⃦⃦
𝐿2

(by (B.20)).

Similarly, we have

𝑇5 ≤ 𝐿𝛿‖∇(W − v)‖𝐿∞

⃦⃦⃦
∇
(︁
Ẇ − v̇

)︁⃦⃦⃦
𝐿2
‖∇𝜓‖𝐿2 .

Following the analysis in [38] and Chapter 8 of [39], it can be shown that

‖v −W‖𝑊 1,∞ ≤ 𝑐(v)ℎ𝑟, (B.26)

where 𝑐(v) is a positive constant depending on the exact solution v. Therefore, we can bound 𝑇5 by

𝑇5 ≤ 𝐿𝛿𝑐(v)ℎ𝑟𝐶𝑟(v)ℎ𝑟‖𝜓‖𝐻2 ≤ 𝐿𝛿𝑐(v)𝐶𝑟(v)𝑐ℎ𝑟+1
⃦⃦⃦
Ẇ − v̇

⃦⃦⃦
𝐿2
, (B.27)

for any 𝑟 ≥ 1 provided that ℎ is sufficiently small. We bound 𝑇6 by

𝑇6 = |𝑎̃(W; v̇,𝜓)− 𝑎̃(v; v̇,𝜓)|

≤
⃒⃒⃒⃒ 𝑑∑︁

𝑖,𝛼,𝑗,𝛽,𝑘,𝛾=1

(︂
𝜕𝛾(W𝑘 − v𝑘)𝜕𝛽v̇𝑗

𝜕𝐴𝑖𝛼𝑗𝛽

𝜕𝜂𝑘𝛾
(∇v), 𝜕𝛼𝜓𝑖

)︂⃒⃒⃒⃒

+
⃒⃒⃒⃒ 𝑑∑︁

𝑖,𝛼,𝑗,𝛽,𝑘,𝛾,𝑙,𝛿=1

(︂
𝜕𝛿(W𝑙 − v𝑙)𝜕𝛾(W𝑘 − v𝑘)𝜕𝛽v̇𝑗

∫︁ 1

0

𝜕2𝐴𝑖𝛼𝑗𝛽

𝜕𝜂𝑙𝛿𝜕𝜂𝑘𝛾
(∇v + 𝜏∇(W − v)) d𝜏, 𝜕𝛼𝜓𝑖

)︂⃒⃒⃒⃒
:= 𝑏(W,v; v̇,𝜓) + 𝑑(W,v; v̇,𝜓).
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To ensure that ∇W ∈ 𝒵𝛿, we take ℎ sufficiently small. By the convexity of 𝒵𝛿 and ℳ𝛿, we know that
∇v(𝑥) + 𝜏∇(W(𝑥)− v(𝑥)) ∈ ℳ𝛿 for 𝑥 ∈ Ω̄. Since 𝐴𝑖𝛼𝑗𝛽 is sufficiently smooth (in particular twice contin-
uously differentiable on ℳ𝛿), we have

𝑑(W,v; v̇,𝜓) ≤ 𝐶𝐴‖∇(W − v)‖2𝐿∞‖∇v̇‖𝐿2‖∇𝜓‖𝐿2

≤ 𝐶𝐴𝑐(v)2ℎ2𝑟‖∇v̇‖𝐿2‖∇𝜓‖𝐿2 (by (B.26))

≤ 𝐶𝐴𝑐(v)2ℎ2𝑟‖∇v̇‖𝐿2‖𝜓‖𝐻2

≤ 𝐶𝐴𝑐(v)2𝑐ℎ2𝑟‖∇v̇‖𝐿2

⃦⃦⃦
Ẇ − v̇

⃦⃦⃦
𝐿2

(by (B.20))

≤ 𝐶ℎ𝑟+1
⃦⃦⃦
Ẇ − v̇

⃦⃦⃦
𝐿2
, for 𝑟 ≥ 1.

For the estimation of 𝑏(W,v; v̇,𝜓), we apply integration by parts and the fact that 𝒱ℎ ⊂ 𝐻1
0 to obtain

𝑏(W,v; v̇,𝜓) =
⃒⃒⃒⃒ 𝑑∑︁

𝑖,𝛼,𝑗,𝛽,𝑘,𝛾=1

(︂
𝜕𝛾

[︂
𝜕𝛽v̇𝑗

𝜕𝐴𝑖𝛼𝑗𝛽

𝜕𝜂𝑘𝛾
(∇v), 𝜕𝛼𝜓𝑖

]︂
(W𝑘 − v𝑘)

)︂⃒⃒⃒⃒
≤ 𝐶‖W − v‖𝐿2‖v̇‖𝑊 2,∞‖v‖𝑊 2,∞‖𝜓‖𝐻2

≤ 𝐶ℎ𝑟+1
⃦⃦⃦
Ẇ − v̇

⃦⃦⃦
𝐿2

(by (B.20) and (B.15)).

Combining the above estimates for 𝑇4, 𝑇5 and 𝑇6, we have⃦⃦⃦
Ẇ − v̇

⃦⃦⃦
𝐿2
≤ 𝐶𝑟(v)ℎ𝑟+1, (B.28)

for some positive constant 𝐶𝑟(v).
By a similar argument, we can easily show that Ẇ(𝑡) is differentiable with respect to 𝑡 and a similar 𝐿2 error

estimate for Ẅ − v̈. The proof of this estimate can be found in [40,41]. We omit the details here.
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[27] C. Ortner and E. Süli, Discontinuous Galerkin finite element approximation of nonlinear second-order elliptic and hyperbolic
systems. Tech. report, Oxford University Computing Laboratory, London (2006).

[28] K. Zhang, On the coercivity of elliptic systems in two-dimensional spaces. Bull. Aust. Math. Soc. 54 (1996) 423–430.
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