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DISCONTINUOUS GALERKIN DISCRETIZATION IN TIME OF SYSTEMS OF
SECOND-ORDER NONLINEAR HYPERBOLIC EQUATIONS

A1L1 SHAO*

Abstract. In this paper we study the finite element approximation of systems of second-order nonlin-
ear hyperbolic equations. The proposed numerical method combines a hp-version discontinuous Galerkin
finite element approximation in the time direction with an H'(2)-conforming finite element approxi-
mation in the spatial variables. Error bounds at the temporal nodal points are derived under a weak
restriction on the temporal step size in terms of the spatial mesh size. Numerical experiments are
presented to verify the theoretical results.
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1. INTRODUCTION

This paper aims to show how a discontinuous Galerkin time-stepping method can be used to approximate
solutions of second-order quasilinear hyperbolic systems, which arise in a range of relevant applications, namely
elastodynamics and general relativity. There has been a substantial body of research devoted to both the
theoretical and numerical analysis of solutions of second-order hyperbolic equations. In particular, Kato [1]
established the existence of solutions to the initial-boundary-value problem for quasilinear hyperbolic equations
using semigroup theory. Building on Kato’s work [1], Hughes et al. [2] analyzed the existence, uniqueness and
well-posedness for a more general class of quasilinear second-order hyperbolic systems on a short time interval.
They also applied these results to elastodynamics and Einstein’s equations for the Lorentz metric g, g on R?,
0 < @, < 3. In contrast to the semigroup approach, Dafermos and Hrusa [3] used energy methods to establish
local in time existence of smooth solutions to initial-boundary-value problems for such hyperbolic systems on
a bounded domain Q C R? where d = 1,2, 3. In the case of d = 3, Chen and Von Wahl proved an existence
theorem for similar initial-boundary-value problems in [4]. Concerning numerical approximations of second-order
hyperbolic equations, fully discrete schemes based on Galerkin finite element approximations in space for the
linear case can be found in [5-7]. These time-discrete schemes are generated from the rational approximations
to either the cosine or the exponential and were later generalized by Bales and Dougalis [8,9] to approximate
nonlinear hyperbolic problems. In [9], Bales considered a scalar nonlinear wave equation and introduced a class
of single-step fully discrete schemes, which have temporal accuracy up to fourth-order. Dupont [10] and Dendy
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[11] also showed optimal-order L? and H'! error estimates for scalar nonlinear wave equations in semi-discrete
Galerkin schemes. Makridakis [12] proved optimal L? error estimates for both a semi-discrete and a class of fully
discrete schemes for systems of second-order nonlinear hyperbolic equations. In [13], Ortner and Siili developed
the convergence analysis of semidiscrete discontinuous Galerkin finite element approximations of second-order
quasilinear hyperbolic systems. Hockbruck and Maier [14] proved error estimates for space discretizations of
a general class of first- and second-order quasilinear wave-type problems. In this paper, we will focus on the
equations of nonlinear elastodynamics, though the ideas and techniques can be easily generalized to other
second-order nonlinear hyperbolic equations, for instance, the Einstein’s equations, provided the assumptions
on the nonlinearity assumed herein are satisfied.

We begin by formulating the time-dependent problem resulting from nonlinear elasticity. Let £2 be a bounded
domain in R? for d = 1,2,3, with sufficiently smooth boundary 99, and let 0 < T < oco. We consider the
following initial-boundary-value problem:

d
iii(2,6) = > OaSia(Vu(z,t)) = fi(x,t) in Q x (0,7, (1)
a=1
foreachi =1,...,d, where u = [uq,... ,ud]T represents the displacement field and f = [fy, ..., fd]T is the given

body force which is sufficiently smooth, and

u(z,t) =0 on 90 x (0,7, (2)

u(z,0) = wo(z) € [HA(Q)] N [E™Q), a(z,0) = w(z) € [H™ ()], (3)

are prescribed boundary and initial conditions, and m is an integer which will be specified later. Here the dots
over u denote differentiation with respect to time ¢, and J, is the partial derivative with respect to z. S is
a given smooth d x d matrix-valued function defined on R?*¢ which characterizes the Piola-Kirchhoff stress
tensor. For a complete discussion of the relevant mechanical background, we refer the reader to [15,16].

For hyperelastic materials, S is the gradient of a scalar-valued ‘stored energy function’. Hence, if

0
Aiags(n) i= 5 —Sia(n), 1 € R4,
1Nip
the elasticities Ajqjp satisfy
Aza]ﬁ = Ajﬁioca 1 < ia Oéajaﬁ < d. (Sla‘)

We assume that A;, ;g satisfy the strict Legendre-Hadamard condition

d
> Aiajs(m)Cala&ils = Mo|¢I?[€]* for all n€ O and ¢, & € RY, (S1b)

,a,8,j=1

for some real number My > 0, where O is the domain of definition of A;4;3 and here | - | denotes the Euclidean
norm on R?. This condition (S1b) is indeed satisfied by the constitutive relations of the standard material
models on sizeable portions of the displacement gradient space [3].

The initial-boundary-value problem (1)—(3) does not have a global smooth solution as a result of breaking
waves and shocks no matter how smooth ug, u; and f are. It was proved by Dafermos and Hrusa [3] that there
exists a unique local solution to the problem (1)—(3) provided that (Sla,b) are satisfied. We summarize this
existence result in the following theorem.

Theorem 1.1. Let Q be a bounded domain in R? with smooth boundary 0. Assume that (Sla,b) hold, that
Aiajp and £ are sufficiently smooth, and that uy € [H™(Q)]* anduy € [Hm_l(Q)]d for some integer m > [2]+3.
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Assume further that the initial values of the time derivatives of u up to order m — 1 vanish on 0X) and that
Vuo[Q] C O. Then, there exists a finite time T > 0 for which (1)~(3) has a unique solution u such that

we (e (0,7): 1 @)). (4)
s=0
By the Sobolev embedding theorem, (4) implies that
ue [CP([0,T] x Q)] ﬂcﬁ *(lo,13:¢2(@)"),

where § = m — [%] — 1. Note that the assumption on m implies that § > 2. We shall assume throughout the
paper that the above assumptions are satisfied for m sufficiently large so that a unique solution of (1) exists.
In fact, by Theorem 1.1, this unique solution satisfies

ue ! ([O,T], [Hmfl(Q)]d) N C([O,T], [H’"(Q)}d)

There have been a few contributions to the literature discussing the numerical approximations of (1)—(3). In
particular, Makridakis [12] proved an optimal L? error estimate for the classical conforming method under the
assumption that p > %, where p is the polynomial degree in space, and for appropriate initial approximations.
In [13], Siili and Ortner showed an optimal error estimate based on the broken H! norm for the semi-discrete
discontinuous Galerkin finite element approximations of a similar problem, but with mixed Dirichlet-Neumann
boundary conditions and weaker Lipschitz assumptions on the nonlinear term. Following [8,9], Makridakis also
proposed and analyzed two different fully discrete schemes to approximate (1)—(3). The first scheme is based on
second-order accurate approximations of the cosine while the second group of fully discrete methods that have
temporal order of accuracy up to fourth-order are based on rational approximations of the exponential function.
Discontinuous Galerkin in time methods, which are the focus of this paper are, however, arbitrarily high-order
accurate. In contrast with the above-mentioned finite difference time integration schemes, for which the solution
at the current time step depends on the previous steps, this discontinuous-in-time scheme on the time interval
(tn,tn+1] only depends on the solution at t,,. Since the local polynomial degree is free to vary between time
steps, this method is also naturally suited for an adaptive choice of the time discretization parameters. To the
best of our knowledge, the analysis of a fully discrete scheme based on such discontinuous-in-time discretization
of second-order quasilinear hyperbolic systems has not been previously considered in the literature.

Discontinuous Galerkin methods [17,18] have been widely and successfully used for the numerical approxima-
tions of PDEs. They have been first introduced by Reed and Hill [17] to solve the hyperbolic neutron transport
equations. Simultaneously, but independently, they were proposed as non-standard numerical schemes for solv-
ing elliptic and parabolic problems by Babuska & Zldmal [19], Baker [20], Wheeler [21], Arnold [22] and Riviere
[23] etc. In recent years, there has been considerable interest in applying discontinuous Galerkin finite element
methods to nonlinear hyperbolic PDEs. In particular, Antonietti et al. [24] developed a high-order discontinu-
ous Galerkin scheme for the spatial discretization of nonlinear acoustic waves. Muhr et al. [25] also proposed
and analyzed a hybrid discontinuous Galerkin coupling approach for the semi-discrete nonlinear elasto-acoustic
problem. However, there has been little work on the construction and mathematical analysis of fully discrete
discontinuous Galerkin schemes for second-order nonlinear hyperbolic PDEs. In this article, a high-order dis-
continuous Galerkin finite element method for the time integration will be proposed and analyzed. To construct
such a scheme, we first discretize with respect to the spatial variables by the means of a Galerkin finite element
method, which results in a system of ordinary differential equations (ODEs) in time; then we discretize the
resulting ODE system using discontinuous Galerkin method in time (e.g. see [26]). The resulting weak formula-
tion in time is based on weakly imposing the continuity of the approximate displacements and velocities between
time steps by penalizing jumps in these quantities in the definition of the numerical method.



2258 A. SHAO

The paper is structured as follows. The next section sets up the assumptions required for the numerical
approximation. Section 3 dicusses the construction of a fully discrete scheme for the approximations of (1)-
(3) using a time-discontinuous Galerkin method. In Section 4, we perform the convergence analysis of the
discontinuous-in-time scheme under the hypotheses (S2a,b). Building on the work of Makridakis [12], this
convergence proof is based on Banach’s fixed point theorem and a nonlinear elliptic projection operator whose
approximation properties will be analyzed in Appendix B. Finally, numerical experiments are presented in
Section 5 to verify the theoretical results.

2. DEFINITION AND ASSUMPTIONS

In order to find a numerical approximation to the solution of the hyperbolic system (1)—(3), we discretize it
in space using a continuous Galerkin method, and then apply a discontinuous Galerkin method in time. For the
sake of showing the well-posedness of the resulting numerical method, we consider the substitution u = v,
with v > 0, resulting in the equivalent equation:

d
By, t) + 2v0 (x,t) + Y i (z,t) — e Z 90 Sia (e7'VV(z, 1)) = fi(z,t) in Q x (0,7, (5)
a=1
for each i = 1,...,d, where f = e 'f, v > 0 is a fixed constant,
v(z,t) =0 on 02 x (0,71, (6)
v(z,0) = vo(w) € [H™(@)' N [H}@)]", ¥(2,0) = vi(x) € [H""(@)]", (7)

where vo(z) = up(z) and vi(x) = ui(z) — yug(z). From now on, we focus on the system of equations (5)—(7)
only. By Theorem 1.1, we have

v=uee ! ([O,T], [Hmfl(Q)]d) N C([O,T], [Hm(Q)]d).

This shows that the initial conditions stated as (7) in the above definition are meaningful.
Before describing its discretization, we first fix the notation. We use the symbol := to indicate an equality in
which the left hand side is defined by the right hand side. We denote by (-, ) ;> the inner product in L*() and

[L%()] ?. Following standard notational conventions, we shall write W*® := [W>?(Q)]% for s € Z, p € RTU{oo},
and put H* := W*2. Similarly, H} := [H2(2)]? and L2 := [L2(2)]".
We define the following time-dependent semilinear form

d
a(v(t), @) == 3 e (Sia (VY1) utpi) 12y Tor @ € Hy.

i,a=1

Since we also need to approximate the gradient of the solution Vu = Vv, we assume that there exists an
open convex set M with M C O such that Vu([Q X [O,TH) C M. If the distance of M from 00 is J, we
consider the set

M = {WGRdXdi Jnf [y — ol Sé}, (8)

where | - | denotes the Frobenius norm on R?*¢ defined, for n € R4*4 by |n| = (n: 77)%. Notice that the set Mg
is convex (cf. [27], Lem. 1). Since we only require S to be locally Lipschitz continuous in Mj, we define the
local Lipschitz constant of S in M by

d 2
K= sup | > |Aiajsm)* ] , (9)

i,0,5,8=1
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and the local Lipschitz constant of the fourth-order elasticity tensor A = V.S by

d 2
B 2
Ls = sup |,'71 _ ,,72| 1 Z |Amjﬁ(771) - Aiajﬁ(n2)| . (10)
n1,m2EMs, m#n2 i,0,5,8=1

Since the set M is a compact subset of R4*? for every § > 0 and A;q;p is sufficiently smooth (and in particular
continuously differentiable on My), it follows that K5 and Ls are finite. We also define

Zs = {@ e 1@ o(x) EM57x€§}. (11)

This set Z; is expected to contain the gradients of approximations of u. We define

d
&(90,(75717[)) = Z (Aiajﬁ(vcp)aﬂ(bjaaawi)[,% for ‘quba":b S H(} (12)

i,j,8=1
By the definition of Z5 and (Sla), we have
a(p; ¢, ) = a(p;h, @), for @, ¢, 9 € Hy, Ve € Zs. (S2a)
We also assume that there exists a real number M; > 0 such that
a(p; d,¢) = Mi|Vl|l72, for ¢ € Hy, Vo € Z;. (S2b)
Note that (S2b) is a stronger assumption than (S1b). In general, (S1b) does not imply (S2b) for d > 1. We refer

the reader to [28-30] for counterexamples. In fact, (S1b) only implies the following Garding’s inequality:

- 1
i(3 ¢, @) = SMolIV 72 — pll¢llze  for 1= 0,0, ¢ € Hy, Vop € Z5, (13)

¢f. Theorem 6.5.1 in [31] and Lemma 5 in [27]. We note that the techniques of this paper can be extended so
that our results are still valid under this weak condition.

3. NUMERICAL SCHEME

3.1. Semi-discrete approximation

We shall discretize the problem (5)—(7) in space using a continuous Galerkin method. For the spatial dis-
cretization parameter h € (0,1), we define V), to be a given family of finite-dimensional subspaces of Hi N H™
with polynomial degree p > 1. We shall assume that the triangulation {75}, of © into d-dimensional sim-
plices, which are possibly curved along the boundary 02, is shape-regular and quasi-uniform. It follows from
Bernardi’s work [32] that

inf {|v—vallze +Allv = vallm} < Ch Y v|lgrsr, 1<r<min(p,m—1), ve H"NH}. (i)
vneEVh

Further, the following inverse inequalities follow directly from the quasi-uniformity of the triangulation.
There exists a positive constant Cy such that, for every v, € Vp,

IVvh|e < C’OllevhHLz and  ||Vvp] e < C’ohlevhHLoo. (ii,a)
There exists a positive constant C; such that, for every v, € Vp,

IVVhlle < CLA™ 2 ||Vvallre  and ||Vl < C1h™ % ||va|fe. (ii,b)
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With the above assumptions, we are ready to construct the continuous-in-time finite element approximation
v, of v. The semi-discrete approximation v,: [0,7] — V} of the solution of (5)—(7) satisfies the following
initial-value problem in Vj:

(n(t), @) 2 + a(vi(t), ) + 27 (Vi (1), @) 2 + 72 (Vi (1), ) 2 = (f (1), so) L (14)
forall p € V,,0 <t < T,
Vh(O) = Vo,n € Vi, \"h(O) =Vip € Vh, (15)

where v j, and vy j, are specially chosen initial values. It was proved by Makridakis [12] that the semi-discrete
problem (14), (15) with v = 0 (the semi-discrete form based on a continuous finite element approximation of
the original problem (1)—(3)) has a locally unique solution and that the optimal-order L? error estimate

max [v(t) = va(t)12 < Cv)R"! (16)

holds for sufficiently smooth initial data. Here p is the polynomial degree of the elements of the finite-dimensional
space Vy, which satisfies p > g. The proofs of these assertions for v > 0 are completely analogous and are

therefore omitted.

3.2. Discontinuous-in-time fully discrete scheme

In this section we shall construct a fully discrete approximation of the solution of (5)—(7) by applying a
discontinuous Galerkin method in time. For this purpose, we partition the time interval I = (0,7] into N
sub-intervals I,, = (t,,—1,t,] having length k,, = ¢, —t,,—1 for n =1,2,..., N, with t, = 0 and ¢ty = T. To deal
with the discontinuity at each ¢,, in the numerical approximation to v, we introduce the jump operator

Vil, =va(tt) = va(ty) forn=0,1,...,N -1,

where
vh(tff) = lim vp(tn, +¢) forn=0,1,...,N —1.
e—0
By convention, we assume that v, (07) = v, and v, (07) = vy . Moreover, we define v,tn = v (£F) and

v, ,, = Vi(t;,). To deal with the nonlinear term, we apply Taylor’s theorem with an integral remainder to have

d 1
Sia (Vvh (t)e’yt) = Sia (0) + Z Bgvhyj (t)e'yt / Aiaj[-} (TVvh(t)e"’t) dr.
5,68=1 0

By assuming that S(0) = 0, we can write the semilinear term as

tn d
[ 5 st s

tn-1 4 a=1

_ /tt" 3 (aﬁvw(t) /O Mg (Fva ()T dT,Ba\'IM(t)> dt

e A= L

tn

1 d
_ / S (Aiass (FYVRET) Dgva (£), DaVii(D)) o dr it
0

=110 g =1
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where
d

a(rvi()es Vi), ¥a(t) = > (Aiajs(TVVA(1))0pva (L), 0aVhi(t)) -
i,a,5,8=1
We focus on the generic time interval I, and assume that the solution on I, ; is known. Following the
discontinuous-in-time numerical scheme introduced in [26], we first test the equation (5) against ¢ for
pe€ H! (In; H&) and integrate on I, to obtain the following weak formulation:
d

/tn (1), B(t)) L2 dt—&—/tn Z e—’yt(Sia(Vv(t)e'Yt)’aagbi(t))Lz dt—i-QV/tn (V(t),@(t)) 2 dt

n n—1 7;70(:1 n—
tn tn
+02 [7 o= [ (Fo.e0) at (17)
t"71 tn—1
Now we rewrite (17) by adding suitable (strongly consistent) terms:

tn _d

/" (1), (1) 2 dt + (FO],_1, (E1)) . +/ 3 € (Sia (VY (D), Dapi(t)) . dt

tnfl tnfl i)a:]_

1 1 1
- a + Vin—1. T+ + _ 5 = Vin—1.— -
+ 2 o a (th,n—le ’ Vh,n—l’ Vh,n—l) dr 0 a (th,n—le ’ Vh7n—1’ Vh;n—l) dr

-|-2’Y/tn (V(t), (1)) 2 dt—|—72/tn (v(t), §(1)) - dt+72(["(t)]n717¢I_1)L2

- /t t (f). ) (18)

Summing over all time intervals in (18) leads us to define the following semilinear form A: H x H — R with
H:= H?(0,T; H™ N Hg) by

Amw:Z/mewWwimwmﬂmM+Mm@%m2

tn—1

N o t, d 1
+ Z / Z e (Sia (Vv(t)e“ft),80(9524(15))L2 dt + % / a(rvg vy, eg)dr
n=1 0

tn—14 q=1

o3 [atrviets vl ar- /Olam vl >>dr}
+2vz/jn< (1), deH-VQZ/ det+722 1) 1

tn—1
+7 (Vo » Po ) L2
for ¢ € ‘H. Let, further, F' be the linear functional defined by

tn

. 1t
Z > t dt+(v1,<,‘o5r)L2+72(v07<p§)L2+§/ a(Tvo;vo, g ) dr.
0

tnl

Now we introduce the finite-dimensional space

qn
Vi = qvi [0,T] — Vi v|r, :Zvjtj,vj €V,

=0
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with g, > 2 for each 1 < n < N. For q := [q1, ¢2, - - .,qN]T € NV, we then define the space
V& =A{v:[0,T] = Vy;vl], €V forn=1,2,...,N}

Then, the discontinuous-in-time fully discrete approximation of the problem reads as follows: find vpg € Vi,
such that 3
A(vpa, @) = F(p) forall ¢ €V, (19)

where F is a modified version of F' defined as
- N oot 1 !
F(QO) :Z/ (f(t)a¢(t)>L2 dt + (Vl,fL7¢a_)L2 +72(V0h7<p(—)~_)L2 + 5/ &(TVOh;VOhaso(;) dr.
n=1"7tn-1 0

4. CONVERGENCE ANALYSIS

By using the ideas introduced in [12] based on Banach’s fixed point theorem, we will show the existence and
uniqueness of vpg. We shall also prove a priori error estimates as summarized in the following theorem.

Theorem 4.1. Let v.€ W= ([0,T; H" N H{), with 2 +1 < r < min(p,m —1), s > ¢; + 1 for each i =
1
1,2,... N, be the solution of (5)~(7). Assume that ki’ > = 0(hg+1> and there exist positive constants p;, v;
such that pik; < h? < vk; for eachi=1,2,... N. Suppose that we choose the initial data Vo,h, Vi,n € Vi, to be
vip=W(0), vi= W(0)7 (20)
where W (t) € Vy, is the nonlinear elliptic projection of v(t) such that
a(W(t), ) = a(v(t),p) forall @€V (21)

Then we have for the solutions of (19) that

1

_ _ . _ . -~ ) J k”%q”"t‘l 2
Ivoa (t5) = vt 2 + [¥oa (t7) =¥ ()] . < CV) <h2’+2 +> 2<51)> (22)
n=1 4Yn
for each j =1,...,N, where C(v) is a positive constant depending on the solution v.

Remark 4.2. If we use uniform time intervals k, = k = h?, and uniform polynomial degrees ¢, = g > 2, for
n=1,..., N, then the error bound at the end nodal point becomes

T

Ivoa(tn) = V() ll= + [¥pa (t7) = ¥ (7)o < €O (K5 + k7).

1
Remark 4.3. The assumptions that kfl 2 = o(hl"’g) and p;k; < h? < y;k; for each i = 1,... N require that

¢G> 1+ % for each i = 1,..., N. That is, we need the polynomial degree in time satisfies ¢; > 2 for d = 1,2,3
on each time interval I, with ¢ =1,..., N.

Remark 4.4. By the Sobolev embedding theorem, v € W*>([0,T]; H™) for m > % + 2 implies that v €
WS7°°([O,T];CQ’O‘ (ﬁ)d) for some o € (0,1). Note that the assumption m > % + 2 is consistent with the
assumption m > [%] + 3 in Theorem 1.1. That is, we need m > 3 for d = 1 and m > 4 for d = 2, 3.

It will be assumed throughout the convergence analysis that

v eW*>([0,T); H™ N HY).
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4.1. Definition of the fixed point map

It is known, see [33,34], that (21) has, for h sufficiently small, a locally unique solution W(t) € V), for
0 <t <T. Furthermore, W satisfies the following properties, which are established in Appendix B.
There exists a constant C,.(v) depending on v such that, for g + 1 <7 <min(p,m — 1),

va@(t) - VW(j)(t)HL2 <C (R, 0<t<T, (iii,a)
for j = 0,1, where v := %. In addition, we shall prove for the time-derivatives of W there holds

V0 -wow|| <t o<, (iii,b)

L2

for j =0,1,2. We can also show that there exist constants ¢g and ¢;, independent of h, such that

IVW ()|, < co and HVVV(t)HL <ea, 0<t<T. (i)
Let I, = H?” denote the modified L2-projector in time direction. That is, for each n = 1,2,..., N,
(LW — W)(z, ¢} 1) =0 (23)
(LW — W)(z,t,) =0; (24)
OH(ILW — W) (z,t,)) =0 (25)
tn
/ (0:(IW — W), x)2dt =0 for x € Vin 2. (26)
tn—l

It was first proved in [35] and further studied in [36] that for each W € H*(I,;L?), there exists a positive
constant C such that,

tn kj 2(p—2)
/t 90 (W 8) — LW (1) [0 dt < OF Wi 1. (27)
n—1 n
tn /45 2(p—1)
/t LW =W ()32 1 < Oy [ Wl 1) (28)
n—1
tn k2
| IWen - IW G d < o e Wl 50y (29)
n—1

where g = min(g, + 1,s) and ¢, is the polynomial degree with respect to the variable ¢t. If we change the
spatial function space from L? to H} in (27)—(29), analogous estimates follow. Note that we can also get inverse
inequalities with respect to the time derivatives in an analogous manner as (ii,a). That is, there exists a positive
constant Co such that, for each fixed z € Q, for every ¢ € Vi,

18ep(x, ) lz2(r,) < Coky o, )Lz, (30)
10sp(, ) Loo (1) < Coky Hlp(@, )| Loe (1) (31)
for each n =1,2,..., N. We now decompose the error as

vpe(t) = v(t) = (vpe(t) = TIyW(2)) + (I W(t) — W(¢)) + (W(t) — v(¢))
— ) + pr(t) + pal)
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fort € I,,n=1,2,..., N. First note that

/t" (J)()H at = / G)(4) — w(j)@)‘f dt<C k! / ZHW(O" HQth
tn—1 tn—1 a=0
ki(ﬂ J)+1
< Cl(v) qi(s_l) fOI‘j:O,l, (32)

where we have applied (28) and (29). Here y = min(s,q, +1) and I, W0) = djg%, w0 = d’jtvjv7 with
j = 0,1. If we assume that the solution v € W*>([0,T]; H™ N Hg) of (5)-(7) is sufficiently smooth (i.e.

s> g + 1), then we can write

(]) ki(qnﬂ ) pta 2 fb(qn+1*j)+1
/ o H di < CW/ HW ), 4t < ) g (33)
tn—1 dn tn— dn

for j =0, 1. By the property (iii,b) of the elliptic projection, we know that

tn 2 tn
tn—1 L? tn—1

for j = 0,1,2. Here C;(v) for ¢ = 1,2 are constants depending on the exact solution v. Recall that the fully
discrete scheme is

) . 2
WO (¢) — Vm(t)HLz dt < Co(v)knh2 +2 (34)

oy (1)

N—-1

Z/ (¥pa(t), @(1) 2 dt + Y (Fpa(t)],, & (1)) 12 + (voa (1), S (7)) 1.

n=1
N—-1

+’722/ VDG ))det—i_’y Z VDG )]nago(t;))[ﬂ +’72(VDG(t8_)’§O(t3—))L2

t7l
+ Z/ Z e 7 (Sia(Vvpa(t)e™), dai(t)) ;. dt+272/ (Vpa(t), p(t)) e dt

n=1 tn— 11(11 tn—1

tn

* Z {/ TVDG(’WW"%VDGUI)"P(ti))dT—/01 (rvpa (f )" v (). sa(tn))df}

N tn B
= (Vi @(t3)) 2 + 7V (Vo e(t3)) 12 + Z/ (f(t),¢>(t))L2 dt, forpe V. (35)

The variational form of the original problem is written as

Z/t ), (1)) 2 dt + i (Ol @(82)) 1o + (¥(16), (1)) 1o

N tn
WZ[M i7" (W00 6)) s #2050 6))

N tn
> e (Sia (T, 0ti(0) o dt 420 Y [ (¥, (0,0

3 [ atvenenivi o) ar— [ atrvlm)ervn). o))
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N tn B
= (vi,@(td) o + 7V (Vo @ (td)) 12 + Z/ (f(t),¢(t)>L2 dt, forpe V. (36)

By considering the nonlinear elliptic projection of v(t) (c¢f. equality (21)), we can replace

d d
Z e_’Yt (Sioc (vv(t)ef}/t) ) aa(/az (t>) L2 dt by Z e_’Yt (S’ia (vw<t)e’Yt> ) aa <pl (t)) L2 dt
i,a=1 1,a=1

n (36). Using the continuity of v(¢) and W () in time, we can also replace

N-1

S{ [atveet i) o) ar - [ atvim)etvm) o) ar

n=0

NZ{/ W)W () i AW () W) () e

n (36). Subtracting the resulting equality from (35), we have

N—
Z/ t) + p1(t) + p2(t) got)det Z([ )+ P1(t) + pa(t )}nv‘P(tI))Lz
T (e () — v (1), B (1)) L2+2VZ / 0+ pit) +pal), $(0)) i
+722/ B+ pr(t) + pa(t), @ det+722 t)+ p1(t) + p2 (), (1)) 12

tn
+7(voa(ts) = v(t5), ¢ (t5)) 12 +Z/ Z ¢ (Sia(Vvpa(t)e™) = Sia (VW ()e?), Oapi) ;- dt
t

n— 1zoz 1

+J§ ;{/01 a(rvoa ()7 voe (6), (1)) dr — Ala(fw(tg)ew;w(q),go(t;)) dT}
=3[ awme s Wi el - [ alrvnctin)esvoo ) o) o)

(V1h—V1,¢(to))Lz +7 (VOh—V So(to))Lza for ¢ € Vi, (37)

Now we consider the integral on I, = (t,_1,t,] only,

[ Foew) e+ ([0] o) w2 [ (G0ew) 4o [ 6000,

n— L2 n— n—
tn d
+ (0], 1 et 1)) . + /t Z e 7 (Sia(Vvpa(t)e™) = Sia (VW (£)e™), 0api(t)) ., dt

n=14,a=1

1

1 1
+2{/0 &(TVDG(tzfl)thnfl;VDG(t:;71)aSO(ti,1))dT—A d(TW(tIfl)evt 1. W(trf 1) ‘P(tiﬁ)dT}
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+;{/0 &(Tw(t;q)ew”‘l;W(t;—l)v‘P(t;—l))dT—/O &(TVDg(t;_l)e“”—l;ng(t;_l),cp(t;_l))dT}
:_/tn (P1(t), &(1)) 2 dt—fy2/" (pr(t), (1)) dt_zv/" (p1(), p(1)) L. dt

n—1 tn—1 tn—1

- ([[)I]nfl’ ‘F"(tz—l))y - 72([91]71717 So(t;t—l))Lz

tn

- / " (Ba(t), (1)) 2 i — A2 / " (palt), $()) 2 dt — 2 / (Ba(t), $(1)) 12 dt

- / " (1), @(1)) 2 dt — 2 / " (pa(t), @(1)) 12 dt — 2 / (Br(8), $(1)) 1
— (P1(t2):2(t0)) o + (Pr(tn1), 2(65-1)) 12 = VP ([o1) 1o 2 (551)) o

- / " (Balt), $()) o dt — A2 / " (palt), $()) o dt — 2 / (Ba(t), $(1)) 12 dt

= [ a1t =21 [ (pr@1 Ot~ [ (Bale). $(0),

tn—1 tn—1 tn—1
tn

,yz/n (p2(1),4(1)) 12 dt727/ (P2(t),H(t)) - dt, (38)

tn—1 tn—1

where we have used the fact that p2(t) and p2(t) are continuous in time and properties (23)—(26). By Taylor’s
theorem with an integral remainder, we have

Sia (VVDG (t)e’yt) = Sia (vw(t)e’Yt)

d 1
+ j,ﬁ2=1 e"95(vpa(t) - W), /0 32[351'& (VW (t)e" + 7(Vvpa(t) — VW (t))e™) dr.

If Vvpa(t)e' € Z5, VW (t)e?t € Zs for each t € [0,T], we have VW (t)e? + 7(Vvpg(t) — VW(t))e? € Z; for
0 < 7 <1 by the convexity of Zs. This implies that the term in the integral remainder is well-defined. Thus,
we can write

d
2 T (Sia(VVpa(t)e™) = Sia (VW (1)), 0api(t)) 1 dt
i,a= 1 )
- /0 > (A (VWD +(V(t) = YW (D)) 95 (vpa(t) = WD), 0ai(t)) |, dr
i,7,8=1

= /0 a(W(t)e" + 7(vpa(t) — W(t)e'; vpa(t) — W(t), ¢(t)) dr.

For simplicity of notation, we write

A(vpa(t)e’; vpa(t) — W(t), ¢(t)) = /O a(W(t)e"" +7(vpa(t) — W(t)e" vpa(t) — W(t), ¢(1)) dr.

Analogously,

1 1
/ a(Tvpe (£, )™ L va (£,), (£ ,)) dr — / (W () W (), (tE,)) dr
0 0
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d
= 2 e {(Sia(Vvoa (i) e ), 0akpi (i) 2 = (Sia (VW (520)€7 ), 0atpi (t1)) 12}

1,a=1

d
Z e (Sia(Vvpe (ti—l)ewnfl) — Sia (vw(tf—l)ewnfl)vaa‘:"i (ti—1))L2

1,a=1

= A(VDG (tTiL_l)e’yt"_l VDG (tf—l) — W(tf_l) s go(tff_l)).

Since W (t) — Iy W(t) = 0 for each n = 1,2,..., N, our equation (38) becomes

/tt" (é(t),gb(t))p dt + ([é(t)}nl7¢(til)>m +2v/tn (é(t)mb(t))p dt

+7 /tt (0(t), p(1)) 2 At + 7> ([0(D)],_1, (E5 1)) 2
+ /tt A(vpa(t)e™; vpa(t) — Tk W (t), ¢(1)) dt + %A(VDG (£ )0t ) et )
_ /:l(pm),cz»(t))m dt — 2+ /t:nl(fh(t),gb(t))m di - /t:"l(,-,é(t),sb(t))p »

- /t::(pz(t), G(t)) . dt — 2y /t::(p-z(m (1)) 2 dt

+ /t‘f”1 A(vpa(t)e’; W(t) — I, W (t), ¢(t)) dt + %A(VDG (t2 ) 0(t 1), e(tr 1))

for ¢ € Vi . Consider the following subset of V3, defined by

F = {1,1; eV, | foreach j=1,2,....N, [|[¢(t;) — HkW(tj_)Hip + |6 (o (t;) — ka(t;))Hiz

2qn,+1
ke dn

* 3 I W < .09 (Z“ : qg<s'_1>>’e“w<t> : Za},

where C,(v) is a positive constant depending on the solution v, which will be specified later. First note that F
is non-empty since II; W € F. In addition, F is a closed and convex subset of Vi in the topology induced by
the norm || - ||, which is defined by

lollr = max_ (ol + 160011
for ¢ € V. With this notation, we are ready to define a fixed point mapping A" on F as follows: if ¢ € F, the
image vy := N(¢) is given by the relation

vy(0) = Vo, Vp(0) = Vi, (39)

+ 2y / " (.00 60)

2
L2 tn—1 L

/tn (Bot. 1)) i+ ([é¢<t>}n1,¢(t;1))

tn—1

+’y2/ n (05(t), p(t)) 2 dt+72([9¢(t)}n717<p(t;71))

2
tn—1 L
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+ /t ' A(¢<t>e’*t;6¢(t)7¢<t>)dt+%A(¢(t:_1)e“”-1;9¢(t2_1),¢(tz_1))
= / " (pat). p(1)) 1 dt — 2 / " (1), (1)) 2 dt / " (Ba(t), (1)) 2 dt (40)
2 / " (palt), $()) o dt — 2 / " (pa(t), $(1))2 dt

[ A W) - W (0, 6(0) di + JAB(E )06 ()

tn—1

where 04 = vy — I W.
In order to complete the proof of the theorem, it suffices to show that, for each n = 1,..., N, the map N
defined by (40) has a unique fixed point in F. If vpg € F is this fixed point, then vpg is a solution to (19).

4.2. Auxiliary results

If we take ¢ = 8¢ in (40), then the nonlinear term inside the integral becomes
A(B(1):85(1), ¢(1) = A (1) 85(1), 64(1))-
Following the proof in [12], it is crucial to replace the expression A<¢(t)e’”; 04(t), 0¢(t)) by

d 1

1d 1

5 P (@O 05(1).05(1) — 5 Y / (0:A70550506.5(1), 0205.1(1)) ., dr,
i,a,7,0=1

K3
on the expression

where A7 5 1= Aiajs(VW ()" +7(V(t) — VW (t))e?) and t € I,,,n = 1,2... N. We shall need an estimate

d

A(BOE 00 9(0) = 5

i,0,5,8=1

1
/0 (04 AL ;50505 (1), Dathi(1)) ., d7

for p,p eV tel,,n=12...N.

Lemma 4.5. Under the assumptions stated in Theorem 4.1, there exists a constant C, > 0 such that, for
tel,,n=1,2...N,
As(@(t)e0(1), % (1) | < Cr IVl 12 V()] 2 (41)

Proof. See Appendix A. O

4.3. Convergence proof

We will establish the existence of a unique fixed point in F by showing that the pair F and N satisfies the
assumptions of Banach’s fixed point theorem, namely that

(a) N(F)C F.
(b) N is a contraction with respect to d(-,-) where for ¢, p € F,

)

A o) = max_ (¢(t) = ol + [$(6) - (1)

tel,,1<n<N
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4.8.1. Existence of a fized point of N in F

For (a), we first observe that A is well-defined. Indeed, if ¢ € F, since VWe' € Zs, VWer +
7(Vp —VW)e € Z5 for 0 < 7 < 1, and the bilinear form A(¢(t)e??; ) is symmetric and positive defi-

nite. Taking ¢ = 0, in (40) and replacing A((b(t)e”; 0,(1), 0¢(t)) by

1d
5&A<¢(t>e,ﬂ;0d)(t> Z / 8t zaj,@aﬁ9¢J( ) Do 0¢7 ( ))Lz
za]ﬂ 1
we obtain
. _ 2 . n 2 9 N ) N 5 tn . 9
s, + ooz, = st 42106 5 90 [ [uto]

+A(D(tn)e7:05(81), 06 (tn)) = A(D(E1) e 0 (1), 06 (f1))

=2 [ (n0.000) - [ (a0, 000) 0 (12)
-2 /tt” (ﬁz(t)7 éd)(t))L? dt — 272 /tt” (pz(tL éd)(t))L? dt — 4 /tt" (f)z(t)ﬂ é¢(t))L2 dt

+2(05 (1), 00 (t51) ), +297 (80 (t-1)- 05 (t1)) 1

+2/tt" A(¢(t)e7t;W( ) — W (), 0 (t )) dt + Z /

i,0,7,0=1 tn-1

/ at za75850¢7j( ) 6 0¢ l( ))Lz drdt.

n—

Now we need to bound the terms on the right-hand side of equation (42). By using (33), (34) and Young’s
inequality, we have

t

‘272 [ (or0:0000) Lt =10 [ (pri0000t0) a2 [ (3010000, 0

n—1 tn—1

—272/1:” ( 2(t), 05 (1) dt—47/ t))det

n—1

tn
S?w/
tn—

n—1

t7l
+ Cz(v)/t <||ﬁ2(t)|2L2 +[162(D)72 + ||p2(t)||2L?) d

tn ), 2 k2an+1 orio
< 37/ 9¢(t)HL2 dt + c1 (7, V) 5y + c2(r, V)kah rt
tn_1 dn
tn
< ?w/
th—1

where C;(7) for i = 1,2 are constants depending on v only, while C'(v,v) and ¢;(v,v) for i = 1,2 are constants
depending on both v and the exact solution v. By Cauchy—Schwarz inequality, we obtain

2(é¢(t;_1)79¢(ti_1))p < Héqﬁ@—l)H:

L

6,0)|, dt+ (3 )/

tnfl

(||p1< Y2, + ||p1(t>||%2) at

; 2 orpa  Rpi
0¢(t)HL2 dt + 0(77‘1) knh + 2(8—1) I (43)
qn

) 2
+ Hafﬁ(t'r:—l)‘

(44)
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and

292 (06 (1), 05 (t51)) 12 <206 (65 [[72 + 2[00 (b 1) |15 (45)
Note that
A<¢(t)e7t; W (t) — I, W (1), é¢(t)) - %A(W)ew; W (t) — W (t), 04(t))
d 1
~ MO W) ~TLW0).0,0) = > [ (00475505 ~TLW),.0,06,:(0))  dr.

.= L2
,,5,8=1

Using the fact that (W — I, W)(t,,) = (W —IL;W)(¢,)_,) =0 for n =1,2,..., N, we have

/t ' A((p(t)ew;wu)_HkW(t),é¢,(t)) dt = — /t T A(G() 0, (W () — TLLW(1)), 04(t)) dt

n—1 n—1

d
/1 (at AL 05 (W (1) — LW (1)), aa9¢,i(t))L2 dr dt. (46)

Then

< 7/t A(p(t)e";0,(W (1) — T W (1)), 04 (1)) dt

/ttn A(¢(t)e“ft;W(t) — I, W(t), é¢(t)> di

tn d 1
+ / / (9 Aiajs05 (W (1) = LW (1)), 0a0.4(1)) |, drdt
tn-1a,j,8=1"0
tn tn
< | KlIVouW ) — WD) [VOs (1)l 2 dt 4+ Cr | [VIW(E) = W)z VO ()] 2 At
K6 CT tn K6 tn
< (2 + 2) / V05 (D)7 dt + = / |V(@:(W (1) ~ TLW (1)) [ dt
Cr [ 2
5 VW)~ W) . dt
K6 C‘r tn krzzanrl $,00
< (2 + 2) /tn1|V0¢(t)|iZ dt + C(V)W for W e W= ([0, T]; H). (47)

T

To bound the terms involving 8tAmj 5, we apply Lemma 4.5 to get

/tn
t

n=li,o,j,0=1

d tn
< [ 900 e (48)
th—1

1
/ (atAzajﬂaBOGb,j (t)7 80¢9¢,i (t)) 2 drdt

Combining (42)—(48), we obtain

Héd)(t;) 2L2 +7204 ()% +v/:l Héqb(t)H; dt + A((t7) e 04 (), 05 (7))

tn

~ N 2
< A@(t-1)i06(t1) 05 (8-0)) + C [ 19060070 dt+ [0 (t) ||, +72065 (1) 112

tn—1
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42 k2an+1 k2an+1
4n qn
Summing up over n =1,...,j, we obtain
ENE tn 2
[6ae)||, +2ls (e Lmz /t 05(0)] , at+A(o(57)e™:05(17),06(17))
n—1
~ ! tn 2 J 2r42 k?q"—‘rl
_CZ/ [V6,(0)2: dt + () 3 [ kb2 2 + 5. (50)
n=1"t'n-1 n=1 qn

Using the the coercivity of A(gb(t )erin; 0¢( ), 0¢( 7)) (i.e. assumption (S2b)), we have

. _ 2 2 _ 9

|66, + 211005 L2+’yZ/ e Mo, ()|,
J ) J - E2an+1
<cy / 9060+ C) D (b 4 s ) (51)
n=1 - n=1 n

By the fundamental theorem of calculus and the triangle inequality, we have for each t € I,,, withn=1,... N,

n—1

2
. tn . 2
(t)HL2 dt) < 2||V8, ()% +20§h*2kn/ H0¢(t)HL2 dt.
tn—1
(52)

tn
oo < (1901 +

Substituting (62) into (51), we have

6567, + 2110055 L2+yz/ 60|, at + 302|015 12,

2%

. 2
0¢(t)HL2 at

] J
< 26*2 knl V0 (t2) |32 + 2Ck; | VO, (t7) |5, +20C2 S h*%ﬁ/

n=1 n=1 tn—1

d orp | R t!
FOW) | Rl

n=1

] J tn
<2CZkHVO¢ )2, +2Ck; || VO, (t7 Z /t

n=1 n—1
d 2142 kaantt
+O(W) 3| kah?? + 260 ) (53)
n=1 n

where the last 1nequahty follows from the assumption that pu;k; < h? for each i = 1,...,N, with C =
2003 max1<l<J . The term 2Ck; HVO¢( )HL2 and the sum of integrals on the right-hand side of (53) can
be absorbed mto the third and fourth terms of the left-hand side of (53) if we choose each time step k,, is
sufficiently small. That is,

oot [+ 2o+ 3 (- w) [

. 2
9¢(t)HL2 at

165(1) H2 at + (M =20k, ) [0, (1) |7

n—1
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-1 i ; e
< chknuveaﬁ(t;)HLz +C(V)Z knh T2 4 ;‘(871) . (54)
n=1 n—1 qn
By choosing k,, < min{ oYl {4\% } for each n =1,..., N and applying the discrete Gronwall lemma, we have

. B 2 3 J tn . 2 B 9
6], + 106+ 2 [ [0t0)] e+ V00
n=1"tn-1

J +1

J 22 k2an J A k2an+1
<Ci(v)exp CY k| D> | k¥ 4 q§<371> < Crnax(V) Y[ knh® T2 + a6 ) (55)
n=1 n

n=1

where Chpax(v) = maxj<p<n Cn(v) exp(CT). Now tracing back constants through the previous estimates, we
notice that Cinax(v) does not depend on C,(v), so we can define Cy(v) := Chax(v). Note that

IVve(t) = V(i) < VVe(t) = VW)l oo + [VV(E) = VW (D)]| e -

By the inverse estimate (ii,b), the error bound (iii,a), and the approximation properties of P}, in the W1° and
H' semi-norms, we can find an h; > 0 such that, for h < hy,

IVW(t) = Vv ()| e < IVW(t) = VPRV()]| oo + [VPRV(E) = V(1)
< CLhTE V(W () = Puv(t)]| 2 + C(V)R™™%  (by (ii,b))
< ORIV (W () = v() |2 + Crh™ 2|V (Puv(t) — v()|| 2 + C(v)h" ™%

< C’(V)h“% < —e 7T,

| 9

Since r > ng 1, kg'i_% =o(h'*%) and pik; < h? for each i = 1,... N, we can also choose hy > 0 such that, for
tel,,n=12...,N, for h < hy,

/N

I9v6(t) = VW (1) < Crh~ 2 <||V9¢(t)||L2 L IVILW() — vwwm)

tn
<ot (||v0¢<t;)||m [ 10980 at

tn—1

tn
+ |[VILW (t,) = VW (t;,)|| 2 + / 10:(VILW — VW)(t)]| 2 dt)

tn—1

tn
<ot (nm s+ [ 1090501z dt)

tn—1

Nl=

tn
+Ch ik, </ 10, (VIL,W — VW)(t) |32 dt)

tn—1

tn 3
< C’lh*% <||V9¢(tn)||L2 +Coh71\/ kn/ H(?t0¢(t)‘|%2 dt> +C(W)h7
th—1

" n k?‘]i+1 3 5
SOOI H | PRI 4 S | < Sen T
=1 ]

7

By choosing h < h, = min{hg, h1, ha}, we obtain Vvge’t € Z;.
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4.8.2. Verification that N is a contraction mapping

To show the contraction property (b), we consider R = ¢ — ¢’ and ® = v, — vy where ¢, ¢’ € F. Replacing
¢ in (40) by ¢’ and subtracting the new equation from (40), we have

/t::(é(t)@(t))p dt + <[®(t)}n1,¢(t21)>m +2y /t:nl(é(t),gb(t))Lz dt 4~ /t:"l(@(t),¢(t))L2 dt
(O], e(th)) . + | (A0 58400 6(0) — A (7000, 610) )
+ S {A(G(E )04 (), e (tr1)) — A(D (ta-1) e 5 00 (t1-1) (1)) }
= [ A0 WIE) - W (0, $(1) ~ AW (07 W) - WD), $(0))

n—1

+ 5 AP ()05 (61) 0 (tm1)) = A(D (tma) €™ 50 (1) (1)) - (56)

Taking ¢ = O in equation (56), replacing

A(@(1)e7:05(1). O(1)) = A(¢/ (173 0,(1). O(1))
by

A(¢(0e:0(1),0(1)) + A6 04 (1), (1)) — A(¢' (11730, (1), ©(1) )

and writing

/tnnlA((ﬁ(t)evt;@(t),(;)(t)) dt = ;/t th(¢( He ©(1), O(1) d

_,/ / Z (0:A7,;50505 (1), 0a©5 (1)) ,, dr dt,

i,00,7,8=1
we have

||, + o)

L0 [ + O [ + 40 / e, ar
+A(B(t )" 0(t,), (1) — Ald(t_1)e O (t,_1), O(t,_1))
=2(6(t;,1). O(t1)) , + 27 (O (1), O (t1)) s

/ttn / Z <at 18059 (%), 0aO:i(t ))LZ drdt

i,0,7,8=1

/ (A(se W) — W), Ot ))—A(q&’(t)e”t;W(t)fHkW(t),@(t)Ddt

+2/ttn <A(¢ (1704 (1), (1)) — A(B(1)e™; 0 (¢ ))) dt
+ (A(@ (t_1)e 104 (t1_1). O (L)
+ (A(o(t,

1)) = AB(t-1)e™ 50y (61-1), O(t-1)))
(A((tnr)e™™ 00 (1), ©(t, 1)) =

AP (ta1)e” 505 (t,1), O (1,1))).
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Note that

| A 000 0. 00) at+ A (1) 100 (151). ©(5 )

n—1

— AP (tamr)e 505 (t1), O (1)

1))
:_/tt" A(@' (1675 84:(1). ©(1)) dt‘/t:nl/ol

n—1

d
> (00 s000.,0.0,0:(0)) arat

i,a,j,8=1 L2
+A(Q (1)1 04 (1), (L) — AP (£, 1) e384 (t, 1), O (t, 1)),

where fl{ajﬁ = Ainjp(VW (t)e" + 7(Ve' (t) — VW (t))e?"). Analogously, we have

- [ A0, 0. 00) at = A@(EE )0 (1), O(tE 1))

+A(B(t, 1) 04 (t,_1). O(t,_1))

tn . tn 1 d
- / A(B(0)e: 64 (1), ©(1)) dt + / / 3 (atA;ajﬁaﬁo¢,,j(t),aa@i(t)> drdt
tn—1 tn 0

170 ja,,8=1 L2
—A(S(tn)e7: 05 (8,), O (tn)) + A(B(E,_1)e™ 3 00 (t,1), O(t1)).

This implies that

2
dt

= 2 ) 2 ) N 9 tn . 9
o, + vl + el +o [ o],
A1) 0(1). () — AlB(t)e ™ :0(6,). O(t,1))

2

(6(t-1):0(5-)) ,, +29%(©(ti-). O (1)) 1o (57)

lo)

L2

L2

+/tt" /01/4 zdj 1(atA;ajﬁaB@j(t),aa@i(t)) dr dt
[ (A 0e5000.60) - (206 000,601 ) a
(A(s167: 60 0. 000)) ~ A(6 ()80 0(0) )
w2 f (A(ee™ W) — W (1), 6(1) ) — A(¢ (e W(H) — ILW(£), 6(1)) ) dt
A (tn)e™: 0 (£,), ©(8,)) =AY (£,-1)e™ 0 (t1), © (1))

— A(P(tn)e™ 305 (), O (1)) + A(D (1) €™ 305 (t,-1), O (£,-1))-

Again, we need to bound the terms on the right-hand side of the equation (57). By the Cauchy—Schwarz
inequality, we have

2

(58)

2(0(t,1).6(10)) , < [0, + 66
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29*(0(t1), ©(t-1)) 12 <7*[© (61 lIpx + 7O (1) o (59)

By Lemma 4.5, for ¢ € F, we have

tn 1 d tn
/ /0 S (BAL, 50505 (1), 0a04(1)) ,, drdt| < C; / VO ()|2, dt. (60)
tn—l

i.0,3,0=1 fnt

Recalling that the values of VW (¢)e™ + 7V (¢p(t) — W(t))e?* and VW (¢)e7" + 7V (¢’ (t) — W(t))e?* belong to
the convex set My, and that A;q;g is Lipschitz continuous on M, we have

[ A6 00 000.60) - A(60)67: 00,01

e
tn
<)
tn—1

<L | " V60 - T 011900 0, [ 7O at

A((D750,(1), ©(1) = A(@(1)e7": 850 (1), O (1)) | at

tn—1
tn
< LsCoCy [ VRl V6 0000, a
tn—1
tn . 2 9 tn 5
<2y [ 6, de+ COormax| VRO R [ 98003 at (61)
tn—1 n th—1

where we have used the inverse inequalities (ii,a) and (ii,b), Young’s inequality. To approximate the VO, term,
we apply the fundamental theorem of calculus as in the proof of (a) to have

tn tn
/ V0, ()12 dt < 2k, || VO (17|52 + 2C§kih—2/ 6, (t)H; dt. (62)
tn—1 tn—1
Substituting (62) into inequality (61) gives
tn . .
[ A6 @00 (0.6(0) - A(#l0)7504(1). 6(1))
tn—1
tn 0, 2 tn 0, 2
< 27/ ‘@(t)Hm dt + C'max|| VR(1) 725>k, (\yv0¢, ][ +/ H0¢/ (t)HL2 dt), (63)
th—1 " n—1

where we have used the assumption that p;k; < h? for each i = 1,..., N. Here C is a generic positive constant.
Analogously, we obtain

/ A6, 0(1) — A($(0)7: by (). 0(0)) i

</ " (#0000, 00)) ~ A(()7 18, (). 00)
<ta [ 190(0) - 4 0,2 V0 0)],_IVOD

tn .
<151 [ VR # [ 900 0)] V010 e

tn—1
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tn tn
<é / I9O(1) 32 dt + € max [VR(®) 32 ( /
n t’!Lfl

tn—1

) 2
‘04, (1) HL dt) . (64)
Applying the Lipschitz continuity of A;q;s again, we have

2 / ) (A(@()es W (1) - LW (1), 0()) ~ A(¢' (e W(E) ~ LW (1), ©(1)) )t

tn—1

tn
<2
t

n—1

(A (¢(t)e7t; W(t) — I, W (t), é)(t)) - A(¢'(t)e”t; W(t) - T W(?), @(t))) ‘ dt
< 2L /:n IVR(0)] 2] VW (t) — V(ILW) (1) | L HV(;)(“HLQ dt

tVL
< 2LsCoCih~ 41 / IVR()[| 22 [TW () — VLW (0)]] 2

tn—1

ét” dt
()L2

in 2

@tH dt
()L2

tn

< O max VR [ VW) - YW@ e+ [
. 2 k2(qn+1)+1

]@(t)HL2 dt + O (y, W)p—d=22n max [VR()[F,  for W e W ([0, T]: H}), (65)

tn—1 tn—1
tn
. g
" q2(s—1) t

where C(y, W) is a positive constant depending on both + and the nonlinear projection W. Next, we need to
bound the term involving (@A[aj 5= Btflza j 5). Recall that

DAL ip = O Aiajs (VW (1) + 7(Vo(t) — VW (t))e™)
and R

OrAlnip = OtAiajp (VW(t)e”t +7(V'(t) — VW(t))e”t).
By Taylor’s theorem with an integral remainder, we have

d 92

1
NAT . — AT = TN
i Aiais tdiajB / 0N~ Oy

0 fo~l6=1
x 0;05(Wi(t)e" + 7(py(t) — Wi(t)e" + 77(p1 — #7)e"") 70, (dr(t) — b5(1)) AT

Aiajs (VW (t)e" + 7(V' (t) — VW (t))e" + 77(Vep — V')e)

Since A;q ;s is sufficiently smooth (in particular, twice continuously differentiable), we can estimate the above
difference term by

NALays — DAL ya| < CIVR(O) 1 (IVW D)l +

vwol,.)
+ CIVRWM 2 (V1) ~ V&' (Dl 1 + V(1) ~ V()| )
+ CIVR() 1= (V' = VW ()| + |V (0) - VW(D)| ).

Similarly to the proof of Lemma 4.5, we can show that

IV¢/ = VWD)~ + |V (1) - VW) | <cC. (66)

Property (iii,c) of the nonlinear projection W implies that

VW1 + HVV'V(t)HLw <coter (67)
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In the view of the triangle inequality, we have
IVe(t) = V' ()] + [Vt) - V1)

< V() = VW)l o + [/ (6) = TW (D)l + || V() — VW (@)

+ Hv(is'(t) - VW(t)H

Ioe

LOO
<2C,. (68)

Combining (66)—(68) and applying the inverse inequality (ii,b), Young’s inequality, we obtain

/ / Z O ATy — DATuy0) 050 (1), 0.O(1)) | dr

i,0,7,8=1

IA

C lp/ IVR()[| L[|V (1) || L2[[ VO(2)]] 2 di
tn—1

IA

tn
CLip(th‘E/ IVR()[[2[[VOs ()| 2 VO (@) - di
tn—1

tn tn
¢ / VO ()] di + Ch / VR 2. VO, (1)2: dt

tn—l

IN

tn "
<¢ / V@) dt +2C max VR 325~k (HVW ()l +/
tn_1 " t

n—

2
Ol dt), (69)

where Crip, = C(3C, +¢o + ¢1) and C is a generic positive constant. Combining the estimates (58)-(65) and
(69), we obtain

. 2 2
o), +221ew)5: +Al@)e :0(),0()) +1 /t o] ar
2 tn
<AB(t; ) 0(5 ). Ot ) + 65|, +?le(t I+ ¢ [ Ve d
tn . 2
+C(h—d—2+h_d)kn<’|ve¢/(t;)”iz—‘r/ Ho(z,,(t H dt)maXHVR()HzLQ
tn k2qn+3 9
T Cpi-? / 6,0, at ) max| VROIZ. + 0l W2 e e VR (92,
dn
+A(¢ (1, )e”t"-0¢f() (tn)) =A@ (t1)e 50 (1), ©(t,_1))
—A(o(t,)e ;04 (1), (*))+A( (tao1)e 1304 (1), ©(t,_1))- (70)
Summing up over n = 1,...,j, we have
. _ 2 B 2 2
|6, +2210E)I. + Al ()0 ;) +vz [ e

- tel, 1<n<;

tn
<CZ/ IVO)||7. dt + C(h=%2 + -d)<2kny|v0¢,(tnl)|\iz> max _ [|[VR(t)||3,
n=1
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tel,, 1<n<j

dt) max _||[VR(t )||L2

+Ch 2(21/ ‘9¢ dt) max [VR(0)]3 + C (o, W)l 221 kj("j max| VR(1)
n= n n=1 qn
(@' (t5)e: 00 (7). O(t;)) — Al (t; )™ 04 (t7). O(t5))
<ci " vew)? dt+ C(v)(h=42 + (Zk h2r+2 4 ”q"+1> IVR®)|)?
Tt L — g2t | ter, o< L2
2qn+1
+C(v)(h_d_2 - 1213§Jk (Zk R 4 q: _1)> rert 1<n< [IVR(t )HL2
J (2 2 k2q +3
+ Ch™72 (Zl/t 1 9¢/(t) 2dt> max | VR(t N3e + C(y, W)h™% 221 e
n=1""n— n=14n

X max VR +A(S(6)677: 00 (1), © (7)) — Ale(7 )3 05 (t), O(t))

tel,,1<n<j
knnJrl
<03 [ v a et (St s BT e omont
FA@ ()56, (1).0(1,)) ~ A((t, )36, (1), (1), )

where C is a generic positive constant and C(v) is a positive constant depending on the exact solution v. These
constants may change from line to line. Using the Lipschitz continuity of A(~; 04 (t;),@(tj_)) and the inverse
inequality (ii,b), we obtain

49" (8)e™: 04 (1), ©(t7)) = A((t )3 05 (t7), ©(7))]

< Ls||VR(t -)!\L2|\V9¢'(t-‘)\|LooHV@(t-‘)HLz

h—4 ke W22 4 kit 79
E: 267D te,m1a§n<]l\VR Me[[VO ;) . (72)
n

Combining the estimates (71) and (72) and applying the assumption (S2b) to A(qb(tj_)e"’tf ; @(tj_),@(tj_)) on
the left-hand-side of the resulting inequality yield

le() S le) P, + Ve )| +WZ/

L tn—1

1

k2an+
d—2 2r+2 n
<C’Z/ IVO)|7. dt + C(v)h~ (Zk h + e 1)>t61 ax _IIVR(t )7

2q —+1

3<Zkh2r+2 qz‘ 1)) ! 1<n<j||VR Mz (IVOE )| .- (73)

i

By applying Young’s inequality on the right-hand side of (73), we have

[C1Gy

) J tn | . 2
|2+ 18 2. + nlve ) ++ 3 [ et a
n= n—1
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k2qn+1
d—2 27"+2 n
<CZ / IVOWI:di + Cw)h” (Zk S >) max VROl
2¢;+1
L oM Zk pr+2 o B Jmax _[[VR()||7 + = HV@( I (74)
1LV q2(s ) X < L2 L

where C'(Mi, v) is a constant depending on M; and the exact solution v. This implies that

. 2
‘@(t)HLQ dt

o[}, +7 et + L ve +3 [

J tn J 2¢n+1
fi2an
2 —d—2 2742 n 2
< c} : / IVO(t)]7. dt + C(v)h (}_: knhr 2 + qi“‘"”) e [IVR)

2Lh+1
2T+2 z 2
+ O, v (Zkh e >> max [ VR()[7

+1

s k?Ln
<CZ/ IVO®)|3. dt + C(v)h~ %~ 2<Zk p2+2 4 qQ(S 1)> mla%CnSjHVR(t)Hiz. (75)

By an analogous application of the discrete Gronwall lemma as in the proof of (a), we can deduce that, for k,
sufficiently small for each n =1,...,7,

RN B - I opta oy,
[6)[. +lee)I + o)+ [ [ew], a
n=1""%n-1
A —d—2 ! 2r42 kpantt 2
< COM a2 4 S )i IVRO (76)
n=1 n "

where C (v) is a positive constant depending on v which may vary from line to line. By the fundamental theorem
of calculus and the triangle inequality, we have for each t € I,,, withn=1,... N,

tn .
Ve, < Vo). + [ [vew],a

n—

tn .
< [vo ), +cont [ o], u
tn_1

N|=

@(t)‘

L ptn
< [ve(s)l,. + i
tn—1

2
dt
L2
This implies that, for each ¢t € I,, with 1 <n < N,

2¢;+1

1 k;
HV@<t)||L2_(1+Coh Yk ? ) )2h (Zk h2rt2 4 q2(31)> sermax VR s

%

k2q,~+1

N 2
21 242 .
(; i * q2(5—1)> tel, 1<n<N||VR( )”Lza (77)

i
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where the last inequality follows from the assumption that p;k; < h? for each 1 < i < N. Analogously, we have

. 2 :
@(t)H dt)

1 tn
10®)[l 2 < 1Ol 2 + ki (/
tn—1

2
k2q1+1 2
<C (Zkh%“ 1)> sep 2 <NHVR()”L27 (78)
qz "
and
. . tn
G)t‘ <H®tn / t' dt
H ()L2* ( )L2+tn71 )L2

. 1 tn 2 E
< 2
<ot +eai? ([ et o)
5 g -1 N S L2atl 2
< Cs R E 2 | D kb4 S | max VR e, (79)
i=1 4a;

Summing up (77)—(79) and taking maximum on the left-hand for ¢ € I,,, with 1 <n < N, we have

QQi“Fl
~ _d_q 2r+2 z
2) s G~ 1217?2( b <Zkh q2(€ 1)) tel, 1<n<NHVR( iz

Z (80)

(1w

tel, 1<n<N

By choosing the mesh size h and time steps {kz}fil < 1foreachi=1,2,..., N small enough, and r and {qi}f\il
for each ¢ = 1,2,..., N large enough such that

- a et
Cvh™5™" max ko <Zk B2 4 1)> <1, (81)
we obtain
i (1001 +[00)],) < mas_ (RO + R ,). @

1
Indeed, the inequality (81) follows from our assumptions that r > g + 1, szl 2 = o(h”g) for each ¢ =

1,2,..., N. Therefore, by Banach’s fixed point theorem, vpeg = v4 is the unique solution to (19). By the
triangle inequality, equations (23), (26) and property (iii,b) of the nonlinear projection W, we have

Ivoa () = vl + 906 () = ¥(5)] 0
<|lo(; HmHB \L

+ Hw<t;> —v(t) ]+ [WE) = ()]

L2
+1

k2qn+1
2r+2
<C(v )(h + +Z S 1)>

n=14n
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5. NUMERICAL EXPERIMENTS

In this section, we show some numerical experiments on a simple version of the nonlinear elastodynamics
equation to verify the error estimates proved in Section 4.

5.1. Numerical results for a one-dimensional nonlinear elastodynamics problem

We consider the one-dimensional nonlinear equation

iz, t) + 2vi(x, t) + v2u(x, t) — 0.[S(0pu(x,t))] = f(x,t) in (0,1) x (0,77, (83)
u(0,t) =u(l,t) =0 for all ¢t € (0,7, (84)
u(z,0) = up(x), u(z,0)=uy(z). (85)

We take S(0,u) = $80,u® and the time interval to be I = (0,7 with T = 1. Let ug, u; and f be chosen such
that the exact solution is

u(z,t) = sin(ﬂﬂt) sin(mx).
That is, ug(z) = 0, ui(z) = V2w sin(nz), and
flz,t) = [(—27r2 +7%) sin(x/imj) +2v2ym cos(\/ﬁﬂt)} sin(rx) 4 7 sin® (\/iwt) cos? (mx) sin(mz).

We first discretize the problem in the spatial direction using continuous piecewise polynomials of degree p > 1.
Let V}, be the finite element function space with h being the spatial discretization parameter. The numerical
approximation of the nonlinear wave-type equation following a Picard-type linearization in the nonlinear term
is the following: find uy € V} such that

1
/iih-vh dm+/27uh-vh dx—l—/vzuhmh dx—f—f/(aqu)Qazuh-amvh dx:/f-vh dzx,
Q Q Q 3Ja Q

for all v, € V). Here we assume that 0,u is known at each time step I,, either as an initial guess by using uy,
over the previous time interval, or as a previous iterate in the Picard iteration. Now the problem results in the
following second-order differential system for the nodal displacement U(t):

MU(t) +2yMU(t) + ¥ MU(t) + LK) U(t) = F(t), te (0,T],
U(0) = Uy, U(0) = Uy,

where Up = [0, ..., O]T € R and Uy is the d-vector corresponding to uy at the grid points, U(t) (respectively
U(t)) represents the vector of nodal acceleration (respectively velocity) and F(t) is the vector of externally
applied loads. M is the mass matrix which is defined as

The time-dependent stiffness matrix K (t) is defined as
1
Rig0) = [ (0u(0)0,01(2)0,05 () do
0

where {wi}?zl are the basis functions in the spatial direction.
Multiplying the above algebraic formulation by M2 and setting Z(t) = M2 U(t), we obtain

Z(t) + LZ(t) + KoZ(t) + K(H)Z(t) = G(t), te (0,T), (86)
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~ 1

7(0) = M>U;, Z(0) = M=>U,. (87)
Here

L =2+1d, Ky=~Id,

~ 1

K(t) = %M*%f(( HOM~3, G(t) =M =F().

Note that both K (t) and K (t) are time-dependent. We subdivided [0, T') into N subintervals I,,, forn = 1,..., N,
of uniform length k. We assume that the polynomial degree in time is constant at each time step. That is,
q1 = - =qn > 2. If we consider the time integration on a generic time interval I,, for each n = 1,... N, our
discontinuous-in-time formulation reads as: find Z € V; such that

(Z0)%) 0+ (F2OY) L4 o2, ¥) o,y + (KOZ),¥) e,
+Z(t) V() + KoZ(6i) - v(t) + K (6)Z(6) v (6)
= (G, ¥) a1, + L) ¥ (670) + KoZ(t ) - v (i) + K () () - v(E),  (88)

for all v € V7, where on the right-hand side the values Z(t;_l) and Z(t,_,) computed for I,,_; are used as

initial conditions for the current time interval. For I, we set Z(ta) = 7(0) and Z(ty ) = Z(0). Focusing on the
q7l+1
e

generic time interval I,,, we introduce the basis functions in the time direction {gbj (t) for the polynomial

space P (I,,) and define D = d(g,, + 1), the dimension of the local finite element space V. We also introduce
. . ; 5=1egn+1

the vectorial basis {®7 (t) mel....d

and the other components are zero. We write

, where ®J (t) is the d-dimensional vector whose m-th component is ¢ (t)

gn+1

d
=> ol B (t (89)

m=1 j=1

where of, € R for m = 1,....d, j =1,...,q. + 1. By choosing v(t) = ®/ (t) for each m = 1,...,d, j =
1,...,qn + 1, we obtain the following algebraic system

Az =b, (90)

where z € RP = R(@:+1)4 ig the solution vector (whose entries are the values of o/, ); b € RP corresponds to
the right-hand side, which is given componentwise as

bl = (GUL8L) L Bt B (1) + KoB (1) - B () + K (1) (i) @4, (), (O1)

L2 (In)
for m =1,. cf ,j=1,...,q, + 1. A is the local stiffness matrix defined with its structure being discussed
below. Forl =1,...,q, + 1,

ML — (] 'z) M2 — ('j 'l) ME = ( j 'z)

lj ¢ a¢ L2(In)’ lj d) 7¢ LZ(I )7 lj ¢ 7¢ L2(In)’
3 _ Y 4 _ l

itjy = (K©& &) |, My =8 (1) -9 (50),

M = ¢ (ty ) ' (tia), M= K(t;1)¢ (t1) - ¢' ().
Setting

M =M+ M*, Bij=LiyM?+ Koy (M® + M) + (M3 n M5),
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with M, B;; € RntDx(antD) for any 4, j = 1,...,d, we can rewrite the matrix A as
MO0 0 ---0 By Bia - By
0 MO -0 By Boy - By
A= . . |+ . 7
00 0-M| By By, By

s

For each time interval I, = (¢,_1,t,], we use the following shifted Legendre polynomials {¢;} as the basis
polynomial for the discontinuous Galerkin formulation:

2t —t+ 6(t—t+ ) 6(t—t+
At =1, o= 2t g gy S he) S0
3 2
g 20(t—tr )" 30(t—tyy)” 120ttty )
5p) — (-t )" wo(t—tr,)" 90—t )" 20—t ) )
o} ( ) = ;A k3 + k2 k L
n n n n

In order to compute the time-dependent matrices Ms(t) and M;(t), which also depend on the gradient of the
solution, we apply a Picard iteration at each time interval. We set the maximal number of Picard iterations to
be 30 at each time step and the tolerance to be le — 10. The details of the algorithm are summarized below.

Algorithm 1. Iterative Algorithm (Multiple Picard iterations at each time interval).

Initialization: Oyu), = Oyuo and

1
1] 0
Iteration: On each interval I, = (tn—1,t,] for n =1,2,..., N, we solve

M) + 29 MT(8) + A2 MU(E) + %f(“ (U(t) = F(t)

iteratively (using Picard iterations) by applying the discontinuous-in-time integration. Here

(15, = [ oot O 0.0 2)0s ()

ij

where ug! (t) is the solution we obtained from the previous time interval I,_1.

[&7] e /0 1 (w1 (1) 04 (2)05 3 () iz,

for k = 1,2,..., where ugal’kfl(t) is computed from the previous Picard iteration by using the stiffness matrix
(K]

ij
Update:

(] = [ o2 () s

where dupg(t) is computed using [f(,?md]. Here keng is either the maximal (final) Picard iteration number or the

iteration at which a certain tolerance is achieved.
Now move to the next time interval I, 41.
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TABLE 1. Hu(T) —upg (t;,) HLQ + Hu(T) — Upg (t;,) HL2 and corresponding convergence rates
with respect to polynomial degrees ¢ = 2,3, 4.

q h k= h? L?-error rate

2 2.50000e —1 6.25000e —2 1.2123e —2 —
2.00000e —1 4.00000e —2 4.9774e —3 1.9948
1.25000e — 1 1.56250e —2 1.1643e —3  1.5455
6.25000e — 2 3.90625e —3 1.2454e —4 1.6124

3  2.50000e —1 6.25000e —2 4.1533e —4 —
2.00000e —1  4.00000e —2 1.8590e —4 1.8012
1.25000e —1 1.56250e —2 2.5283e —5 2.1224
6.25000e — 2  3.90625¢e —3 1.5609¢ — 6  2.0089

4 2.50000e —1 6.25000e —2 2.5498e —5 —
2.00000e —1 4.00000e —2 8.3999e¢ — 6  2.4881
1.25000e — 1  1.56250e —2  9.7790e — 7  2.2878
6.25000e — 2  3.90625e —3 3.1115e — 8 2.4870

Take ¢ = 2 as an example; we note that on each time interval I,, the solution U(#)" can be defined using the
Legendre basis via

U()" = M™2Z"(t) = M™% (a6 (t) + a6 () + o 6°(¢)).

Here ' for i = 1,2 and 3 are the coefficient vectors computed by extracting appropriate entries from z. This
implies that we can formulate K"*1(¢) by considering

1
Br(e) = [ 190" @) P00, do
0
1
= / ‘M_%grad(a?)él(t) + M~ zgrad(a})d?(t) + J\Zf‘%grad(ag‘)oé?’(t)‘2835%81% dx
0
1 1
- / \M*%gradm?)w(t)famiamjdx+ | | teradta)? o) 0s0n da
0

- Lgrad (o) (1) | 0,0ty do

-

~2grad(al)et(t) ~M_%grad(ag‘)(bg(t))8951#1'311/)3‘ dz

\\\\

M
( “Hgrad(a})8! (1) - M~ grad ()¢ (1) ) 0yt do
2(r
2(

~2grad(ad)¢>(t) - M_%grad(a§)¢3(t))31%'595%' dz

= Kﬁ“( )+ K" (1) + K (6) + K57 () + K5 (8) + K5 (1),

We use CG—p elements where p = ¢ in space with ¥ = h?, T = 1 and v = 1, and compute the errors
|u(T) — upc (ty) || 1> + ||@(T) — ipc (ty)| . versus k for k = h* = 6.25000e — 2,4.00000e — 2, 1.56250¢ — 2 and
3.90625e¢ — 3 with respect to polynomial degrees 2,3,4 in Table 1. Note that here we use h = 2.50000e — 1,
2.00000e — 2, 1.25000e — 1 and 6.25000e — 2 instead of the conventional halving procedure; this is to avoid the
accumulation of any unnecessary floating point errors resulting from a large number of time steps while still
having sufficient data to compute the convergence rates. The computed errors are shown in Figure 1 in a log-log
scale. As expected, the error decreases as we increase the polynomial degree ¢ or decrease the time step k. By
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Plot of ||U - L.JD(3||L2+||U - UD(g”LZ versus 1/k

10-2 == DG 2
=®= DG3
%= DG4
10—3_
'...
1074 4 ..'..
...
....
*\ .'..
1075 S T,
~ Tra,
\\ ..'.
~ *a
\\ .'.'
10—6_ ‘
~
~
\\
\\
1077 4 ~
\\
e
102

F1GURE 1. Computed error |[u(T) — upc (ty)]| . + ||@(T) — ipc (ty)]| . plotted against 1/k
for polynomial degrees ¢ = 2, 3, 4.

Remark 4.2, we expect convergence rates of order 1.5,2.0 and 2.5 for ¢ = p = 2,3 and 4 respectively, which are
consistent with the numerical results shown in Table 1.

APPENDIX A. PROOF OF THE AUXILIARY LEMMA

Lemma A.1. Under the assumptions stated in Theorem 4.1, there exists a constant C; > 0 such that, for
tel,,n=1,2...N,
Ac(o(t)e (1), 9 ()| < Cr IVl 12V (1)l 2 (A1)

Proof. Note that fort € I,,,n=1,2,..., N,

O [Aiajs (VW ()" +7(Ve(t) — VW (t))e"")]
d
= 2 %ﬁ%ﬁ(ku)ew + V(1) — W()e™) Oy (0 (Wi (D)) + 70, (1(1) — Wi(£))e™)).
km=1 m

Since the values of the function VW (¢)e?* +7V (¢ (t) — W (t))e for t € [0,T], T € (0,1), belong to the compact
convex subset M of R4*¢, and because A;q ;g 1s sufficiently smooth (and in particular continuously differentiable
on Ms), we have

/0 (0[ Aoy (VW ()7 + 79((t) — W(E))e™) |0 05(8), Ditpa(t)) ., AT

1

2
<YW+ IVW Ol ) IVl 2 [T D)) 2
V(31 = W) +IV(60) = WDl ) Ve VSl
(Iv(8t) - W), +19(60) = WDl ) IV @@l T




2286 A. SHAO

+CIVe®)ll 2 V)l 2,
where we have applied the inverse inequality (ii,b) and property (iii,c) of the nonlinear projection W. We
shall bound HV(d)(t) — W(t)) HL2 and ||V(e(t) — W(t))||l,2 for t € I,,,n =1,2...,N. Applying the triangle
inequality, we have

IV(o(t) = WD)l 2 < [IV(P(t) = TLW(E)) |2 + V(T W () = W(2))]| ...

Note that fort € I,,,n=1,2... N,
tn
IV(p(t) — LW ()12 < [[V((t,) — W ()] . + / 105(Vep(s) — VIL,W(s))]| .2 ds

< |V(e(t;) fHkW(t;))HLQJr/" 10,(V(t) — VILW (£))]] 2 dt

tn—

1
2

<|V(e(t,) ka(tn))HLﬁcohl\/E(/tn

th—1
1
n k2q7‘,+1 2
oS )
i=1 q

i

0:(p(t) — LW (1)) dt)

where we have used the inverse inequality (ii,a), Holder’s inequality, the fact that ¢ € F and the assumption
that p;k; < h? for each i = 1,..., N. Here C(v) denotes a constant depending on v, which may vary throughout
this proof. On the other hand,

IVILW () = W)l 2 < [[V(IW (t,) = W(t,))]] 2 +/t 0u(VIW (s) — TW(s))]] 2 ds

n

< [ 10T O - YWt (sinee W (1) = W(i7)

tn—1

< \/E( /:_ 10,(VIL W (t) = VW ()] 72 dt) :

qn+2
<ot

W]

e He(I;HE) forWeHs([O,T];Hé),

where we have used inequality (28) with the L? norm in space replaced by the H! semi-norm. Thus,

tel,,1<n<N

2T+2 kiquJrl an+2
max _[|V($(t) = W(0))] 2 < C(v Zkh =y e o Wl ) (A2)
q

2

Applying the triangle inequality to the time derivative term, we have
V(60 - W), < 19:(Ve(t) - ILW )| 2 + |10(TILW (1) = VW (D) 2.
Note that for t € I,,n=1,2,... N,
10:(Vp(t) = VILW (£))]| 2 < Coh™ [[0:(¢(t) — LW (#))]] 2

< Coh™H|0u(b(ty) — LW (t,))[| 2 + Coh ™ / 100s (b(5) — TW (s))]] 2 ds
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< Coh_lHat( (t,) — LW (¢ HLz + Coh™ / 01 (p(t) — LW (2))]| - dt.

Since ¢ € F, we have

_ _ , k2q1+1 1
10 ((t2) — LW ()|, < Culv (Zkh2+2 g 1))

2

Using the inverse inequality in time (30), we obtain

[N

tn—1 tn—1

/ " 10u((t) — W (D)) 2 dt < v/ (/ ’ ||att<¢<t>—ka<t>>||izdt>

' H
<yt (/t 10:(d(t) = TLEW (1)) 7 dt)

Z k‘ h2r+2 k7,2Q7+1
M 207

3

_F

On the other hand, for t € I,,,n =1,2,..., N, we have
tn
18:(VILW (1) = VW (1))]| 12 < [|0:(VILW () = VW (£,))]] 1. + /t 1055 (VIL,W (s) — VW (s))]| 2 ds

< /t" |04 (VILW (t) — VW (£))]| 2 dt ( since I, W (t,,) = W(t,,))

n
n—

2

< Vkn ( / 0 (VLW (2) — VW (1))]12 dt)

an—3%
<C ;‘973 HWHHS(I,,,;H&)’ for W ¢ HS([O7T];H8).

n

Thus
1 1;.-% - 2r42 Ky :
< - — 2 p2r i
tEIn,1<n<NHV¢ (t)‘ L2 = cv) (h TR R ) izzlk’h + s
an 2
+CF||W||HS(OT] Hy): (A.3)
Combining (A.2) and (A.3), we have
et max (V) - VW), + [V - VW) )
- 1 k2q1+1 1
<cr o) (14+h 4 h ) (Zk R 4 1)>
q1

o KR g
+C’h‘z(]< T >||WHS([OT] )" (A.4)
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1
Since r > g +1, kg’ 2 = o(h”%) and pk; < h? < v;k; for each i = 1,2,... N, we can choose hy > 0 such that

for h < hg, the right-hand side of (A.4) is bounded by 1. Thus, equation (41) follows by taking C, = C + 1.
The constant C; defined in this way does not depend on Ci(v). O

APPENDIX B. APPROXIMATION PROPERTIES OF THE ELLIPTIC PROJECTION

Here we derive the properties (iii,a)—(iii,c) of the nonlinear projection W. We write a < b if there exists a
universal constant C' > 0 independent of the spatial discretization parameter h such that a < Cb.

B.1. L2 bound on V(v — W) and L* bound on VW

Recall that for each t € [0,7], a(W(t), ) = a(v(t), ) for all ¢ € V;,. Let Py : L? — V), denote the standard
L2-projection operator in the spatial direction. Then we have

a(W(t),) — a(Prv(t), ) = a(v(t),¢) — a(Prv(t),¢) forall ¢ € V. (B.5)
That is,

1
/0 &(th(t)ew +T7(W(t) — Ppv(t))e’; W(t) — Prv(t), cp) dr

1
= / a(Prv(t)e + 7(v(t) — Puv(t))e ;s v(t) — Puv(t), @) dr.

0

Define the following subset of H{,
r d .
F=4¢€Vh: V(e —Puv)| 2 < Ch"||v] rsa for 5 <r < min(p,m — 1)

where C, is a constant independent of h. The set F is non-empty since for each fixed ¢ € [0,T], Ppv(t) € F.
Furthermore, F is a closed and convex subset of Hi. We define the fixed point mapping A" on F as follows.

Given ¢ € F, we denote by W € Vp, the solution to the following linear variational problem: find Wy € V,
such that

1
/ G(Pav(B)e + 7((t) — Pav(D))e™; Wo(t) — Puv(t), @) dr
0
1
= / a(Ppv(t)e’ 4+ 7(v(t) — Puv(t))e’; v(t) — Ppv(t), ) dr  for all ¢ € V.
0
Since Vj, is a finite dimensional linear space, the existence and uniqueness of W (t) € V, for each ¢ € [0, 7]
follows if we can show that fol a(Ppv(t)e’ + 7(ep(t) — Prv(t));-, ) is coercive on Vj, x V, in the |- | g1 semi-norm.
This is indeed true in view of the assumption (S2b). For each ¢ € [0, T, if we take W (¢) = W (), we have
d .
[VOW ()~ Puv(i)2 < C7 VOl yess, 5 < < min(p,m — 1) (B.6)
By the approximation properties of Pp, in the |- |g1 semi-norm, we have
: d .
IV () = Prv)llpe S B IVl grsr, 5 <7 < min(p,m —1). (B.7)
It follows from the triangle inequality that

~

VW) =v(@E)ll L2 S P IV sy g <7 < min(p,m — 1). (B.8)
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By the approximation properties of Py, in the | - [yy1. semi-norm, we have

d d .
IV (@) = Puv@)llpee SR T2V rias 5 <7 < min(p,m —1). (B.9)

Combining (B.8) and (B.9), we obtain

IVW ()|l oo < [IVVO)l Lo + V(W(E) = v(E))]| e
< Vvl e + VW () = Prv(t)ll Lo + IV(Prv(t) = v(D)] oo
< Vvl e + CLh™ B[V (W (L) = Prv(t)] 12 + C(v)h" 2
< ¢p,

d

for some constant ¢o. The last inequality follows from the boundedness of Vv and the fact that r > 5, while

the second last line follows from (ii,b) and (B.9).
B.2. L? bound on V(W — \'f) and L* bound on VW

For the estimate of the L? bound on V(W — \'/)7 we follow the proof from Section 6 in [27]. We need to

show that ¢t — W () is differentiable with respect to t. For U € V}, and ¢ € [0,T], we notice that the mapping
@ — a(U,p) —a(v(t),e) is a bounded linear functional on V,; hence by Riesz representation theorem, there
exists a unique A(¢, U) € V}, such that

('A(t7 U)’ ») =a(U,p) —a(v(?), CP)

It follows from the linearization process that the derivative of the nonlinear mapping (¢, U) — A(t, U) with
respect to U, evaluated at U = W (t), exists and is invertible for any ¢ € [0,T]. We also have A(t, W(t)) = 0.
Since v(t) is differentiable with respect to ¢, it follows that A(¢, U) is differentiable in a neighbourhood of
(to, W (to)) for any tg € (0,T). We then deduce from the implicit function theorem that ¢t — W (t) is differentiable

in (0, 7). Next, we derive the error bound of ||V (W (t) — v(t) . By definition of W (¢), we have
L2

1
/ a(Puv(B)e + T(W(t) — Puv())e™s W(t) — Povi(t), @) dr
0
1
= / a(Ppv(t)e’ + 7(v(t) — Puv(t))e; v(t) — Ppv(t), @) dr  for all ¢ € V).
0
After differentiation with respect to t, we have

/0 a(Pav(D)e™ + T(W (L) = Pav(t)es W) = Pui(t), o) dr

i /o1 /Q . zd: ({m (VP (t)e! + (VW (t) — VP,v(t))e)

i,0,5,8,k,m=1

X O (8¢ [Prvi(t)e™] + 70, [(W(t) — Prvi(t))e]) }aj (W —Ppv), aj<pa> dodr

L

1
= /0 a(Prv(t)e? + 7(v(t) — Puv(t))e ;¥ (t) — Puv(t), ) dr

1 d
A
+/ / 2 ({a (VP (0)e 4 7(V(t) — Vv (1)e™)
0 S 05T N\ Om
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X Om, (8t [thk (t)e’yt] + 70 [(vk(t) — ’thk(t))e'yt] ) }(’9j (v— ’th)ﬁ, aj(pa> L drdr,
for all ¢ € V;,. Rearranging gives
/01 d(?’hv(t)e'yt + 7(W(t) — Ppv(t))e; W(t) — P, (1), go) dr

/ (th( e’ + 1(v(t) — Puv(t))e; v (t) — Puv(t), @) dr

/ /ﬂ s ({%ﬁ;“f (VPuv(t)e™ + 7(Vv(t) — VPuv(t))e")

X O (O [thk(t) 1+ 70 [(vi(t) — thk(t))e“Yt])}(?j (v —"Prv)s, 8j<pa> L dzdr

/ / ({ 86/117?5 (VPyv(t)e? + (VW (t) — VP,v(t))e)
a,j,8,k,m m

m(at[thk(t) "+ 70, [(Wi(t) — Prvi(t)e?’]) }0;(W — Ppv) 4, j%) dzdr
L2
=T +Ts + Ts.

Taking o(t) = W (t) — P,¥(t), we have

v (Wi - Pum)] .

PR (IIVPh"’(t)IILoo HIVE @) = Pry ()l e + VPRV ()] L + [V(V(E) — PhVU))lIm)

Ty S WV @)l e

X |[Vv(t) = VPuv(t)|| 2 HV( — Pav(t )H
S W IV ||V (W) = Prv(t) )H

T S (nvm(t = + HV( (1) = Pav(®)]| _ + IVPAv () + V(W () - th<t>>||m)

< VW) = Piv(t) 2 [V (We) =),

smnv<t>||Hr+1(uvmwwLm+Hv( )~ Puv(t))|,_ + I9Puvt)
VW) = Prv(o)l- ) < [ (Wio) - Pus)]

S AV o (uvw)nm FIVEE) = Pav(O) | + 99O + [V(v(0) = Pavi(t >>||Lw)
< [v(wy -Pav)| +h'-iuv<>HH+||v<w<t>—7>hv<t>>||LzHV( -Pv®)| |
+ BBV g |V ( ~r)|

SH IOl |V (W) = Pv®) ||

+hrf%||v<>||H+||v< W) = Prv()la[ 7 (Wit - Prvio)) |,
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2

V(W(t) - th)) ]

Combining the estimates for 717, 75 and T3, we have

od
+ R VO] e

2’

[ a(Prvinert + 2 (W) - Pav)ers WO - P, ) an
(W],

V(W(t) - Ph{f(t))‘

SB (VO | g + 9] o) (B.10)
+ BT ] g V(W () = Prv(®)]] e
V(W(t) - Phw))‘

Applying the strong ellipticity condition (S2b) on the left-hand side of (B.10), we have

L2
d 2
HRTE V] g

2’

[ (W) - Puso) [, < w v

RV s [V (W (E) = Prv(t))]] 12

v (W =Po)],
V(W(t) - th(t))‘

arer ¥l g

L2
0 W [V (W) = P )|
Dividing by Hv (W(t) — Pai(t)) HL on both sides yields
. Tﬁg
M|V (W) = Piv(®) ||, S BT OO lgrss + 19l 0e) + 5 E V] gy [VW () = Pav(®) 2

+ h7_7||V||HF+1

V(W(t) - m(t))‘

L2

Since r > g, we can choose h sufficiently small such that the last term on the right-hand side can be absorbed
into the term on the left-hand side. This yields

[v(Wt) = Puv®)| , S0V Ollges + 9O 0. (B.11)

Again, by the approximation property of P, we have, for each ¢ € [0,T],

. . . d .
IV ) = Puv(®) 2 S BN gy G <7 < min(p,m — 1). (B.12)
It follows from the triangle inequality that, for each ¢ € [0, T,
. . . . d .
VW) = 9e)| | S B AVl + 9Oz, § <7 < minp,m = 1). (B.13)

By a similar argument as in the previous section, we can show that there exists a constant ¢; > 0 such that

HVVV(t)HL <e. (B.14)

B.3. L2 bounds on (v—W), (\'f — W) and (i’/ — W)

It was proved by Dobrowolski and Rannacher in [33] that for each ¢ € [0, T7,

[v(t) = W()| 2 < Cr(v)R™TE, g < r < min(p,m —1). (B.15)
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We shall focus on proving the L? error bound of the time derivative using a duality argument in this section.
Consider the following boundary value problem: for a given g € L?, solve ¥ € H{ such that

a(vip, @) = (g, ¢) . forall ¢ € Hy, (B.16)

where v is the solution of (5)—(7) and

d

= Y (Aiajs(VV)051,0ahi) 12 (B.17)

i,a,5,8=1

Since Ainjs(Vv) € WH> provided that A;u;p is sufficiently smooth and Vv € C*“ (¢f. Rem. 4.4), the
adjoint problem (B.16) has a unique solution which satisfies the following elliptic regularity conditions, cf.
Theorems 1.1 and 2.6 of Chapter 8 in [37],

1l = < el + lgllL2) (B.18)

for some positive constant ¢. Taking ¢ = 1) € H} in (B.17) and applying the coercive condition (S2b), we have

Mi|[V)7a < llgl 2141l - (B.19)

Applying Poincaré’s inequality in (B.19), we deduce that

H"/)HL? < Mflcpoin||g||L2'

Thus
[l > < cllgll 2 (B.20)
for some positive constant c¢. The corresponding discrete problem is formulated as: find v, € V;, such that
a(vin, @) = (8,¢) 2, forall ¢ e V. (B.21)
It is known that we have, cf., e.g. [33],
1% = ull g2 + hllY = Pull g1 < O™ | ]| g (B.22)

for some constant C. Let g = v — W, then (B.16) becomes
a(v.,0) = (V- W,0) " (B.23)

Plugging ¢ = v — W into (B.23), we obtain

; - a(v; B,V — W) (B.24)

Using (S2a) and the definition of the elliptic projection, we have,

d(v;q,b,\‘r—W) ('«,b WBh, ¥ — )+a(v¢h,va'v)
( b — P, v )+a(v v—W %)
+

d(v b — P,V — ) (W;W,¢h) —&(V;W,1/)h). (B.25)

Il
™
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By (iii,a), (B.20) and (B.22), we have
a(viv = v = W)| < K[V (v = W) | IV —wn)l .o

< KsCp(v)h™ - Ch||1/:||H2 (by (iii,a) and (B.22))
< KscCp(v)ChRT! Hv - WHL (by (B.20)).

For the remaining terms in (B.25), we observe that
’a(w;v’v,zph) — a(v;v’v,zph)’ < ‘a(w;v’v,uyh - ¢) - a(v;W,wh —~ 1/))’
n ‘a(w;v’v —o,q,b) —a(v;v'v—v,qp)‘

+ [a(W; ¥, 1) — a(v; v, 9)|
=Ty +T5 + Ts.

By Lipschitz continuity of A;q;3, we have

Ty < Ls V(W =)l 12 [VW || IV @n =)l

h—
<Cr(v)h e1|[V(n — )|l ( by (iii,a) and (iii,c))
< Cr(v)erh” - Chlly| > (by (B.22))
(by (B.

< CCCT(v)clhTHHV'V - \'/HL2

20)).
Similarly, we have
Ty < L VW =)o [V (W = %) | 19850
Following the analysis in [38] and Chapter 8 of [39], it can be shown that
v = Wil <c(v)h', (B.26)
where ¢(v) is a positive constant depending on the exact solution v. Therefore, we can bound T5 by

T5 < Lsc(v)R Co (WA ]| 2 < L(;c(v)Cr(v)chTHHW - v‘

B.2
(B.27)

for any r > 1 provided that h is sufficiently small. We bound Ty by

d

. aAia'
< Z (@(Wk — Vi)V 3 22(vv), 3a¢i>
i,a,7,8,k,y=1 Mk
d . 1 62147,04_][3
+ Z <8§(Wl - vl)&,(Wk - V]g)agvj' ) W(Vv + TV(W - V)) dT, 8(11/;1») ’

i,0,5,8,k,7,1,6=1
= b(W,v; Vv, ) + d(W,v; v, ).
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To ensure that VW € Zjs, we take h sufficiently small. By the convexity of Z; and Ms, we know that
Vv(z) + TV(W(z) —v(z)) € M; for x € Q. Since A;q, s is sufficiently smooth (in particular twice contin-
uously differentiable on My), we have
. 2 .
AW, v;v,9) < Cal[VIW = V)| [[VV| 2 V| 1>

< Cac(v)’ B> |V 12|Vl 2 (by (B.26))

< Cac) R [V 219 2

< Cac(v)2eh? || V¥ o ||[W — vHLQ (by (B.20))

—~~

L2

SChrHHWiv”m’ for r > 1.

For the estimation of b(W,v; Vv, 1), we apply integration by parts and the fact that Vj, C H} to obtain

d
. . aAia'
WWovivow) = | S (o]0 2 (v, 0 (Wi v )
i,0,,8 .k y=1 ky
< CW — V||L2 v W2,oo||V||W2voo||¢||H2

< OhT“Hv'V —v|[,, (by (B.20) and (B.15)).

Combining the above estimates for T4, T5 and Tg, we have

W — \'7HL2 < Gy (v, (B.28)

for some positive constant C,.(v).
By a similar argument, we can easily show that W (t) is differentiable with respect to t and a similar L? error

estimate for W — ¥. The proof of this estimate can be found in [40,41]. We omit the details here.
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