An adaptive stochastic Galerkin method based on multilevel expansions of random fields: Convergence and optimality
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 6, pp. 1955-1992

The subject of this work is a new stochastic Galerkin method for second-order elliptic partial differential equations with random diffusion coefficients. It combines operator compression in the stochastic variables with tree-based spline wavelet approximation in the spatial variables. Relying on a multilevel expansion of the given random diffusion coefficient, the method is shown to achieve optimal computational complexity up to a logarithmic factor. In contrast to existing results, this holds in particular when the achievable convergence rate is limited by the regularity of the random field, rather than by the spatial approximation order. The convergence and complexity estimates are illustrated by numerical experiments.

DOI : 10.1051/m2an/2022062
Classification : 35J25, 35R60, 41A10, 41A25, 41A63, 42C10, 65D99, 65N50, 65T60
Keywords: Parameter-dependent elliptic partial differential equations, stochastic Galerkin method, a posteriori error estimation, adaptive methods, complexity analysis
@article{M2AN_2022__56_6_1955_0,
     author = {Bachmayr, Markus and Voulis, Igor},
     title = {An adaptive stochastic {Galerkin} method based on multilevel expansions of random fields: {Convergence} and optimality},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1955--1992},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {6},
     doi = {10.1051/m2an/2022062},
     mrnumber = {4481120},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2022062/}
}
TY  - JOUR
AU  - Bachmayr, Markus
AU  - Voulis, Igor
TI  - An adaptive stochastic Galerkin method based on multilevel expansions of random fields: Convergence and optimality
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2022
SP  - 1955
EP  - 1992
VL  - 56
IS  - 6
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2022062/
DO  - 10.1051/m2an/2022062
LA  - en
ID  - M2AN_2022__56_6_1955_0
ER  - 
%0 Journal Article
%A Bachmayr, Markus
%A Voulis, Igor
%T An adaptive stochastic Galerkin method based on multilevel expansions of random fields: Convergence and optimality
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2022
%P 1955-1992
%V 56
%N 6
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2022062/
%R 10.1051/m2an/2022062
%G en
%F M2AN_2022__56_6_1955_0
Bachmayr, Markus; Voulis, Igor. An adaptive stochastic Galerkin method based on multilevel expansions of random fields: Convergence and optimality. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 6, pp. 1955-1992. doi: 10.1051/m2an/2022062

[1] M. S. Agranovich, Sobolev Spaces, Their Generalizations and Elliptic Problems in Smooth and Lipschitz Domains. Springer (2015). | MR | Zbl | DOI

[2] M. Bachmayr, A. Cohen, D. Dũng and C. Schwab, Fully discrete approximation of parametric and stochatic elliptic PDEs. SIAM J. Numer. Anal. 55 (2017) 2151–2186. | MR | DOI

[3] M. Bachmayr, A. Cohen and G. Migliorati, Sparse polynomial approximation of parametric elliptic PDEs. Part I: affine coefficients. ESAIM: Math. Model. Numer. Anal. 51 (2017) 321–339. | MR | Numdam | Zbl | DOI

[4] M. Bachmayr, A. Cohen and W. Dahmen, Parametric PDEs: sparse or low-rank approximations? IMA J. Numer. Anal. 38 (2018) 1661–1708. | MR | DOI

[5] M. Bachmayr, A. Cohen and G. Migliorati, Representations of Gaussian random fields and approximation of elliptic PDEs with lognormal coefficients. J. Fourier Anal. App. 24 (2018) 621–649. | MR | DOI

[6] A. Bespalov and D. Silvester, Efficient adaptive stochastic Galerkin methods for parametric operator equations. SIAM J. Sci. Comput. 38 (2016) A2118–A2140. | MR | DOI

[7] A. Bespalov and F. Xu, A posteriori error estimation and adaptivity in stochastic Galerkin FEM for parametric elliptic PDEs: beyond the affine case. Comput. Math. Appl. 80 (2020) 1084–1103. | MR | DOI

[8] A. Bespalov, C.E. Powell and D. Silvester, Energy norm a posteriori error estimation for parametric operator equations. SIAM J. Sci. Comput. 36 (2014) A339–A363. | MR | Zbl | DOI

[9] A. Bespalov, D. Praetorius, L. Rocchi and M. Ruggeri, Convergence of adaptive stochastic Galerkin FEM. SIAM J. Numer. Anal. 57 (2019) 2359–2382. | MR | DOI

[10] A. Bespalov, D. Praetorius and M. Ruggeri, Convergence and rate optimality of adaptive multilevel stochastic Galerkin FEM. IMA J. Numer. Anal. 42 (2022) 2190–2213. | MR | DOI

[11] P. Binev, Adaptive methods and near-best tree approximation. Oberwolfach Report 29/2007 (2007).

[12] P. Binev, Tree approximation for h p -adaptivity. SIAM J. Numer. Anal. 56 (2018) 3346–3357. | MR | DOI

[13] P. Binev and R. Devore, Fast computation in adaptive tree approximation. Numer. Math. 97 (2004) 193–217. | MR | Zbl | DOI

[14] A. Cohen and R. Devore, Approximation of high-dimensional parametric PDEs. Acta Numer. 24 (2015) 1–159. | MR | DOI

[15] A. Cohen, W. Dahmen, I. Daubechies and R. Devore, Tree approximation and optimal encoding. Appl. Comput. Harmonic Anal. 11 (2001) 192–226. | MR | Zbl | DOI

[16] A. Cohen, W. Dahmen and R. Devore, Adaptive wavelet methods for elliptic operator equations: convergence rates. Math. Comput. 70 (2001) 27–75. | MR | Zbl | DOI

[17] A. Cohen, W. Dahmen and R. Devore, Sparse evaluation of compositions of functions using multiscale expansions. SIAM J. Math. Anal. 35 (2003) 279–303. | MR | Zbl | DOI

[18] A. Cohen, R. Devore and C. Schwab, Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDE’s. Anal. Appl. (Singap.) 9 (2011) 11–47. | MR | Zbl | DOI

[19] A. J. Crowder, C. E. Powell and A. Bespalov, Efficient adaptive multilevel stochastic Galerkin approximation using implicit a posteriori error estimation. SIAM J. Sci. Comput. 41 (2019) A1681–A1705. | MR | DOI

[20] T. J. Dijkema, C. Schwab and R. Stevenson, An adaptive wavelet method for solving high-dimensional elliptic PDEs. Constr. Approximation 30 (2009) 423–455. | MR | Zbl | DOI

[21] G. C. Donovan, J. S. Geronimo and D. P. Hardin, Orthogonal polynomials and the construction of piecewise polynomial smooth wavelets. SIAM J. Math. Anal. 30 (1999) 1029–1056. | MR | Zbl | DOI

[22] E. Eigel, C. J. Gittelson, C. Schwab and E. Zander, Adaptive stochastic Galerkin FEM. Comput. Methods Appl. Mech. Eng. 270 (2014) 247–269. | MR | Zbl | DOI

[23] E. Eigel, C. J. Gittelson, C. Schwab and E. Zander, A convergent adaptive stochastic Galerkin finite element method with quasi-optimal spatial meshes. ESAIM: Math. Model. Numer. Anal. 49 (2015) 1367–1398. | MR | Numdam | Zbl | DOI

[24] T. Gantumur, H. Harbrecht and R. Stevenson, An optimal adaptive wavelet method without coarsening of the iterands. Math. Comput. 76 (2007) 615–629. | MR | Zbl | DOI

[25] C. J. Gittelson, Adaptive Galerkin methods for parametric and stochastic operator equations. Ph.D. thesis, ETH Zürich (2011).

[26] C. J. Gittelson, Representation of Gaussian fields in series with independent coefficients. IMA J. Numer. Anal. 32 (2012) 294–319. | MR | Zbl | DOI

[27] C. J. Gittelson, An adaptive stochastic Galerkin method for random elliptic operators. Math. Comput. 82 (2013) 1515–1541. | MR | Zbl | DOI

[28] C. J. Gittelson, Adaptive wavelet methods for elliptic partial differential equations with random operators. Numer. Math. 126 (2014) 471–513. | MR | Zbl | DOI

[29] N. Rekatsinas and R. Stevenson, An optimal adaptive wavelet method for first order system least squares. Numer. Math. 140 (2018) 191–237. | MR | DOI

[30] V. S. Rychkov, On restrictions and extensions of the Besov and Triebel-Lizorkin spaces with respect to Lipschitz domains. J. London Math. Soc. 60 (1999) 237–257. | MR | Zbl | DOI

[31] C. Schwab and C. J. Gittelson, Sparse tensor discretization of high-dimensional parametric and stochastic PDEs. Acta Numer. 20 (2011) 291–467. | MR | Zbl | DOI

[32] R. Stevenson, On the compressibility of operators in wavelet coordinates. SIAM J. Math. Anal. 35 (2004) 1110–1132. | MR | Zbl | DOI

[33] R. Stevenson, Adaptive wavelet methods for solving operator equations: an overview. In: Multiscale, Nonlinear and Adaptive Approximation. Springer (2009) 543–597. | MR | Zbl | DOI

[34] R. Stevenson, Adaptive wavelet methods for linear and nonlinear least-squares problems. Found. Comput. Math. 14 (2014) 237–283. | MR | Zbl | DOI

[35] J. Zech, D. Dũng and C. Schwab, Multilevel approximation of parametric and stochastic PDEs. Math. Models Methods Appl. Sci. 29 (2019) 1753–1817. | MR | DOI

Cité par Sources :