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AN ADAPTIVE STOCHASTIC GALERKIN METHOD BASED ON MULTILEVEL
EXPANSIONS OF RANDOM FIELDS: CONVERGENCE AND OPTIMALITY

Markus Bachmayr1,* and Igor Voulis2

Abstract. The subject of this work is a new stochastic Galerkin method for second-order elliptic
partial differential equations with random diffusion coefficients. It combines operator compression in
the stochastic variables with tree-based spline wavelet approximation in the spatial variables. Relying
on a multilevel expansion of the given random diffusion coefficient, the method is shown to achieve
optimal computational complexity up to a logarithmic factor. In contrast to existing results, this holds
in particular when the achievable convergence rate is limited by the regularity of the random field, rather
than by the spatial approximation order. The convergence and complexity estimates are illustrated by
numerical experiments.
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1. Introduction

In partial differential equations, one is frequently interested in efficient approximations of the mapping from
coefficients in the equations to the corresponding approximate solutions. On a domain 𝐷 ⊂ R𝑑, we consider the
elliptic model problem

−∇ · (𝑎∇𝑢) = 𝑓 on 𝐷, 𝑢 = 0 on 𝜕𝐷, (1.1)

where 𝑓 ∈ 𝐿2(𝐷) is given, and where we are interested in the dependence of the solutions 𝑢 on the diffusion
coefficients 𝑎. Especially in the context of uncertainty quantification problems, one considers coefficients 𝑎 given
as random fields on 𝐷 that can be parameterized by sequences 𝑦 = (𝑦𝜇)𝜇∈ℳ of independent scalar random
variables 𝑦𝜇, where typically ℳ = N. This leads to the problem of approximating the solutions 𝑢(𝑦) for each
realization 𝑎(𝑦) as a function of the countably many parameters 𝑦.

A variety of parameterizations of 𝑎 in terms of random function series have been considered in the literature.
One instance that has found frequent use in applications are lognormal coefficients 𝑎(𝑦) = exp

(︁∑︀
𝜇∈ℳ 𝑦𝜇𝜃𝜇

)︁
,

where 𝜃𝜇 are functions on 𝐷 and 𝑦𝜇 ∼ 𝒩 (0, 1) are independent. The functions 𝜃𝜇 are typically obtained from a
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Karhunen–Loève expansion of a given Gaussian random field. A model case with similar features, on which we
focus here, are affinely parameterized coefficients: Assuming ℳ0 to be a countable index set with 0 ∈ ℳ0 and
taking ℳ = ℳ0 ∖ {0}, these are of the form

𝑎(𝑦) = 𝜃0 +
∑︁

𝜇∈ℳ
𝑦𝜇𝜃𝜇 (1.2)

with 𝜃𝜇 ∈ 𝐿∞(𝐷) for 𝜇 ∈ ℳ0, where ess inf𝐷 𝜃0 > 0. Up to rescaling 𝜃𝜇, we can assume 𝑦𝜇 ∈ [−1, 1] for each
𝜇 ∈ℳ. The weak formulation of (1.1) with coefficients (1.2) then reads: find 𝑢(𝑦) ∈ 𝑉 := 𝐻1

0 (𝐷) such that∫︁
𝐷

𝑎(𝑦)∇𝑢(𝑦) · ∇𝑣 d𝑥 = 𝑓(𝑣) for all 𝑣 ∈ 𝑉 and all 𝑦 ∈ 𝑌 := [−1, 1]ℳ, (1.3)

with given 𝑓 ∈ 𝑉 ′. Well-posedness of the problem for all 𝑦 ∈ 𝑌 is ensured by the uniform ellipticity condition

ess inf
𝐷

⎧⎨⎩𝜃0 − ∑︁
𝜇∈ℳ

|𝜃𝜇|

⎫⎬⎭ =: 𝑟 > 0. (1.4)

The subject of this work are numerical methods for computing approximations of 𝑢(𝑦) by sparse product
polynomial expansions in the stochastic variables 𝑦 for given coefficients of the type (1.2). Methods of this type
have been studied quite intensely in recent years; see, for instance, the review articles [14,31] and the references
given there. A central point is that convergence rates can be achieved that depend on the spatial dimension
𝑑, but not on any dimensionality parameter concerning the parameters 𝑦. The approach of stochastic Galerkin
discretizations, which we follow here, is particularly suitable for the construction of adaptive schemes. Using
multilevel structure in the expansion (1.2), we obtain a method that converges at rates that are optimal for
fully adaptive spatial and stochastic approximations. This holds even for random fields 𝑎 of low smoothness,
with computational costs that scale linearly up to a logarithmic factor with respect to the number of degrees
of freedom.

1.1. Sparse polynomial approximations and stochastic Galerkin methods

For simplicity, we assume each 𝑦𝜇 to be uniformly distributed in [−1, 1]; different distributions with finite
support can be treated with minor modifications. With 𝜎 the uniform measure on 𝑌 , we thus consider the
mapping 𝑦 ↦→ 𝑢(𝑦) as an element of

𝒱 := 𝐿2(𝑌, 𝑉, 𝜎) ≃ 𝑉 ⊗ 𝐿2(𝑌, 𝜎).

With (1.4), it is easy to see that the parameter-dependent solution 𝑢 of (1.3) satisfies 𝑢 ∈ 𝒱 and can be
equivalently characterized by the variational formulation∫︁

𝑌

∫︁
𝐷

𝑎(𝑦)∇𝑢(𝑦) · ∇𝑣(𝑦) d𝑥d𝜎(𝑦) =
∫︁

𝑌

𝑓(𝑣(𝑦)) d𝜎(𝑦) for all 𝑣 ∈ 𝒱. (1.5)

From the univariate Legendre polynomials {𝐿𝑘}𝑘∈N that are orthonormal with respect to the uniform measure
on [−1, 1], we obtain (see, e.g., [31], Sect. 2.2) the orthonormal basis {𝐿𝜈}𝜈∈ℱ of product Legendre polynomials
for 𝐿2(𝑌, 𝜎), which for 𝑦 ∈ 𝑌 are given by

𝐿𝜈(𝑦) =
∏︁

𝜇∈ℳ
𝐿𝜈𝜇

(𝑦𝜇), 𝜈 ∈ ℱ =
{︀
𝜈 ∈ Nℳ0 : 𝜈𝜇 ̸= 0 for finitely many 𝜇 ∈ℳ

}︀
.

For 𝑢 ∈ 𝒱 as in (1.5), we have the basis expansion

𝑢(𝑦) =
∑︁
𝜈∈ℱ

𝑢𝜈𝐿𝜈(𝑦), 𝑢𝜈 =
∫︁

𝑌

𝑢(𝑦)𝐿𝜈(𝑦) d𝜎(𝑦) ∈ 𝑉.
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Restricting the summation over 𝜈 to a finite subset 𝐹 ⊂ ℱ yields the semidiscrete best approximations in
𝒱 by elements of 𝑉 ⊗ span{𝐿𝜈}𝜈∈𝐹 . Computable approximations are obtained by replacing each 𝑢𝜈 by an
approximation from a finite-dimensional subspace 𝑉𝜈 ⊂ 𝑉 (such as a subspace spanned by finite element or
wavelet basis functions). In other words, we seek fully discrete approximations of 𝑢 from spaces

𝒱𝑁 =

{︃∑︁
𝜈∈𝐹

𝑣𝜈𝐿𝜈 : 𝑣𝜈 ∈ 𝑉𝜈 , 𝜈 ∈ 𝐹

}︃
⊂ 𝒱

of dimension 𝑁 =
∑︀

𝜈∈𝐹 dim𝑉𝜈 . In the present work, the spaces 𝑉𝜈 are chosen as spaces of piecewise polynomial
functions of the spatial variables on adaptive grids. Note that due to the selection of the subset 𝐹 , the original
problem in countably many parametric dimensions is reduced to a finite but approximation-dependent effective
dimensionality.

The method considered here is based on the stochastic Galerkin variational formulation for 𝑢𝑁 ∈ 𝒱𝑁 ,∫︁
𝑌

∫︁
𝐷

𝑎(𝑦)∇𝑢𝑁 (𝑦) · ∇𝑣(𝑦) d𝑥d𝜎(𝑦) =
∫︁

𝑌

𝑓(𝑣(𝑦)) d𝜎(𝑦) for all 𝑣 ∈ 𝒱𝑁 , (1.6)

again with 𝑎(𝑦) as in (1.2). As a consequence of (1.4), the bilinear form given by the left hand side of (1.6) is
elliptic and bounded on 𝒱, and by Céa’s lemma

‖𝑢𝑁 − 𝑢‖𝒱 ≤
2‖𝜃0‖𝐿∞

− 𝑟

𝑟
min
𝑣∈𝒱𝑁

‖𝑣 − 𝑢‖𝒱 ,

where we have used that 𝑟 ≤ 𝑎(𝑦) ≤ 2‖𝜃0‖𝐿∞
− 𝑟 for all 𝑦 ∈ 𝑌 .

1.2. Convergence rates

The first question in the construction of numerical methods is thus to identify 𝐹 and (𝑉𝜈)𝜈∈𝐹 such that
min𝑣∈𝒱𝑁

‖𝑢− 𝑣‖𝒱 is minimal, up to a fixed constant, for each given computational budget 𝑁 . Under suitable
assumptions, one can show that there exist 𝐹 and (𝑉𝜈)𝜈∈𝐹 such that

min
𝑣∈𝒱𝑁

‖𝑢− 𝑣‖𝒱 ≤ 𝐶𝑁−𝑠 (1.7)

for some 𝑠 > 0, and choosing such 𝒱𝑁 ensures that the stochastic Galerkin solutions 𝑢𝑁 converge at the same
rate. One now aims to realize this choice by adaptive methods that only use the problem data 𝐷, 𝑓 , and
the expansion (1.2) of 𝑎 as input. These methods should also be universal, that is, they should not require
knowledge of 𝑠 in (1.7), but rather automatically realize the best possible rate 𝑠 for each given problem. A basic
building block for such methods are computable a posteriori error estimates for 𝑢𝑁 . Beyond the convergence
of the computed approximations at optimal rates with respect to 𝑁 , in practice the computational costs of
constructing 𝒱𝑁 and 𝑢𝑁 are crucial. An adaptive method is said to be of optimal complexity if the required
number of elementary operations (and hence the computational time) is bounded by a fixed multiple of 𝑁 .

As the basic approximability results in [2,3] show, the type of expansion (1.2) of the random field 𝑎(𝑦) plays
a role in the rate 𝑠 that is achievable in (1.7). In contrast to Karhunen–Loève-type expansions in terms of
functions 𝜃𝜇 with global supports on 𝐷, improved results can be obtained for expansions with 𝜃𝜇 that have
localized supports. In particular, this is the case for 𝜃𝜇 with wavelet-type multilevel structure, which we focus
on in this work. To each 𝜇 ∈ℳ we assign a level |𝜇| = ℓ ∈ N0. We assume 𝜃𝜇 to have the properties that there
exists 𝐶1 > 0 such that

#{𝜇 : |𝜇| = ℓ} ≤ 𝐶12𝑑ℓ for all ℓ ≥ 0, (1.8)

and there exists 𝐶2 > 0 such that for some 𝛼 > 0,∑︁
|𝜇|=ℓ

|𝜃𝜇| ≤ 𝐶22−𝛼ℓ a.e. in 𝐷, for all ℓ ≥ 0. (1.9)
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Expansions of this type for several important classes of Gaussian random fields are constructed in [5, 26], and
it is thus natural to use such these also in the model case of affine parameterizations. For sufficiently regular
𝜃𝜇, the parameter 𝛼 can be seen to correspond to the Hölder regularity of realizations of the random field 𝑎(𝑦).
Note that for multilevel basis functions, the condition (1.4) is less restrictive than for globally supported 𝜃𝜇; in
particular, in the multilevel case, any Hölder smoothness index 𝛼 > 0 is possible in (1.9).

However, 𝑠 in (1.7) is also constrained by the spatial regularity of the further problem data 𝑓 and 𝐷, as well
as by the permissible choices of spaces 𝑉𝜈 . The simplest option is to choose all 𝑉𝜈 equal to the same sufficiently
rich subspace of 𝑉 . Several approximation results and adaptive schemes in the literature are based on choosing
each 𝑉𝜈 from a fixed hierarchy of nested subspaces of 𝑉 , such as wavelet subspaces or finite element spaces
corresponding to uniformly refined meshes (see, e.g., [18, 19, 27]). For multilevel expansions with properties
(1.8), (1.9), the results in Section 8 of [2] show a potential advantage of choosing 𝑉𝜈 adapted specifically for
each 𝜈, for instance by a separate adaptive finite element mesh for each 𝜈. For 𝑑 ≥ 2 and 𝛼 ∈ (0, 1], these results
yield a rate 𝑠 = 𝛼

𝑑 − 𝛿 for any 𝛿 > 0 in (1.7). Remarkably, this rate for fully discrete approximation is the same
as established in [3] for only semidiscrete approximation. As noted in [4], this is also the same rate as for spatial
approximation of a single realization of 𝑢(𝑦) in 𝐻1 for 𝑦 ∈ 𝑌 drawn uniformly at random. In other words, in
this setting, the full stochastic dependence can be approximated at the same rate as a single realization of the
random solution. This is related to the multilevel structure of the 𝜃𝜇 also reappearing to a certain degree in the
coefficients 𝑢𝜈 , but in a strongly 𝜈-dependent way that necessitates individually adapted spaces 𝑉𝜈 .

1.3. New contributions and relation to previous results

In this work, we prove a new adaptive stochastic Galerkin scheme to have optimal computational complexity,
up to a logarithmic factor, in realizing this convergence rate. To the best of our knowledge, this is the first such
result for the case where the approximability is limited by the decay in absolute value of the functions 𝜃𝜇 in
the random field expansion (that is, by the smoothness parameter 𝛼 in (1.9)) rather than by the approximation
order of the spatial basis functions. In particular, we improve on a previous result based on wavelet operator
compression from [4]: the method analyzed there yields suboptimal rates that get closer to 𝛼/𝑑 for more regular
spatial wavelet basis functions. For practically realizable degrees of regularity of the basis, however, the resulting
rates for this previous method remain rather far from optimal.

Note that the situation is different when 𝛼 is large in comparison to the approximation order of the spatial
basis functions. In this case, which corresponds to a more rapidly convergent expansion (1.2), the rate 𝑠 in
(1.7) is constrained, independently of 𝛼, by the spatial approximation rate. In such a setting, optimality with
respect to this spatial rate is obtained by the adaptive scheme from [28], which is also based on wavelet operator
compression. In the present work, however, we focus on the case of sufficiently high-order spatial approximation
such that the achievable rate 𝑠 is determined by the random field 𝑎(𝑦).

Many existing methods use spatial approximations by finite elements, for instance, as in [6–8, 10, 19, 22, 23].
Convergence and complexity of such methods, however, has been established only to a more limited extent than
for wavelet approximations. For a method using a single adaptively refined finite element mesh, convergence
and quasi-optimal cardinality of this spatial mesh are shown in [23]. In contrast, independently adapted meshes
are used in [19,22]. In the latter case, meshes for each Legendre coefficient are selected from a fixed refinement
hierarchy. The method in [19] as well as the analysis in [9] rely on an unverified saturation assumption. In [10],
a method using a separately adapted mesh for each Legendre coefficient is shown to produce approximations
converging at optimal rates. However, this is done using a further strengthened saturation assumption, and
there are no bounds on the computational complexity. These finite element-based methods are all constructed
for 𝜃𝜇 of general supports and do not make use of multilevel expansions of random fields.

The main component of our new method is a scheme for error estimation by sufficiently accurate approxima-
tion of the full spatial-stochastic residual. For achieving improved computational complexity, it makes crucial
use of the multilevel structure (1.8) and (1.9). The spatial discretization is done by spline wavelets. We combine
a semidiscrete adaptive operator compression on the stochastic degrees of freedom, which is independent of the
spatial discretization, with a tree-based evaluation of spatial residuals. In the latter step, we use that the spatial



AN ADAPTIVE STOCHASTIC GALERKIN METHOD BASED ON MULTILEVEL EXPANSIONS 1959

coefficients are approximated by piecewise polynomials, evaluate the wavelet coefficients using a multi-to-single-
scale transform following [34], and use tree coarsening (based on a modification of a result in [11,12]) to identify
new degrees of freedom by a bulk chasing criterion. With these ingredients at hand, the adaptive scheme can
be constructed similarly to the ones in [24,34]. Due to the use of operations on trees, the complexity estimates
for our method rely on tree approximability for the Legendre coefficients 𝑢𝜈 .

The near-optimality result for our method can be summarized as follows: if the best fully discrete approx-
imation 𝑢𝑁 with spatial tree structure in each Legendre coefficient requires a total number of 𝑁 = 𝒪(𝜀−1/𝑠)
degrees of freedom for an error bound ‖𝑢− 𝑢𝑁‖𝒱 ≤ 𝜀, then our method finds an approximation satisfying this
error bound using 𝒪(𝜀−1/𝑠|log 𝜀|) arithmetic operations. In addition, we show that for best approximations with
spatial tree structure, one obtains the same convergence rates of best approximations as shown in Section 8
of [2] for general sparse approximations. Altogether, this shows that for 𝛼 ∈ (0, 1] and 𝑑 ≥ 2, for all 𝑠 < 𝛼

𝑑

the method requires 𝒪(𝜀−1/𝑠) operations; in the special case 𝑑 = 1 this holds for all 𝑠 < 2
3𝛼. These results are

confirmed by our numerical tests, which indicate that these statements continue to hold true for 𝛼 > 1.
The regularity requirements on the problem data are the same as for the underlying approximability state-

ments from [2], and unlike [4], the wavelet basis functions are only required to be 𝐶1 splines. The use of wavelets
in this scheme allows us to avoid a number of technicalities in its analysis that would arise with finite element
discretizations. However, in contrast to the existing methods with computational complexity bounds from [4,28],
our basic strategy is generalizable to spatial approximation by finite elements.

1.4. Outline and notation

In Section 2, we state our main assumptions on the problem data in (1.3) and review the relevant approx-
imability results for solutions. In Section 3, we discuss the basic construction of stochastic Galerkin schemes
that our new method is based on and recapitulate a related previous operator compression result that leads to a
suboptimal method. In Section 4, we describe the new residual approximation using tree approximation in the
spatial discretization, a corresponding tree coarsening scheme, and solver for Galerkin discretizations. In addi-
tion, we verify that the sought solution has the required slightly stronger tree approximability. In Section 5, we
analyze convergence and computational complexity of the resulting adaptive method. In Section 6, we illustrate
these results by numerical experiments. We conclude with a summary of our findings and an outlook on further
work in Section 7.

By 𝐴 . 𝐵, we denote that there exists 𝐶 > 0 independent of the quantities appearing in 𝐴 and 𝐵 such that
𝐴 ≤ 𝐶𝐵. Moreover, we write 𝐴 & 𝐵 for 𝐵 . 𝐴 and 𝐴 ∼ 𝐵 for 𝐴 . 𝐵 ∧ 𝐵 . 𝐴. By meas(𝑆), we denote the
Lebesgue measure of a a subset 𝑆 of Euclidean space. Where this cannot cause confusion, we write ‖·‖ for the
ℓ2-norm on the respective index set and ⟨·, ·⟩ for the corresponding inner product.

2. Sparse approximations and stochastic Galerkin methods

In this section, we summarize the results on convergence rates of sparse polynomial approximations from [2,3]
for coefficient expansions (1.2) in terms of functions 𝜃𝜇, 𝜇 ∈ ℳ, with multilevel structure. While |𝜇| describes
the scale of 𝜃𝜇, for each fixed |𝜇|, the index 𝜇 determines the spatial localization of this function. Conditions
(1.8) and (1.9) are satisfied in particular when 𝜃𝜇 correspond to a rescaled, level-wise ordered wavelet-like basis
with following properties.

Assumption 2.1. We assume 𝜃𝜇 ∈ 𝑊 1
∞(𝐷) for 𝜇 ∈ ℳ0 such that in addition to (1.8), the following hold for

all 𝜇 ∈ℳ:

(i) diam supp 𝜃𝜇 ∼ 2−|𝜇|,
(ii) there exists 𝑀 > 0 such that for each 𝜇,

#{𝜇′ ∈ℳ : |𝜇| = |𝜇′|, supp 𝜃𝜇 ∩ supp 𝜃𝜇′} ≤𝑀,

(iii) for some 𝛼 > 0, one has ‖𝜃𝜇‖𝐿∞(𝐷) . 2−𝛼|𝜇|.
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2.1. Semidiscrete approximations

We first consider sparse Legendre approximations of 𝑢(𝑦) ∈ 𝑉 with respect to the parametric variables
𝑦 ∈ 𝑌 . For given 𝑛 ∈ N, selecting 𝐹𝑛 ⊂ ℱ to comprise the indices of 𝑛 largest ‖𝑢𝜈‖𝑉 yields the best 𝑛-term
approximation of 𝑢 by product Legendre polynomials,

𝑢𝐹𝑛
:=

∑︁
𝜈∈𝐹𝑛

𝑢𝜈 𝐿𝜈 .

The error in 𝒱 of approximating 𝑢 by 𝑢𝐹 decays with rate 𝒪(𝑛−𝑠) precisely when the sequence (‖𝑢𝜈‖𝑉 )
𝜈∈ℱ is

an element of the linear space 𝒜𝑠(ℱ) of sequences with finite quasi-norm

⃦⃦
(‖𝑢𝜈‖𝑉 )

𝜈∈ℱ

⃦⃦
𝒜𝑠(ℱ)

:= sup
𝑛∈N0

(𝑛+ 1)𝑠 inf
𝐹⊂ℱ
#𝐹≤𝑛

⎛⎝ ∑︁
𝜈∈ℱ∖𝐹

‖𝑢𝜈‖2𝑉

⎞⎠ 1
2

. (2.1)

As a consequence of the Legendre coefficient estimates in [3], we have the following approximability result, which
is an immediate consequence of Corollary 4.2 from [3].

Theorem 2.2. Let (1.4) as well as (1.8), (1.9) hold. Then

(‖𝑢𝜈‖𝑉 )
𝜈∈ℱ ∈ 𝒜

𝑠(ℱ) for any 𝑠 <
𝛼

𝑑
·

Inserting product Legendre expansions of 𝑢, 𝑣 into (1.5) leads to the semidiscrete form of the stochastic
Galerkin problem for the coefficient functions 𝑢𝜈 , 𝜈 ∈ ℱ ,∑︁

𝜇∈ℳ0

∑︁
𝜈′∈ℱ

(M𝜇)𝜈,𝜈′𝐴𝜇𝑢𝜈′ = 𝛿0,𝜈𝑓, 𝜈 ∈ ℱ , (2.2)

where 𝐴𝜇 : 𝑉 → 𝑉 ′ are defined by

⟨𝐴𝜇𝑣, 𝑤⟩ :=
∫︁

𝐷

𝜃𝜇∇𝑣 · ∇𝑤 d𝑥 𝑣,𝑤 ∈ 𝑉, 𝜇 ∈ℳ0,

and the mappings M𝜇 : ℓ2(ℱ) → ℓ2(ℱ) are given by

M0 :=
(︂∫︁

𝑌

𝐿𝜈(𝑦)𝐿𝜈′(𝑦) d𝜎(𝑦)
)︂

𝜈,𝜈′∈ℱ
,

M𝜇 :=
(︂∫︁

𝑌

𝑦𝜇𝐿𝜈(𝑦)𝐿𝜈′(𝑦) d𝜎(𝑦)
)︂

𝜈,𝜈′∈ℱ
, 𝜇 ∈ℳ.

Since the 𝐿2([−1, 1], 1
2 d𝑦)-orthonormal Legendre polynomials {𝐿𝑘}𝑘∈N satisfy the three-term recursion relation

𝑦𝐿𝑘(𝑦) =
√︀
𝛽𝑘+1𝐿𝑘+1(𝑦) +

√︀
𝛽𝑘𝐿𝑘−1(𝑦), 𝛽𝑘 =

(︀
4− 𝑘−2

)︀−1
,

with 𝐿0 = 1, 𝐿−1 = 0, 𝛽0 = 0, we have

M0 = (𝛿𝜈,𝜈′)𝜈,𝜈′∈ℱ ,

M𝜇 =
(︁√︁

𝛽𝜈𝜇+1 𝛿𝜈+𝑒𝜇,𝜈′ +
√︁
𝛽𝜈𝜇 𝛿𝜈−𝑒𝜇,𝜈′

)︁
𝜈,𝜈′∈ℱ

, 𝜇 ∈ℳ,

with the Kronecker vectors 𝑒𝜇 = (𝛿𝜇,𝜇′)𝜇′∈ℳ.
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2.2. Fully discrete approximations

We now turn to additional spatial approximation. Let Ψ := {𝜓𝜆}𝜆∈𝒮 with a countable index set 𝒮 be a Riesz
basis of 𝑉 ,

𝑐Ψ‖v‖ℓ2(𝒮) ≤

⃦⃦⃦⃦
⃦∑︁

𝜆∈𝒮

v𝜆𝜓𝜆

⃦⃦⃦⃦
⃦

𝑉

≤ 𝐶Ψ‖v‖ℓ2(𝒮). (2.3)

We can then expand 𝑢 in terms of its coefficient sequence u ∈ ℓ2(ℱ × 𝒮) as

𝑢 =
∑︁
𝜈∈ℱ
𝜆∈𝒮

u𝜈,𝜆 𝐿𝜈 ⊗ 𝜓𝜆, (2.4)

where we write u𝜈 = (u𝜈,𝜆)𝜆∈𝒮 . Note that by duality, we also have

𝑐Ψ‖𝑔‖𝑉 ′ ≤
⃦⃦

(𝑔(𝜓𝜆))𝜆∈𝒮
⃦⃦

ℓ2
≤ 𝐶Ψ‖𝑔‖𝑉 ′ , 𝑔 ∈ 𝑉 ′. (2.5)

The variational problem (1.5) can equivalently be rewritten as an operator equation on the sequence space
ℓ2(ℱ × 𝒮) in the form

Bu :=
∑︁

𝜇∈ℳ0

(M𝜇 ⊗A𝜇)u = f , (2.6)

where
A𝜇 := (⟨𝐴𝜇𝜓𝜆′ , 𝜓𝜆⟩)𝜆,𝜆′∈𝒮 , 𝜇 ∈ℳ0, f :=

(︀
⟨𝑓, 𝐿𝜈 ⊗ 𝜓𝜆⟩

)︀
(𝜈,𝜆)∈ℱ×𝒮 . (2.7)

In what follows, we assume Ψ to be a sufficiently smooth wavelet-type basis of approximation order greater
than one. Here each index 𝜆 ∈ 𝒮 comprises the level |𝜆| of the corresponding basis element, its position in 𝐷, and
the wavelet type. We assume that diam supp𝜓𝜆 ∼ 2−|𝜆| for 𝜆 ∈ 𝒮 and, without loss of generality, min𝜆∈𝒮 |𝜆| = 0.

In the case of fully discrete approximations based on expansions (2.4) with the spatial Riesz basis Ψ, the
relevant type of sparsity is quantified by the quasi-norms,

‖v‖𝒜𝑠(ℱ×𝒮) := sup
𝑁∈N0

(𝑁 + 1)𝑠 inf
# suppw≤𝑁

‖v −w‖ℓ2(ℱ×𝒮). (2.8)

Note that here, supp w = {(𝜈, 𝜆) ∈ ℱ × 𝒮 : w𝜈,𝜆 ̸= 0} is chosen from arbitrary subsets of ℱ × 𝒮, so that each
Legendre coefficient of the corresponding element of 𝒱 is approximated with an independent adaptive spatial
approximation.

For any 𝑠 > 0 and a countable index set ℐ, for 𝑝 > 0 given by 𝑝−1 = 𝑠+ 1
2 the space 𝒜𝑠(ℐ) can be identified

with the weak-ℓ𝑝 space ℓw𝑝 (ℐ). The corresponding quasi-norm

‖w‖ℓw𝑝
= sup

𝑘∈N
𝑘1/𝑝w*

𝑘,

where w*
𝑘 is the 𝑘-th largest of the numbers |w𝜆|, 𝜆 ∈ ℐ, satisfies

‖w‖ℓw𝑝
∼ ‖w‖𝒜𝑠 (2.9)

with constants depending only on 𝑠. Moreover, note that for all 𝑝, 𝜀 > 0, one has

ℓ𝑝 ⊂ ℓw𝑝 ⊂ ℓ𝑝+𝜀. (2.10)

In what follows, we use a basic approximability result established in [2]. Note that the assumptions given
here are not the sharpest possible, but allow us to avoid some technicalities.
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Theorem 2.3. In addition to (1.4) and Assumptions 2.1 with levelwise decay rate 𝛼 > 0, let 𝐷 be convex,
𝑓 ∈ 𝐿2(𝐷), and ‖∇𝜃𝜇‖𝐿∞

. 2−(𝛼−1)|𝜇| for 𝜇 ∈ ℳ. Let 𝛼 ∈ (0, 1] and 𝜏 ∈ (1, 2]. Then for any 𝛼̂ ∈ (0, 𝛼), with
𝑍𝛼̂ := 𝑉 ∩ [𝐻1(𝐷),𝑊 2

𝜏 (𝐷)]𝛼̂, one has ∑︁
𝜈∈ℱ

‖𝑢𝜈‖𝑝
𝑍𝛼̂

<∞

for any 𝑝 > 0 such that
1
𝑝
<
𝛼

𝑑
+

1
2

+
(︂

1
𝜏
− 1

2
− 1
𝑑

)︂
𝛼̂.

As a consequence of Proposition 7.4 from [2], the complex interpolation space 𝑍𝛼̂ has the following approxi-
mation property: there exists 𝐶 > 0 such that for all 𝑣 ∈ 𝑍𝛼̂,

inf{‖𝑣 − 𝑣𝑛‖𝑉 : 𝑣𝑛 ∈ span{𝜓𝜆}𝜆∈𝑆 , 𝑆 ⊂ 𝒮, #𝑆 ≤ 𝑛} ≤ 𝐶𝑛−𝛼̂/𝑑‖𝑣‖𝑍𝛼̂
. (2.11)

Note that an analogous property holds when the wavelet approximations are replaced by adaptive finite elements.
With appropriately chosen 𝜏 and 𝛼̂, by the arguments in Section 8.2 from [2] this implies in particular the
following.

Corollary 2.4. Let the assumptions of Theorem 2.3 hold, and let 𝑑 ∈ {2, 3}. Then∑︁
𝜈∈ℱ

‖u𝜈‖𝑝
𝒜𝑠(𝒮) <∞ for any 𝑝, 𝑠 > 0 such that

1
𝑝
<
𝛼

𝑑
+

1
2

and 𝑠 <
𝛼

𝑑
· (2.12)

In view of (2.9) and (2.10), the bound (2.12) in turn implies∑︁
𝜈∈ℱ

|u𝜈,𝜆|𝑝 <∞ for any 𝑝 > 0 such that
1
𝑝
<
𝛼

𝑑
+

1
2

, (2.13)

and as a further consequence

u ∈ 𝒜𝑠(ℱ × 𝒮), for any 𝑠 > 0 such that 𝑠 <
𝛼

𝑑
· (2.14)

As a consequence, for this type of fully discrete best 𝑁 -term approximation we remarkably have the same
limiting convergence rate as for the semidiscrete Legendre approximation and for approximating 𝑢(𝑦) for a
single random draw of 𝑦.

Remark 2.5. In the special case 𝑑 = 1, since the above results do not apply to 𝜏 < 1, we obtain (2.13) only
with 1

𝑝 <
2
3𝛼+ 1

2 , corresponding to 𝑠 < 2
3𝛼 for 𝛼 ∈ (0, 1].

3. Adaptive stochastic Galerkin methods

We now review basic concepts of adaptive stochastic Galerkin schemes in terms of the sequence space for-
mulation (2.6) as well as the previous results on an adaptive method with complexity bounds from [4]. In what
follows, we write ‖·‖ for the ℓ2-norm on the respective index set and ⟨·, ·⟩ for the corresponding inner product.

3.1. Stochastic Galerkin discretization

Under the assumption (1.4), for the self-adjoint mapping B on ℓ2(ℱ × 𝒮), with 𝑟B := 𝑐2Ψ𝑟 and 𝑅B :=
𝐶2

Ψ(2‖𝜃0‖𝐿∞
− 𝑟), we have

𝑟B‖v‖2 ≤ ⟨Bv,v⟩ ≤ 𝑅B‖v‖2, v ∈ ℓ2(ℱ × 𝒮). (3.1)
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For any Λ ⊂ ℱ × 𝒮, the corresponding stochastic Galerkin approximation is defined as the unique uΛ with
supp uΛ ⊆ Λ such that

(BuΛ − f)|Λ = 0.

By (3.1), this system of linear equations in #Λ unknowns has a symmetric positive definite system matrix with
spectral norm condition number bounded, independently of Λ, by 𝜅(B) = ‖B‖

⃦⃦
B−1

⃦⃦
≤ 𝑅B/𝑟B. It can thus be

solved to the required accuracy, for instance, by direct application of the conjugate gradient method.
In the convergence analysis of adaptive methods based on solving successive Galerkin problems, the following

saturation property plays a crucial role; for the proof, see Lemma 4.1 of [16] and Lemma 1.2 of [24].

Lemma 3.1. Let 𝜔 ∈ (0, 1], w ∈ ℓ2(ℱ × 𝒮), Λ ⊂ ℱ × 𝒮 such that supp w ⊂ Λ and

‖(Bw − f)|Λ‖ ≥ 𝜔‖Bw − f‖, (3.2)

and let uΛ with supp uΛ ⊆ Λ be the solution of the Galerkin system (BuΛ − f)|Λ = 0. Then

‖u− uΛ‖B ≤
(︂

1− 𝜔2

𝜅(B)

)︂ 1
2

‖u−w‖B, (3.3)

where ‖v‖B =
√︀
⟨Bv,v⟩ for v ∈ ℓ2(ℱ × 𝒮).

Note that whereas a saturation property of the type (3.3) is assumed in [9,19] and in a further strengthened
form for the rate estimates in [10], as a consequence of Lemma 3.1, no such assumption is required in the present
case.

3.2. Adaptive Galerkin method

In its basic idealized form, the adaptive Galerkin scheme that was analyzed in [24] in the context of wavelet
approximation is performed in two steps. In our setting, for each 𝑘 ∈ N, in step 𝑘 of the scheme we are given
𝐹 𝑘 ⊂ ℱ and 𝑆𝑘

𝜈 ⊂ 𝒮 for 𝜈 ∈ 𝐹 𝑘 and find 𝐹 𝑘+1 and (𝑆𝑘+1
𝜈 )𝜈∈𝐹 𝑘+1 as follows:

– Solve the Galerkin problem on Λ𝑘 :=
{︀

(𝜈, 𝜆) : 𝜈 ∈ 𝐹 𝑘, 𝜆 ∈ 𝑆𝑘
𝜈

}︀
to obtain u𝑘 with supp u𝑘 ⊆ Λ𝑘 satisfying

(Bu𝑘 − f)|Λ𝑘 = 0.
– Choose Λ𝑘+1 as the smallest set Λ̂ ⊂ ℱ × 𝒮 such that

⃦⃦(︀
Bu𝑘 − f

)︀
|Λ̂
⃦⃦
≥ 𝜔

⃦⃦
Bu𝑘 − f

⃦⃦
, where 𝜔 ∈ (0, 1] is

fixed and sufficiently small.

This basic strategy is also known as bulk chasing ; the condition
⃦⃦

(Bu𝑘 − f)|Λ̂
⃦⃦
≥ 𝛼

⃦⃦
Bu𝑘 − f

⃦⃦
is analogous

to Dörfler marking in the context of adaptive finite element methods. For arriving at a practical scheme, the
main difficulty lies in this second step, since the sequences Bu𝑘 − f in general have infinite support. One thus
needs to replace Bu𝑘 − f by finitely supported approximations. In addition, the required Galerkin solutions are
computed only inexactly. The condition of Λ𝑘+1 being selected to have minimal cardinality can also be relaxed,
which is crucial when using approximations with additional tree structure constraints.

The numerically realizable version of the adaptive Galerkin method given in Algorithm 3.1 relies on two
problem-dependent procedures. The first, invoked in step (i), consists in a method for computing a finitely
supported approximation r𝑘 of Bu𝑘 − f of sufficient relative accuracy. The second, used in step (iii), is a
scheme for the approximate solution of Galerkin problems on the index sets that are determined in a problem-
independent manner in step (ii) from r𝑘 to satisfy a bulk-chasing criterion.

For the latter step, following [34], we use a substantially relaxed version of the minimality requirement on
Λ𝑘+1 that is appropriate for tree approximation. In the context of standard sparse approximation as in [16,24],
one may take 𝜔0 = 𝜔1 and select Λ𝑘+1 by directly adding the indices corresponding to the largest entries of r𝑘

to Λ𝑘.
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Algorithm 3.1. Adaptive Galerkin method.
Let 0 < 𝜔0 ≤ 𝜔1 < 1, 𝜁, 𝛾 > 0, u0 = 0, and Λ0 = ∅.

For 𝑘 = 0, 1, 2, . . ., perform the following steps:

(i) Find r𝑘 with # supp r𝑘 <∞ such that
⃦⃦
r𝑘 −

(︀
Bu𝑘 − f

)︀⃦⃦
≤ 𝜁
⃦⃦
Bu𝑘 − f

⃦⃦

(ii) Find Λ𝑘+1 satisfying

⃦⃦
⃦r𝑘|Λ𝑘+1

⃦⃦
⃦ ≥ 𝜔0

⃦⃦
⃦r𝑘
⃦⃦
⃦, (A3.1.1a)

#
(︁
Λ𝑘+1 ∖ Λ𝑘

)︁
. #(Λ̃ ∖ Λ𝑘) for any Λ̃ ⊃ Λ𝑘 such that

⃦⃦
⃦r𝑘|Λ̃

⃦⃦
⃦ ≥ 𝜔1

⃦⃦
⃦r𝑘
⃦⃦
⃦ (A3.1.1b)

(iii) Find u𝑘+1 such that
⃦⃦
(Bu𝑘+1 − f)|Λ𝑘+1

⃦⃦
≤ 𝛾

⃦⃦
r𝑘
⃦⃦

with suppu𝑘+1 ⊆ Λ𝑘+1

3.3. Previous results on direct fully discrete residual approximations

A standard construction for the approximate evaluation of residuals is based on 𝑠*-compressibility of operators
[16]: an operator A on ℓ2(N) is called 𝑠*-compressible with 𝑠* > 0 if for each 𝑠 ∈ (0, 𝑠*), there exist operators
A𝑗 and 𝛼𝑗 > 0 for 𝑗 ∈ N such that

∑︀
𝑗 𝛼𝑗 < ∞, each A𝑗 has at most 𝛼𝑗2𝑗 nonzero entries in each row and

column, and ‖A−A𝑗‖ ≤ 𝛼𝑗2−𝑠𝑗 . In order to approximate Av for given v, taking v𝑗 to be the vectors retaining
only the 2𝑗 entries of v of largest modulus, one then sets

w𝐽 = A𝐽v0 +
𝐽∑︁

𝑗=1

A𝐽−𝑗(v𝑗 − v𝑗−1), (3.5)

which amounts to assigning the most accurate sparse approximations of A to the largest coefficients of v. With
𝐽 chosen to ensure ‖w𝐽 −Av‖ ≤ 𝜂 for given 𝜂, as shown in [16], evaluating this residual approximation requires
𝒪(𝜂−1/𝑠‖v‖𝒜𝑠 + # supp v + 1) operations. With this approximation used for step (i) in Algorithm 3.1 with
appropriately chosen parameters, from the results in [24], we obtain the following: if u ∈ 𝒜𝑠 for an 𝑠 < 𝑠*, the
method yields a u𝑘 with

⃦⃦
Bu𝑘 − f

⃦⃦
≤ 𝜀 using 𝒪

(︀
1 + 𝜀−1/𝑠‖u‖𝒜𝑠

)︀
operations; that is, the method has optimal

complexity for all 𝑠 < 𝑠*.
An adaptive scheme using wavelet approximation in space was constructed in [4], using the following obser-

vation that crucially depends on the multilevel property (1.9).

Proposition 3.2. Let (1.9) hold. Then for ℓ ∈ N0,⃦⃦⃦⃦
⃦⃦⃦⃦B−

∑︁
𝜇∈ℳ0
|𝜇|<ℓ

M𝜇 ⊗A𝜇

⃦⃦⃦⃦
⃦⃦⃦⃦ ≤ 𝐶B2−ℓ𝛼, where 𝐶B :=

𝐶Ψ

𝑐Ψ

𝐶2

(1− 2−𝛼)

with 𝛼 and 𝐶2 as in (1.9) and 𝑐Ψ, 𝐶Ψ from (2.3).

Proof. For 𝑣, 𝑤 ∈ 𝒱, we have∫︁
𝑌

∫︁
𝐷

∑︁
|𝜇|≥ℓ

𝑦𝜇𝜃𝜇∇𝑣(𝑦) · ∇𝑤(𝑦) d𝑥 d𝜎(𝑦) ≤
∫︁

𝑌

∫︁
𝐷

∑︁
|𝜇|≥ℓ

|𝜃𝜇||∇𝑣(𝑦)||∇𝑤(𝑦)|d𝑥d𝜎(𝑦),

and the right-hand side is bounded by 𝐶2(1−2−𝛼)2−𝛼ℓ‖𝑣‖𝒱‖𝑤‖𝒱 as a consequence of (1.9). With the orthonor-
mality of the product Legendre polynomials and the bounds (2.3) on the spatial Riesz basis, the statement
follows. �
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The above observation will also play a role in our new approach, which is presented in the following section.
Let us now briefly review how it was used in the residual approximation analyzed in [4]. There, in order to obtain
a fully discrete operator compression, the approximation provided by Proposition 3.2 was combined with wavelet
compression of the infinite matrices A𝜇. The following bounds show the dependence of their compressibility on
𝜇.

Proposition 3.3 (see [4], Prop. A.2). Let {𝜃𝜇}𝜇∈ℳ0 satisfy Assumptions 2.1, and for some 𝑡 > 0, let

𝜃𝜇∇𝜓𝜆′ ∈ 𝐻𝑡(supp𝜓𝜆), 𝜇 ∈ℳ0, 𝜆, 𝜆
′ ∈ 𝒮, (3.6)

and let the 𝜓𝜆 have vanishing moments of order 𝑘 with 𝑘 > 𝑡 − 1. Then there exist A𝜇,𝑛 for 𝑛 ∈ N such that
the following holds:

(i) With 𝜏 := 𝑡/𝑑, one has ‖A𝜇 −A𝜇,𝑛‖ . 2−𝛼|𝜇|−𝜏𝑛, 𝑛 ∈ N.
(ii) The number of nonvanishing entries in each column of A𝜇,𝑛 does not exceed 𝐶(1 + |𝜇|𝑞)2𝑛, where 𝑞 :=

max{1, 𝜏−1} and 𝐶 > 0 is independent of 𝜇, 𝑛.

In the following abridged version of Proposition 4.3 from [4], with slightly sharpened assumptions, the two
previous propositions are used to obtain 𝑠*-compressibility of B.

Corollary 3.4. Let {𝜃𝜇}𝜇∈ℳ0 satisfy Assumptions 2.1, and let Ψ be as in Proposition 3.3 for some 𝑡 > max{𝛼−
𝑑, 0}. For any 𝐿 ∈ N, there exists a C𝐿 such that the following holds:

(i) One has ‖B−C𝐿‖ . 𝐿2−𝛼𝐿.
(ii) The number of nonvanishing entries in each column of C𝐿 does not exceed 𝐶(1 + 𝐿𝑞)2𝑑(1+𝜏−1)𝐿, where

𝑞 = max{1, 𝜏−1}, 𝜏 = 𝑡/𝑑, and 𝐶 > 0 is independent of 𝐿.

Proof. For 𝐿 ∈ N, take for any 𝜇 with |𝜇| < 𝐿 an approximation A𝜇,𝑛𝜇
as in Proposition 3.3 with 𝑛𝜇 =⌈︀

𝑑
𝜏 |𝜇|+

𝛼
𝜏 (𝐿− |𝜇|)

⌉︀
. With this choice of A𝜇,𝑛𝜇

, let

C𝐿 =
∑︁
|𝜇|<𝐿

M𝜇 ⊗A𝜇,𝑛𝜇
.

Due to Proposition 3.2, we have

‖B−C𝐿‖ .
∑︁
|𝜇|<𝐿

‖M𝜇 ⊗ (A𝜇 −A𝜇,𝑛𝜇
)‖+ 2−𝛼𝐿.

By construction, for any 𝜇 with |𝜇| < 𝐿 we have

‖A𝜇 −A𝜇,𝑛𝜇
‖ . 2−𝛼|𝜇|−𝜏𝑛𝜇 ≤ 2−𝛼|𝜇|−𝑑|𝜇|−𝛼(𝐿−|𝜇|) = 2−𝑑|𝜇|−𝛼𝐿.

Using this inequality and ‖M𝜇‖ ≤ 1, we see that

‖B−C𝐿‖ .
∑︁
|𝜇|<𝐿

2−𝑑|𝜇|−𝛼𝐿 + 2−𝛼𝐿 . 𝐿2−𝛼𝐿,

which proves (i). To prove (ii), we first note that by Proposition 3.3, the number of nonvanishing entries in each
column of A𝜇,𝑛𝜇 does not exceed

𝐶(1 + |𝜇|𝑞)2𝑛𝜇 ≤ 2𝐶(1 + |𝜇|𝑞)2
𝑑
𝜏 |𝜇|+

𝛼
𝜏 (𝐿−|𝜇|),
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where 𝐶 is independent of 𝜇. Since M𝜇 is diagonal or bidiagonal, it follows that the number of nonvanishing
entries in each column of C𝐿 does not exceed

4𝐶
∑︁
|𝜇|<𝐿

(1 + |𝜇|𝑞)2
𝑑
𝜏 |𝜇|+

𝛼
𝜏 (𝐿−|𝜇|) ≤ 4𝐶𝐿𝑞2𝑑(1+𝜏−1)𝐿

𝐿−1∑︁
ℓ=0

2( 𝛼
𝜏 −𝑑− 𝑑

𝜏 )(𝐿−ℓ).

Using that 𝛼
𝜏 − 𝑑− 𝑑

𝜏 = 1
𝜏 (𝛼− 𝑡− 𝑑) < 0 concludes the proof of (ii). �

Remark 3.5. The approximations C𝐿 for 𝐿 ∈ N can be applied in compressed operator application based on
𝑠*-compressibility as in (3.5), as carried out in [4]. Using the residual approximation according to Corollary 3.4
in the adaptive Galerkin scheme, by the main result of [24] we then have the following: ensuring

⃦⃦
u− u𝑘

⃦⃦
≤ 𝜀

requires at most

𝒪
(︁

1 + 𝜀−
1
𝑠 ‖u‖

1
𝑠

𝒜𝑠

)︁
operations for any 𝑠 <

𝑡

𝑡+ 𝑑

𝛼

𝑑
,

with 𝑡 as in (3.6). Compared to the approximability (2.14) of the solution u, this means that the performance
of the method is limited by the compression of the operator B. In other words, for the best approximation rates
that would be achievable for the solution, the method is not optimal. However, if 𝑡 in the regularity condition
(3.6) is large, rates that are close to optimal can be achieved. As discussed in Section 4.2 of [4], that this is
feasible is tied to the multilevel structure of the functions 𝜃𝜇.

The previous results from [4] thus show that by exploiting multilevel expansions of random fields, adaptive
methods can in principle come close to achieving optimality for such problems. However, the use of wavelet
bases of very high regularity for the spatial discretizations can be difficult in practice. The factor 𝑡/(𝑡 + 𝑑)
resulting from the spatial operator compression can be improved to some extent for piecewise smooth basis
functions using results from [32], but for 𝑑 ≥ 2, optimality is then still not achieved. These limitations motivate
the different approach to approximating residuals that we take in the following section.

4. Tree-based residual approximations

In this section, we develop a new approach for performing the different steps of Algorithm 3.1. Its central
component is a new residual approximation using piecewise polynomial basis functions and wavelet index sets
with tree structure, where we rely on techniques developed in [29,34]. Selecting the residual coefficients of largest
absolute value under this tree constraint can then be realized by the quasi-optimal tree coarsening procedure
from [12,13].

We require some auxiliary results on tree approximation from [17,34], where we use the following basic notions
as defined in [34] for the wavelet-type basis Ψ as introduced in Section 2.2.

Definition 4.1. To each 𝜆 ∈ 𝒮 with |𝜆| > 0, we associate a 𝜆′ ∈ 𝒮 with |𝜆′| = |𝜆| − 1 and meas(supp𝜓𝜆 ∩
supp𝜓𝜆′) > 0. We then call 𝜆 a child of the parent 𝜆′ and write C(𝜆′) for the set of all children of 𝜆′, where
we assume max𝜆∈𝒮 #C(𝜆) < ∞. We call a subset 𝑆 ⊆ 𝒮 a tree if 𝑆 contains all 𝜆 ∈ 𝒮 with |𝜆| = 0 and for all
𝜆 ∈ 𝑆, if 𝜆 ∈ C(𝜆′) then also 𝜆′ ∈ 𝑆. We denote the set of subsets of 𝒮 having such tree structure by T(𝒮).

In addition, we denote that 𝜆 is a descendant of 𝜆′ in the tree structure (that is, there exists 𝐾 ∈ N such
that with 𝜆0 = 𝜆 and 𝜆𝐾 = 𝜆′, one has 𝜆0 ∈ C(𝜆1), . . ., 𝜆𝐾−1 ∈ C(𝜆𝐾)) by 𝜆 ≺ 𝜆′, and that 𝜆 is a descendant
of or equal to 𝜆′ by 𝜆 ⪯ 𝜆′.

Approximability of v ∈ ℓ2(𝒮) by expansions with this tree structure is then quantified similarly to (2.1) and
(2.8),

‖v‖𝒜𝑠
t

:= sup
𝑁∈N0

(𝑁 + 1)𝑠 inf
suppw⊆𝑆∈T(𝒮)

#𝑆≤𝑁

‖v −w‖ℓ2(𝒮). (4.1)

In addition, for index sets in ℱ × 𝒮 where each spatial component has tree structure, we write

Tℱ(𝒮) := {Λ ⊆ ℱ × 𝒮 : for all 𝜈 ∈ ℱ , {𝜆 ∈ 𝒮 : (𝜈, 𝜆) ∈ Λ} ∈ T(𝒮)}. (4.2)
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4.1. Tree approximability

For quantifying the sparsity of sequences in ℓ2(𝒮) under the additional tree structure constraint, as in [17],
we use the following notion: for v ∈ ℓ2(𝒮), define t(v) = (t𝜆(v))𝜆∈𝒮 ∈ ℓ2(𝒮) by

t𝜆(v) :=

⎛⎜⎜⎝∑︁
𝜆′∈𝒮
𝜆′⪯𝜆

|v𝜆′ |2

⎞⎟⎟⎠
1/2

. (4.3)

Note that for 𝑆 ∈ T(𝒮), we then have

‖v −P𝑆v‖2 =
∑︁

𝜆∈𝒮∖𝑆
∃𝜇∈𝑆 : 𝜆∈C(𝜇)

|t𝜆(v)|2,

where P𝑆v is defined by (P𝑆v)𝜆 = v𝜆 for 𝜆 ∈ 𝑆 and (P𝑆v)𝜆 = 0 otherwise. We have the following criterion for
membership of v in 𝒜𝑠

t in terms of t(v).

Proposition 4.2 ([17], Prop. 2.2). If 𝑝 ∈ (0, 2) and t(v) ∈ ℓw𝑝 , then v ∈ 𝒜𝑠
t with 𝑠 = 1

𝑝 −
1
2 and ‖v‖𝒜𝑠

t
.

‖t(v)‖ℓw𝑝
.

For our present purposes, we next show that the approximability result (2.12) from Section 8.2 of [2] also
holds in the more restrictive case of tree approximation using index sets from Tℱ(𝒮).

Proposition 4.3. Under the assumptions of Corollary 2.4 for u as in (2.4),

‖u‖t,𝑝 :=

(︃∑︁
𝜈∈ℱ

‖t(u𝜈)‖𝑝
ℓw𝑝

)︃1/𝑝

<∞ for any 𝑝 > 0 such that
1
𝑝
<
𝛼

𝑑
+

1
2
· (4.4)

Proof. For the space 𝑍𝛼̂ in Theorem 2.3, we have (using Rychkov’s universal extension operator [30], see [1],
Thm. 14.3.1) a characterization as a Bessel potential space,[︀

𝐻1(𝐷),𝑊 2
𝜏 (𝐷)

]︀
𝛼̂

= 𝐻1+𝛼̂
𝑟 (𝐷),

1
𝑟

=
1
2

+
(︂

1
𝜏
− 1

2

)︂
𝛼̂.

For any 𝛽 ∈ (0, 𝛼̂), we have that 𝐻1+𝛼̂
𝑟 (𝐷) is continuously embedded into the Besov space 𝐵1+𝛽

𝑟,𝑟 (𝐷). As a
consequence of Corollary 4.2 from [15] and Remark 2.3 of [17], for 𝑣 =

∑︀
𝜆∈𝒮 v𝜆𝜓𝜆 ∈ 𝐵1+𝛽

𝑟,𝑟 (𝐷), if

𝛽

𝑑
>

1
𝑟
− 1

2
(4.5)

then one has
‖t(v)‖ℓw𝑝

∼ ‖t(v)‖𝒜𝛽/𝑑 . ‖𝑣‖𝐵1+𝛽
𝑟,𝑟 (𝐷),

1
𝑝

=
𝛽

𝑑
+

1
2
·

We can choose 𝛽 < 𝛼̂ such that (4.5) is satisfied if 1
𝜏 −

1
2 <

1
𝑑 . We thus have∑︁

𝜈∈ℱ
‖(u𝜈,𝜆)𝜆∈𝒮‖𝑝

ℓw𝑝
<∞

for any 𝑝, 𝑝 such that
1
𝑝
<
𝛼

𝑑
+

1
2

+
(︂

1
𝜏
− 1

2
− 1
𝑑

)︂
𝛼̂,

1
𝑝
<
𝛼̂

𝑑
+

1
2
,

and with Theorem 2.3, we obtain the assertion by taking 𝛼̂ sufficiently close to 𝛼 and taking 𝜏 > 1 such that 1
𝜏

is sufficiently close to 1
2 + 1

𝑑 , where we make use of our assumption 𝑑 > 1. �
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In what follows, for v ∈ ℓ2(ℱ × 𝒮), we denote by suppTv the set Λ ∈ Tℱ(𝒮) with minimal #Λ such that
supp v ⊆ Λ. Balancing the spatial approximations for each Legendre coefficient as in Theorem 3.1 of [2], the
summability property (4.4) combined with Proposition 4.2 yields the following result on best approximations
with spatial tree structure.

Corollary 4.4. Let u ∈ ℓ2(ℱ ×𝒮) and let 𝑝 > 0 be such that ‖u‖t,𝑝 <∞. Then there exists 𝐶 > 0 independent
of u such that for all 𝑛 ∈ N,

min
{︀
‖u− v‖ : #suppTv ≤ 𝑛

}︀
≤ 𝐶𝑛−

1
𝑝 + 1

2 ‖u‖t,𝑝. (4.6)

Note that under the assumptions of Corollary 2.4, (4.6) and Proposition 4.3 imply that for any 𝜀 > 0, the
smallest Λ ∈ Tℱ(𝒮) such that ‖u− v‖ ≤ 𝜀 for a v ∈ ℓ2(ℱ × 𝒮) with supp v ⊆ Λ satisfies

#Λ ≤ 𝐶𝑠 𝜀
− 1

𝑠 ‖u‖
1
𝑠
t,𝑝, for any 𝑠 <

𝛼

𝑑
and

1
𝑝

= 𝑠+
1
2
, (4.7)

where 𝐶𝑠 > 0 depends on 𝑠. In other words, using tree approximation in space we recover the same convergence
rates up to 𝛼

𝑑 as without the tree constraint in (2.14).

Remark 4.5. For 1
𝑝 = 𝑠+ 1

2 , for any 𝑣 ∈ 𝐿2(𝑌, 𝑉, 𝜎) with fully discrete representation v ∈ ℓ2(ℱ × 𝒮),⃦⃦
(‖v𝜈‖)𝜈∈ℱ

⃦⃦
𝒜𝑠 . ‖v‖𝒜𝑠 ∼ ‖v‖ℓw𝑝

≤ ‖v‖t,𝑝. (4.8)

4.2. Multi-indices of unbounded length

In the numerical scheme that we consider, the vectors v𝜈 for given v ∈ ℓ2(ℱ × 𝒮) need to be accessed by
indices 𝜈 ∈ ℱ ⊂ Nℳ0 that may have non-zero entries in arbitrary positions. As a consequence of the bidiagonal
structure of the matrices M𝜇, one needs to store and iterate over finite subsets 𝐹 ⊂ ℱ and to be able to access
vector elements indexed by any 𝜈 ∈ 𝐹 as well as by the indices 𝜈 ± 𝑒𝜇 that differ in only one component.

In the class of problems under consideration, the indices 𝜈 ∈ ℱ activated in near-best approximations are
generally extremely sparse, that is, for many such indices 𝜈 one has

# supp 𝜈 ≪ dim(𝜈) := max{𝜇 ∈ℳ : 𝜈𝜇 ̸= 0}.

Remark 4.6. As shown in Proposition 6.6 of [4], there are examples of problem data for (1.3) such that the
nonincreasing rearrangements of (‖𝑢𝜈‖𝑉 )𝜈∈ℱ and (

⃦⃦
𝑢𝑒𝜇

⃦⃦
𝑉

)𝜇∈ℳ have the same asymptotic decay. In such a
case, for a smallest 𝐹𝜀 ⊂ ℱ realizing the approximation of 𝑢 with error 𝜀 > 0, one has #𝐹𝜀 ∼ max𝜈∈𝐹𝜀

dim(𝜈).
Numerical tests (see [4]) indicate that more generally, for the class of problems considered here, one has to
expect max𝜈∈𝐹𝜀

dim(𝜈) & 𝜀−𝑡 for some 𝑡 > 0.

For storing elements of ℱ , we assume a fixed enumeration of the indices ℳ, which reduces the problem
to storing vectors with integer indices. In view of Remark 4.6, direct storage of the required 𝜈 in the form
(𝜈1, 𝜈2, . . . , 𝜈dim(𝜈)) is too inefficient and will in general lead to a deterioration of the computational complexity
of the method by some negative power of 𝜀 as noted in Remark 4.6. As an alternative, a sparse encoding of
indices is suggested in [25], where for 𝜈 with supp 𝜈 = {𝑖1, . . . , 𝑖𝑛}, the vectors (𝑖1, . . . , 𝑖𝑛) and (𝜈𝑖1 , . . . , 𝜈𝑖𝑛

) are
stored.

Remark 4.7. A further alternative that is always at least as efficient as both direct or sparse storage is a
run-length coding of zeros in 𝜈, where a sequence of 𝑚 zeros is represented by an entry −𝑚. More precisely,
each 𝜈 ∈ ℱ is encoded as a tuple (𝑚1,𝑚2, . . . ,𝑚𝑁 ) with 𝑁 ∈ N, where 𝑚𝑖 ∈ Z∖{0} for 𝑖 = 1, . . . , 𝑁 , and where
either 𝜈1 = 𝑚1 if 𝑚1 > 0, or 𝜈1 = . . . = 𝜈−𝑚1 = 0 if 𝑚1 < 0, in which case 𝜈−𝑚1+1 = 𝑚2 > 0; the further entries
of 𝜈 are then given recursively by the same scheme. For instance, the Kronecker vectors corresponding to the
first coordinates are encoded as the tuples (1), (−1, 1), (−2, 1), . . ., respectively. Given such a storage scheme,
the stored 𝜈 can be mapped to linear indices by hashing or tree data structures with (amortized) costs of order
𝒪(# supp 𝜈).
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In view of these considerations, in what follows we assume the required operations on multi-indices 𝜈 to incur
costs proportional to # supp 𝜈.

4.3. Semidiscrete residuals

As a first step in our adaptive scheme, we consider the approximation of residuals with only a parametric
semidiscretization as in (2.2), where each spatial component is still an element of the full function space 𝑉 . Here
we use adaptive operator compression to construct a routine Apply taking as input a tolerance 𝜂 > 0 and any
v ∈ ℓ2(ℱ × 𝒮) with # suppℱ v <∞, where

supp
ℱ

v := {𝜈 ∈ ℱ : supp v𝜈 ̸= ∅},

and that produces a w := Apply(v; 𝜂) such that ‖Bv −w‖ ≤ 𝜂. In addition, both # suppℱ w and the number
of required products of the form A𝜇v𝜈 for 𝜇 ∈ℳ, 𝜈 ∈ ℱ satisfy quasi-optimal bounds with respect to 𝜂.

Here, the only approximation that needs to be performed on B concerns the infinite summation, and the
approximation w is obtained by a suitable combination of the truncated operators

Bℓ =
∑︁

𝜇∈ℳ0
|𝜇|<ℓ

M𝜇 ⊗A𝜇, ℓ ∈ N0, (4.9)

where B0 = 0.
A strategy for semidiscrete approximation of the stochastic residual has also been devised in [27]. Here we

use a different construction that is specifically adapted to the multilevel structure of the expansion (1.2) based
on Proposition 3.2. The semidiscrete scheme is summarized in Algorithm 4.1, with the result returned in a form
that facilitates its subsequent use in a fully discrete residual evaluation. We next prove a complexity estimate
for this scheme. In optimizing the choice of the ℓ𝑗 in (A4.1.2), we follow Theorem 4.6 of [20].

Proposition 4.8. Let 𝑠 > 0 with 𝑠 < 𝛼
𝑑 , let B be as in (2.6), let v satisfy # suppℱ v < ∞, and let w be the

approximation as in (A4.1.4) of Bv given by Algorithm 4.1. Then ‖Bv −w‖ ≤ 𝜂, for 𝐹 = suppℱ w we have

#𝐹 ≤
∑︁
𝜈∈𝐹

#𝑀(𝜈) .
𝐽∑︁

𝑗=0

2𝑑ℓ𝑗 #𝐹𝑗 . 𝜂
− 1

𝑠

⃦⃦
(‖v𝜈‖)𝜈∈ℱ

⃦⃦ 1
𝑠

𝒜𝑠 , (4.10)

and ℓ𝑗 for 𝑗 = 0, . . . , 𝐽 in (A4.1.2) satisfy

max
𝑗
ℓ𝑗 . 1 + |log 𝜂|+ log

⃦⃦
(‖v𝜈‖)𝜈∈ℱ

⃦⃦
𝒜𝑠 . (4.11)

The constants in the inequalities depend on 𝐶 from (A4.1.1), 𝐶B, 𝑑, 𝛼, 𝑠, and on 𝐶1 from (1.8).

Proof. With the notation of Algorithm 4.1, we first note that, because #𝑀(𝜈) > 0 for every 𝜈 ∈ 𝐹 ,

#𝐹 ≤
∑︁
𝜈∈𝐹

#𝑀(𝜈).

Since M𝜇 is diagonal or bi-diagonal for all 𝜇,

∑︁
𝜈∈ℱ

#𝑀(𝜈) ≤
𝐽∑︁

𝑗=0

∑︁
𝜇∈ℳ0
|𝜇|≤ℓ𝑗

∑︁
𝜈∈𝐹𝑗

#
{︂
𝜈′ ∈ supp

ℱ
v : (M𝜇)𝜈′,𝜈 ̸= 0

}︂

≤
𝐽∑︁

𝑗=0

∑︁
𝜇∈ℳ0
|𝜇|≤ℓ𝑗

2𝑁𝑗 .
𝐽∑︁

𝑗=0

2𝑑ℓ𝑗𝑁𝑗 =: 𝑇 (ℓ0, . . . , ℓ𝐽).
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Algorithm 4.1. (𝑀(𝜈))𝜈∈𝐹 = Apply(v; 𝜂), for # suppℱ v <∞, 𝜂 > 0.
(i) If ‖B‖‖v‖ ≤ 𝜂, return the empty tuple with 𝐹 = ∅; otherwise, with 𝐽 := ⌈log2 #suppℱ v⌉, for 𝑗 = 0, . . . , 𝐽 ,

determine 𝐹𝑗 ⊂ #suppℱ v such that #𝐹𝑗 ≤ 2𝑗 and that P𝐹𝑗×𝒮v satisfies

⃦⃦
v −P𝐹𝑗×𝒮v

⃦⃦
≤ 𝐶 min

#𝐹≤2𝑗

⃦⃦
v −P𝐹×𝒮v

⃦⃦
(A4.1.1)

for an absolute constant 𝐶 > 0. Choose 𝐽 as the minimal integer such that

𝛿 := ‖B‖‖v −P𝐹𝐽×𝒮v‖ ≤
𝜂

2
·

(ii) With d0 := P𝐹0×𝒮v, d𝑗 := (P𝐹𝑗×𝒮 −P𝐹𝑗−1×𝒮)v, 𝑗 = 1, . . . , 𝐽 , and 𝑁𝑗 := #𝐹𝑗 , set

ℓ𝑗 =

⌈︃

𝛼−1 log2

(︃
𝐶B

𝜂 − 𝛿

(︂
‖d𝑗‖
𝑁𝑗

)︂ 𝛼
𝛼+𝑑

(︃
𝐽∑︁

𝑖=0

‖d𝑖‖
𝑑

𝛼+𝑑𝑁
− 𝛼

𝛼+𝑑

𝑖

)︃)︃⌉︃

, 𝑗 = 0, . . . , 𝐽. (A4.1.2)

(iii) With w given by

w =

𝐽∑︁

𝑗=0

Bℓ𝑗d𝑗 , (A4.1.3)

for each 𝜈 ∈ 𝐹 := suppℱ w, collect the sets 𝑀(𝜈) ⊂ℳ0 × suppℱ v of minimal size such that

w𝜈 =
∑︁

(𝜇,𝜈′)∈𝑀(𝜈)

(M𝜇)𝜈,𝜈′ A𝜇 v𝜈′ , 𝜈 ∈ 𝐹, (A4.1.4)

and return (𝑀(𝜈))𝜈∈𝐹 .

Let ℓ̃0, . . . , ℓ̃𝐽 minimize 𝑇
(︁
ℓ̃0, . . . , ℓ̃𝐽

)︁
subject to the constraint

∑︀𝐽
𝑗=0

⃦⃦⃦
B−Bℓ̃𝑗

⃦⃦⃦
‖d𝑗‖ ≤ 𝜂 − 𝛿. Then the choice

(A4.1.2) of ℓ0, . . . , ℓ𝐽 (which corresponds to performing this minimization over R𝐽+1 and rounding to the next
largest integer) ensures that 𝑇 (ℓ0, . . . , ℓ𝐽) . 𝑇

(︁
ℓ̃0, . . . , ℓ̃𝐽

)︁
.

It thus remains to show that 𝑇
(︁
ℓ̃0, . . . , ℓ̃𝐽

)︁
. 𝜂−

1
𝑠𝐴(v)

1
𝑠 with

𝐴(v) :=
⃦⃦
(‖v𝜈‖)𝜈∈ℱ

⃦⃦ 1
𝑠

𝒜𝑠 .

Since suppℱ v is bounded, we have (‖v𝜈‖)𝜈∈ℱ ∈ 𝒜𝑠(ℱ) and thus, for 𝑗 = 0, . . . , 𝐽 ,

‖v −P𝐹𝑗×𝒮v‖ ≤ 𝐶2−𝑠𝑗𝐴(v),

which for 𝑗 = 1, . . . , 𝐽 yields

‖d𝑗‖ ≤
⃦⃦
v −P𝐹𝑗×𝒮v

⃦⃦
+
⃦⃦
v −P𝐹𝑗−1×𝒮v

⃦⃦
≤ (1 + 2𝑠)𝐴(v)2−𝑠𝑗 . (4.12)

We now choose 𝑠1, 𝑠2 > 0 such that 𝑠 < 𝑠1 < 𝑠2 < 𝛼
𝑑 . Take 𝐾 ∈ N with minimal 𝐾 ≥ 𝐽 such that∑︀𝐽

𝑗=0 2−(𝐾−𝑗)𝑠1‖d𝑗‖ ≤ 𝜂 − 𝛿. Then

𝜂

2
≤ 𝜂 − 𝛿 <

𝐽∑︁
𝑗=0

2−(𝐾−1−𝑗)𝑠1‖d𝑗‖ .
𝐽∑︁

𝑗=0

2−(𝐾−𝑗)𝑠12−𝑠𝑗𝐴(v) . 2−𝐾𝑠𝐴(v),
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which implies 2𝐾 . 𝜂−
1
𝑠𝐴(v)

1
𝑠 . For each 𝑗, let ℓ̂𝑗 ∈ Z be the smallest integers such that 𝐶B2−𝛼ℓ̂𝑗 ≤ 2−(𝐾−𝑗)𝑠1 .

Then on the one hand, by Proposition 3.2 and the choice of 𝐾,

‖Bv −w‖ ≤
𝐽∑︁

𝑗=0

⃦⃦⃦
B−Bℓ̂𝑗

⃦⃦⃦
‖d𝑗‖+ 𝛿 ≤

𝐽∑︁
𝑗=0

𝐶B2−𝛼ℓ̂𝑗‖d𝑗‖+ 𝛿 ≤ 𝜂.

On the other hand, using 𝑠2𝑑 < 𝛼,

2−(𝐾−𝑗)𝑠1 < 𝐶B2−𝛼(ℓ̂𝑗−1) ≤ 𝐶B2−𝑠2𝑑(ℓ̂𝑗−1),

and as a consequence 2𝑑ℓ̂𝑗 . 2(𝐾−𝑗)𝑠1/𝑠2 . We thus obtain

𝑇
(︁
ℓ̂0, . . . , ℓ̂𝐽

)︁
.

𝐽∑︁
𝑗=0

2(𝐾−𝑗)𝑠1/𝑠22𝑗 . 2𝐾 . 𝜂−
1
𝑠𝐴(v)

1
𝑠 ,

completing the proof of (4.10). The estimate (4.11) follows from (A4.1.2) and (4.12). �

4.4. Fully discrete residual approximation using tree evaluation

For the approximation of the full residual on ℱ × 𝒮, we use concepts developed in [29, 34] for handling the
spatial degrees of freedom. This requires 𝜓𝜆, 𝜆 ∈ 𝒮, and 𝜃𝜇, 𝜇 ∈ℳ, to be piecewise polynomial functions.

We assume a family of tesselations into open convex polygonal subsets of the spatial domain 𝐷 to be given,
resulting from a fixed hierarchy of refinements 𝒯1, 𝒯2, . . . of an initial tessellation 𝒯0. For each 𝑗, we assume the
elements 𝑇 ∈ 𝒯𝑗 to form a partition of 𝐷, that is,

⋃︀
𝑇∈𝒯𝑗

𝑇 = 𝐷 and for 𝑇1, 𝑇2 ∈ 𝒯𝑗 with 𝑇1 ̸= 𝑇2 we have
𝑇1 ∩ 𝑇2 = ∅, and meas(𝑇 ) ∼ 2−𝑗 for 𝑇 ∈ 𝒯𝑗 . Furthermore 𝒯𝑗 is a refinement of 𝒯𝑗−1 in the sense that for any
𝑇 ∈ 𝒯𝑗−1, there exists a unique subset 𝜏 ⊆ 𝒯𝑗 such that 𝑇 =

⋃︀
𝑇 ′∈𝜏 𝑇

′, where #𝜏 is bounded independently of
𝑗 and 𝑇 . Conversely, for 𝑗′ < 𝑗, there exists a unique element 𝑇 ′ ∈ 𝒯𝑗′ such that 𝑇 ∩ 𝑇 ′ ̸= ∅. Let

𝒯 :=
∞⋃︁

𝑗=0

𝒯𝑗 .

We define a tiling to be a finite subset 𝒯 ⊂ 𝒯 such that
⋃︀

𝑇∈𝒯 𝑇 = 𝐷 and the elements of 𝒯 are pairwise
disjoint. For each tiling 𝒯 and 𝑚 ∈ N0, we write P𝑚(𝒯 ) for the set of 𝑓 ∈ 𝐿2(𝐷) that are piecewise polynomial
functions of degree 𝑚 with respect to 𝒯 , that is,

𝑓 =
∑︁
𝑇∈𝒯

𝑞𝑇𝜒𝑇

with polynomial functions 𝑞𝑇 of degree at most 𝑚. If 𝑣 ∈ P𝑚(𝒯𝑗) with sufficiently large 𝑚 and 𝑗, we denote by
𝒯 (𝑣) the smallest tiling such that 𝑣 is a piecewise polynomial function on 𝒯 (𝑣) and define

𝒯 ̸=0(𝑣) := {𝑇 ∈ 𝒯 (𝑣) : 𝑣|𝑇 ̸= 0};

in other words, 𝒯 ̸=0(𝑣) comprises those elements of 𝒯 (𝑣) that are contained in supp 𝑣.

Example 4.9. In our numerical tests, we use dyadic subdivisions of the cube 𝐷 = [0, 1]𝑑, where for 𝑗 ≥ 0,

𝒯𝑗 =
{︀

(2−𝑗(𝑘1 − 1), 2−𝑗𝑘1)× · · · × (2−𝑗(𝑘𝑑 − 1), 2−𝑗𝑘𝑑) : 𝑘 ∈ {1, . . . , 2𝑗}𝑑
}︀
.

Note that #𝒯𝑗 = 2𝑑𝑗 ; here, 𝒯 is the set of dyadic subcubes of 𝐷.
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In order to apply the results from [29,34], we make the following additional assumptions on our wavelet basis,
which are satisfied for standard continuously differentiable spline wavelets.

Assumption 4.10. Let the wavelet-type Riesz basis Ψ satisfy the following conditions:

(i) diam supp𝜓𝜆 ∼ 2−|𝜆| for 𝜆 ∈ 𝒮.
(ii) There exist 𝑚 ∈ N and 𝑘 ∈ N0 such that for all 𝜆 ∈ 𝒮, 𝜓𝜆 ∈ 𝐻2(𝐷) ∩ P𝑚(𝒯𝑖𝜆

) with 𝑖𝜆 ≤ |𝜆| + 𝑘, and
#𝒯 ̸=0(𝜓𝜆) ≤ 𝐶.

(iii) For each ℓ ∈ N0, 𝐷 =
⋃︀
|𝜆|=ℓ supp𝜓𝜆.

(iv) For each 𝜆 ∈ 𝒮, if
∫︀

𝐷
𝜓𝜆 d𝑥 ̸= 0, then |𝜆| = 0 or dist(supp𝜓𝜆, 𝜕𝐷) . 2−|𝜆|.

Moreover, we assume that for each ℓ ∈ N0, there exist a countable index set Σℓ and a single-scale basis
Φℓ = {𝜙𝜆 : 𝜆 ∈ Σℓ} such that

span{𝜓𝜆 : |𝜆| ≤ ℓ} = span Φℓ, (4.13)

satisfying the following conditions:

(i) diam supp𝜙𝜆 ∼ 2−ℓ for 𝜆 ∈ Σℓ.
(ii) For any 𝑗 and any 𝑇 ∈ 𝒯𝑗, the functions 𝜙𝜆|𝑇 with |𝜆| = 𝑗, 𝜙𝜆|𝑇 ̸= 0 are linearly independent.

For standard spline wavelet bases, a single-scale basis Φℓ satisfying the conditions is given by the scaling
functions on level ℓ. For the single-scale index sets Σℓ, we again write |𝜆| = ℓ for 𝜆 ∈ Σℓ. We assume without
loss of generality that Σℓ ∩ Σℓ′ = ∅ for ℓ′ ̸= ℓ. Note that due to (4.13), the conditions in Assumptions 4.10(ii)
also hold for the functions 𝜙𝜆, 𝜆 ∈

⋃︀
ℓ≥0 Σℓ. As a consequence of the locality conditions in Assumptions 4.10(i)

and (v), #𝒯 ̸=0(𝜓𝜆) and #𝒯 ̸=0(𝜙𝜆) are uniformly bounded for all respective 𝜆.

Assumption 4.11. There exist 𝑚̃ ∈ N, 𝑘 ∈ N0 such that for all 𝜇 ∈ ℳ0, 𝜃𝜇 ∈ 𝑊 1
∞(𝐷) ∩ P𝑚̃(𝒯𝑗𝜇

) with
𝑗𝜇 ≤ |𝜇|+ 𝑘, and #𝒯 ̸=0(𝜃𝜇) ≤ 𝐶.

Assumptions 4.10 and 4.11 imply in particular that ∇ · (𝜃𝜇∇𝜓𝜆) is a piecewise polynomial function on
𝒯 ̸=0(𝜃𝜇𝜓𝜆) with at most max{#𝒯 ̸=0(𝜓𝜆),#𝒯 ̸=0(𝜃𝜇)} ≤ 𝐶 terms, where 𝐶 is a uniform constant. Note that with
additional technical effort, one could also similarly treat more general 𝜃𝜇 that can be approximated (uniformly
in 𝜇) by piecewise polynomials. This holds true, for instance, for the multilevel expansions of Gaussian random
fields constructed in [5].

Following Definition 4.9 of [34], we call 𝑆 ∈ T(𝒮) a graded tree if for any 𝜆 ∈ 𝑆 and any 𝜆′ ∈ 𝒮 with
|𝜆′| = |𝜆| − 1 and meas(supp𝜓𝜆′ ∩ supp𝜓𝜆) > 0 we have 𝜆′ ∈ 𝑆. Any finite 𝑆 ∈ T(𝒮) can be extended to its
smallest containing graded tree as described in Algorithm 4.10 of [34].

For a given tiling 𝒯 , we define the graded tree 𝒮(𝒯 , ℓ) ⊂ 𝒮 containing all wavelet indices up to ℓ levels above
each 𝑇 ∈ 𝒯 as the smallest extension to a graded tree of

{𝜆 ∈ 𝒮 : ∃ 𝑗 ∈ N0, 𝑇 ∈ 𝒯𝑗 : meas(supp𝜓𝜆 ∩ 𝑇 ) > 0 ∧ |𝜆| ≤ 𝑗 + ℓ}.

For the approximation of functionals induced by piecewise polynomial functions in 𝑉 ′, we then have the following
result.

Proposition 4.12 (see [29], Lem. A.1). There exists 𝐶 = 𝐶(𝑚) > 0 such that for any ℓ ∈ N and any 𝑓 ∈ 𝐿2(𝐷)
that is a piecewise polynomial function of degree 𝑚 with respect to a tiling 𝒯 ⊂ 𝒯 ,⃦⃦⃦

(𝑓(𝜓𝜆))𝜆∈𝒮∖𝒮(𝒯 ,ℓ)

⃦⃦⃦
ℓ2
≤ 𝐶2−ℓ

⃦⃦
(𝑓(𝜓𝜆))𝜆∈𝒮

⃦⃦
ℓ2
, where 𝑓(𝜓𝜆) :=

∫︁
𝐷

𝑓 𝜓𝜆d𝑥.
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Algorithm 4.2. Transform representation of a piecewise polynomial function 𝑣 on 𝜏 ⊂ 𝒯 to the representation
on the minimal tiling 𝒯 (𝑣) for 𝑣.
Given 𝑣 =

∑︀
𝑇∈𝜏 𝑝𝑇𝜒𝑇 with polynomials 𝑝𝑇 , where 𝜏 is a tree

Initialize 𝜏 = 𝜏 , 𝑝𝑇 = 𝑝𝑇

For 𝑗 = 0, . . . ,max{𝐽 : 𝒯𝐽 ∩ 𝜏 ̸= ∅},
for each 𝑇 ∈ 𝒯𝑗 ∩ 𝜏 ,

if 𝑇 has a child in 𝜏 ∩ 𝒯𝑗+1,
with 𝑇1, . . . , 𝑇𝑐 being all children of 𝑇 in 𝒯𝑗+1,
replace 𝑝𝑇 by

∑︀𝑐
𝑖=1 𝑞𝑇𝑖

𝜒𝑇𝑖
with polynomials 𝑞𝑇𝑖

remove 𝑇 from 𝜏
for 𝑖 = 1, . . . , 𝑐,

if 𝑇𝑖 ∈ 𝜏 ,
then 𝑝𝑇𝑖 ← 𝑝𝑇𝑖 + 𝑞𝑇𝑖 for 𝑖 = 1, . . . , 𝑐;

otherwise,
add 𝑇𝑖 to 𝜏 and set 𝑝𝑇𝑖 = 𝑞𝑇𝑖

return 𝑣 =
∑︀

𝑇∈𝜏 𝑝𝑇𝜒𝑇 , where 𝜏 = 𝒯 (𝑣)

For any finite graded tree 𝑆 ∈ T(𝒮), by Algorithm 4.12 of [34], we can construct Σ
(︁
𝑆
)︁
⊂
⋃︀

ℓ≥0 Σℓ such that

span
{︁
𝜙𝜆 : 𝜆 ∈ Σ

(︁
𝑆
)︁}︁

⊇ span
{︁
𝜓𝜆 : 𝜆 ∈ 𝑆

}︁
(4.14)

and the multi- to locally single-scale transformation T𝑆 such that, for any v with supp v ⊆ 𝑆,∑︁
𝜆∈𝑆

v𝜆𝜓𝜆 =
∑︁

𝜆∈Σ(𝑆)

(︀
T𝑆v

)︀
𝜆
𝜙𝜆. (4.15)

We use this transformation as follows: for given 𝑟 ∈ 𝑉 ′ and a graded tree 𝑆, to evaluate r = (𝑟(𝜓𝜆))𝜆∈𝑆 , we first

evaluate s𝜆 = 𝑟(𝜙𝜆) for 𝜆 ∈ Σ
(︁
𝑆
)︁

and then obtain r = T⊤
𝑆
s, since (4.15) implies ⟨r,v⟩ = ⟨v,T⊤

𝑆
s⟩ for any v.

Proposition 4.13. For any given tiling 𝒯 and ℓ > 0, the number of operations required for building the graded
tree 𝑆 = 𝒮(𝒯 , ℓ) ⊂ 𝒮 and each subsequent application of T𝑆 or its transpose T⊤

𝑆
to a vector is bounded by 𝐶#𝑆,

where 𝐶 > 0 depends only on Ψ and {Φℓ′ : ℓ′ ≥ 0}; in particular, #Σ
(︁
𝑆
)︁
. #𝑆 . #𝒯 .

Proof. The bound for the number of operations required for the extension to a graded tree is shown in Propo-
sition 4.11 from [34], the one for the application of the multi- to single-scale transform and its transpose in
Proposition 4.14(a) from [34]. �

The basic scheme for residual approximation of the full residual on ℱ×𝒮, using Algorithm 4.2 as a subroutine,
is given in Algorithm 4.3. In the following analysis of this scheme, we use Assumptions 2.1, 4.10, and 4.11. To
simplify the exposition, we also assume 𝑓 to be piecewise polynomial with a uniform bound on #𝒯 (𝑓).

Lemma 4.14. Let 𝑣 ∈ span{𝜓𝜆 : 𝜆 ∈ 𝑆} with finite 𝑆 ∈ T(𝒮). Then for each 𝜇 ∈ℳ0,

#𝒯 (𝐴𝜇𝑣) . #{𝑇 ∈ 𝒯 (𝑣) : 𝑇 ⊆ 𝑇 ′ for a 𝑇 ′ ∈ 𝒯̸=0(𝜃𝜇)}+ #𝒯 ̸=0(𝜃𝜇) + |𝜇|.

Proof. By our assumptions, both 𝑣 and 𝐴𝜇𝑣 are piecewise polynomials, where supp𝐴𝜇𝑣 ⊆ supp 𝜃𝜇 ∩ supp 𝑣. We
next note that 𝒯 ̸=0(𝐴𝜇𝑣) is obtained from 𝒯 ̸=0(𝜃𝜇) by possible refinements only within each 𝑇 ∈ 𝒯 ̸=0(𝜃𝜇), and
thus

#𝒯 (𝐴𝜇𝑣) ≤ #𝒯 (𝜃𝜇) + #{𝑇 ∈ 𝒯 (𝑣) : 𝑇 ⊆ 𝑇 ′ for a 𝑇 ′ ∈ 𝒯̸=0(𝜃𝜇)}.

Since every element of 𝒯 subdivides into a uniformly bounded number of children, we have #𝒯 (𝜃𝜇) . #𝒯 ̸=0(𝜃𝜇)+
(|𝜇|+ 1), where #𝒯 ̸=0(𝜃𝜇) & 1. �
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Algorithm 4.3. (Λ+, r, 𝜂, 𝑏) = ResApprox(v; 𝜁, 𝜂0, 𝜀), for # supp v < ∞, relative tolerance 𝜁 > 0, initial
absolute tolerance 𝜂0, target tolerance 𝜀.
Let suppTv ={(𝜈, 𝜆) : 𝜈 ∈ 𝐹, 𝜆 ∈ 𝑆𝜈} with 𝐹 ⊂ ℱ , 𝑆𝜈 ∈ T(𝒮) and 𝑣𝜈 =

∑︀
𝜆∈𝑆𝜈

v𝜈,𝜆𝜓𝜆.

Set 𝜂 = 2𝜂0; choose ℓ̂ such that 𝜁ℓ̂ := 𝐶2−ℓ̂ < 𝜁.

(i) For each 𝜈 ∈ 𝐹 , transform 𝑣𝜈 to piecewise polynomials on tilings 𝒯 (𝑣𝜈) by applying Algorithm 4.2
(ii) Set 𝜂 ← 𝜂/2
(iii) Set (𝑀(𝜈))𝜈∈𝐹+ = Apply(v; 𝜂) by Algorithm 4.1, such that the corresponding semi-discrete residual

approximation is given by

𝑟𝜈 := 𝛿0,𝜈𝑓 −
∑︁

(𝜇,𝜈′)∈𝑀(𝜈)

(M𝜇)𝜈,𝜈′𝐴𝜇𝑣𝜈′ for each 𝜈 ∈ 𝐹+ (A4.3.1)

(iv) For each 𝜈 ∈ 𝐹+

Initialize 𝑟𝜈 = 𝛿0,𝜈𝑓
For each (𝜇, 𝜈′) ∈𝑀(𝜈)

𝑟𝜈 ← 𝑟𝜈 − (M𝜇)𝜈,𝜈′
∑︁

𝑇∈𝒯̸=0(𝐴𝜇𝑣𝜈′ )

𝐴𝜇𝑣𝜈′
⃒⃒
𝑇

(v) For each 𝜈 ∈ 𝐹+, use Algorithm 4.2 to transform the representation 𝑟𝜈 =
∑︀

𝑇∈𝜏𝜈
𝑝𝜈,𝑇

𝜒
𝑇 from (iv) with a tree

subset 𝜏𝜈 ⊂ 𝒯 to the representation 𝑟𝜈 =
∑︀

𝑇∈𝒯 (𝑟𝜈) 𝑝𝜈,𝑇𝜒𝑇 on the minimal tiling 𝒯 (𝑟𝜈)

(vi) For each 𝜈 ∈ 𝐹+ set 𝑆+
𝜈 := 𝒮(𝒯 (𝑟𝜈), ℓ̂) ⊂ 𝒮; Determine Φ𝜈 = {𝜙𝜆}𝜆∈Σ𝜈 as the corresponding locally single-scale

basis with spanΦ𝜈 ⊇ span{𝜓𝜆}𝜆∈𝑆+
𝜈

, Σ𝜈 = Σ(𝑆+
𝜈 ), according to (4.14), evaluate the integrals

s𝜈,𝜆 = 𝑟𝜈(𝜙𝜆) =

∫︁

𝐷

𝑟𝜈𝜙𝜆d𝑥 for 𝜈 ∈ 𝐹+, 𝜆 ∈ Σ𝜈

and set r𝜈 = T⊤
𝑆+

𝜈
s𝜈

(vii) Let 𝑏 = (1− 𝜁ℓ̂)
−1‖r‖+ 𝜂. If 𝜂 ≤ (𝜁−𝜁

ℓ̂
)

(1+𝜁)(1+𝜁
ℓ̂
)
‖r‖ or 𝑏 ≤ 𝜀,

with Λ+ = {(𝜈, 𝜆) : 𝜈 ∈ 𝐹+, 𝜆 ∈ 𝑆+
𝜈 }, return (Λ+, r, 𝜂, 𝑏);

otherwise, go to (ii)

Theorem 4.15. Let (Λ+, r, 𝜂, 𝑏) be the return values of Algorithm 4.3. Then ‖Bv − f‖ ≤ 𝑏 and either 𝑏 ≤ 𝜀,
or r satisfies

‖r− (f −Bv)‖ ≤ 𝜁‖f −Bv‖, (4.16)

where we have #suppTr ≤ #Λ+ =
∑︀

𝜈∈𝐹+ #𝑆+
𝜈 with 𝑆+

𝜈 ∈ T(𝒮) for each 𝜈 ∈ 𝐹+ and

#Λ+ .

#𝒯 (𝑓) +
(︁
𝜂−

1
𝑠

⃦⃦
(‖v𝜈‖)𝜈∈ℱ

⃦⃦ 1
𝑠

𝒜𝑠 + #suppTv
)︁(︀

1 + |log 𝜂|+ log
⃦⃦

(‖v𝜈‖)𝜈∈ℱ
⃦⃦
𝒜𝑠

)︀
. (4.17)

The number of operations required for computing r is bounded by a fixed multiple of

(1 + log2(𝜂0/𝜂))
[︁
#𝒯 (𝑓) +

(︁
𝜂−

1
𝑠

⃦⃦
(‖v𝜈‖)𝜈∈ℱ

⃦⃦ 1
𝑠

𝒜𝑠 + #suppTv
)︁

×
(︂

1 + |log 𝜂|+ log
⃦⃦
(‖v𝜈‖)𝜈∈ℱ

⃦⃦
𝒜𝑠 + log # supp

ℱ
v + max

𝜈∈𝐹+
# supp 𝜈

)︂]︂
. (4.18)

Proof. We first show that the prescribed relative tolerance 𝜁 is achieved. Define r̂ by r̂𝜈,𝜆 := 𝑟𝜈(𝜓𝜆) for all
𝜆 ∈ 𝒮, and extend r to 𝒮 by setting r𝜈,𝜆 = 0 for 𝜆 /∈ 𝑆+

𝜈 . With ℓ̂ sufficiently large, as a consequence of
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Proposition 4.12 applied for each 𝜈, one obtains any required relative error in step (vi). Thus, ‖r̂− r‖ ≤ 𝜁ℓ̂‖r̂‖.
Algorithm 4.1 ensures ‖r̂− (f −Bv)‖ ≤ 𝜂 whenever step (vii) is reached. Thus if the algorithm stops due to the
first condition in this step, by the triangle inequality, the error bound (4.16) holds if 𝜂+𝜁ℓ̂‖r̂‖ ≤ 𝜁‖f −Bv‖. Since
𝜁‖f −Bv‖ ≥ 𝜁(‖r̂‖ − 𝜂), a sufficient condition is (1 + 𝜁)𝜂 ≤ (𝜁 − 𝜁ℓ̂)‖r̂‖, and since moreover ‖r‖ ≤ (1 + 𝜁ℓ̂)‖r̂‖,
this in turn is implied by the condition in the final step. If the algorithm stops due to the second condition in
step (vii), then ‖Bv − f‖ ≤ 𝑏 ≤ 𝜀.

By construction, there exists a 𝐶ℓ̂ > 0 such that∑︁
𝜈∈𝐹+

#𝑆+
𝜈 ≤ 𝐶ℓ̂

∑︁
𝜈∈𝐹+

#𝒯 (𝑟𝜈).

Moreover, we have the upper bound

#𝒯 (𝑟𝜈) ≤ 𝛿0,𝜈#𝒯 (𝑓) +
∑︁

(𝜇,𝜈′)∈𝑀(𝜈)

#𝒯 (𝐴𝜇𝑣𝜈′).

With the corresponding ℓ𝑗 , 𝐹𝑗 , and d𝑗 for 𝑗 = 0, . . . , 𝐽 as in Algorithm 4.1, note first that by (A4.1.3), we have

r = f −
𝐽∑︁

𝑗=0

Bℓ𝑗
d𝑗 = f −

𝐽∑︁
𝑗=0

ℓ𝑗−1∑︁
𝑘=0

∑︁
𝜇∈ℳ0
|𝜇|=𝑘

(M𝜇 ⊗A𝜇)d𝑗 .

Since M𝜇 is diagonal or bidiagonal for each 𝜇,

∑︁
𝜈∈𝐹+

∑︁
(𝜇,𝜈′)∈𝑀(𝜈)

#𝒯 (𝐴𝜇𝑣𝜈′) ≤ 2
𝐽∑︁

𝑗=0

ℓ𝑗−1∑︁
𝑘=0

∑︁
𝜈∈𝐹𝑗

∑︁
𝜇∈ℳ0
|𝜇|=𝑘

#𝒯 (𝐴𝜇𝑣𝜈).

Since for each 𝜈 ∈ 𝐹 , the wavelet expansion of 𝑣𝜈 has tree structure by our assumption, Lemma 4.14 yields

#𝒯 (𝐴𝜇𝑣𝜈) . #{𝑇 ∈ 𝒯 (𝑣𝜈) : 𝑇 ⊆ 𝑇 ′ for a 𝑇 ′ ∈ 𝒯̸=0(𝜃𝜇)}+ #𝒯 ̸=0(𝜃𝜇) + |𝜇|

for each 𝜇 and 𝜈. As a consequence of Assumptions 2.1(i) and (ii), Assumptions 4.10, 4.11 as well as (1.8),∑︁
𝜇∈ℳ0
|𝜇|=𝑘

#{𝑇 ∈ 𝒯 (𝑣𝜈) : 𝑇 ⊆ 𝑇 ′ for a 𝑇 ′ ∈ 𝒯̸=0(𝜃𝜇)} . #𝒯 (𝑣𝜈),

and moreover, ∑︁
𝜇∈ℳ0
|𝜇|=𝑘

#𝒯 ̸=0(𝜃𝜇) . 2𝑑𝑘,
∑︁

𝜇∈ℳ0
|𝜇|=𝑘

|𝜇| . 𝑘2𝑑𝑘.

Since 𝑆𝜈 is a tree, 𝒯 (𝑣𝜈) . #𝑆𝜈 for all 𝜈 ∈ 𝐹 . Putting the above estimates together, we obtain

∑︁
𝜈∈𝐹+

#𝑆+
𝜈 . #𝒯 (𝑓) +

𝐽∑︁
𝑗=0

∑︁
𝜈∈𝐹𝑗

ℓ𝑗−1∑︁
𝑘=0

(︀
(1 + 𝑘)2𝑑𝑘 + #𝒯 (𝑣𝜈)

)︀

. #𝒯 (𝑓) +
𝐽∑︁

𝑗=0

max{ℓ𝑗 , 0}

⎛⎝2𝑑ℓ𝑗 #𝐹𝑗 +
∑︁
𝜈∈𝐹𝑗

#𝑆𝜈

⎞⎠
≤ #𝒯 (𝑓) +

(︂
max

𝑗=0,...,𝐽
max{ℓ𝑗 , 0}

)︂⎛⎝ 𝐽∑︁
𝑗=0

2𝑑ℓ𝑗 #𝐹𝑗 +
∑︁
𝜈∈𝐹

#𝑆𝜈

⎞⎠.
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With Proposition 4.8, and noting that
∑︀

𝜈∈𝐹 #𝑆𝜈= #suppTv, we obtain (4.17).
It remains to estimate the number of required operations. Since 𝑆𝜈 is a tree for each 𝜈 ∈ 𝐹 , the number of

operations for step (i) of Algorithm 4.3 is bounded by a multiple of #suppTv. For the computation of norms
and sorting, Apply in step (iii) requires a number of operations bounded by a fixed multiple of

#suppTv + # supp
ℱ

v log # supp
ℱ

v.

From Proposition 4.8, we have ∑︁
𝜈∈𝐹+

#𝑀(𝜈) . 𝜂−
1
𝑠

⃦⃦
(‖v𝜈‖)𝜈∈ℱ

⃦⃦ 1
𝑠

𝒜𝑠 .

The number of operations for handling multi-indices in steps (iii) and (iv) is thus, according to Remark 4.7,
bounded by a multiple of

𝜂−
1
𝑠

⃦⃦
(‖v𝜈‖)𝜈∈ℱ

⃦⃦ 1
𝑠

𝒜𝑠

(︂
1 + max

𝜈∈𝐹+
# supp 𝜈

)︂
.

The further operations in steps (iv) and (v) combined require a number of operations bounded by a multiple
of

#𝒯 (𝑓) +
∑︁

𝜈∈𝐹+

∑︁
(𝜇,𝜈′)∈𝑀(𝜈)

(#{𝑇 ∈ 𝒯 (𝑣𝜈) : 𝑇 ⊆ 𝑇 ′ for a 𝑇 ′ ∈ 𝒯̸=0(𝜃𝜇)}+ #𝒯 ̸=0(𝜃𝜇) + |𝜇|)

. #𝒯 (𝑓) +
(︂

max
𝑗=0,...,𝐽

max{ℓ𝑗 , 0}
)︂⎛⎝ 𝐽∑︁

𝑗=0

2𝑑ℓ𝑗 #𝐹𝑗 +
∑︁
𝜈∈𝐹

#𝑆𝜈

⎞⎠,
which we estimate further as above. Concerning step (vi), note that for each 𝜈 and 𝜆 ∈ Σ𝜈 , the number of
elements of 𝒯 (𝑟𝜈) intersecting supp𝜙𝜆 is uniformly bounded by construction of Σ𝜈 , and thus the computation
of each integral 𝑟𝜈(𝜙𝜆) of piecewise polynomial functions on this tiling requires a uniformly bounded number
of operations. As a consequence of Proposition 4.13, the required number of operations for step (vi) is thus
bounded by a fixed multiple of

∑︀
𝜈∈𝐹+ #𝒯 (𝑟𝜈).

In summary, each execution of the body of the loop from steps (iii) to (vi) requires a number of operations
bounded by a fixed multiple of the upper bound in (4.17) with the current value of 𝜂. In terms of the value of
𝜂 that is returned, the number of iterations in the outer loop is bounded by 1 + log2(𝜂0/𝜂) times, which yields
the bound (4.18) for the total number of operations. �

4.5. Tree coarsening

In step (ii) of Algorithm 3.1, for a given residual approximation r of the Galerkin solution on Λ0 = {(𝜈, 𝜆) : 𝜈 ∈
𝐹 0, 𝜆 ∈ 𝑆0

𝜈}, with supp r ⊆ Λ+ = {(𝜈, 𝜆) : 𝜈 ∈ 𝐹+, 𝜆 ∈ 𝑆+
𝜈 }, with 0 < 𝜔0 ≤ 𝜔1 < 1 we need to find Λ♭ ⊆ Λ+

with Λ♭ ∈ Tℱ(𝒮) satisfying (A3.1.1), that is,

‖r|Λ♭‖ ≥ 𝜔0‖r‖ and #(Λ♭ ∖ Λ0) ≤ 𝐶#
(︁

Λ̃ ∖ Λ0
)︁

(4.19)

with 𝐶 > 0 for any Λ̃ ⊃ Λ0, Λ̃ ∈ Tℱ(𝒮), such that ‖r|Λ̃‖ ≥ 𝜔1‖r‖. For finding such near-best Λ♭, and hence
𝑆♭

𝜈 ⊆ 𝑆+
𝜈 , that additionally have tree structure, we follow the strategy of the thresholding second algorithm from

[13] (see also [11]), in the version stated in [12].
To determine Λ♭, we use the tree structure of Λ+ ∖ Λ0 as follows. We can assume without loss of generality

that 𝜆0 is the single root element of 𝒮; to this end, we can group all 𝜆 ∈ 𝒮 with |𝜆| = 0 into a single element
of the tree by always adding these 𝜆 jointly to an index set. This ensures that all generated spatial index sets
are trees according to Definition 4.1. We thus also have a tree structure on ℱ × 𝒮: for (𝜈, 𝜆) ∈ ℱ × 𝒮, we write
𝛿 := (𝜈, 𝜆), where 𝛿′ = (𝜈, 𝜆′) ≺ (𝜈, 𝜆) = 𝛿 if and only if 𝜆′ ≺ 𝜆. The subsets of ℱ ×𝒮 that are trees with respect
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to each of their spatial components are then precisely the elements of Tℱ(𝒮) as in (4.2), and are again referred
to as trees.

For 𝛿 ∈ ℱ × 𝒮, let Θ𝛿 be the infinite subtree of ℱ × 𝒮 with root element 𝛿. Since we aim to select elements
of Λ+ ∖Λ0, in the tree coarsening scheme we only operate on subtrees of Θ := (ℱ ×𝒮) ∖Λ0 with root elements

∆0 =
{︀

(𝜈, 𝜆0) : 𝜈 ∈ 𝐹+ ∖ 𝐹 0
}︀
∪
{︀

(𝜈, 𝜆) : 𝜈 ∈ 𝐹 0, 𝜆 /∈ 𝑆0
𝜈 with 𝜆 ∈ C(𝜆′) for a 𝜆′ ∈ 𝑆0

𝜈

}︀
, (4.20)

where Θ =
⋃︀

𝛿∈Δ0
Θ𝛿. We accordingly introduce the set of tree subsets

T(Θ) := {Λ ⊂ Θ: (Λ ∋ 𝛿 ≺ 𝛿′ ∈ Θ) =⇒ 𝛿′ ∈ Λ}.

For an arbitrary tree Λ ∈ T(Θ), we write L(Λ) for its leaves, that is, for the elements of Λ that do not have
any child in Λ. Moreover, I(Λ) = Λ ∖ L(Λ) are the internal nodes of Λ. For 𝛿 ∈ Λ, we again write C(𝛿) for the
set of all children of 𝛿 in Θ, where max𝛿∈Θ #C(𝛿) < ∞. We call a tree Λ ∈ T(Θ) proper if C(𝛿) ⊂ Λ for any
𝛿 ∈ I(Λ).

Following [13], for 𝛿 ∈ Θ we define the error measures

𝑒(𝛿) =

{︃
|t𝜆(r𝜈)|2, for 𝛿 = (𝜈, 𝜆) ∈ Λ+,

0, for 𝛿 ∈ Θ ∖ Λ+,
(4.21)

for which we have the subadditivity property

𝑒(𝛿) ≥
∑︁

𝛿′∈C(𝛿)

𝑒(𝛿′). (4.22)

In addition, for each ∆ ∈ T(Θ) we define the global error measure

𝐸(∆) =
∑︁

𝛿∈L(Δ)

𝑒(𝛿),

which by (4.3) satisfies 𝐸(∆) =
⃦⃦
PΘr−PI(Δ)r

⃦⃦2, and the corresponding best approximation errors

𝜎𝑁 = min
Λ∈T(Θ)

#I(Λ)≤𝑁

𝐸(Λ).

Note that since only interior nodes are counted, the trees realizing the best approximation can always be assumed
to be proper trees.

The algorithm from [11,12] is based on the modified errors for 𝛿 ∈ Θ,

𝑒(𝛿) =

{︃
𝑒(𝛿), if 𝛿 ∈ ∆0,(︀
𝑒(𝛿)−1 + 𝑒(𝛿*)−1

)︀−1
, if 𝛿* is the parent of 𝛿.

(4.23)

The greedy-type scheme producing the sought approximation is stated in Algorithm 4.4. The returned trees are
proper trees by construction.

The following two lemmas can be obtained by minor modifications of Lemmas 2.3 and 2.4 from [12], where
the analogous statements are shown for binary trees with a single root element. For the convenience of the
reader, we give the proofs in Appendix A.

Lemma 4.16. Let 𝜂 > 0, and let Λ be a finite tree such that 𝑒(𝛿) ≤ 𝜂 for all 𝛿 ∈ L(Λ). Then∑︁
𝛿∈L(Λ)

𝑒(𝛿) ≤ (#Λ)𝜂.
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Algorithm 4.4. Λ♭ := TreeApprox(Λ0,Λ+, r, 𝜂).
Set 𝑁 := 0 and Δ0 as in (4.20)
Evaluate 𝑒(𝛿) and 𝑒(𝛿) for 𝛿 ∈ Λ+ according to (4.21), (4.23)
Until 𝐸(Δ𝑁 ) ≤ 𝜂, repeat

find a 𝛿 ∈ L(Δ𝑁 ) with largest 𝑒(𝛿)
set Δ𝑁+1 = Δ𝑁 ∪ C(𝛿) and 𝑁 ← 𝑁 + 1

Return Λ♭ = Λ0 ∪ I(Δ𝑁 )

Lemma 4.17. Let 𝜂 > 0, let 𝛿0 be a node in a finite tree Λ, and let Λ𝛿0 be a subtree of Λ rooted at 𝛿0 such that
𝑒(𝛿) ≥ 𝜂 for all 𝛿 ∈ Λ𝛿0 . Then

𝑒(𝛿0) ≥ (#Λ𝛿0)𝜂.

With these lemmas at hand, we obtain the following modification of Theorem 2.1 from [12] for our setting.

Theorem 4.18. Let ∆0, . . . ,∆𝑁 be as constructed in Algorithm 4.4. Then we have

𝐸(∆𝑘) ≤ 𝑘 + 1
𝑘 − 𝑛+ 1

𝜎𝑛, 0 ≤ 𝑛 ≤ 𝑘 ≤ 𝑁. (4.24)

Proof. The statement clearly holds if 𝑘 = 0 or 𝑛 = 0, and we can thus assume 𝑘, 𝑛 ≥ 1. Let ∆*
𝑛 be a tree realizing

the best approximation for 𝑛, so that 𝐸(∆*
𝑛) = 𝜎𝑛. If I(∆*

𝑛) ⊆ I(∆𝑘), then ∆*
𝑛 ⊆ ∆𝑘 and thus 𝐸(∆𝑘) ≤ 𝐸(∆*

𝑛).
Otherwise, there exists an element of I(∆*

𝑛) that is not in I(∆𝑘). We now estimate 𝐸(∆*
𝑛) from below in terms

of
𝑚̃𝑘 := max

𝛿∈L(Δ𝑘)
𝑒(𝛿).

Let 𝐷 := I(∆𝑘)∖I(∆*
𝑛). Since there is at least one node from I(∆*

𝑛) that is not in I(∆𝑘), we have #𝐷 = 𝑘−𝑛+1.
Note that 𝐷 is the union of the trees Θ𝛿 ∩ I(∆𝑘) for 𝛿 ∈ L(∆*

𝑛). By Lemma 4.17,

𝜎𝑛 = 𝐸(∆*
𝑛) =

∑︁
𝛿∈L(Δ*𝑛)

𝑒(𝛿)

≥
∑︁

𝛿∈L(Δ*𝑛)

(#Θ𝛿 ∩ I(∆𝑘)) 𝑚̃𝑘 ≥ #𝐷 𝑚̃𝑘 ≥ (𝑘 − 𝑛+ 1)𝑚̃𝑘.
(4.25)

In order to estimate 𝐸(∆𝑘) from above by 𝑚̃𝑘, we note that

𝐸(∆𝑘) =
∑︁

𝛿∈L(Δ𝑘)∖I(Δ*𝑛)

𝑒(𝛿) +
∑︁

𝛿∈L(Δ𝑘)∩I(Δ*𝑛)

𝑒(𝛿),

where on the one hand ∑︁
𝛿∈L(Δ𝑘)∖I(Δ*𝑛)

𝑒(𝛿) ≤
∑︁

𝛿∈L(Δ*𝑛)

𝑒(𝛿) = 𝜎𝑛,

and on the other hand, applying Lemma 4.16 to the minimal tree with leaves L(∆𝑘) ∩ I(∆*
𝑛),∑︁

𝛿∈L(Δ𝑘)∩I(Δ*𝑛)

𝑒(𝛿) ≤ (#I(∆*
𝑛)) 𝑚̃𝑘 = 𝑛𝑚̃𝑘.

Combining these bounds with (4.25), we obtain

𝐸(∆𝑘) ≤ 𝜎𝑛 +
𝑛

𝑘 − 𝑛+ 1
𝜎𝑛 =

𝑘 + 1
𝑘 − 𝑛+ 1

𝜎𝑛,

which completes the proof. �
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As in [11], from Theorem 4.18 we obtain the following variant of Corollary 5.4 from [13].

Corollary 4.19. With ∆𝑁 as generated by Algorithm 4.4, for any 𝑐 ∈ (0, 1) and any proper tree ∆̃ with roots
∆0 such that 𝐸

(︁
∆̃
)︁
≤ 𝑐𝜂, we have

#I(∆𝑁 ) ≤ 𝐶#I
(︁

∆̃
)︁
,

with 𝐶 > 0 depending only on 𝑐.

Proof. Let ∆0, . . . ,∆𝑁 be as constructed by Algorithm 4.4. By construction, we have 𝐸(∆0) = 𝜎0 and 𝐸(∆1) =
𝜎1, and we can thus assume 𝑁 > 1. Let 𝛾 = 1− 𝑐, then 𝛾(𝑁 − 1) ≤ (1− 𝑐)𝑁 and hence

𝑁

𝑁 − 𝑛
≤ 𝑁

(1− 𝛾)𝑁 + 𝛾
≤ 𝑐−1, 0 ≤ 𝑛 ≤ 𝛾(𝑁 − 1), (4.26)

for all such 𝑁 . Let ∆̃* be a proper tree with minimal 𝑛* := #∆̃* such that 𝐸
(︁

∆̃*
)︁
≤ 𝑐𝜂, so that #I

(︁
∆̃
)︁
≥ 𝑛*

for ∆̃ as in the assertion. Then since 𝐸(∆𝑁−1) > 𝜂,

𝜎𝑛* = 𝐸
(︁

∆̃*
)︁
≤ 𝑐𝜂 < 𝑐𝐸(∆𝑁−1).

However, applying (4.24), with (4.26) we obtain

𝐸(∆𝑁−1) ≤ 𝑁

𝑁 − 𝑛
𝜎𝑛 ≤ 𝑐−1𝜎𝑛

whenever 𝑛 ≤ 𝛾(𝑁 − 1). Thus, we have 𝑛* > 𝛾(𝑁 − 1) and consequently

#I(∆𝑁 ) = 𝑁 < 𝛾−1𝑛* + 1 ≤ 𝛾−1#I
(︁

∆̃
)︁

+ 1 ≤ (𝛾−1 + 1)#I
(︁

∆̃
)︁
.

�

From Corollary 4.19 we can now derive the particular quasi-optimality property required by the adaptive
scheme.

Corollary 4.20. Let 𝜔0, 𝜔1 with 0 < 𝜔0 < 𝜔1 < 1 be given, let Λ♭ be the result of Algorithm 4.4 with 𝜂 =
(1− 𝜔2

0)‖r‖2. Then (4.19) holds with 𝐶 depending only on 𝜔0 and 𝜔1.

Proof. Let ∆𝑁 be as computed in Algorithm 4.4. Note that ‖r‖2 = ‖r|Λ♭‖2 +
⃦⃦
PΘr−PI(Δ𝑁 )r

⃦⃦2, where⃦⃦
PΘr−PI(Δ𝑁 )r

⃦⃦2 = 𝐸(∆𝑁 ) ≤ (1− 𝜔2
0)‖r‖2.

Let any Λ̃ ∈ Tℱ(𝒮) with Λ̃ ⊃ Λ0 and ‖r|Λ̃‖ ≥ 𝜔1‖r‖ be given. Let

∆̃ = ∆0 ∪
{︁
𝛿 : 𝛿 ∈ C(𝛿′) for a 𝛿′ ∈ Λ̃ ∖ Λ0

}︁
,

which is the proper tree with roots ∆0 containing Λ̃∖Λ0 and all children of its elements, so that I
(︁

∆̃
)︁

= Λ̃∖Λ0.
We then have ⃦⃦⃦

PΘr−PI(Δ̃)r
⃦⃦⃦2

= 𝐸
(︁

∆̃
)︁
≤ (1− 𝜔2

1)‖r‖2. (4.27)

From Corollary 4.19 with 𝑐 = (1 − 𝜔2
1)/(1 − 𝜔2

0), for any proper tree ∆̃ with roots ∆0 such that (4.27) holds,
we have

#
(︁

Λ♭ ∖ Λ0
)︁

= #I(∆𝑁 ) ≤ 𝐶#I
(︁

∆̃
)︁

= 𝐶#
(︁

Λ̃ ∖ Λ0
)︁

with 𝐶 depending on 𝐾, 𝜔0, and 𝜔1. �
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Algorithm 4.5. ṽ = GalSolve(Λ,v, 𝛿, 𝜀), where suppTv ⊆ Λ ∈ Tℱ(𝒮), #Λ < ∞, 𝜀 > 0,and 𝛿 > 0 such that
‖(Bv − f)|Λ‖ ≤ 𝛿.
Let suppv ⊆ Λ = {(𝜈, 𝜆) : 𝜈 ∈ 𝐹, 𝜆 ∈ 𝑆𝜈}, 𝐹 ⊂ ℱ , 𝑆𝜈 ∈ T(𝒮) and 𝑣𝜈 =

∑︀
𝜆∈𝑆𝜈

v𝜈,𝜆𝜓𝜆

(i) Determine (𝑀(𝜈))𝜈∈𝐹 by Apply(v; 𝜀
3
) as in Algorithm 4.1, with output restricted to 𝐹 , and set

r0 = GalApply(Λ,v, (𝑀(𝜈))𝜈∈𝐹 , 𝑓)

(ii) With the smallest 𝐿 ∈ N0 such that 𝑟−1
B 𝐶B2−𝛼𝐿 ≤ 𝜀

3(𝜀+𝛿)
, take

(︁
𝑀̃(𝜈)

)︁

𝜈∈𝐹
such that for all w with suppℱ w ⊆ 𝐹 ,

(B𝐿w)𝜈 =
∑︁

(𝜇,𝜈′)∈𝑀̃(𝜈)

(M𝜇)𝜈,𝜈′ A𝜇 w𝜈′ , 𝜈 ∈ 𝐹

(iii) Use the conjugate gradient method to find s such that ‖r0 + B𝐿s‖ ≤ 𝜀
3
, where for w with suppw ⊆ Λ,

B𝐿w = GalApply

(︂
Λ,w,

(︁
𝑀̃(𝜈)

)︁

𝜈∈𝐹
, 0

)︂
,

and set ṽ = v + s

Remark 4.21. In the given form, Algorithm 4.4 requires 𝒪(#(Λ+ ∖ Λ0) log #(Λ+ ∖ Λ0)) operations due to
the requirement of sorting the values 𝑒(𝛿), 𝛿 ∈ Λ+ ∖ Λ0. As noted in Remark 2.2 of [12], the sorting can be
replaced by a binary binning, where the 𝑒(𝛿) are sorted into bins corresponding to ranges of values of the form
[2−𝑝 max𝛿 𝑒(𝛿), 2−𝑝−1 max𝛿 𝑒(𝛿)), 𝑝 ∈ N0. In this case, equation (4.24) is replaced by

𝐸(∆𝑘) ≤ 𝑘 + 𝑛+ 1
𝑘 − 𝑛+ 1

𝜎𝑛, 0 ≤ 𝑛 ≤ 𝑘 ≤ 𝑁,

and the statement of Corollary 4.19 follows in the same manner with 𝛾 = 1
2 (1−𝑐). This variant of Algorithm 4.4

requires 𝒪(#(Λ+ ∖ Λ0)) operations.

4.6. Galerkin solver

For an implementation of GalSolve, the simplest option is an iterative scheme with inexact residual approx-
imations by ResApprox, where the evaluation in step (vi) is restricted to indices in Λ.

However, a potentially more efficient alternative is provided by the defect correction strategy of [24]: starting
from a sufficiently accurate approximation of the initial Galerkin residual, an iterative scheme using a fixed
approximation of the operator is used to compute a correction. The resulting procedure GalSolve is stated in
Algorithm 4.5; it relies on the subroutine GalApply specified in Algorithm 4.6.

Proposition 4.22. Let ṽ = GalSolve(Λ,v, 𝛿, 𝜀), then ‖(Bṽ − f)|Λ‖ ≤ 𝜀, and for any 𝑠 > 0 with 𝑠 < 𝛼
𝑑 , the

required number of arithmetic operations is bounded up to a constant by(︁
#𝒯 (𝑓) + #Λ + 𝜀−

1
𝑠

⃦⃦
(‖v𝜈‖)𝜈∈ℱ

⃦⃦ 1
𝑠

𝒜𝑠

)︁
×
(︂

1 + 𝑔(𝛿/𝜀) + |log 𝜀|+ log
⃦⃦
(‖v𝜈‖)𝜈∈ℱ

⃦⃦
𝒜𝑠 + max

𝜈∈𝐹+
# supp 𝜈

)︂
, (4.28)

where 𝑔 : R+ → R+ is a nondecreasing function.

Proof. The bound on ‖(Bṽ − f)|Λ‖ follows from Theorem 2.5 of [24]. Concerning the costs of step (i) of Algo-
rithm 4.5, for (𝑀(𝜈))𝜈∈𝐹 we obtain from Proposition 4.8 the estimate∑︁

𝜈∈𝐹

#𝑀(𝜈) . 𝜀−
1
𝑠

⃦⃦
(‖v𝜈‖)𝜈∈ℱ

⃦⃦ 1
𝑠

𝒜𝑠 . (4.29)
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Algorithm 4.6. w = GalApply(Λ,v, (𝑀(𝜈))𝜈∈𝐹 , 𝑓0), where suppTv ⊆ Λ ∈ Tℱ(𝒮) and #Λ <∞.
Let suppv ⊆ Λ = {(𝜈, 𝜆) : 𝜈 ∈ 𝐹, 𝜆 ∈ 𝑆𝜈}, 𝐹 ⊂ ℱ , 𝑆𝜈 ∈ T(𝒮) and 𝑣𝜈 =

∑︀
𝜆∈𝑆𝜈

v𝜈,𝜆𝜓𝜆, and 𝑓0 piecewise polynomial
with 𝒯 (𝑓0) <∞

(i) For each 𝜈 ∈ 𝐹 , transform 𝑣𝜈 to piecewise polynomials on tilings 𝒯 (𝑣𝜈) by applying Algorithm 4.2
(ii) For each 𝜈 ∈ 𝐹

Initialize 𝑤̂𝜈 = −𝛿0,𝜈𝑓0
For each (𝜇, 𝜈′) ∈𝑀(𝜈)

𝑤̂𝜈 ← 𝑤̂𝜈 + (M𝜇)𝜈,𝜈′
∑︁

𝑇∈𝒯̸=0(𝐴𝜇𝑣𝜈′ )

𝐴𝜇𝑣𝜈′
⃒⃒
𝑇

(iii) For each 𝜈 ∈ 𝐹 , use Algorithm 4.2 to transform 𝑤̂𝜈 to its representation on the minimal tiling 𝒯 (𝑤̂𝜈), and set
𝑆+

𝜈 = 𝒮(𝒯 (𝑤̂𝜈), 0). Determine Φ𝜈 = {𝜙𝜆}𝜆∈Σ𝜈 as the corresponding locally single-scale basis with
spanΦ𝜈 ⊇ span{𝜓𝜆}𝜆∈𝑆+

𝜈
, Σ𝜈 = Σ(𝑆+

𝜈 ), according to (4.14), evaluate the integrals

s𝜈,𝜆 = 𝑤̂𝜈(𝜙𝜆) for 𝜈 ∈ 𝐹 , 𝜆 ∈ Σ𝜈 ,

set w̃𝜈 = T⊤
𝑆+

𝜈
s𝜈 and define w𝜈 by

w𝜈,𝜆 =

{︃
w̃𝜈,𝜆, 𝜆 ∈ 𝑆+

𝜈 ∩ 𝑆𝜈 ,

0, otherwise,
for 𝜆 ∈ 𝒮

Proceeding as in the proof of Theorem 4.15, the total number of arithmetic operations for this step is bounded
by a fixed multiple of

#𝒯 (𝑓) +
(︁

#Λ + 𝜀−
1
𝑠

⃦⃦
(‖v𝜈‖)𝜈∈ℱ

⃦⃦ 1
𝑠

𝒜𝑠

)︁(︂
1 + |log 𝜀|+ log

⃦⃦
(‖v𝜈‖)𝜈∈ℱ

⃦⃦
𝒜𝑠 + max

𝜈∈𝐹+
# supp 𝜈

)︂
.

We now consider the costs of Algorithm 4.6 with
(︁
𝑀̃(𝜈)

)︁
𝜈∈𝐹

as determined in step (ii) of Algorithm 4.5.

Note that 𝐿 is a nondecreasing function of 𝛿/𝜀. Moreover,∑︁
𝜈∈𝐹

#𝑀̃(𝜈) . 2𝑑𝐿# supp
ℱ

v. (4.30)

Again proceeding as in the proof of Theorem 4.15, one verifies that the number of arithmetic operations for one
application of GalApply in step (iii) is bounded by a multiple of

#𝒯 (𝑓) + (1 + 𝐿)
∑︁
𝜈∈𝐹

𝐿∑︁
𝑘=0

(︀
#𝒯 (𝑣𝜈) + (𝑘 + 1)2𝑑𝑘

)︀
using the corresponding bounds for #𝒯 (𝑤̂𝜈) with 𝑤̂𝜈 , 𝜈 ∈ 𝐹 , as in Algorithm 4.6. Accordingly, the costs of
one iteration of the solver in step (iii) are bounded by a multiple of (1 + 𝐿)

(︀
#𝒯 (𝑓) + 𝐿#Λ + 𝐿2𝑑𝐿

)︀
, and the

number of iterations required for the solver depends only on 𝛿/𝜀. �

5. Optimality

We now consider the computational complexity of the basic adaptive scheme of Algorithm 3.1 using the resid-
ual approximation of Algorithm 4.3, tree coarsening by Algorithm 4.4 and Galerkin solves by Algorithm 4.5,
which is summarized in Algorithm 5.1. We proceed in two steps. First, we estimate the cardinality of discretiza-
tions that are generated in terms of the achieved error tolerance. With the residual approximation and tree
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Algorithm 5.1. Adaptive Galerkin method.
Let 0 < 𝜔0 < 𝜔1 < 1, 𝜁, 𝛾 > 0 as in (5.1), u0 = 0, and Λ0 = ∅; formally set

⃦⃦
r−1
⃦⃦

:= 𝑟−1
B ‖f‖

For 𝑘 = 0, 1, 2, . . ., perform the following steps:(︁
Λ̃𝑘+1, r𝑘, 𝜂𝑘, 𝑏𝑘

)︁
:= ResApprox

(︁
u𝑘; 𝜁, 𝜁

1+𝜁

⃦⃦
r𝑘−1

⃦⃦
, 𝜀
)︁

if 𝑏𝑘 ≤ 𝜀,
return u𝑘

Λ𝑘+1 := TreeApprox
(︁
Λ𝑘, Λ̃𝑘+1, r𝑘,

(︀
1− 𝜔2

0

)︀⃦⃦
r𝑘
⃦⃦2
)︁

u𝑘+1 := GalSolve
(︀
Λ𝑘+1,u𝑘, 𝑏𝑘, 𝛾

⃦⃦
r𝑘
⃦⃦)︀

coarsening schemes in place, this can be done by techniques from [24, 33]. In the second step, we consider the
computational complexity of the method, where additional specifics of our countably-dimensional setting come
into play.

In this section, we frequently use the condition number 𝜅(B) = ‖B‖
⃦⃦
B−1

⃦⃦
with respect to the spectral norm,

as well as the energy norm
‖v‖B =

√︀
⟨Bv,v⟩, v ∈ ℓ2(ℱ × 𝒮),

associated to the mapping B defined in (2.6). To ensure optimality of the scheme, we require the following
assumptions on the parameters 𝜁 ∈ (0, 1

2 ), 0 < 𝜔0 < 𝜔1 < 1, and 𝛾 > 0 of Algorithm 3.1:

0 < 𝜁 <
𝜔0

𝜔0 + 1
,

𝜔1(1− 𝜁) + 𝜁 < (1− 2𝜁)𝜅(B)−
1
2 ,

0 < 𝛾 <
(1− 𝜁)𝜔0 − 𝜁

(1 + 𝜁)𝜅(B)
·

(5.1)

Note that the requirements on 𝜁 ensure that the upper bound for 𝛾 is positive.
The main result of this work is the following theorem, which combines the above mentioned cardinality and

complexity estimates. The proof is given in the following two subsections.

Theorem 5.1. Let 𝑓 ∈ 𝐿2(𝐷) be piecewise polynomial with #𝒯 (𝑓) <∞, let {𝜃𝜇}𝜇∈ℳ satisfy Assumptions 2.1,
and let Assumptions 4.10, 4.11 hold. Let 0 < 𝑠 < 𝛼

𝑑 and ‖u‖t,𝑝 < ∞ for 𝑝 =
(︀
𝑠+ 1

2

)︀−1. Then for each
𝜀 > 0, Algorithm 5.1 with parameters satisfying (5.1) outputs an approximation u𝑘 for some 𝑘 ∈ N with⃦⃦
u− u𝑘

⃦⃦
ℓ2
≤ 𝜀, such that the following holds:

(i) There exists 𝐶 > 0 independent of 𝜀 and u, but depending on 𝑠, such that

#suppTu𝑘 ≤ 𝐶 𝜀−
1
𝑠 ‖u‖

1
𝑠
t,𝑝.

(ii) The scheme can be realized such that with a 𝐶 > 0 independent of 𝜀 and u, the number of operations
required to compute u𝑘 is bounded by

𝐶
(︁

1 + 𝜀−
1
𝑠 ‖u‖

1
𝑠
t,𝑝

(︁
1 + |log 𝜀|+ log‖u‖t,𝑝

)︁)︁
.

Remark 5.2. If in addition to the assumptions of Theorem 5.1, 𝑑 ≥ 2 and 𝐷 is convex, then Proposition 4.3
applies, and thus the statement of Theorem 5.1 holds for any 𝑠 < 𝛼

𝑑 . In particular, for any such 𝑠, the number
of operations required by Algorithm 5.1 is bounded by 𝐶𝜀−1/𝑠 with a 𝐶 > 0 depending on 𝑢 and 𝑠. As a
consequence of Remark 2.5, in the special case 𝑑 = 1 the statement holds only for 𝑠 < 2

3𝛼.
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5.1. Cardinality of discretization subsets

In preparation of the proof of statement (i) in Theorem 5.1, we use ideas from Lemma 2.1 of [24], [34],
and Proposition 4.2 of [33] in order to relate error reduction to cardinality in our present setting of tree
approximation.

Lemma 5.3. Let 𝛽 ∈
(︁

0, ‖B‖−
1
2

)︁
, 𝜔 ∈

(︁
0, 𝜅(B)−

1
2
(︀
1− ‖B‖𝛽2

)︀ 1
2
]︁

and w ∈ ℓ2(ℱ × 𝒮) such that supp w ⊆
Λ0 ∈ Tℱ(𝒮). Then the smallest Λ ⊇ Λ0 with Λ ∈ Tℱ(𝒮) and

‖(Bw − f)|Λ‖ ≥ 𝜔‖Bw − f‖ (5.2)

satisfies

#(Λ ∖ Λ0) ≤ min
{︂

#Λ̄: Λ̄ ∈ Tℱ(𝒮), min
suppv⊆Λ̄

‖u− v‖ ≤ 𝛽‖u−w‖B

}︂
. (5.3)

Proof. With 𝑁 := min
{︀

#Λ̄: Λ̄ ∈ Tℱ(𝒮), minsuppv⊆Λ̄‖u− v‖ ≤ 𝛽‖u−w‖B
}︀

, let u𝑁 be a best 𝑁 -term tree
approximation with supp u𝑁 ⊆ Λ̄𝑁 ∈ Tℱ(𝒮), #Λ̄𝑁 = 𝑁 , of u such that ‖u− u𝑁‖ ≤ 𝛽‖u−w‖B. With
Λ̂ := Λ0 ∪ Λ̄𝑁 ∈ Tℱ(𝒮), the Galerkin solution uΛ̂ satisfies⃦⃦

u− uΛ̂

⃦⃦
B
≤ ‖u− u𝑁‖B ≤ ‖B‖

1
2 ‖u− u𝑁‖ ≤ ‖B‖

1
2 𝛽‖u−w‖B.

By Galerkin orthogonality, ‖u−w‖2B ≤
⃦⃦
uΛ̂ −w

⃦⃦2

B
+ ‖B‖𝛽2‖u−w‖2B, and therefore⃦⃦

uΛ̂ −w
⃦⃦
B
≥
(︀
1− ‖B‖𝛽2

)︀ 1
2 ‖u−w‖B.

This gives ⃦⃦
(Bw − f)|Λ̂

⃦⃦
=
⃦⃦(︀

Bw −BuΛ̂

)︀
|Λ̂
⃦⃦
≥
⃦⃦
B−1

⃦⃦− 1
2
⃦⃦
w − uΛ̂

⃦⃦
B

≥
⃦⃦
B−1

⃦⃦− 1
2
(︀
1− ‖B‖𝛽2

)︀ 1
2 ‖u−w‖B

≥ 𝜅(B)−
1
2
(︀
1− ‖B‖𝛽2

)︀ 1
2 ‖Bw − f‖

≥ 𝜔‖Bw − f‖.

By definition of Λ and since Λ̂ ⊇ Λ0, we arrive at #(Λ ∖ Λ0) ≤ #
(︁

Λ̂ ∖ Λ0

)︁
≤ 𝑁 . �

Lemma 5.4. Let the parameters of Algorithm 5.1 satisfy (5.1). Then for the iterates u𝑘 with supp u𝑘 ⊆ Λ𝑘

one has ⃦⃦
u− u𝑘+1

⃦⃦
B
≤ 𝜌
⃦⃦
u− u𝑘

⃦⃦
B

with 𝜌 =
√︀

1− ((1− 𝜁)𝜔0 − 𝜁)2𝜅(B)−1 + 𝛾2(1 + 𝜁)2𝜅(B) ∈ (0, 1), and

#
(︀
Λ𝑘+1 ∖ Λ𝑘

)︀
. min

{︂
#Λ̄: Λ̄ ∈ Tℱ(𝒮), min

suppv⊆Λ̄
‖u− v‖ ≤ 𝛽

⃦⃦
u− u𝑘

⃦⃦
B

}︂
.

Proof. By Theorem 4.15, the output of ResApprox in Algorithm 5.1 satisfies⃦⃦
r𝑘 −

(︀
Bu𝑘 − f

)︀⃦⃦
≤ 𝜁
⃦⃦
Bu𝑘 − f

⃦⃦
.

As a consequence, ⃦⃦(︀
Bu𝑘 − f

)︀
|Λ𝑘+1

⃦⃦
≥
⃦⃦
r𝑘|Λ𝑘+1

⃦⃦
−
⃦⃦
r𝑘 −

(︀
Bu𝑘 − f

)︀⃦⃦
≥ 𝜔0

⃦⃦
r𝑘
⃦⃦
−
⃦⃦
r𝑘 −

(︀
Bu𝑘 − f

)︀⃦⃦
≥ 𝜔0

⃦⃦
Bu𝑘 − f

⃦⃦
− (𝜔0 + 1)

⃦⃦
r𝑘 −

(︀
Bu𝑘 − f

)︀⃦⃦
≥ (𝜔0 − 𝜁(𝜔0 + 1))

⃦⃦
Bu𝑘 − f

⃦⃦
.
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By Lemma 3.1, for the Galerkin solution uΛ𝑘+1 on Λ𝑘+1 we thus have

‖u− uΛ𝑘+1‖B ≤
(︂

1− ((1− 𝜁)𝜔0 − 𝜁)2

𝜅(B)

)︂ 1
2 ⃦⃦

u− u𝑘
⃦⃦
B
.

Moreover, ⃦⃦
uΛ𝑘+1 − u𝑘+1

⃦⃦
B
≤
⃦⃦
B−1

⃦⃦ 1
2
⃦⃦

(f −Bu𝑘+1)|Λ𝑘+1

⃦⃦
≤
⃦⃦
B−1

⃦⃦ 1
2 𝛾
⃦⃦
r𝑘
⃦⃦

≤
⃦⃦
B−1

⃦⃦ 1
2 𝛾(1 + 𝜁)

⃦⃦
f −Bu𝑘

⃦⃦
≤ 𝛾(1 + 𝜁)𝜅(B)

1
2
⃦⃦
u− u𝑘

⃦⃦
B
,

and by Galerkin orthogonality,⃦⃦
u− u𝑘+1

⃦⃦2

B
= ‖u− uΛ𝑘+1‖2B +

⃦⃦
uΛ𝑘+1 − u𝑘+1

⃦⃦2

B

≤
(︀
1− ((1− 𝜁)𝜔0 − 𝜁)2𝜅(B)−1 + 𝛾2(1 + 𝜁)2𝜅(B)

)︀⃦⃦
u− u𝑘

⃦⃦2

B
.

Let 𝜔̂ := 𝜔1(1−𝜁)+𝜁
1−2𝜁 . By the choice of 𝜔1, there exists 𝛽 ∈

(︁
0, ‖B‖−

1
2

)︁
such that 𝜔̂ ≤ 𝜅(B)−

1
2
(︀
1− ‖B‖𝛽2

)︀ 1
2 .

Let Λ̂ ∈ Tℱ(𝒮) with Λ̂ ⊃ Λ𝑘 be of minimal cardinality such that⃦⃦
(Bu𝑘 − f)|Λ̂

⃦⃦
≥ 𝜔̂

⃦⃦
Bu𝑘 − f

⃦⃦
.

Then ⃦⃦
r𝑘|Λ̂

⃦⃦
≥
⃦⃦(︀

Bu𝑘 − f
)︀
|Λ̂
⃦⃦
−
⃦⃦
r𝑘 −

(︀
Bu𝑘 − f

)︀⃦⃦
≥ 𝜔̂

⃦⃦
Bu𝑘 − f

⃦⃦
−
⃦⃦
r𝑘 −

(︀
Bu𝑘 − f

)︀⃦⃦
≥ 𝜔̂

⃦⃦
r𝑘
⃦⃦
− (𝜔̂ + 1)

⃦⃦
r𝑘 −

(︀
Bu𝑘 − f

)︀⃦⃦
≥
(︂
𝜔̂ − (𝜔̂ + 1)𝜁

1− 𝜁

)︂⃦⃦
r𝑘
⃦⃦

= 𝜔1

⃦⃦
r𝑘
⃦⃦
.

With Lemma 5.3 and (A3.1.1b), we thus obtain

#
(︀
Λ𝑘+1 ∖ Λ𝑘

)︀
. #

(︁
Λ̂ ∖ Λ𝑘

)︁
≤ min

{︂
#Λ̄: Λ̄ ∈ Tℱ(𝒮), min

suppv⊆Λ̄
‖u− v‖ ≤ 𝛽

⃦⃦
u− u𝑘

⃦⃦
B

}︂
,

completing the proof. �

Proof of Theorem 5.1(i). From Lemma 5.4, we directly obtain convergence of u𝑘 to u. Moreover, since #Λ0 = 0,

#Λ𝑘 =
𝑘∑︁

𝑖=1

#
(︀
Λ𝑖 ∖ Λ𝑖−1

)︀
.

𝑘−1∑︁
𝑖=0

min
{︂

#Λ̄: Λ̄ ∈ Tℱ(𝒮), min
suppv⊆Λ̄

‖u− v‖ ≤ 𝛽
⃦⃦
u− u𝑖

⃦⃦
B

}︂
.

By our assumptions on u and by Corollary 4.4, for any 𝑝 > 0 such that 1
𝑝 <

𝛼
𝑑 + 1

2 and 𝑠 = 1
𝑝 −

1
2 ,

min
{︂

#Λ̄: Λ̄ ∈ Tℱ(𝒮), min
suppv⊆Λ̄

‖u− v‖ ≤ 𝛽
⃦⃦
u− u𝑖

⃦⃦
B

}︂
.
(︀
𝛽
⃦⃦
u− u𝑖

⃦⃦
B

)︀− 1
𝑠 ‖u‖

1
𝑠
t,𝑝.
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Altogether, using in addition that
⃦⃦
u− u𝑘−1

⃦⃦
B
≤ 𝜌𝑘−1−𝑖

⃦⃦
u− u𝑖

⃦⃦
B

, this gives

#Λ𝑘 .
⃦⃦
u− u𝑘−1

⃦⃦− 1
𝑠

B
‖u‖

1
𝑠
t,𝑝

𝑘−1∑︁
𝑖=0

𝜌
1
𝑠 (𝑘−1−𝑖) . 𝐶𝑠𝜀

− 1
𝑠 ‖u‖

1
𝑠
t,𝑝

with 𝐶𝑠 > 0 independent of u and 𝜀, where we have used
⃦⃦
u− u𝑘−1

⃦⃦
B
& 𝜀. �

5.2. Computational complexity

For understanding the total number of operations required for the adaptive scheme, in our present setting
we need to consider the costs of handling of multi-indices in ℱ , which can be of arbitrary length, as discussed
in Section 4.2. Here, with Λ𝑘 as in Algorithm 5.1, we use the notation

𝐹 𝑘 =
{︀
𝜈 ∈ ℱ : (𝜈, 𝜆) ∈ Λ𝑘 for some 𝜆 ∈ 𝒮

}︀
.

The costs for handling multi-indices enter into the bounds (4.18) and (4.28) for ResApprox and GalSolve,
respectively, and thus depend on the largest arising support size of a multi-index. This quantity can be controlled
by means of the following simple estimate, by which we can subsequently ensure that the costs for each multi-
index operation are of order 𝒪(1 + |log 𝜀|).

Proposition 5.5. For 𝑘 ∈ N, at iteration 𝑘 of Algorithm 5.1, one has max𝜈∈𝐹 𝑘 # supp 𝜈 ≤ 𝑘 − 1.

Proof. Starting with 𝐹 1 = {0} ⊂ ℱ , due to the bidiagonal structure of the matrices M𝜇, we have
max𝜈∈𝐹 𝑘+1 # supp 𝜈 ≤ max𝜈∈𝐹 𝑘 # supp 𝜈 + 1 for each 𝑘. �

A comparable and slightly sharper bound on the support of arising multi-indices has also been obtained under
different assumptions in Proposition 2.21 of [35] in the context of sparse interpolation and quadrature for (1.3).

Remark 5.6. In [20], related issues concerning indexing costs are addressed for wavelet methods applied to
problems of fixed but potentially high dimensionality. There, the costs of the handling of wavelet indices also
increase with dimension, but are not coupled to the approximation accuracy by an accuracy-dependent effective
dimensionality as in the present case. As discussed in Section 6 from [20], for wavelet methods working on
unconstrained index sets, additional factors in the computational costs that are logarithmic with respect to the
error are also difficult to avoid. For the spatial discretization, this issue is circumvented in our present setting
due to the restriction to wavelet index sets with tree structure.

Proof of Theorem 5.1(ii). For the call of ResApprox
(︁
u𝑘; 𝜁, 𝜁

1+𝜁

⃦⃦
r𝑘−1

⃦⃦
, 𝜀
)︁

in iteration 𝑘 of Algorithm 5.1,

let
(︀
r𝑘, 𝜂𝑘, 𝑏𝑘

)︀
be the corresponding return values. Let 𝐾 be the stopping index of Algorithm 5.1, that is,

𝑏𝐾 ≤ 𝜀 < 𝑏𝐾−1. By construction, we have 𝜂𝑘 & 𝜀 for 𝑘 = 0, . . . ,𝐾 and 𝜂𝑘 ∼
⃦⃦
r𝑘
⃦⃦
∼
⃦⃦
Bu𝑘 − f

⃦⃦
∼
⃦⃦
u𝑘 − u

⃦⃦
B

for
𝑘 = 0, . . . ,𝐾−1. With Lemma 5.4, we obtain

⃦⃦
u− u𝑘

⃦⃦
B
≤ 𝜌𝑘−𝑖

⃦⃦
u− u𝑖

⃦⃦
B

and thus 𝜂𝑘 . 𝜌𝑘−𝑖𝜂𝑖 for 𝑖 < 𝑘 < 𝐾,
which implies 1 + |log 𝜂𝑘| & 𝑘, and there exists 𝐶 > 0 such that

⃦⃦
u𝑘
⃦⃦
≤ 𝐶 for all 𝑘.

In step 𝑘, by Theorem 5.1(i), we have

# supp
ℱ

u𝑘 ≤ # supp u𝑘≤ #suppTu𝑘 . 𝜂
− 1

𝑠

𝑘−1‖u‖
1
𝑠
t,𝑝. (5.4)

By Remark 4.5 and Lemma 4.11 of [16],⃦⃦
(‖u𝜈‖)𝜈∈ℱ

⃦⃦
𝒜𝑠 .

⃦⃦
u𝑘
⃦⃦
𝒜𝑠 . ‖u‖𝒜𝑠 +

(︀
# supp u𝑘

)︀𝑠⃦⃦
u− u𝑘

⃦⃦
. ‖u‖t,𝑝.

For the number of operations required for evaluating r𝑘 for each 𝑘 using Algorithm 4.3, we apply Theo-
rem 4.15 with 𝐹 = 𝐹 𝑘−1, 𝜂0 = 𝛿

1+𝛿

⃦⃦
r𝑘−1

⃦⃦
, 𝜂𝑘 = 𝜂. Using that #𝒯 (𝑓) . 1, and combining Theorem 4.15 with
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Proposition 5.5 and (5.4), the number of operations required for the evaluation of r𝑘 can be estimated up to a

multiplicative constant by 1 + 𝜂
− 1

𝑠

𝑘 ‖u‖
1
𝑠
t,𝑝

(︁
1 + |log 𝜂𝑘|+ log‖u‖t,𝑝

)︁
, and the same bound holds for #Λ̃𝑘+1.

The number of operations for performing TreeApprox on r𝑘 using binary binning according to Remark 4.21
is linear in #Λ̃𝑘+1. Concerning the call of GalSolve, note first that

⃦⃦(︀
Bu𝑘 − f

)︀
|Λ𝑘+1

⃦⃦
≤
⃦⃦
Bu𝑘 − f

⃦⃦
≤ 𝑏𝑘.

Since if 𝑏𝑘 > 𝜀, we have 𝑏𝑘 ∼ 𝜂𝑘, we also obtain 𝑏𝑘 . 𝛾
⃦⃦
r𝑘
⃦⃦

. Thus the ratio 𝑏𝑘/
(︀
𝛾
⃦⃦
r𝑘
⃦⃦)︀

is uniformly bounded,
and as a consequence of Proposition 4.22, the costs of GalSolve can also be estimated up to a multiplicative
constant by 1 + 𝜂

− 1
𝑠

𝑘 ‖u‖
1
𝑠
t,𝑝

(︁
1 + |log 𝜂𝑘|+ log‖u‖t,𝑝

)︁
. �

6. Numerical experiments

The adaptive Galerkin method Algorithm 5.1 was implemented for spatial dimensions 𝑑 = 1, 2 using the
Julia programming language, version 1.5.3. The numerical experiments were performed on a single core of a
Dell Precision 7820 workstation with Xeon Silver 4110 processor.

For simplicity, we take Ω = (0, 1)𝑑. For the random fields 𝑎(𝑦), we use an expansion in terms of hierarchical
hat functions formed by dilations and translations of 𝜃(𝑥) = max{1− |2𝑥− 1|, 0}. Specifically, for 𝑑 = 1, 𝜃𝜇

with 𝜇 = (ℓ, 𝑘) is given by

𝜃ℓ,𝑘(𝑥) := 𝑐2−𝛼ℓ𝜃
(︀
2ℓ𝑥− 𝑘

)︀
, 𝑘 = 0, . . . , 2ℓ − 1, ℓ ∈ N0. (6.1)

This yields a wavelet-type multilevel structure (1.8) and (1.9) satisfying Assumptions 2.1, where

ℳ =
{︀

(ℓ, 𝑘) : 𝑘 = 0, . . . , 2ℓ − 1, ℓ ≥ 0
}︀

with level parameters |(ℓ, 𝑘)| = ℓ. For 𝑑 = 2, we take the isotropic product hierarchical hat functions

𝜃ℓ,𝑘1,𝑘2(𝑥1, 𝑥2) := 𝑐2−𝛼ℓ𝜃
(︀
2ℓ𝑥1 − 𝑘1

)︀
𝜃
(︀
2ℓ𝑥2 − 𝑘2

)︀
, (ℓ, 𝑘1, 𝑘2) ∈ℳ, (6.2)

with
ℳ =

{︀
(ℓ, 𝑘1, 𝑘2) : ℓ ∈ N0, 𝑘1, 𝑘2 = 0, 1

2 , . . . , 2
ℓ − 3

2 , 2
ℓ − 1 with (𝑘1 ∈ N0 ∨ 𝑘2 ∈ N0)

}︀
.

For the spatial wavelet basis Ψ, we use piecewise polynomial 𝐿2-orthonormal and continuously differentiable
Donovan–Geronimo–Hardin multiwavelets [21] of approximation order seven.

In the practical implementation of Algorithm 4.3, we use some simplifications that have no impact on the
observed optimal rates. Specifically, on the one hand, in step (vi) of Algorithm 4.3, we directly compute integrals
of products of wavelets and piecewise polynomial residuals. In our tests, this is quantitatively favorable, since it
avoids some overhead the for multiscale transformations in step (vi). On the other hand, Galerkin problems are
solved by direct application of inexact conjugate gradient iteration in wavelet representation where previously
computed matrix entries are cached.

The quantitative performance of the scheme can also be improved by choosing some of its parameters dif-
ferently from the values used in the convergence analysis. This is a common observation in such methods (see,
e.g., [20,24]) relating to the lack of sharpness in various estimates that are used. In particular, 𝜔0 can be chosen
significantly larger than the values allowed by (5.1) without impact on the optimality of the method, but with
an improvement of the quantitative performance. Similarly, choosing 𝐶B in (A4.1.2) larger than a certain value
(which is observed to be significantly lower than the one from Prop. 3.2) does not change the residual estimates,
but only increases the computational costs. Moreover, the quantitative performance can also be improved by
decreasing the tolerance 𝜂 in step (ii) of Algorithm 4.3 by a factor different from two. Especially for small 𝛼,
taking this factor as 2𝛼 or smaller leads to a more conservative increase in the parameters ℓ𝑗 in (A4.1.3), so
that these are not chosen larger than necessary in the final iteration of the loop.

The adaptive scheme is tested with 𝛼 = 1
2 ,

2
3 , 1, 2 for both 𝑑 = 1 and 𝑑 = 2. We take 𝑓 ≡ 1 and 𝑐 = 1

10

in (6.1) and (6.2). The parameters of the scheme are chosen as 𝜔0 = 1
2 , 𝐶B = 1

100 , and ℓ̂ = 1; in step (ii) of
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Figure 1. Computed residual bounds for 𝑑 = 1 as a function of total number of degrees of
freedom of the current approximation of u (solid lines) and elapsed computation time (dash-
dotted line).

Algorithm 4.3, we replace 𝜂 by 𝜂/2𝛼/𝑑. The results of the numerical tests are shown in Figure 1 for 𝑑 = 1 and
in Figure 2 for 𝑑 = 2.

The results are compared to the convergence rates that are expected for 𝛼 ≤ 1 in view of Theorem 5.1
combined with Proposition 4.3 for 𝑑 = 2 and with Remark 5.2 for 𝑑 = 1. For 𝑑 = 1, the asymptotic growth of
the runtime (in seconds) and the total number of degrees of freedom #Λ = # supp u𝑘 in terms of the residual
error bound 𝜀 is approximately of order 𝒪

(︀
𝜀−3/(2𝛼)

)︀
, which is consistent with the expected limiting rate 2

3𝛼.
For 𝑑 = 2, we instead observe 𝒪

(︀
𝜀−2/𝛼

)︀
, which is consistent with the expected rate 𝛼

2 . For both values of 𝑑, we
obtain the analogous result also for 𝛼 = 2, which is not covered by the existing approximability analysis.
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Figure 2. Computed residual bounds for 𝑑 = 2 as a function of total number of degrees of
freedom of the current approximation of u (solid lines) and elapsed computation time (dash-
dotted line).

7. Conclusions

We have shown the adaptive Galerkin method proposed in this work to converge at optimal rates up to 𝛼
𝑑 ,

where 𝑑 is the spatial dimension of the diffusion problem (1.1) and 𝛼 is the decay parameter in the multilevel
expansion of the random diffusion coefficient, which corresponds to the Hölder smoothness of its realizations.
The computational costs are guaranteed to scale linearly up to a logarithmic factor with respect to the number
of degrees of freedom. To the best of our knowledge, this is the first method with this property in the case where
the approximability is limited by the random field rather than by the approximation order of the spatial basis.
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Our numerical results confirm the approximability results for 𝛼 ∈ (0, 1] established in [2]: for 𝑑 = 2, we observe
a rate 𝛼

2 , whereas in the special case 𝑑 = 1, we obtain 2
3𝛼. The numerical tests also support the conjecture that

one has the analogous rates of best approximation for all 𝛼 > 1.
On the one hand, the use of a piecewise polynomial wavelet Riesz basis helps to avoid a number of technical

issues in the complexity analysis. On the other hand, this also makes the method comparably expensive from
a quantitative point of view. However, it actually generates standard adaptive spline approximations of the
Legendre coefficients 𝑢𝜈 and relies on wavelets mainly for approximating residuals in the appropriate dual
norm. The basic construction of the method also carries over to spatial finite element approximations, and a
variant based on standard adaptive finite elements will be the subject of a forthcoming work.

Appendix A. Tree approximation

Proof of Lemma 4.16. Let 𝛿 be any leaf. Let 𝛿0, . . . , 𝛿ℓ−1, 𝛿ℓ = 𝛿 be the ancestors of 𝛿, in order, with 𝛿0 the only
root that is an ancestor of 𝛿. By definition of 𝑒,

𝑒(𝛿)−1 = 𝑒(𝛿ℓ)−1 + 𝑒(𝛿ℓ−1)−1 = 𝑒(𝛿ℓ)−1 + 𝑒(𝛿ℓ−1)−1 + 𝑒(𝛿ℓ−2)−1 = · · · =
ℓ∑︁

𝑗=0

𝑒(𝛿𝑗)−1.

Using that 𝑒(𝛿) ≤ 𝜂 and multiplying by 𝑒(𝛿)𝑒(𝛿), we obtain

𝑒(𝛿) = 𝑒(𝛿)
ℓ∑︁

𝑗=0

𝑒(𝛿)𝑒(𝛿𝑗)−1 ≤ 𝜂

ℓ∑︁
𝑗=0

𝑒(𝛿)
𝑒(𝛿𝑗)

· (A.1)

To take the sum over all leaves 𝛿 ∈ L(Λ), we consider the subtree ∆𝛿 =
{︁
𝛿 ∈ Λ: 𝛿 ⪯ 𝛿

}︁
that is rooted at 𝛿 ∈ Λ.

For any leaf 𝛿 ∈ L
(︀
∆𝛿

)︀
⊂ L(Λ) of such a subtree, we consider the contribution 𝑒(𝛿)

𝑒(𝛿)
of the ancestor 𝛿𝑗 = 𝛿 to

the sum on the right-hand side of (A.1). Thus

∑︁
𝛿∈L(Λ)

𝑒(𝛿) ≤ 𝜂
∑︁
𝛿∈Λ

∑︁
𝛿∈L(Δ𝛿)

𝑒(𝛿)
𝑒(𝛿)

·

Due to the subadditivity of 𝑒, we have
∑︀

𝛿∈L(Δ𝛿)
𝑒(𝛿)

𝑒(𝛿)
≤ 1 (trivially for 𝛿 ∈ L(Λ) and by applying (4.22)

inductively, otherwise), and consequently ∑︁
𝛿∈L(Λ)

𝑒(𝛿) ≤ 𝜂
∑︁
𝛿∈Λ

1 = 𝜂#Λ.

�

Proof of Lemma 4.17. We first consider the case that 𝛿0 is not a root and has a parent 𝛿*0 . We prove the slightly
stronger statement

𝑒(𝛿0) ≥ 𝜂

(︂
#Λ𝛿0 +

𝑒(𝛿0)
𝑒(𝛿*0)

)︂
by induction on the size of Λ𝛿0 .

If #Λ𝛿0 = 1, then we have only the node 𝛿0 in this tree. By definition of 𝑒, we have

𝑒(𝛿0) = 𝑒(𝛿0)𝑒(𝛿0)𝑒(𝛿0)−1 = 𝑒(𝛿0)𝑒(𝛿0)
(︁
𝑒(𝛿0)−1 + 𝑒(𝛿*0)−1

)︁
.
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It follows that ∑︁
𝛿∈L(Λ)

𝑒(𝛿) = 𝑒(𝛿0) = 𝑒(𝛿0)
(︂

1 +
𝑒(𝛿0)
𝑒(𝛿*0)

)︂
≥ 𝜂

(︂
1 +

𝑒(𝛿0)
𝑒(𝛿*0)

)︂
·

Now let 𝛿0 ∈ Λ be any node with a parent 𝛿*0 , and let Λ𝛿0 be a subtree of Λ rooted at 𝛿0 such that 𝑒(𝛿) ≥ 𝜂 for
all 𝛿 ∈ Λ𝛿0 , and assume that

𝑒
(︁
𝛿0

)︁
≥ 𝜂

⎛⎝#Λ𝛿0
+
𝑒
(︁
𝛿0

)︁
𝑒
(︁
𝛿*0

)︁
⎞⎠

for any node 𝛿0 ∈ Λ with a parent 𝛿*0 and any subtree Λ𝛿0
rooted at 𝛿0 such that 𝑒(𝛿) ≥ 𝜂 for all 𝛿 ∈ Λ𝛿0

and
#Λ𝛿0

< #Λ𝛿0 .
Consider any child 𝛿 ∈ C(𝛿0), then for the subtree of Λ𝛿0 rooted at 𝛿, which we will denote by Λ𝛿, we have

#Λ𝛿 < #Λ𝛿0 and 𝑒(𝛿) ≥ 𝜂 for all 𝛿 ∈ Λ𝛿0
. By applying the induction hypothesis to each child of 𝛿0, we get

∑︁
𝛿∈C(𝛿0)

𝑒(𝛿) ≥

⎛⎝ ∑︁
𝛿∈C(𝛿0)

#Λ𝛿 +

∑︀
𝛿∈C(𝛿0)

𝑒(𝛿)

𝑒(𝛿0)

⎞⎠𝜂 ≥
⎛⎝ ∑︁

𝛿∈C(𝛿0)

#Λ𝛿 +
𝑒(𝛿0)
𝑒(𝛿0)

⎞⎠𝜂.
Using the definition of 𝑒, we get

∑︁
𝛿∈C(𝛿0)

𝑒(𝛿) ≥

⎛⎝ ∑︁
𝛿∈C(𝛿0)

#Λ𝛿 + 1 +
𝑒(𝛿0)
𝑒(𝛿*0)

⎞⎠𝜂 =
(︂

#Λ𝛿0 +
𝑒(𝛿0)
𝑒(𝛿*0)

)︂
𝜂.

This concludes the proof in the case that 𝛿0 has a parent.
It remains to prove the original statement in the case that 𝛿0 is a root. If #Λ𝛿0 = 1, the statement is trivial.

If 𝛿0 has children in Λ𝛿0 , then we know from the first part of the proof that

∑︁
𝛿∈C(𝛿0)

𝑒(𝛿) ≥

⎛⎝ ∑︁
𝛿∈C(𝛿0)

#Λ𝛿 +

∑︀
𝛿∈C(𝛿0)

𝑒(𝛿)

𝑒(𝛿0)

⎞⎠𝜂
≥

⎛⎝ ∑︁
𝛿∈C(𝛿0)

#Λ𝛿 +
𝑒(𝛿0)
𝑒(𝛿0)

⎞⎠𝜂 = (#Λ𝛿0)𝜂.

�
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