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AN ADAPTIVE STOCHASTIC GALERKIN METHOD BASED ON MULTILEVEL
EXPANSIONS OF RANDOM FIELDS: CONVERGENCE AND OPTIMALITY

MARKUS BACHMAYR"*® AND IGOR VOULIS?

Abstract. The subject of this work is a new stochastic Galerkin method for second-order elliptic
partial differential equations with random diffusion coefficients. It combines operator compression in
the stochastic variables with tree-based spline wavelet approximation in the spatial variables. Relying
on a multilevel expansion of the given random diffusion coefficient, the method is shown to achieve
optimal computational complexity up to a logarithmic factor. In contrast to existing results, this holds
in particular when the achievable convergence rate is limited by the regularity of the random field, rather
than by the spatial approximation order. The convergence and complexity estimates are illustrated by
numerical experiments.
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1. INTRODUCTION

In partial differential equations, one is frequently interested in efficient approximations of the mapping from
coefficients in the equations to the corresponding approximate solutions. On a domain D C R?, we consider the
elliptic model problem

-V -(aVu)=f on D, u=0 ondD, (1.1)

where f € Lo(D) is given, and where we are interested in the dependence of the solutions w on the diffusion
coefficients a. Especially in the context of uncertainty quantification problems, one considers coefficients a given
as random fields on D that can be parameterized by sequences y = (y,)uem of independent scalar random
variables y,,, where typically M = N. This leads to the problem of approximating the solutions u(y) for each
realization a(y) as a function of the countably many parameters y.

A variety of parameterizations of a in terms of random function series have been considered in the literature.

One instance that has found frequent use in applications are lognormal coefficients a(y) = exp (Z peM y,ﬂu>,

where 6, are functions on D and y,, ~ N (0,1) are independent. The functions 6,, are typically obtained from a
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Karhunen—Loéve expansion of a given Gaussian random field. A model case with similar features, on which we
focus here, are affinely parameterized coefficients: Assuming M, to be a countable index set with 0 € M, and
taking M = Mg \ {0}, these are of the form

y) = 0o + Z yug,u (12)
pneM
with 6, € Lo (D) for p € My, where essinfp 6y > 0. Up to rescaling 6,,, we can assume y,, € [—1, 1] for each

p € M. The weak formulation of (1.1) with coefficients (1.2) then reads: find u(y) € V := H}(D) such that
/ a(y)Vu(y) - Vodz = f(v) forallv € VandallyeY :=[-1,1]M, (1.3)
D

with given f € V'. Well-posedness of the problem for all y € Y is ensured by the uniform ellipticity condition

essDjnf 0o — Z 0] p =7 >0. (1.4)
pneM

The subject of this work are numerical methods for computing approximations of u(y) by sparse product
polynomial expansions in the stochastic variables y for given coefficients of the type (1.2). Methods of this type
have been studied quite intensely in recent years; see, for instance, the review articles [14,31] and the references
given there. A central point is that convergence rates can be achieved that depend on the spatial dimension
d, but not on any dimensionality parameter concerning the parameters y. The approach of stochastic Galerkin
discretizations, which we follow here, is particularly suitable for the construction of adaptive schemes. Using
multilevel structure in the expansion (1.2), we obtain a method that converges at rates that are optimal for
fully adaptive spatial and stochastic approximations. This holds even for random fields a of low smoothness,
with computational costs that scale linearly up to a logarithmic factor with respect to the number of degrees
of freedom.

1.1. Sparse polynomial approximations and stochastic Galerkin methods

For simplicity, we assume each y,, to be uniformly distributed in [—1, 1]; different distributions with finite
support can be treated with minor modifications. With ¢ the uniform measure on Y, we thus consider the
mapping y — u(y) as an element of

V=L (Y,V,0) 2V ® Ly(Y, 0).

With (1.4), it is easy to see that the parameter-dependent solution w of (1.3) satisfies u € V and can be
equivalently characterized by the variational formulation

// ) - Vo(y)dzdo(y /f ))do(y) for all v e V. (1.5)

From the univariate Legendre polynomials { Ly } xen that are orthonormal with respect to the uniform measure
n [—1, 1], we obtain (see, e.g., [31], Sect. 2.2) the orthonormal basis {L, },c# of product Legendre polynomials
for Ly(Y, o), which for y € Y are given by

y) = H L, (yu), veF= {V e Ny v, # 0 for finitely many p € ./\/l}
neEM

For w € V as in (1.5), we have the basis expansion

) = S w L) w = [ ) Lw)do() €V,

veF
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Restricting the summation over v to a finite subset F' C F yields the semidiscrete best approximations in
V by elements of V ® span{L,},cr. Computable approximations are obtained by replacing each w, by an
approximation from a finite-dimensional subspace V,, C V (such as a subspace spanned by finite element or
wavelet basis functions). In other words, we seek fully discrete approximations of u from spaces

VNZ{ZUVLV:UVEVV,VGF}CV

veF

of dimension N =}~ . dimV,. In the present work, the spaces V,, are chosen as spaces of piecewise polynomial
functions of the spatial variables on adaptive grids. Note that due to the selection of the subset F', the original
problem in countably many parametric dimensions is reduced to a finite but approximation-dependent effective
dimensionality.

The method considered here is based on the stochastic Galerkin variational formulation for uy € Vy,

// y)Vun(y) - Vu(y) dzdo(y /f ))do(y) for all v € Vy, (1.6)

again with a(y) as in (1.2). As a consequence of (1.4), the bilinear form given by the left hand side of (1.6) is
elliptic and bounded on V, and by Céa’s lemma

2||6
ol =7

— <
[lun qu = , oy

where we have used that r < a(y) < 2[|6p,_—rforally €Y.

1.2. Convergence rates

The first question in the construction of numerical methods is thus to identify F' and (V,),er such that
min, ey, ||u — v, is minimal, up to a fixed constant, for each given computational budget N. Under suitable
assumptions, one can show that there exist F' and (V,,),cr such that

i - <CN~* 1.7
vrél{}l}vllu vlly, < (1.7)

for some s > 0, and choosing such Vy ensures that the stochastic Galerkin solutions uy converge at the same
rate. One now aims to realize this choice by adaptive methods that only use the problem data D, f, and
the expansion (1.2) of a as input. These methods should also be universal, that is, they should not require
knowledge of s in (1.7), but rather automatically realize the best possible rate s for each given problem. A basic
building block for such methods are computable a posteriori error estimates for uy. Beyond the convergence
of the computed approximations at optimal rates with respect to N, in practice the computational costs of
constructing Vy and uy are crucial. An adaptive method is said to be of optimal complezity if the required
number of elementary operations (and hence the computational time) is bounded by a fixed multiple of N.
As the basic approximability results in [2, 3] show, the type of expansion (1.2) of the random field a(y) plays
a role in the rate s that is achievable in (1.7). In contrast to Karhunen-Loeve-type expansions in terms of
functions 6, with global supports on D, improved results can be obtained for expansions with 6, that have
localized supports. In particular, this is the case for 8,, with wavelet-type multilevel structure, which we focus
on in this work. To each 1 € M we assign a level |u| = ¢ € Ny. We assume 6, to have the properties that there
exists C; > 0 such that
#{p | =0} < 2% forall £ >0, (1.8)

and there exists Co > 0 such that for some o > 0,

Z 16,.] < 527" qg.e.in D, for all £> 0. (1.9)
|pl=¢
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Expansions of this type for several important classes of Gaussian random fields are constructed in [5,26], and
it is thus natural to use such these also in the model case of affine parameterizations. For sufficiently regular
6,,, the parameter « can be seen to correspond to the Holder regularity of realizations of the random field a(y).
Note that for multilevel basis functions, the condition (1.4) is less restrictive than for globally supported 6,,; in
particular, in the multilevel case, any Holder smoothness index « > 0 is possible in (1.9).

However, s in (1.7) is also constrained by the spatial regularity of the further problem data f and D, as well
as by the permissible choices of spaces V,,. The simplest option is to choose all V,, equal to the same sufficiently
rich subspace of V. Several approximation results and adaptive schemes in the literature are based on choosing
each V,, from a fixed hierarchy of nested subspaces of V', such as wavelet subspaces or finite element spaces
corresponding to uniformly refined meshes (see, e.g., [18,19,27]). For multilevel expansions with properties
(1.8), (1.9), the results in Section 8 of [2] show a potential advantage of choosing V, adapted specifically for
each v, for instance by a separate adaptive finite element mesh for each v. For d > 2 and « € (0, 1], these results
yield a rate s = § — 0 for any § > 0 in (1.7). Remarkably, this rate for fully discrete approximation is the same
as established in [3] for only semidiscrete approximation. As noted in [4], this is also the same rate as for spatial
approximation of a single realization of u(y) in H! for y € Y drawn uniformly at random. In other words, in
this setting, the full stochastic dependence can be approximated at the same rate as a single realization of the
random solution. This is related to the multilevel structure of the 6, also reappearing to a certain degree in the
coefficients u,, but in a strongly v-dependent way that necessitates individually adapted spaces V.

1.3. New contributions and relation to previous results

In this work, we prove a new adaptive stochastic Galerkin scheme to have optimal computational complexity,
up to a logarithmic factor, in realizing this convergence rate. To the best of our knowledge, this is the first such
result for the case where the approximability is limited by the decay in absolute value of the functions 6, in
the random field expansion (that is, by the smoothness parameter « in (1.9)) rather than by the approximation
order of the spatial basis functions. In particular, we improve on a previous result based on wavelet operator
compression from [4]: the method analyzed there yields suboptimal rates that get closer to «/d for more regular
spatial wavelet basis functions. For practically realizable degrees of regularity of the basis, however, the resulting
rates for this previous method remain rather far from optimal.

Note that the situation is different when « is large in comparison to the approximation order of the spatial
basis functions. In this case, which corresponds to a more rapidly convergent expansion (1.2), the rate s in
(1.7) is constrained, independently of «, by the spatial approximation rate. In such a setting, optimality with
respect to this spatial rate is obtained by the adaptive scheme from [28], which is also based on wavelet operator
compression. In the present work, however, we focus on the case of sufficiently high-order spatial approximation
such that the achievable rate s is determined by the random field a(y).

Many existing methods use spatial approximations by finite elements, for instance, as in [6-8,10,19,22,23].
Convergence and complexity of such methods, however, has been established only to a more limited extent than
for wavelet approximations. For a method using a single adaptively refined finite element mesh, convergence
and quasi-optimal cardinality of this spatial mesh are shown in [23]. In contrast, independently adapted meshes
are used in [19,22]. In the latter case, meshes for each Legendre coefficient are selected from a fixed refinement
hierarchy. The method in [19] as well as the analysis in [9] rely on an unverified saturation assumption. In [10],
a method using a separately adapted mesh for each Legendre coefficient is shown to produce approximations
converging at optimal rates. However, this is done using a further strengthened saturation assumption, and
there are no bounds on the computational complexity. These finite element-based methods are all constructed
for 6, of general supports and do not make use of multilevel expansions of random fields.

The main component of our new method is a scheme for error estimation by sufficiently accurate approxima-
tion of the full spatial-stochastic residual. For achieving improved computational complexity, it makes crucial
use of the multilevel structure (1.8) and (1.9). The spatial discretization is done by spline wavelets. We combine
a semidiscrete adaptive operator compression on the stochastic degrees of freedom, which is independent of the
spatial discretization, with a tree-based evaluation of spatial residuals. In the latter step, we use that the spatial
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coefficients are approximated by piecewise polynomials, evaluate the wavelet coefficients using a multi-to-single-
scale transform following [34], and use tree coarsening (based on a modification of a result in [11,12]) to identify
new degrees of freedom by a bulk chasing criterion. With these ingredients at hand, the adaptive scheme can
be constructed similarly to the ones in [24,34]. Due to the use of operations on trees, the complexity estimates
for our method rely on tree approximability for the Legendre coefficients u,,.

The near-optimality result for our method can be summarized as follows: if the best fully discrete approx-
imation uy with spatial tree structure in each Legendre coefficient requires a total number of N = O(e~1/%)
degrees of freedom for an error bound |u — un||,, < ¢, then our method finds an approximation satisfying this
error bound using (’)(5_1/ $|log ¢|) arithmetic operations. In addition, we show that for best approximations with
spatial tree structure, one obtains the same convergence rates of best approximations as shown in Section 8
of [2] for general sparse approximations. Altogether, this shows that for a € (0,1] and d > 2, for all s < §
the method requires (9(6*1/ %) operations; in the special case d = 1 this holds for all s < %a. These results are
confirmed by our numerical tests, which indicate that these statements continue to hold true for o > 1.

The regularity requirements on the problem data are the same as for the underlying approximability state-
ments from [2], and unlike [4], the wavelet basis functions are only required to be C'* splines. The use of wavelets
in this scheme allows us to avoid a number of technicalities in its analysis that would arise with finite element
discretizations. However, in contrast to the existing methods with computational complexity bounds from [4,28],
our basic strategy is generalizable to spatial approximation by finite elements.

1.4. Outline and notation

In Section 2, we state our main assumptions on the problem data in (1.3) and review the relevant approx-
imability results for solutions. In Section 3, we discuss the basic construction of stochastic Galerkin schemes
that our new method is based on and recapitulate a related previous operator compression result that leads to a
suboptimal method. In Section 4, we describe the new residual approximation using tree approximation in the
spatial discretization, a corresponding tree coarsening scheme, and solver for Galerkin discretizations. In addi-
tion, we verify that the sought solution has the required slightly stronger tree approximability. In Section 5, we
analyze convergence and computational complexity of the resulting adaptive method. In Section 6, we illustrate
these results by numerical experiments. We conclude with a summary of our findings and an outlook on further
work in Section 7.

By A < B, we denote that there exists C' > 0 independent of the quantities appearing in A and B such that
A < CB. Moreover, we write A > B for B < Aand A ~ B for A < BA B < A. By meas(S5), we denote the
Lebesgue measure of a a subset S of Euclidean space. Where this cannot cause confusion, we write ||-|| for the
l5-norm on the respective index set and (-, -) for the corresponding inner product.

2. SPARSE APPROXIMATIONS AND STOCHASTIC (GALERKIN METHODS

In this section, we summarize the results on convergence rates of sparse polynomial approximations from [2,3]
for coefficient expansions (1.2) in terms of functions 6, p € M, with multilevel structure. While || describes
the scale of 6, for each fixed ||, the index p determines the spatial localization of this function. Conditions
(1.8) and (1.9) are satisfied in particular when 6,, correspond to a rescaled, level-wise ordered wavelet-like basis
with following properties.

Assumption 2.1. We assume 0,, € WL (D) for u € Mg such that in addition to (1.8), the following hold for
all p e M:

(i) diamsupp, ~ 27#
(ii) there exists M > 0 such that for each p,

#{p € M: |u| = |i|, supp b, Nsupp b} < M,

(iii) for some a > 0, one has ||¢9MHLOC(D) < g-elul,
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2.1. Semidiscrete approximations

We first consider sparse Legendre approximations of u(y) € V with respect to the parametric variables
y € Y. For given n € N, selecting F,, C F to comprise the indices of n largest |u, |, yields the best n-term
approximation of u by product Legendre polynomials,

up, 1= E u, L,.

veF,

The error in V' of approximating u by up decays with rate O(n~°) precisely when the sequence (||u,|y/),cr is
an element of the linear space A*(F) of sequences with finite quasi-norm

— ER 2
as(ry = SUp (n+ 1) inf dodwly ] - (2.1)
#F<n \VEF\F

[(lwlly), e z|

As a consequence of the Legendre coefficient estimates in [3], we have the following approximability result, which
is an immediate consequence of Corollary 4.2 from [3].

Theorem 2.2. Let (1.4) as well as (1.8), (1.9) hold. Then
(luwlly),cr € A*(F)  for any s < %-

Inserting product Legendre expansions of u,v into (1.5) leads to the semidiscrete form of the stochastic
Galerkin problem for the coefficient functions w,, v € F,

Z Z (M#)V,D/Aﬂuy/ =douf, VETF, (2.2)

HEMo V' EF

where A,,: V — V' are defined by
(Ayv,w) == / 0,Vv-Vwdr v,weV, ue My,
D

and the mappings M, : lo(F) — {5(F) are given by
Moo= ([ LLs )
Y

v, €F

M, = (/Y YuLo(y) Lo (y) do(y)) ; mEM.

v, €F

Since the Ly([—1,1], 1 dy)-orthonormal Legendre polynomials {Ly}ren satisfy the three-term recursion relation

oy —1

yLir(y) =/ Bet1Lies1(y) + VBrLe-1(y), Be=(4—k7?) ",

with Lo = 1, L,1 = 07 ﬁ() = O, we have
MO - (5u,v’)

v, €F?

MI" = ( ﬁu“+1 61/+e“)y’ + ﬁy# 61/76‘“”’)1) V’E]‘J M < M’

with the Kronecker vectors e, = <5Nxﬂ');ﬂe/\/t'
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2.2. Fully discrete approximations

We now turn to additional spatial approximation. Let ¥ := {1, }es with a countable index set S be a Riesz

basis of V,
> vata
AES

C\PHVHzQ(s) < < C\IIHV||e2(5)- (2.3)

v

We can then expand u in terms of its coefficient sequence u € lo(F x S) as

u = Zu%)\ L, ® Yy, (24)

veF
AeS

where we write u, = (u,,1),g- Note that by duality, we also have
callglly < @@ )sesly, < Collgll g€ V" (2.5)

The variational problem (1.5) can equivalently be rewritten as an operator equation on the sequence space
ly(F x S) in the form

Bu:= Y (M,®A,)u=f, (2.6)
HEMo
where
A, = (<Au¢>\’a w)\>))\7>\/€5a p € Mo, f:= (<fa L,® ¢>\>)(y,)\)e}'><8' (2.7)

In what follows, we assume W to be a sufficiently smooth wavelet-type basis of approximation order greater
than one. Here each index A € § comprises the level |A| of the corresponding basis element, its position in D, and
the wavelet type. We assume that diam supp ¢y ~ 2~} for A € S and, without loss of generality, min aes|A = 0.

In the case of fully discrete approximations based on expansions (2.4) with the spatial Riesz basis ¥, the
relevant type of sparsity is quantified by the quasi-norms,

L s : _
IVl as(rxs) = Af‘elg()(N‘f‘ 1) #Su;gﬁvgNHV Wllo,(rxs): (2.8)
Note that here, suppw = {(r,\) € F x §: w, » # 0} is chosen from arbitrary subsets of F x S, so that each
Legendre coefficient of the corresponding element of V' is approximated with an independent adaptive spatial
approximation.

For any s > 0 and a countable index set Z, for p > 0 given by p~! = s+ % the space A*(Z) can be identified
with the weak-£,, space £} (Z). The corresponding quasi-norm

[Wlp = sup k'/Pwj,
P keN

where w; is the k-th largest of the numbers |wy|, A € Z, satisfies

Wl ~ 1w]Ls (29)
with constants depending only on s. Moreover, note that for all p,e > 0, one has

by C Uy Clpre. (2.10)

In what follows, we use a basic approximability result established in [2]. Note that the assumptions given
here are not the sharpest possible, but allow us to avoid some technicalities.
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Theorem 2.3. In addition to (1.4) and Assumptions 2.1 with levelwise decay rate o > 0, let D be conver,
feL*(D), and |VO,|, <27V for p e M. Let a € (0,1] and 7 € (1,2]. Then for any & € (0,a), with
Zs =V N[HYD),W2(D)]a, one has

S|, < oo

veF
for any p > 0 such that
1<a+1+ 1 1 1Y\,
- <=4+ |-—c—= a
d 2 T 2 d

As a consequence of Proposition 7.4 from [2], the complex interpolation space Z4 has the following approxi-
mation property: there exists C' > 0 such that for all v € Zg,

inf{[jv — vp|ly: vn € span{yatres, S C S, #S <n} < Cn_d/deHZa. (2.11)

Note that an analogous property holds when the wavelet approximations are replaced by adaptive finite elements.
With appropriately chosen 7 and &, by the arguments in Section 8.2 from [2] this implies in particular the
following.

Corollary 2.4. Let the assumptions of Theorem 2.3 hold, and let d € {2,3}. Then

1 1
ZHuyHZS(S) < oo for any p,s > 0 such that — < 2z ands< 2 (2.12)
veF p d 2 d

In view of (2.9) and (2.10), the bound (2.12) in turn implies

1 1
E lu, A" < oo for any p > 0 such that — < g—i-a (2.13)
’ p d 2
veF
and as a further consequence
ue A*(F xS), forany s> 0 such that s < %- (2.14)

As a consequence, for this type of fully discrete best N-term approximation we remarkably have the same
limiting convergence rate as for the semidiscrete Legendre approximation and for approximating u(y) for a
single random draw of y.

Remark 2.5. In the special case d = 1, since the above results do not apply to 7 < 1, we obtain (2.13) only
with % < %a + %, corresponding to s < %a for o € (0,1].
3. ADAPTIVE STOCHASTIC GALERKIN METHODS

We now review basic concepts of adaptive stochastic Galerkin schemes in terms of the sequence space for-
mulation (2.6) as well as the previous results on an adaptive method with complexity bounds from [4]. In what
follows, we write ||| for the ¢3-norm on the respective index set and (-, ) for the corresponding inner product.

3.1. Stochastic Galerkin discretization

Under the assumption (1.4), for the self-adjoint mapping B on fy(F x §), with rg := %7 and Rp =
C3 (2[00l — 1), we have

re|lv]]® < (Bv,v) < Rg|v|?, v € ly(F x 8). (3.1)
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For any A C F x S, the corresponding stochastic Galerkin approximation is defined as the unique u, with
suppup C A such that
(BuA — f)|A =0.

By (3.1), this system of linear equations in #A unknowns has a symmetric positive definite system matrix with
spectral norm condition number bounded, independently of A, by x(B) = |B|||B~!|| < Rg/rg. It can thus be
solved to the required accuracy, for instance, by direct application of the conjugate gradient method.

In the convergence analysis of adaptive methods based on solving successive Galerkin problems, the following
saturation property plays a crucial role; for the proof, see Lemma 4.1 of [16] and Lemma 1.2 of [24].

Lemma 3.1. Let w € (0,1], w € £o(F x S), A C F x S such that suppw C A and
[(Bw — f)[sl = w|Bw — £, (3-2)

and let up with suppup C A be the solution of the Galerkin system (Buy — f)|pn = 0. Then

L2}
fu= sl < (1= 255 ) T wl, (53)

where ||v||g = /(Bv,V) for v e ly(F x S).

Note that whereas a saturation property of the type (3.3) is assumed in [9,19] and in a further strengthened
form for the rate estimates in [10], as a consequence of Lemma 3.1, no such assumption is required in the present
case.

3.2. Adaptive Galerkin method

In its basic idealized form, the adaptive Galerkin scheme that was analyzed in [24] in the context of wavelet
approximation is performed in two steps. In our setting, for each k € N, in step k of the scheme we are given
Fk C Fand S¥ C S for v € F* and find F*¥*! and (S**1),cpri1 as follows:

— Solve the Galerkin problem on A* := {(v,\): v € F¥ X\ € S¥} to obtain u* with suppu® C A" satisfying
(Bu® — f)|,r = 0.

— Choose AF+1 as the smallest set A C F x S such that H (Buk — f)|AH > wHBuk —f
fixed and sufficiently small.

, where w € (0,1] is

This basic strategy is also known as bulk chasing; the condition H(Bu’C - O)[ill = QHBuk — f|| is analogous
to Dorfler marking in the context of adaptive finite element methods. For arriving at a practical scheme, the
main difficulty lies in this second step, since the sequences Bu® — f in general have infinite support. One thus
needs to replace Bu* — f by finitely supported approximations. In addition, the required Galerkin solutions are
computed only inexactly. The condition of A**! being selected to have minimal cardinality can also be relaxed,
which is crucial when using approximations with additional tree structure constraints.

The numerically realizable version of the adaptive Galerkin method given in Algorithm 3.1 relies on two
problem-dependent procedures. The first, invoked in step (i), consists in a method for computing a finitely
supported approximation r* of Bu® — f of sufficient relative accuracy. The second, used in step (iii), is a
scheme for the approximate solution of Galerkin problems on the index sets that are determined in a problem-
independent manner in step (ii) from r* to satisfy a bulk-chasing criterion.

For the latter step, following [34], we use a substantially relaxed version of the minimality requirement on
AR+ that is appropriate for tree approximation. In the context of standard sparse approximation as in [16,24],
one may take wy = wy and select A*+1 by directly adding the indices corresponding to the largest entries of r*
to AF.
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Algorithm 3.1. Adaptive Galerkin method.
Let 0 <wo <wi <1,¢y>0,u’=0,and A° = 0.

For £k =0,1,2,..., perform the following steps:

(i) Find r* with # suppr”® < co such that Hrk — (Buk — f)H < CHBuk — fH
(ii) Find A*T! satisfying

(A3.1.1a)

k
ZUJOHI‘ ’

k
HI’ ‘Ak+1

#(A]€+1 \Ak) < #(A\A")  for any A D A" such that Hrk|;\H > w1

r* H (A3.1.1b)

(iii) Find u*™! such that H(Bu]€+1 — )| pApt1 H < 'yHrkH with supp u** C AR

3.3. Previous results on direct fully discrete residual approximations

A standard construction for the approximate evaluation of residuals is based on s*-compressibility of operators
[16]: an operator A on ¢5(N) is called s*-compressible with s* > 0 if for each s € (0, s*), there exist operators
A; and a; > 0 for j € N such that Zj aj < oo, each A; has at most ;27 nonzero entries in each row and
column, and ||[A — A|| < a;27%. In order to approximate Av for given v, taking v, to be the vectors retaining
only the 27 entries of v of largest modulus, one then sets

WJ—AJV0+ZAJ j —Vj_ 1) (35)
j=1

which amounts to assigning the most accurate sparse approximations of A to the largest coefficients of v. With
J chosen to ensure ||w; — Av|| <7 for given 7, as shown in [16], evaluating this residual approximation requires
O(n=*||v| A= T #suppv + 1) operations. With this approximation used for step (i) in Algorithm 3.1 with
appropriately chosen parameters, from the results in [24], we obtain the following: if u € A® for an s < s*, the
method yields a u* with ||Bu’C — f|| < € using O(l + 5’1/5| As) operations; that is, the method has optimal
complexity for all s < s*.

An adaptive scheme using wavelet approximation in space was constructed in [4], using the following obser-
vation that crucially depends on the multilevel property (1.9).

Proposition 3.2. Let (1.9) hold. Then for £ € Ny,

C C
B- E M, ®A,| <Cp27*, where Op := —\1’727
Cy (]. -2 O‘)
HEMo
[p| <t

with « and Cs as in (1.9) and cg,Cy from (2.3).

Proof. For v,w € V, we have

// 3 4.8, Vo(y) - Voly) dzdo(y // 3 18,11V u(y)l[Vw(y)| de do(y),

[u|>€ |u>e

and the right-hand side is bounded by Cs(1—27%)27%|v]|,,||w]|,, as a consequence of (1.9). With the orthonor-
mality of the product Legendre polynomials and the bounds (2.3) on the spatial Riesz basis, the statement
follows. U
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The above observation will also play a role in our new approach, which is presented in the following section.
Let us now briefly review how it was used in the residual approximation analyzed in [4]. There, in order to obtain
a fully discrete operator compression, the approximation provided by Proposition 3.2 was combined with wavelet
compression of the infinite matrices A,,. The following bounds show the dependence of their compressibility on

1.
Proposition 3.3 (see [4], Prop. A.2). Let {0,}.cm, satisfy Assumptions 2.1, and for some t > 0, let
0,V € H'(suppyy), pe€ Mo, M, N €S, (3.6)

and let the ¥y have vanishing moments of order k with k >t — 1. Then there exist A, , for n € N such that
the following holds:

(i) With T :=t/d, one has |A, — A, | S 27— neN.
(ii) The number of nonvanishing entries in each column of A, , does not exceed C(1+ |p|?)2", where q =
max{1,771} and C > 0 is independent of p,n.

In the following abridged version of Proposition 4.3 from [4], with slightly sharpened assumptions, the two
previous propositions are used to obtain s*-compressibility of B.

Corollary 3.4. Let {0, },enm, satisfy Assumptions 2.1, and let ¥ be as in Proposition 3.3 for somet > max{o—
d,0}. For any L € N, there exists a Cr, such that the following holds:

(i) One has |B — Cp|| < L27oF,
(ii) The number of nonvanishing entries in each column of Cr does not exceed C(1 4 L9)290+7 DL yhere
q=max{l,77 1}, 7 =t/d, and C > 0 is independent of L.

Proof. For L € N, take for any u with |u| < L an approximation A, ., as in Proposition 3.3 with n, =
[4ul + 2(L — |p|)]. With this choice of A, let

Co=)> M,®A,,,
|| <L

Due to Proposition 3.2, we have

B-Crl < > IM,® (A, —Aun)ll+27%
[u|<L

By construction, for any p with |u| < L we have
A, — A | < g—alul=mn. < g—alp|—dlp|-a(l—=|u]) — 9—dlp|-al
SMp ll ~ —
Using this inequality and ||M,|| < 1, we see that

||B _ CL” 5 Z 27d|,u|7aL +2704L 5 L270¢L,
|n|<L

which proves (i). To prove (ii), we first note that by Proposition 3.3, the number of nonvanishing entries in each
column of A, ,,, does not exceed

C(1+ |p|7)2™ < 2C(1 + |M‘q)2%|ul+%(L—lul)’
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where C is independent of p. Since M, is diagonal or bidiagonal, it follows that the number of nonvanishing
entries in each column of C;, does not exceed

L—1
4C Z (1+ |H|q)2%|#|+%(L—|ul) < 40 L1230+ DL Z o(F—d=$)(L-0)

|ul<L £=0
Using that € —d — ¢ = L(a —t — d) < 0 concludes the proof of (i). O

Remark 3.5. The approximations Cy, for L € N can be applied in compressed operator application based on
s*-compressibility as in (3.5), as carried out in [4]. Using the residual approximation according to Corollary 3.4
in the adaptive Galerkin scheme, by the main result of [24] we then have the following: ensuring ||u — uf|| <e

requires at most
t o

t+dd’

with ¢ as in (3.6). Compared to the approximability (2.14) of the solution u, this means that the performance
of the method is limited by the compression of the operator B. In other words, for the best approximation rates
that would be achievable for the solution, the method is not optimal. However, if ¢ in the regularity condition
(3.6) is large, rates that are close to optimal can be achieved. As discussed in Section 4.2 of [4], that this is
feasible is tied to the multilevel structure of the functions 6,,.

1 1 .
(’)(1 +e 5 ||u JZS) operations for any s <

The previous results from [4] thus show that by exploiting multilevel expansions of random fields, adaptive
methods can in principle come close to achieving optimality for such problems. However, the use of wavelet
bases of very high regularity for the spatial discretizations can be difficult in practice. The factor t/(t + d)
resulting from the spatial operator compression can be improved to some extent for piecewise smooth basis
functions using results from [32], but for d > 2, optimality is then still not achieved. These limitations motivate
the different approach to approximating residuals that we take in the following section.

4. TREE-BASED RESIDUAL APPROXIMATIONS

In this section, we develop a new approach for performing the different steps of Algorithm 3.1. Its central
component is a new residual approximation using piecewise polynomial basis functions and wavelet index sets
with tree structure, where we rely on techniques developed in [29,34]. Selecting the residual coefficients of largest
absolute value under this tree constraint can then be realized by the quasi-optimal tree coarsening procedure
from [12,13].

We require some auxiliary results on tree approximation from [17,34], where we use the following basic notions
as defined in [34] for the wavelet-type basis ¥ as introduced in Section 2.2.

Definition 4.1. To each A € S with [A| > 0, we associate a A’ € S with |X| = |A\| — 1 and meas(supp ¥y N
supp ¥x/) > 0. We then call A a child of the parent N and write C()\’) for the set of all children of )\, where
we assume maxyes #C(A) < oo. We call a subset S C S a tree if S contains all A € S with |A] = 0 and for all
A€ S, if A € C()) then also X' € S. We denote the set of subsets of S having such tree structure by T(S).

In addition, we denote that A is a descendant of ' in the tree structure (that is, there exists K € N such
that with A\g = A and Ag = X, one has A\g € C(\1), ..., Axk—1 € C(Ak)) by A < X, and that X is a descendant
of or equal to A’ by A < .

Approximability of v € ¢5(S) by expansions with this tree structure is then quantified similarly to (2.1) and
(2.8),

o= sup (N+1)°  inf ~ . 4.1
IVlla; = sup (V1) 0 eV~ W) (4.1)
#S<N

In addition, for index sets in F x S where each spatial component has tree structure, we write

TH(S):={ACFxS: forallvc F, {\€S: (v,\) € A} € T(S)}. (4.2)
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4.1. Tree approximability

For quantifying the sparsity of sequences in #5(S) under the additional tree structure constraint, as in [17],
we use the following notion: for v € £5(S), define t(v) = (tA(V))res € £2(S) by

1/2

tav) = Y Iva | (4.3)
Nes
A=A

Note that for S € T(S), we then have
Iv=Psv|®= > |am/

AES\S
JueS: AeC(p)

where Pgv is defined by (Pgv)x = v for A € S and (Pgv), = 0 otherwise. We have the following criterion for
membership of v in A{ in terms of t(v).

Proposition 4.2 ([17], Prop. 2.2). If p € (0,2) and t(v) € £}, then v € A} with s =
16Vl -

For our present purposes, we next show that the approximability result (2.12) from Section 8.2 of [2] also
holds in the more restrictive case of tree approximation using index sets from T%(S).

L1 and || S

Proposition 4.3. Under the assumptions of Corollary 2.4 for u as in (2.4),

1/p

1 1

[all, == (ZHt(uy)wa) < oo for any p > 0 such that » < % + 3 (4.4)
veF

Proof. For the space Zs in Theorem 2.3, we have (using Rychkov’s universal extension operator [30], see [1],
Thm. 14.3.1) a characterization as a Bessel potential space,

5 1 1 1 1
HY(D),W}D)].=HT(D), -=-+(--3]a
(D) WD), = B D) T =5+ (7 5)a
For any 3 € (0,&), we have that H}T*(D) is continuously embedded into the Besov space B}?(D). As a

consequence of Corollary 4.2 from [15] and Remark 2.3 of [17], for v = g VAt € B%;CB(D), if

3 1 1
22z 4.5
d r 2 (4.5)
then one has
- 1 B8 1
[ty ~ It asra S M0l pr4s () ;TdT o

We can choose 3 < & such that (4.5) is satisfied if L — < 1. We thus have

ZH(UV,A)AeSHfg < 00

veF

1 o 1 (1 1 1>A 1 & 1
e e e (e s &, <=4 =
D T p d

for any p, p such that

d 2 2 d 2’

and with Theorem 2.3, we obtain the assertion by taking & sufficiently close to o and taking 7 > 1 such that %
is sufficiently close to % + 57 where we make use of our assumption d > 1. O
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In what follows, for v € fo(F x S), we denote by supp v the set A € T#(S) with minimal #A such that
suppv C A. Balancing the spatial approximations for each Legendre coefficient as in Theorem 3.1 of [2], the
summability property (4.4) combined with Proposition 4.2 yields the following result on best approximations
with spatial tree structure.

Corollary 4.4. Letu € {2(F xS) and let p > 0 be such that |[ul|, , < co. Then there exists C > 0 independent
of u such that for alln € N,

min{[lu — v]: #5ipp v < n} < Cn vt [ull; - (4.6)

Note that under the assumptions of Corollary 2.4, (4.6) and Proposition 4.3 imply that for any ¢ > 0, the
smallest A € T#(S) such that |[u — v|| < e for a v € £5(F x S) with suppv C A satisfies

#A < Cye

1 o 1
uHipa for any s < E and — =5+ — (47)
’ p

2 )
where Cs > 0 depends on s. In other words, using tree approximation in space we recover the same convergence
rates up to & as without the tree constraint in (2.14).

Remark 4.5. For % =s+ %, for any v € Lo(Y,V, o) with fully discrete representation v € ¢o(F x S),

[Ave el ae S IVlas ~ Il < DVl - (4.8)
4.2. Multi-indices of unbounded length

In the numerical scheme that we consider, the vectors v, for given v € ¢o(F x S) need to be accessed by
indices v € F C N()\A that may have non-zero entries in arbitrary positions. As a consequence of the bidiagonal
structure of the matrices M,,, one needs to store and iterate over finite subsets ' C F and to be able to access
vector elements indexed by any v € F' as well as by the indices v & e, that differ in only one component.

In the class of problems under consideration, the indices v € F activated in near-best approximations are
generally extremely sparse, that is, for many such indices v one has

#suppr < dim(v) := max{p € M: v, # 0}.

Remark 4.6. As shown in Proposition 6.6 of [4], there are examples of problem data for (1.3) such that the
nonincreasing rearrangements of (||u, |, ) er and (H“%HV)MEM have the same asymptotic decay. In such a
case, for a smallest F, C F realizing the approximation of u with error € > 0, one has #F. ~ max,cp dim(v).
Numerical tests (see [4]) indicate that more generally, for the class of problems considered here, one has to
expect max,cp, dim(v) 2 e~ for some ¢ > 0.

For storing elements of F, we assume a fixed enumeration of the indices M, which reduces the problem
to storing vectors with integer indices. In view of Remark 4.6, direct storage of the required v in the form
(v1,V2, ..., Vdim(v)) is too inefficient and will in general lead to a deterioration of the computational complexity
of the method by some negative power of ¢ as noted in Remark 4.6. As an alternative, a sparse encoding of
indices is suggested in [25], where for v with suppv = {i1,..., 4}, the vectors (i1,...,i,) and (v;,,...,v;, ) are
stored.

Remark 4.7. A further alternative that is always at least as efficient as both direct or sparse storage is a
run-length coding of zeros in v, where a sequence of m zeros is represented by an entry —m. More precisely,
each v € F is encoded as a tuple (mq,ma,...,my) with N € N, where m; € Z\ {0} fori =1,..., N, and where
either 1 =mq ifmy; > 0,0r 1y = ... =v_,,, =0if m; <0, in which case v_,,, 11 = mo > 0; the further entries
of v are then given recursively by the same scheme. For instance, the Kronecker vectors corresponding to the
first coordinates are encoded as the tuples (1),(—1,1),(—2,1),..., respectively. Given such a storage scheme,
the stored v can be mapped to linear indices by hashing or tree data structures with (amortized) costs of order
O(# suppv).
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In view of these considerations, in what follows we assume the required operations on multi-indices v to incur
costs proportional to # supp v.

4.3. Semidiscrete residuals

As a first step in our adaptive scheme, we consider the approximation of residuals with only a parametric
semidiscretization as in (2.2), where each spatial component is still an element of the full function space V. Here
we use adaptive operator compression to construct a routine APPLY taking as input a tolerance n > 0 and any
v € lo(F x S) with #suppr v < oo, where

suppv :={v € F: suppv, # 0},
F

and that produces a w := APPLY(v;7) such that |Bv — w|| < 7. In addition, both # supp - w and the number
of required products of the form A, v, for u € M, v € F satisfy quasi-optimal bounds with respect to 7.

Here, the only approximation that needs to be performed on B concerns the infinite summation, and the
approximation w is obtained by a suitable combination of the truncated operators

Bi= Y M,®A, (N, (4.9)
HEMo
|| <t
where By = 0.

A strategy for semidiscrete approximation of the stochastic residual has also been devised in [27]. Here we
use a different construction that is specifically adapted to the multilevel structure of the expansion (1.2) based
on Proposition 3.2. The semidiscrete scheme is summarized in Algorithm 4.1, with the result returned in a form
that facilitates its subsequent use in a fully discrete residual evaluation. We next prove a complexity estimate
for this scheme. In optimizing the choice of the ¢; in (A4.1.2), we follow Theorem 4.6 of [20].

Proposition 4.8. Let s > 0 with s < §, let B be as in (2.6), let v satisfy # suppz v < 0o, and let w be the
approzimation as in (A4.1.4) of Bv given by Algorithm 4.1. Then |Bv — w| <n, for F = suppr w we have

J
) _1 1
#E <Y #Mp) S 2" #F S || (val) el (4.10)
VEF =0
and {; for j=0,...,J in (A4.1.2) satisfy
mjaxfj <1+ |logn| + logH(Hvl,H)Ve}-HAS. (4.11)

The constants in the inequalities depend on C' from (A4.1.1), Cg, d, a, s, and on Cy from (1.8).
Proof. With the notation of Algorithm 4.1, we first note that, because #M (v) > 0 for every v € F,

#F <Y #M(v).

veEF

Since M, is diagonal or bi-diagonal for all y,

J
Z #M(v) < Z Z Z #{u’ € su;_)pvz M), , # O}

veF =0 peMqo vekF;
lul<e;
J J
SZ Z 2Nj522d€ij = T(((),...,EJ).
J EMo Jj=0
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Algorithm 4.1. (M (v)),er = APPLY(V; 1), for #supprv < oo, n > 0.

(i) If |B][lv[]l < n, return the empty tuple with F' = (); otherwise, with J := [log, #suppzv], for j = 0,...,J,
determine F; C # suppz v such that #F; < 27 and that Pr, xsv satisfies

||V—ijxsv|| <C nginv”v—PﬁstH (A4.1.1)
#F<2]
for an absolute constant C' > 0. Choose J as the minimal integer such that
6= Bl [v = Pr,xsv] < 7

(ll) With dg := Pryxsv, dj := (Pijg — ijilxs)v, j=1,...,J,and N; := #Fj, set

AN wa [ __a
J

i=0

(iii) With w given by

J
w =" Byd,, (A4.1.3)
j=0
for each v € F := suppx w, collect the sets M (v) C Mg X suppx v of minimal size such that
Wy = Z (Mu)u,u/ A,LL A\ Ve F7 (A414)
(,v")eM(v)

and return (M (v))ver.

Let £, ..., 0 ; minimize T(go, e ,E]) subject to the constraint Z}']:OHB - By, H”dJ” < 71 — 0. Then the choice
(A4.1.2) of 4o, ...,£; (which corresponds to performing this minimization over R/*! and rounding to the next
largest integer) ensures that T'(¢o,...,0;7) < T(Eg, . ,EJ).

It thus remains to show that T(ZNO, e ,@) < A(v)s with

1

AW) = [[(velDy ezl -

Since supp v is bounded, we have (||v,||),cr € A*(F) and thus, for j =0,...,J,
[v —Prxsvl| < C27¥ A(v),

which for j =1,...,J yields

451 < v =Py esv]| + v = P, yusv] < (14 2)A(w)2 (1.12)

We now choose si,s2 > 0 such that s < s; < sp < §. Take K € N with minimal K > J such that
702" | < — 6. Then

N3

J J
<p-o< ) 2 WD) Y T2 KD A(v) S 27 K A),

=0 =0
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which implies 25 < =+ A(v)*. For each j, let éj € Z be the smallest integers such that Cp2-oli < 9-(E=j)s1,
Then on the one hand, by Proposition 3.2 and the choice of K,

J J
By —wl <> [B =B [Idl+5 <> Cazbd; +5 <.
§=0 j=0

On the other hand, using sod < «,
2—(K—j)51 < CB27Q(ZJ-71) < CB2732d(t7j71)’

and as a consequence 243 < 2(K=i)s1/s2 We thus obtain

w |-

J
T(EO, . ,eﬁ,) <Y aKinlngl < oK <A,
§=0

completing the proof of (4.10). The estimate (4.11) follows from (A4.1.2) and (4.12). O

4.4. Fully discrete residual approximation using tree evaluation

For the approximation of the full residual on F x S, we use concepts developed in [29, 34] for handling the
spatial degrees of freedom. This requires 1y, A € S, and 6, n € M, to be piecewise polynomial functions.

We assume a family of tesselations into open convex polygonal subsets of the spatial domain D to be given,
resulting from a fixed hierarchy of refinements 77,75, ... of an initial tessellation 7y. For each j, we assume the
elements 7' € 7; to form a partition of D, that is, UTeTj T = D and for T, T € T; with T7 # T, we have

Ty NTy = 0, and meas(T) ~ 277 for T € 7;. Furthermore 7; is a refinement of 7;_; in the sense that for any
T € T, there exists a unique subset 7 C 7; such that T' = (J;.., T”, where #7 is bounded independently of
j and T'. Conversely, for j' < j, there exists a unique element 7" € T;/ such that T'NT" # (). Let

T = D T;.
j=0

We define a tiling to be a finite subset 7 C 7 such that (J;., 7 = D and the elements of 7 are pairwise
disjoint. For each tiling 7 and m € Ny, we write P,,,(7") for the set of f € Lo(D) that are piecewise polynomial
functions of degree m with respect to 7, that is,

f= Z qrXr

TeT

with polynomial functions gr of degree at most m. If v € P,,,(7;) with sufficiently large m and j, we denote by
7T (v) the smallest tiling such that v is a piecewise polynomial function on 7 (v) and define

Toov) i= {T € T(v): vl # 0);
in other words, 7-z(v) comprises those elements of 7 (v) that are contained in suppv.
Example 4.9. In our numerical tests, we use dyadic subdivisions of the cube D = [0, 1]‘17 where for j > 0,
= {277 (k1 —1),277k1) x -+ x (279 (kq — 1),2 7 kq): k€ {1,...,27}4}.

Note that #7; = 24 here, T is the set of dyadic subcubes of D.
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In order to apply the results from [29,34], we make the following additional assumptions on our wavelet basis,
which are satisfied for standard continuously differentiable spline wavelets.

Assumption 4.10. Let the wavelet-type Riesz basis W satisfy the following conditions:

(i) diamsuppyy ~ 271 for X € S.
(i) There exist m € N and k € Ng such that for all X € S, ¥\ € H?(D) NP, (T;,) with iy < |\ + k, and
#T.0(Pr) <C.
(iii) For each £ € Ny, D = U\A|:e Supp Y.
(iv) For each X € S, if [, adx # 0, then || = 0 or dist(supp s, dD) < 2-IAL

Moreover, we assume that for each £ € Ny, there exist a countable index set ¥y and a single-scale basis
O, = {px: A€ Xy} such that
span{yy: |A| < £} = span §y, (4.13)

satisfying the following conditions:

(i) diamsupp ¢y ~27¢ for A € Xy.
(ii) For any j and any T € T;, the functions ox|r with |\| = 7, oxlr # 0 are linearly independent.

For standard spline wavelet bases, a single-scale basis ®, satisfying the conditions is given by the scaling
functions on level . For the single-scale index sets X, we again write |\| = £ for A € ¥y. We assume without
loss of generality that X, N Xy = 0 for ¢/ # £. Note that due to (4.13), the conditions in Assumptions 4.10(ii)
also hold for the functions ¢y, A € [J,~( X¢. As a consequence of the locality conditions in Assumptions 4.10(i)
and (v), #7x0(¥x) and #70(px) are uniformly bounded for all respective A.

Assumption 4.11. There ezist i € N, k € Ny such that for all p € My, 6, € WL(D) N P (7;,) with
Ju < pl 4k, and #740(0,) < C.

Assumptions 4.10 and 4.11 imply in particular that V - (0,V,) is a piecewise polynomial function on
T0(0,%) with at most max{#7+o(¥x), #7£0(0,,)} < C terms, where C' is a uniform constant. Note that with
additional technical effort, one could also similarly treat more general 6, that can be approximated (uniformly
in p) by piecewise polynomials. This holds true, for instance, for the multilevel expansions of Gaussian random
fields constructed in [5].

Following Definition 4.9 of [34], we call S € T(S) a graded tree if for any A € S and any N € S with
IN| = |A| = 1 and meas(supp ¥y Nsuppey) > 0 we have N € S. Any finite S € T(S) can be extended to its
smallest containing graded tree as described in Algorithm 4.10 of [34].

For a given tiling 7, we define the graded tree S(7,¢) C S containing all wavelet indices up to ¢ levels above
each T € 7 as the smallest extension to a graded tree of

{Ae8:3j €Ny, T eTj: meas(suppypy NT) >0 A || < j+ (.

For the approximation of functionals induced by piecewise polynomial functions in V', we then have the following
result.

Proposition 4.12 (see [29], Lem. A.1). There exists C = C(m) > 0 such that for any £ € N and any f € La(D)
that is a piecewise polynomial function of degree m with respect to a tiling T C T,

[G@essiral, <2 MGGl where sw)i= [ rinde.
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Algorithm 4.2. Transform representation of a piecewise polynomial function v on 7 C 7 to the representation
on the minimal tiling 7 (v) for v.

Given v = Y. pr X7 with polynomials pr, where 7 is a tree
Initialize 7 = 7, pr = pr
For j =0,...,max{J: Ty N1 # 0},
foreach T € 7, N T,
if T has a child in 7N 741,
with T1,...,T. being all children of T in T;11,
replace pr by >-7_, ¢r, X1, with polynomials gr,
remove T from 7
fori=1,...,c,
if Ty € 7,
then pr, — pr, + G, fori=1,...,¢
otherwise,
add T; to 7 and set pr, = §r;
return v = 3 .- pr X7, where 7 = 7 (v)

For any finite graded tree S € T(S), by Algorithm 4.12 of [34], we can construct E(S‘) C Uezo 3¢ such that

span{go;g A€ E(S’)} ) Span{wA: A€ S‘} (4.14)
and the multi- to locally single-scale transformation T g such that, for any v with suppv C S,

va: Z (Tgv), e (4.15)

AeS rex(8)
We use this transformation as follows: for given r € V/ and a graded tree S, to evaluate r = (r(¥)) reg> We first
evaluate sy = r(py) for A € E(S’) and then obtain r = TSTS, since (4.15) implies (r,v) = (v, TSTS> for any v.

Proposition 4.13. For any given tiling T and £ > 0, the number of operations required for building the graded
tree S = S(T,L) C S and each subsequent application of T g or its transpose T—Sf to a vector is bounded by C#S,

where C > 0 depends only on ¥ and {®y : ¢’ > 0}; in particular, #% (S) SH#S < HT.

Proof. The bound for the number of operations required for the extension to a graded tree is shown in Propo-
sition 4.11 from [34], the one for the application of the multi- to single-scale transform and its transpose in
Proposition 4.14(a) from [34]. O

The basic scheme for residual approximation of the full residual on F x S, using Algorithm 4.2 as a subroutine,
is given in Algorithm 4.3. In the following analysis of this scheme, we use Assumptions 2.1, 4.10, and 4.11. To
simplify the exposition, we also assume f to be piecewise polynomial with a uniform bound on #7 (f).

Lemma 4.14. Let v € span{¢x: A € S} with finite S € T(S). Then for each p € My,
#T(A) ST €eT(v): TCT foraT' € Tpo(0,)} + #T20(0,) + |-

Proof. By our assumptions, both v and A,v are piecewise polynomials, where supp A,v C supp 8, Nsuppv. We
next note that 7o(A,v) is obtained from 7((6,,) by possible refinements only within each T" € 7¢(6,), and
thus

#HT(A) <H#T0,)+#{T €T (v): TCT foraT € Tx(0,)}

Since every element of 7 subdivides into a uniformly bounded number of children, we have #T(0,) S #7T20(0,)+
(|p| + 1), where #740(6,,) 2 1. O
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Algorithm 4.3. (A*,r,n,b) = RESAPPROX(v;(,no,€), for #suppv < oo, relative tolerance ¢ > 0, initial
absolute tolerance 7, target tolerance €.

Let supp v ={(v,\): v € F,A € S, } with F C F, S, € T(S) and v, = > xes, Vea¥a.

Set i = 2no; choose ¢ such that G = o2t < C.

(i) For each v € F, transform v, to piecewise polynomials on tilings 7 (v,) by applying Algorithm 4.2
(ii) Set n«— n/2
(iii) Set (M (v)),cp+ = APPLY(v;n) by Algorithm 4.1, such that the corresponding semi-discrete residual
approximation is given by

Fu = o f — Z (M), Auv,s  for each v € FT (A4.3.1)
(w,v")eM(v)

(iv) For each v € F*
Initialize 7, = do,, f
For each (u,v') € M(v)

7?'1/ — fl/ - (Mu)u,u’ Z AMUU/ |T
TeT4o(Apv,r)
(v) For each v € F*, use Algorithm 4.2 to transform the representation 7, = > fer, b7 X 7 from (iv) with a tree
subset 7, C 7 to the representation 7, = ZTeT(m) puv,r X on the minimal tiling 7 (#,)

(vi) For each v € F* set Sjf := S(T(#,),f) C S; Determine ®, = {¢x}rex, as the corresponding locally single-scale
basis with span ®, 2 span{yx}, g+, Zv = $(S;), according to (4.14), evaluate the integrals

Sux = u(pn) = / fopoadz forve FH oaes,
D

and set r, = T;rsy
. - (€=¢p)
(vii) Let b= (1—¢;) x|l +n. Ifn < Wli@“

with AT = {(v,\): v € FT X € S;}, return (A™,r,n,b);
otherwise, go to (ii)

r|orb<e,

Theorem 4.15. Let (AT, r,n,b) be the return values of Algorithm 4.5. Then |Bv — f|| < b and either b < &,

or r satisfies
v = (f = Bv)|| < ([If — Bv]], (4.16)

where we have #SUpp ' r < #AT =3 p #SF with S € T(S) for each v € F* and

#AT S

#T() + (2 Ul + #5BB7) (1 + gl + Log]| (V. Dy o). (417)

The number of operations required for computing r is bounded by a fized multiple of

(1 +Toga(no/m) [T (1) + (0™ * [ (Ivl)yer . + #500D")
X (1 + [log | +log||(Ivu ) e[| 4o + log # supp v + max # supp V)] . (4.18)

Proof. We first show that the prescribed relative tolerance ( is achieved. Define t by &, x = 7,(¢) for all
A € S, and extend r to S by setting r,x = 0 for A ¢ S;'. With ¢ sufficiently large, as a consequence of
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Proposition 4.12 applied for each v, one obtains any required relative error in step (vi). Thus, ||t —r| < (;||#||.
Algorithm 4.1 ensures ||t — (f — Bv)|| < 7 whenever step (vii) is reached. Thus if the algorithm stops due to the
first condition in this step, by the triangle inequality, the error bound (4.16) holds if n+(;||t|| < ¢[|f — Bv]||. Since
Cl[f = Bv|| > ¢(||t]] — 1), a sufficient condition is (14 ¢)n < (¢ — ¢y)||T||, and since moreover |r|| < (14 ¢)||El,
this in turn is implied by the condition in the final step. If the algorithm stops due to the second condition in
step (vii), then |Bv —f]| <b <e.

By construction, there exists a C; > 0 such that

D #S <G Y #T()
veEF+t veF+
Moreover, we have the upper bound
#T (7)) <o #T(F)+ > #T(Auvn).
(v )EM (V)

With the corresponding ¢;, F}, and d; for j =0,...,J as in Algorithm 4.1, note first that by (A4.1.3), we have

J J f—1
r=f-> Byd;=f—>» > (M, ®A,)d,
=0 §=0 k=0 peM,
lul=k
Since M, is diagonal or bidiagonal for each p,
J £;—1
Y #T(Aw) <2 > #T(Auv).
veFt (p,v')eM(v) j=0 k=0 veF; pe

Since for each v € F, the wavelet expansion of v, has tree structure by our assumption, Lemma 4.14 yields
#T (Av,) SHT €T (v,): T CT foraT’ € Teo(0,)} + #T20(0,) + 1]
for each p and v. As a consequence of Assumptions 2.1(i) and (ii), Assumptions 4.10, 4.11 as well as (1.8),

> #{TeT(,): TCT foraT € Tu(0,)} S HT (v,),

nEMo
lnl=k

and moreover,

> #Te0(0,) S2%, > |ul S k2

HEMo nEMo
lnl=k |ul=k

Since S, is a tree, 7 (v,) < #5, for all v € F. Putting the above estimates together, we obtain

£i—1
ST o#SF< +Z > Z 14 k)2% + #T (v,))
veF+ J=0veF; k=0

J
SHT(f)+ Y max{l;, 0} 279#F; + Y #S,

j=0 VEFj

J
SHT(f) + (j_r%ameax{@,O}) ZQdej #E; 1 Z 45,

o j=0 veEF
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With Proposition 4.8, and noting that ) ., #S,= #SUpp ' v, we obtain (4.17).

It remains to estimate the number of required operations. Since S, is a tree for each v € F, the number of
operations for step (i) of Algorithm 4.3 is bounded by a multiple of #8upp'v. For the computation of norms
and sorting, APPLY in step (iii) requires a number of operations bounded by a fixed multiple of

#SUpp L v + # supp v log # supp v.
F F

From Proposition 4.8, we have

S #Mw) S0 v Derlls

vEF+

The number of operations for handling multi-indices in steps (iii) and (iv) is thus, according to Remark 4.7,
bounded by a multiple of

_1 1
10 (1 s sup )
The further operations in steps (iv) and (v) combined require a number of operations bounded by a multiple
of

HT(f) + Z Z (#{T €T (v,): TCT foraT € Ts(0,)} + #T20(0,) + |1])
veFt (p,v')eM(v)

J
SHT(f) + (jngf};iJmaX{éj, 0}) S 2%HF + Y #S, |,

=0 veF

which we estimate further as above. Concerning step (vi), note that for each v and A € X, the number of
elements of 7 (7,) intersecting supp @, is uniformly bounded by construction of ¥,, and thus the computation
of each integral 7, (¢y) of piecewise polynomial functions on this tiling requires a uniformly bounded number
of operations. As a consequence of Proposition 4.13, the required number of operations for step (vi) is thus
bounded by a fixed multiple of }° . #7 (7).

In summary, each execution of the body of the loop from steps (iii) to (vi) requires a number of operations
bounded by a fixed multiple of the upper bound in (4.17) with the current value of 7. In terms of the value of
n that is returned, the number of iterations in the outer loop is bounded by 1 + log,(n/n) times, which yields
the bound (4.18) for the total number of operations. O

4.5. Tree coarsening

In step (ii) of Algorithm 3.1, for a given residual approximation r of the Galerkin solution on A° = {(v,\): v €
FO X € 89}, with suppr € AT = {(,\): v € Ft X € S}, with 0 < wyp < w; < 1 we need to find A> C AT
with A> € T7(S) satisfying (A3.1.1), that is,

t|pell = wollr| and  #(A”\ A?) gé‘#(ix\AO) (4.19)

with C' > 0 for any A D A°, A € T7(S), such that |r|5]| > wi|[r|. For finding such near-best A?, and hence
Sf, C S}, that additionally have tree structure, we follow the strategy of the thresholding second algorithm from
[13] (see also [11]), in the version stated in [12].

To determine A”, we use the tree structure of At \ A% as follows. We can assume without loss of generality
that Ag is the single root element of S; to this end, we can group all A € § with |A| = 0 into a single element
of the tree by always adding these A jointly to an index set. This ensures that all generated spatial index sets
are trees according to Definition 4.1. We thus also have a tree structure on F x S: for (v,\) € F x S, we write
§:= (v, A), where &' = (v, \) < (v,\) = ¢ if and only if ' < A. The subsets of F x S that are trees with respect
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to each of their spatial components are then precisely the elements of T7(S) as in (4.2), and are again referred
to as trees.

For § € F x S, let O4 be the infinite subtree of 7 x S with root element §. Since we aim to select elements
of AT\ A°, in the tree coarsening scheme we only operate on subtrees of © := (F x §) \ A with root elements

Ao ={(,\o): v € FT\FOLU{(v,\): v € FO, X ¢ S0 with A € C(X) for a X' € SD}, (4.20)
where © = J;. A, ©5. We accordingly introduce the set of tree subsets
TO):={ACO: (A35=<d€0) = ¢ €A}

For an arbitrary tree A € T(©), we write L(A) for its leaves, that is, for the elements of A that do not have
any child in A. Moreover, I(A) = A\ L(A) are the internal nodes of A. For § € A, we again write C(¢) for the
set of all children of ¢ in ©, where maxsee #C() < co. We call a tree A € T(©) proper if C(§) C A for any

5 e I(A).
Following [13], for § € © we define the error measures
lta(r,)]?, for 6 = (v,\) € AT,
0) = 4.21
¢(d) {o, for § € ©\ A+, (4.21)

for which we have the subadditivity property

e(6) > > e(d). (4.22)

§'€C(6)

In addition, for each A € T(O) we define the global error measure

SEL(A)

which by (4.3) satisfies F(A) = HP@I‘ — PI(A)rHQ, and the corresponding best approximation errors

Note that since only interior nodes are counted, the trees realizing the best approximation can always be assumed
to be proper trees.
The algorithm from [11,12] is based on the modified errors for 6 € ©,

&) = {6(5)’ el i 5*6. Ao, (4.23)
(e(d)t+é(6*)7t) ", if 6% is the parent of 4.
The greedy-type scheme producing the sought approximation is stated in Algorithm 4.4. The returned trees are
proper trees by construction.
The following two lemmas can be obtained by minor modifications of Lemmas 2.3 and 2.4 from [12], where
the analogous statements are shown for binary trees with a single root element. For the convenience of the
reader, we give the proofs in Appendix A.

Lemma 4.16. Let n > 0, and let A be a finite tree such that €(8) <n for all § € L(A). Then

D eld) < (#Am.

SEL(A)
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Algorithm 4.4. A" := TREEAPPROX(A?, A* 1, 7).
Set N :=0 and Ay as in (4.20)
Evaluate e(d) and &(5) for § € AT according to (4.21), (4.23)
Until E(An) <7, repeat
find a 6 € L(An) with largest &(6)
set Ant1 =AnUC()) and N — N +1
Return A” = A° U I(An)

Lemma 4.17. Letn > 0, let 69 be a node in a finite tree A, and let As, be a subtree of A rooted at 6y such that
€(6) > n for all § € As,. Then
e(do) = (#Asy)n-

With these lemmas at hand, we obtain the following modification of Theorem 2.1 from [12] for our setting.
Theorem 4.18. Let Ag,..., AN be as constructed in Algorithm 4.4. Then we have

k+1
E(Ay) < ——— <n<k<N. 4.24
( k)_k—n+1an’ 0<n<k< (4.24)
Proof. The statement clearly holds if £ = 0 or n = 0, and we can thus assume k,n > 1. Let A% be a tree realizing
the best approximation for n, so that E(A?) = o,,. If I(A%) CI(Ay), then AY C Ay and thus E(Ag) < E(AY).
Otherwise, there exists an element of I(A?) that is not in I(Ag). We now estimate E(A}) from below in terms
of
mg ;= max ¢€(9).
deL(Ag)

Let D :=I(A)\I(AZ). Since there is at least one node from I(A%) that is not in I(Ay), we have #D = k—n+1.
Note that D is the union of the trees ©5 NI(Ay) for 6 € L(A}). By Lemma 4.17,

on=EA;) = ) e()
SEL(AY)

> Z (#@5 n I(Ak)) my > #Dmy > (k‘ —n—+ 1)mk.
SEL(AZ)

(4.25)

In order to estimate E(Ay) from above by my, we note that

BAy= Y e+ Y ),

JEL(AR\I(AY) SeL(Ax)NI(A})
where on the one hand
Yoo < D> eld)=om,
SEL(AR)\I(AY) SEL(AY)

and on the other hand, applying Lemma 4.16 to the minimal tree with leaves L(Ag) NI(AY),
Yo eld) < (HUA)) i = naig.
SEL(ARNI(A)
Combining these bounds with (4.25), we obtain

n k+1
EA < n 777/:7717
(M) <o +k—n+10 k—n—i—la

which completes the proof. O
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As in [11], from Theorem 4.18 we obtain the following variant of Corollary 5.4 from [13].

Corollary 4.19. With Ay as generated by Algorithm 4.4, for any ¢ € (0,1) and any proper tree A with roots
Ag such that E(A) < ¢n, we have

#1(Ax) < C#1(A),
with C > 0 depending only on c.

Proof. Let Ao, ..., Ay be as constructed by Algorithm 4.4. By construction, we have F(Ag) = 09 and E(A;) =
o1, and we can thus assume N > 1. Let v =1 — ¢, then v(N — 1) < (1 — ¢)N and hence
N N .

< <c -,
N—n_(l—'y)N—i—’y_

0<n<~yN-1), (4.26)

for all such N. Let A* be a proper tree with minimal n* := #A* such that E(A*) < cn, so that #I (A) >n*

for A as in the assertion. Then since E(Ay_1) > 17,
Oprx = E(A*) <cn<cE(An_1).

However, applying (4.24), with (4.26) we obtain
N -1

on, < c o,

E(An-1) <

-n
whenever n < (N — 1). Thus, we have n* > (N — 1) and consequently
#I(AN) =N <y~ n* +1< 7—1#1(5) +1< (v 1)#1(&).
O

From Corollary 4.19 we can now derive the particular quasi-optimality property required by the adaptive
scheme.

Corollary 4.20. Let wo,w1 with 0 < wo < w1 < 1 be giwen, let A’ be the result of Algorithm 4.4 with n =
(1 —wd)|r||>. Then (4.19) holds with C' depending only on wy and w;.

Proof. Let Ay be as computed in Algorithm 4.4. Note that ||r||* = ||r[,. ||* + |Per — PI(AN)er, where
[Por —Prar|* = B(AN) < (1 —wf)r”
Let any A € T#(S) with A D A® and ||r|5|| > wi||r| be given. Let
A:Aou{az § € (&) for a & eA\AO},
which is the proper tree with roots Ag containing A \ A? and all children of its elements, so that I<A) = [X\AO.

We then have )
HP@r—PI(A)rH :E(A) < (1-w?)|r) (4.27)

From Corollary 4.19 with ¢ = (1 — w})/(1 — w2), for any proper tree A with roots Ag such that (4.27) holds,
we have

#(Ab \A°> — #I(Ay) < C#I(A) - é#(A \ AO)

with C depending on K, wy, and ws. (I
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Algorithm 4.5. ¥ = GALSOLVE(A, v, d,¢), where supp. v C A € T#(S), #A < oo, € > 0,and § > 0 such that
[(Bv —f)[all < 6.
Let suppv CA={(y,\): v e F,A€ S}, FCF, S € T(S) and vy = >, cg Vua¥a

(i) Determine (M (v)).er by APPLY(v; £) as in Algorithm 4.1, with output restricted to F, and set
ro = GALAPPLY(A, v, (M (V))ver, f)

(ii) With the smallest L € Ng such that rg'C2~ % < 3ersy take (M(u))VEF such that for all w with suppw C F,

(BLW)V = Z (MH)VaV' AH Wy, IS F
(v €M (v)

(iii) Use the conjugate gradient method to find s such that |lro +Byrs| < §, where for w with suppw C A,
B.w = GALAPPLY (A,w7 (M(u)) 70>7
veF

and set V=v +s

Remark 4.21. In the given form, Algorithm 4.4 requires O(#(AT \ A%)log #(A* \ AY)) operations due to
the requirement of sorting the values é(6), § € AT\ A°. As noted in Remark 2.2 of [12], the sorting can be
replaced by a binary binning, where the é(d) are sorted into bins corresponding to ranges of values of the form
[27P maxs &(8), 277~ maxs €(9)), p € Ny. In this case, equation (4.24) is replaced by

< k4+n+1

B = 1

on, 0<n<k<N,

and the statement of Corollary 4.19 follows in the same manner with v = 1(1—c). This variant of Algorithm 4.4
requires O(# (AT \ A%)) operations.

4.6. Galerkin solver

For an implementation of GALSOLVE, the simplest option is an iterative scheme with inexact residual approx-
imations by RESAPPROX, where the evaluation in step (vi) is restricted to indices in A.

However, a potentially more efficient alternative is provided by the defect correction strategy of [24]: starting
from a sufficiently accurate approximation of the initial Galerkin residual, an iterative scheme using a fixed
approximation of the operator is used to compute a correction. The resulting procedure GALSOLVE is stated in
Algorithm 4.5; it relies on the subroutine GALAPPLY specified in Algorithm 4.6.

Proposition 4.22. Let v = GALSOLVE(A, v, d,¢), then |[(BV —f)[sl| < &, and for any s > 0 with s < §, the
required number of arithmetic operations is bounded up to a constant by

(#T(f) +#A+g*%||(|\vy||)yef|\§s) x <1+g(§/s) + llogel + Log| (1vu e s s +Vrg%§#suppy>, (4.28)

where g: RT — RY is a nondecreasing function.

Proof. The bound on ||(BV — f)|A]| follows from Theorem 2.5 of [24]. Concerning the costs of step (i) of Algo-
rithm 4.5, for (M (v)),er we obtain from Proposition 4.8 the estimate

ST #M@p) Ses (4.29)

veF

(Uvel)yerll -
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Algorithm 4.6. w = GALAPPLY(A, v, (M (v)),er, fo), where Supp' v C A € T#(S) and #A < occ.

Let suppv CA={(v,\):ve FFAe€S,}, FCF, S, € T(S) and v, = ZAGSV v, Y, and fo piecewise polynomial
with 7(fo) < o0

(i) For each v € F, transform v, to piecewise polynomials on tilings 7 (v,) by applying Algorithm 4.2
(ii) For each v € F

Initialize W, = —(50,Vfo

For each (u,v') € M(v)

'li/u — wu + (Mu)u,y/ § A;A'Uu’ |T
TeT4o(Apv,r)

(iii) For each v € F, use Algorithm 4.2 to transform w, to its representation on the minimal tiling 7 (w0, ), and set
SF = S(T (), 0). Determine ®, = {px}rex, as the corresponding locally single-scale basis with
span ®, D span{z/))\}/\es+, ¥, = %(S;}), according to (4.14), evaluate the integrals

sux=wu(pr) forve F, e,

set w, = T;+ s, and define w, by

for e S

V~VI,7A, )\GSiju,
Wy = .
0, otherwise,

Proceeding as in the proof of Theorem 4.15, the total number of arithmetic operations for this step is bounded
by a fixed multiple of

1

#T(f) + (#A +e s

1
(IIVuH)yein\s) <1 + [log el + log||(IVull) e | 4 + max 7 supp V)-

We now consider the costs of Algorithm 4.6 with (M (1/)) as determined in step (ii) of Algorithm 4.5.
veF
Note that L is a nondecreasing function of §/e. Moreover,

#M(v) < 2% # suppv. (4.30)
2 s

Again proceeding as in the proof of Theorem 4.15, one verifies that the number of arithmetic operations for one
application of GALAPPLY in step (iii) is bounded by a multiple of

L
#T()+ A +L) > Y (#T(v,) + (k + 1)2%)

veF k=0

using the corresponding bounds for #7 (w,) with w,, v € F, as in Algorithm 4.6. Accordingly, the costs of
one iteration of the solver in step (iii) are bounded by a multiple of (14 L)(#7 (f) + L#A + L29%), and the
number of iterations required for the solver depends only on d/e. O

5. OPTIMALITY

We now consider the computational complexity of the basic adaptive scheme of Algorithm 3.1 using the resid-
ual approximation of Algorithm 4.3, tree coarsening by Algorithm 4.4 and Galerkin solves by Algorithm 4.5,
which is summarized in Algorithm 5.1. We proceed in two steps. First, we estimate the cardinality of discretiza-
tions that are generated in terms of the achieved error tolerance. With the residual approximation and tree
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Algorithm 5.1. Adaptive Galerkin method.
Let 0 <wo <wi <1,¢y>0asin (5.1), u’ =0, and A = §); formally set Hr_1|| = rgl||f||

For £k =0,1,2,..., perform the following steps:
([\kﬂ,rk,nk, bk) = RESAPPROX(uk; ¢, %CHI'I“_lH, 5)
if by <e,

return u®
ARFL = TREEAPPROX(Ak, AR rR (1 - wi) Hr’“HQ)
ut! = GaLSoLve (AR u, be, ||r"))

coarsening schemes in place, this can be done by techniques from [24,33]. In the second step, we consider the
computational complexity of the method, where additional specifics of our countably-dimensional setting come
into play.

In this section, we frequently use the condition number x(B) = ||BJ|||B~|| with respect to the spectral norm,

as well as the energy norm
[vlg = V(Bv,v), vELLFxS),

associated to the mapping B defined in (2.6). To ensure optimality of the scheme, we require the following
assumptions on the parameters ¢ € (0,1), 0 <wp < wy < 1, and v > 0 of Algorithm 3.1:

wo
wo+1’
wi(1=¢)+¢ < (1—20)K(B)"2, (5.1)
(1—Qwo—¢
(1+¢w(B)

0<(<

0<y<

Note that the requirements on ( ensure that the upper bound for ~ is positive.
The main result of this work is the following theorem, which combines the above mentioned cardinality and
complexity estimates. The proof is given in the following two subsections.

Theorem 5.1. Let f € Ly(D) be piecewise polynomial with #7 (f) < oo, let {0,}uem satisfy Assumptions 2.1,
and let Assumptions 4.10, 4.11 hold. Let 0 < s < g and |juf,, < oo for p = (s—l—%)_l. Then for each

e > 0, Algorithm 5.1 with parameters satisfying (5.1) outputs an approzimation u* for some k € N with
Hu — ukHZ2 < g, such that the following holds:

i) There exists C' > 0 independent of € and u, but depending on s, such that
g
1
#supp ub < Cefull;,.

(ii) The scheme can be realized such that with a C > 0 independent of € and u, the number of operations
required to compute u* is bounded by

c(1+4e7u

1
o1+ log el + loglul],,)).

Remark 5.2. If in addition to the assumptions of Theorem 5.1, d > 2 and D is convex, then Proposition 4.3
applies, and thus the statement of Theorem 5.1 holds for any s < 4. In particular, for any such s, the number
of operations required by Algorithm 5.1 is bounded by Ce~/* with a C' > 0 depending on v and s. As a
consequence of Remark 2.5, in the special case d = 1 the statement holds only for s < %a.



AN ADAPTIVE STOCHASTIC GALERKIN METHOD BASED ON MULTILEVEL EXPANSIONS 1983

5.1. Cardinality of discretization subsets

In preparation of the proof of statement (i) in Theorem 5.1, we use ideas from Lemma 2.1 of [24], [34],
and Proposition 4.2 of [33] in order to relate error reduction to cardinality in our present setting of tree
approximation.

1
Lemma 5.3. Let 3 € (O, ||B||7%>, w € <O,H(B)*%(1 - ||BH[32)2} and w € lo(F x S) such that suppw C
Ao € TH(S). Then the smallest A D Ay with A € TH(S) and

[(Bw —f)[s]| = w|[Bw — £ (5.2)
satisfies
#(A\ Ag) < min{#l_\: A e TH(S), minC[\Hu —v|| < Bllu- W”B}. (5.3)
supp vC

Proof. With N := min{#A: A G_Tf(S), ming,p,veallu — v < Bllu—wl|/g}, let uy be a best N-term tree
approximation with suppuy C Ay € TH(S), #Axy = N, of u such that |[u—uy| < Bflu— wl|g. With
A=A UAy € T7(S), the Galerkin solution uj satisfies

1 1
[u—uzflg < lu—uyllg < [1B]? u - uyl| < B fllu - wlg.
By Galerkin orthogonality, [[u — w5 < luz — wa3 + |B||5?[lu — w||%, and therefore

[ug = wlg > (1 - [BIIB2) * u — Wl

This gives
1
|Bw —)[5]] = [|(Bw — Bug)[; [ > B~ *|lw —ui|5
_1 1

> (BT (1 - (1B6%)* lu - wlig

> k(B)"2 (1 - |B[8%)*|Bw — £

> w|[Bw — .
By definition of A and since AD Ag, we arrive at #(A\ Ag) < #(A \ AO) < N. O

Lemma 5.4. Let the parameters of Algorithm 5.1 satisfy (5.1). Then for the iterates u* with suppu® C A*
one has
lu—u" g < pllu v’

with p = /1= ((1 = Qwo — ¢)2k(B)~1 +~2(1 + ¢)2x(B) € (0,1), and

#(AMT\AR) < min{#A: AeTHS), min fu-v]< 6Hu—u’“HB}~

supp vC
Proof. By Theorem 4.15, the output of RESAPPROX in Algorithm 5.1 satisfies
e = (Bu® — £) | < ¢[[Bu* — £]].
As a consequence,
(B 1) oo = ¥ | [e* — (Bt 1)

> o] — [ — (B~ 1)

> o B — ] = (wn + D" — (Bu* — 1)

> (wo — C(wo + 1))||Bu* — £
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By Lemma 3.1, for the Galerkin solution ujr+1 on A¥*! we thus have

o=l = (1= =) vl

Moreover,
1 1
[ = ™| < BT (F = But ) e || < (B2

1
< [BFy(1+ Qlf = Bu*|| < 4(1+ Or(B)?[Ju—u¥||,
and by Galerkin orthogonality,

k+1H]23 = ||u — uAk+1||]23 + HuAkH — uk+1H]23

< (1= ((1 = Quwo — O*k(B) ™ +42(1+ )’k(B)) |Ju — ub||5.

o

N\»—l

Let & := “’1(117242'“ By the choice of wy, there exists g € (O, HB||7%> such that @ < k(B)~ %(1 —||B||3%)=.

Let A € T#(S) with A D A* be of minimal cardinality such that
I(Bu - £ = ol/Bu* - .

Then . . . .
[ ] = [|(Bu® = £)[5]] — [[r* — (Bu® —£) |

> &||Bu’ — f|| - ||r’“ - (Bu" — 1)

> A*M (e
> (o )|| [

St

With Lemma 5.3 and (A3.1.1b), we thus obtain

ICOVCPFTY

§min{#A:AeTf(S)7 min Hu—v||<ﬂ||u—uk|| }

supp vCA
completing the proof. O

Proof of Theorem 5.1(i). From Lemma 5.4, we directly obtain convergence of u* to u. Moreover, since #A° = 0,
k
_ Z#(Az \Azfl)
i=1

k—1
< Zmin{#/\: AeTHS), min |[u—-v||< Bllu—u HB}

C
izo supp vCA

Q fona . 1 1 — 1
By our assumptions on u and by Corollary 4.4, for any p > 0 such that 5 < 9+ 5 and s= 35

1
P

min{#l_X: A€ T}—(S)7 min _[ju—v| < ﬁ“u u HB} < (ﬁHu— uiHB)_%HuHép.

supp vCA
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Altogether, using in addition that ||u —ukf! HB < pk’1*i||u — uiHB, this gives

k—1
-3 1 L(p_1—i _1 1
#AL S [Ju—u" g lulle, Y e T S G fullg,
i=0
with Cs > 0 independent of u and &, where we have used Hu —uf-! HB > e. (Il

5.2. Computational complexity

For understanding the total number of operations required for the adaptive scheme, in our present setting
we need to consider the costs of handling of multi-indices in F, which can be of arbitrary length, as discussed
in Section 4.2. Here, with A* as in Algorithm 5.1, we use the notation

FF = {veF:(v,X € A* for some A € S}.

The costs for handling multi-indices enter into the bounds (4.18) and (4.28) for RESAPPROX and GALSOLVE,
respectively, and thus depend on the largest arising support size of a multi-index. This quantity can be controlled
by means of the following simple estimate, by which we can subsequently ensure that the costs for each multi-
index operation are of order O(1 + |logel).

Proposition 5.5. For k € N, at iteration k of Algorithm 5.1, one has max,cpr #suppv < k — 1.

Proof. Starting with F!' = {0} C F, due to the bidiagonal structure of the matrices M,, we have
max, ¢ pr+1 #Supp v < max, ¢ pr #supp v + 1 for each k. O

A comparable and slightly sharper bound on the support of arising multi-indices has also been obtained under
different assumptions in Proposition 2.21 of [35] in the context of sparse interpolation and quadrature for (1.3).

Remark 5.6. In [20], related issues concerning indexing costs are addressed for wavelet methods applied to
problems of fixed but potentially high dimensionality. There, the costs of the handling of wavelet indices also
increase with dimension, but are not coupled to the approximation accuracy by an accuracy-dependent effective
dimensionality as in the present case. As discussed in Section 6 from [20], for wavelet methods working on
unconstrained index sets, additional factors in the computational costs that are logarithmic with respect to the
error are also difficult to avoid. For the spatial discretization, this issue is circumvented in our present setting
due to the restriction to wavelet index sets with tree structure.

Proof of Theorem 5.1(ii). For the call of RESAPPROX(uk;C, l—icHrk_lH,s) in iteration k of Algorithm 5.1,
let (rk,nk,bk) be the corresponding return values. Let K be the stopping index of Algorithm 5.1, that is,
b <& < bg_1. By construction, we have n, > € for k =0,..., K and n;, ~ ||r*|| ~ ||Bu* — f||~ ||u* - u||B for
k=0,...,K—1. With Lemma 5.4, we obtain ||ju — u*|| ; < p*~||u — u’|| and thus n;, < p"~'n; fori < k < K,
which implies 1 + |logni| 2 k, and there exists C' > 0 such that HukH < C for all k.

In step k, by Theorem 5.1(i), we have

1
£pe (5.4)

# supp u’ < # suppu*< #5UppTu* 3 A
By Remark 4.5 and Lemma 4.11 of [16],

D peell 4o S 0¥l S lallae + (#suppu®) [Ju—u®|| S Jull,,.

For the number of operations required for evaluating r* for each k using Algorithm 4.3, we apply Theo-
rem 4.15 with F = FF=1 png = %Hrk_l , M = 1. Using that #7 (f) < 1, and combining Theorem 4.15 with
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Proposition 5.5 and (5.4), the number of operations required for the evaluation of r* can be estimated up to a

_1 1 ~
multiplicative constant by 1+, *[lull¢,, (1 + |log ne| + 10g|\u||t7p>, and the same bound holds for #A*+1,

The number of operations for performing TREEAPPROX on r” using binary binning according to Remark 4.21

is linear in #A**!. Concerning the call of GALSOLVE, note first that H(Buk — f)IAk+1 H < HBuk — fH < by.
Since if by > €, we have by ~ 7, we also obtain by < fy||rk”. Thus the ratio bk/(’yHrkH) is uniformly bounded,
and as a consequence of Proposition 4.22; the costs of GALSOLVE can also be estimated up to a multiplicative

11
constant by 1+ n, Hth'jp(l + [log k| + log||u||t’p). O

6. NUMERICAL EXPERIMENTS

The adaptive Galerkin method Algorithm 5.1 was implemented for spatial dimensions d = 1,2 using the
Julia programming language, version 1.5.3. The numerical experiments were performed on a single core of a
Dell Precision 7820 workstation with Xeon Silver 4110 processor.

For simplicity, we take 2 = (0,1)¢. For the random fields a(y), we use an expansion in terms of hierarchical
hat functions formed by dilations and translations of 6(z) = max{1 — |2z — 1],0}. Specifically, for d = 1, 6,
with g = (¢, k) is given by

Oor(z) =202z — k), k=0,...,2°~1, £€Ny. (6.1)
This yields a wavelet-type multilevel structure (1.8) and (1.9) satisfying Assumptions 2.1, where
M={(tk):k=0,...,2" -1, >0}
with level parameters |(¢, k)| = ¢. For d = 2, we take the isotropic product hierarchical hat functions
O oy ko (21, T2) 1= 270201 — k1) 0(2°22 — ko), (L, k1, k) € M, (6.2)

with

M ={(l, k1, ks): £ E€No, ki, kp=0,3,...,2° — 2,2 — 1 with (ky € Ny V k2 € Ng) }.
For the spatial wavelet basis ¥, we use piecewise polynomial Ls-orthonormal and continuously differentiable
Donovan—Geronimo—Hardin multiwavelets [21] of approximation order seven.

In the practical implementation of Algorithm 4.3, we use some simplifications that have no impact on the
observed optimal rates. Specifically, on the one hand, in step (vi) of Algorithm 4.3, we directly compute integrals
of products of wavelets and piecewise polynomial residuals. In our tests, this is quantitatively favorable, since it
avoids some overhead the for multiscale transformations in step (vi). On the other hand, Galerkin problems are
solved by direct application of inexact conjugate gradient iteration in wavelet representation where previously
computed matrix entries are cached.

The quantitative performance of the scheme can also be improved by choosing some of its parameters dif-
ferently from the values used in the convergence analysis. This is a common observation in such methods (see,
e.g., [20,24]) relating to the lack of sharpness in various estimates that are used. In particular, wy can be chosen
significantly larger than the values allowed by (5.1) without impact on the optimality of the method, but with
an improvement of the quantitative performance. Similarly, choosing Cp in (A4.1.2) larger than a certain value
(which is observed to be significantly lower than the one from Prop. 3.2) does not change the residual estimates,
but only increases the computational costs. Moreover, the quantitative performance can also be improved by
decreasing the tolerance 7 in step (ii) of Algorithm 4.3 by a factor different from two. Especially for small «,
taking this factor as 2% or smaller leads to a more conservative increase in the parameters ¢; in (A4.1.3), so
that these are not chosen larger than necessary in the final iteration of the loop.

The adaptive scheme is tested with a = %, %, 1,2 for both d = 1 and d = 2. We take f =1 and ¢ = %

in (6.1) and (6.2). The parameters of the scheme are chosen as wy = %, C = 155, and ¢ = 1; in step (ii) of
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F1GURE 1. Computed residual bounds for d = 1 as a function of total number of degrees of
freedom of the current approximation of u (solid lines) and elapsed computation time (dash-
dotted line).

Algorithm 4.3, we replace n by 77/20‘/d. The results of the numerical tests are shown in Figure 1 for d = 1 and
in Figure 2 for d = 2.

The results are compared to the convergence rates that are expected for « < 1 in view of Theorem 5.1
combined with Proposition 4.3 for d = 2 and with Remark 5.2 for d = 1. For d = 1, the asymptotic growth of
the runtime (in seconds) and the total number of degrees of freedom #A = # supp u” in terms of the residual
error bound ¢ is approximately of order 0(5’3/ (2a))7 which is consistent with the expected limiting rate %a.
For d = 2, we instead observe (’)(5_2/ a), which is consistent with the expected rate §. For both values of d, we
obtain the analogous result also for a = 2, which is not covered by the existing approximability analysis.
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7. CONCLUSIONS

We have shown the adaptive Galerkin method proposed in this work to converge at optimal rates up to g,
where d is the spatial dimension of the diffusion problem (1.1) and « is the decay parameter in the multilevel
expansion of the random diffusion coefficient, which corresponds to the Hélder smoothness of its realizations.
The computational costs are guaranteed to scale linearly up to a logarithmic factor with respect to the number
of degrees of freedom. To the best of our knowledge, this is the first method with this property in the case where
the approximability is limited by the random field rather than by the approximation order of the spatial basis.
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Our numerical results confirm the approximability results for « € (0, 1] established in [2]: for d = 2, we observe
arate 5, whereas in the special case d = 1, we obtain %a. The numerical tests also support the conjecture that
one has the analogous rates of best approximation for all a > 1.

On the one hand, the use of a piecewise polynomial wavelet Riesz basis helps to avoid a number of technical
issues in the complexity analysis. On the other hand, this also makes the method comparably expensive from
a quantitative point of view. However, it actually generates standard adaptive spline approximations of the
Legendre coefficients u, and relies on wavelets mainly for approximating residuals in the appropriate dual
norm. The basic construction of the method also carries over to spatial finite element approximations, and a
variant based on standard adaptive finite elements will be the subject of a forthcoming work.

APPENDIX A. TREE APPROXIMATION

Proof of Lemma 4.16. Let § be any leaf. Let dg, ..., d;_1,d¢ = § be the ancestors of 4, in order, with dg the only
root that is an ancestor of . By definition of €,

J4
E0) P =e(00) T e 1) =e(d) T Fe(de) T HE(Sr o) = = Ze(dj)_l.

Using that é(0) < n and multiplying by e(d§)é(d), we obtain

y4

l
e(0) = &(0) Y e(@)e(6) " <y
j=0

J=0

e(d)
@) (A1)

J

To take the sum over all leaves § € L(A), we consider the subtree Az = {6 eN: 0= 5} that is rooted at § € A.

For any leaf § € L(Aj) C L(A) of such a subtree, we consider the contribution ) of the ancestor 5, =0 to

e(9)
the sum on the right-hand side of (A.1). Thus

Sem<nd Y

deL(A) seAseL(Ag)

5).
5

e
e

~

Due to the subadditivity of e, we have ZéeL(A(g) % < 1 (trivially for 6 € L(A) and by applying (4.22)

inductively, otherwise), and consequently
> oe(d) <nd 1=n#A
deL(A) deA

O

Proof of Lemma 4.17. We first consider the case that dy is not a root and has a parent d;. We prove the slightly
stronger statement

(60) > n(#mo n g;)

by induction on the size of As,.
If #As5, = 1, then we have only the node dp in this tree. By definition of €, we have

e(80) = e(80)é(80)é(d0) " = e(ao)é(ao)(e(5o)—1 T é((s;;)—l).
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It follows that

> eto) = eton) = o)1+ 553 ) =1+ 55 )

SEL(A) 0

Now let §p € A be any node with a parent &5, and let As, be a subtree of A rooted at dp such that é(é) > n for
all § € As,, and assume that

for any node &y € A with a parent 5’6 and any subtree Aj rooted at b0 such that é(0) >n forall 0 € A, and
#A5, < #As,-

Consider any child § € C(dp), then for the subtree of As, rooted at §, which we will denote by As, we have
#As < #As, and €(6) > n for all § € A; . By applying the induction hypothesis to each child of dg, we get

e(d e
IO I SIE TR CHIELS PR ) SR YR

6€C(do) 0€C(do) <5 ) - 6€C(do) e<60)

Using the definition of €, we get

e(do) \ e(do)
Z e(d) > Z #A5+1+e(62 n—(#A50+e(52))77

5€C(60) 5€C(60) 0) 0

This concludes the proof in the case that dy has a parent.
It remains to prove the original statement in the case that d¢ is a root. If #As, = 1, the statement is trivial.
If §p has children in Aj,, then we know from the first part of the proof that

> se s €(0)
POER DY #A5+% n

5€C(8o) 5€C(do)

> X #ner 550 |n=am

6€C(d0) )

O
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