Convergence of a spectral method for the stochastic incompressible Euler equations
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 6, pp. 1993-2019

We propose a spectral viscosity method (SVM) to approximate the incompressible Euler equations driven by a multiplicative noise. We show that the SVM solution converges to a dissipative measure-valued martingale solution of the underlying problem. These solutions are weak in the probabilistic sense i.e. the probability space and the driving Wiener process are an integral part of the solution. We also exhibit a weak (measure-valued)-strong uniqueness principle. Moreover, we establish strong convergence of approximate solutions to the regular solution of the limit system at least on the lifespan of the latter, thanks to the weak (measure-valued)–strong uniqueness principle for the underlying system.

DOI : 10.1051/m2an/2022060
Classification : 35R60, 60H15, 65M12, 65M70, 76B03, 76D03
Keywords: Euler system, incompressible fluids, stochastic forcing, multiplicative noise, spectral method, dissipative measure-valued martingale solution, weak-strong uniqueness
@article{M2AN_2022__56_6_1993_0,
     author = {Chaudhary, Abhishek},
     title = {Convergence of a spectral method for the stochastic incompressible {Euler} equations},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1993--2019},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {6},
     doi = {10.1051/m2an/2022060},
     mrnumber = {4481119},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2022060/}
}
TY  - JOUR
AU  - Chaudhary, Abhishek
TI  - Convergence of a spectral method for the stochastic incompressible Euler equations
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2022
SP  - 1993
EP  - 2019
VL  - 56
IS  - 6
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2022060/
DO  - 10.1051/m2an/2022060
LA  - en
ID  - M2AN_2022__56_6_1993_0
ER  - 
%0 Journal Article
%A Chaudhary, Abhishek
%T Convergence of a spectral method for the stochastic incompressible Euler equations
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2022
%P 1993-2019
%V 56
%N 6
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2022060/
%R 10.1051/m2an/2022060
%G en
%F M2AN_2022__56_6_1993_0
Chaudhary, Abhishek. Convergence of a spectral method for the stochastic incompressible Euler equations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 6, pp. 1993-2019. doi: 10.1051/m2an/2022060

[1] E. J. Balder, Lectures on Young measure theory and its applications in economics. Rend. Istit. Mat. Univ. Trieste 31 (2001) 1–69. | MR | Zbl

[2] N. Bhauryal, U. Koley and G. Vallet, The Cauchy problem for a fractional conservation laws driven by Lévy noise. Stoch. Process. Appl. 130 (2020) 5310–5365. | MR | DOI

[3] N. Bhauryal, U. Koley and G. Vallet, A fractional degenerate parabolic-hyperbolic Cauchy problem with noise. J. Differ. Equ. 284 (2021) 433–521. | MR | DOI

[4] I. H. Biswas, U. Koley and A. K. Majee, Continuous dependence estimate for conservation laws with Lévy noise. J. Differ. Equ. 259 (2015) 4683–4706. | MR | DOI

[5] D. Breit and T. C. Moyo, Dissipative solutions to the stochastic Euler equations. J. Math. Fluid Mech. 23 (2021) 23. | MR | DOI

[6] D. Breit, E. Feireisl and M. Hofmanová, On solvability and ill-posedness of the compressible Euler system subject to stochastic forces. Anal. PDE 13 (2020) 371–402. | MR | DOI

[7] D. Breit and P. R. Mensah, Stochastic compressible Euler equations and inviscid limits. Nonlinear Anal. 184 (2019) 218–238. | MR | DOI

[8] D. Breit, E. Feireisl and M. Hofmanová, Stochastically forced compressible fluid flows. De Gruyter Series in Applied and Numerical Mathematics. De Gruyter, Berlin, Munich, Boston (2018). | MR

[9] Y. Brenier, C. De Lellis and L. Székelyhidi, Jr., Weak-strong uniqueness for measure-valued solutions. Commun. Math. Phys. 305 (2011) 351–361. | MR | Zbl | DOI

[10] Z. Brzezniak, E. Carelli and A. Prohl, Finite-element-based discretizations of the incompressible Navier-Stokes equations with multiplicative random forcing. IMA J. Numer. Anal. 33 (2013) 771–824. | MR | Zbl | DOI

[11] A. Chaudhary and U. Koley, A convergent finite volume scheme for stochastic compressible barotropic Euler equations, Submitted. Preprint 2022). | arXiv | MR

[12] A. Chaudhary and U. Koley, On weak-strong uniqueness for stochastic equations of incompressible fluid flow. J. Math. Fluid Mech. 24 (2022) 62. | MR | DOI

[13] E. Chiodaroli, E. Feireisl and F. Flandoli, Ill-posedness for the full Euler system driven by multiplicative white noise. Preprint 2019). | arXiv | MR

[14] E. Chiodaroli, O. Kreml, V. Mácha and S. Schwarzacher, Non-uniqueness of admissible weak solutions to the compressible Euler equations with smooth initial data. Preprint 2010). | arXiv | MR

[15] C. De Lellis and L. Székelyhidi, Jr., On admissibility criteria for weak solutions of the Euler equations. Arch. Ration. Mech. Anal. 195 (2010) 225–260. | MR | Zbl | DOI

[16] C. De Lellis and L. Székelyhidi, Jr., The h -principle and the equations of fluid dynamics. Bull. Amer. Math. Soc. (N.S.) 49 (2012) 347–375. | MR | Zbl | DOI

[17] R. J. Diperna, Measure valued solutions to conservation laws. Arch. Ration. Mech. Anal. 88 (1985) 223–270. | MR | Zbl | DOI

[18] E. Feireisl and M. Lukáčová-Medviová, Convergence of a mixed finite element finite volume scheme for the isentropic Navier–Stokes system via dissipative measure-valued solutions. Found. Comput. Math. 18 (2018) 703–730. | MR | DOI

[19] E. Feireisl, M. Lukáčová-Medviová and H. Mizerová, Convergence of finite volume schemes for the Euler equations via dissipative measure-valued solutions. Found. Comput. Math. 20 (2020) 923–966. | MR | DOI

[20] E. Feireisl, M. Lukáčová-Medvidová and H. Mizerová, 𝒦 -convergence as a new tool in numerical analysis. IMA J. Numer. Anal. 40 (2020) 2227–2255. | MR | DOI

[21] E. Feireisl, P. Gwiazda, A. Świerczewska-Gwiazda and E. Wiedemann, Dissipative measure-valued solutions to the compressible Navier–Stokes system. Calc. Var. Partial Differ. Equ. 55 (2016) 20. | MR | DOI

[22] F. Flandoli, An introduction to 3D stochastic fluid dynamics. SPDE in Hydrodynamic: Recent Progress and Prospects, Lecture Notes in Mathematics 1942 (2008) 51–150. | MR | Zbl

[23] N. E. Glatt-Holtz and V. C. Vicol, Local and global existence of smooth solutions for the stochastic Euler equations with multiplicative noise. Ann. Probab. 42 (2014) 80–145. | MR | Zbl

[24] M. Hofmanová, U. Koley and U. Sarkar, Measure-valued solutions to the stochastic compressible Euler equations and incompressible limits. Commun. Partial. Differ. Equ. Preprint 2022). | arXiv | MR

[25] M. Hofmanová, R. Zhu and X. Zhu, On ill- and well-posedness of dissipative martingale solutions to stochastic 3D Euler equations. Preprint 2020). | arXiv | MR

[26] A. Jakubowski, The almost sure Skorokhod representation for subsequences in nonmetric spaces. Theory Probab. Appl. 42 (1998) 164–174. | MR | Zbl | DOI

[27] T. Karper, A convergent FEM-DG method for the compressible Navier–Stokes equations. Numer. Math. 125 (2013) 441–510. | MR | Zbl | DOI

[28] J. U. Kim, Measure valued solutions to the stochastic Euler equations in d . Stoch. PDE: Anal. Comp. 3 (2015) 531–569. | MR | DOI

[29] U. Koley, A. K. Majee and G. Vallet, A finite difference scheme for conservation laws driven by Lévy noise. IMA J. Numer. Anal. 38 (2018) 998–1050. | MR | DOI

[30] U. Koley, A. K. Majee and G. Vallet, Continuous dependence estimate for a degenerate parabolic–hyperbolic equation with Lévy noise. Stoch. Partial Differ. Equ. Anal. Comput. 5 (2017) 145–191. | MR

[31] U. Koley, N. H. Risebro, C. Schwab and F. Weber, A multilevel Monte Carlo finite difference method for random scalar degenerate convection-diffusion equations. J. Hyperbolic Differ. Equ. 14 (2017) 415–454. | MR | DOI

[32] U. Koley, D. Ray and T. Sarkar, Multi-level Monte Carlo finite difference methods for fractional conservation laws with random data. SIAM/ASA J. Uncertain. Quantif. 9 (2021) 65–105. | MR | DOI

[33] S. Lanthaler and S. Mishra, Computation of measure-valued solutions for the incompressible Euler equations. Math. Models Methods Appl. Sci. 25 (2015) 2043–2088. | MR | DOI

[34] Y. Maday and E. Tadmor, Analysis of the spectral vanishing viscosity method for periodic conservation laws. SIAM J. Math. Anal. 26 (1989) 854–870. | MR | Zbl

[35] E. Motyl, Stochastic Navier–Stokes equations driven by Levy noise in unbounded 3d domains. Potential Anal. 38 (2012) 863–912. | MR | Zbl

[36] M. Ondrejt, Stochastic nonlinear wave equations in local Sobolev spaces. Electron. J. Probab. 15 (2010) 1041–1091. | MR | Zbl

[37] R. Peyret, Spectral Methods for Incompressible Viscous Flow. Appl. Math. Sci. 148 (2003) 56. | MR | Zbl

[38] V. Scheffer, An inviscid flow with compact support in space-time. J. Geom. Anal. 3 (1993) 343–401. | MR | Zbl | DOI

[39] S. Schochet, The rate of convergence of spectral-viscosity methods for periodic scalar conservation laws. SIAM J. Numer. Anal. 27 (1990) 1142–1159. | MR | Zbl | DOI

[40] E. Tadmor, Convergence of spectral methods for nonlinear conservation laws. SIAM J. Numer. Anal. 26 (1989). | MR | Zbl | DOI

[41] E. Tadmor, Shock capturing by the spectral viscosity method. Comput. Methods Appl. Mech. Eng. 80 (1990) 197–208. | MR | Zbl | DOI

[42] E. Tadmor, Total variation and error estimates for spectral viscosity approximations. Math. Comput. 60 (1993) 245–256. | MR | Zbl | DOI

[43] G. Vallet and A. Zimmermann, Well-posedness for nonlinear SPDEs with strongly continuous perturbation. Proceedings of the Royal Society of Edinburgh: Section A Mathematics. DOI: (2020). | DOI | MR

Cité par Sources :