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CONVERGENCE OF A SPECTRAL METHOD FOR THE STOCHASTIC
INCOMPRESSIBLE EULER EQUATIONS

ABHISHEK CHAUDHARY '*

Abstract. We propose a spectral viscosity method (SVM) to approximate the incompressible Euler
equations driven by a multiplicative noise. We show that the SVM solution converges to a dissipative
measure-valued martingale solution of the underlying problem. These solutions are weak in the prob-
abilistic sense i.e. the probability space and the driving Wiener process are an integral part of the
solution. We also exhibit a weak (measure-valued)-strong uniqueness principle. Moreover, we establish
strong convergence of approximate solutions to the regular solution of the limit system at least on
the lifespan of the latter, thanks to the weak (measure-valued)-strong uniqueness principle for the
underlying system.
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1. INTRODUCTION

Fluid dynamics is one of the most demanding research areas in mathematics and motivates many questions
in stochastic analysis. Since the equations of turbulence are very difficult to examine, many researchers are
interested to study the classical models which capture some of the phenomena of turbulence in a more tractable
mathematical reference. One typical example is the Euler equations for the motion of an inviscid incompressible
fluid which have an intensive role in geophysics; in science; in meteorology; in engineering; in aerospace; in
astrophysics and of course, in mathematics where advanced techniques for existence and uniqueness provide
important mathematical tool and new theoretical insight. Stochastic partial differential equations (SPDEs) is
a subject that has been the focus of much activity during the last decade. Stochastic deformation of classical
mechanics is a challenging area in which interactions with stochastic analysis are substantial. To accommodate
external influence for which a precise model is missing, it is natural to consider a stochastic version of the Euler
equations.

In this article, we consider the stochastic Euler equations governing the time evolution of the velocity u and
the scalar pressure field II of an inviscid fluid on the three-dimensional torus T3. The system of equations reads
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du(t, z) + [div(u(t, ) @ u(t,x)) + VII(t, z)] dt = o(u(t, z)) dW (1), in (0,7) x T3,
divu(t,z) =0, in (0,7) x T3, (1.1)
u(0,x) = ug(x), in T3

where T' > 0 fixed, ug is given initial data. Let (97}', (ft)tzo,P) be a stochastic basis, where (Q,]—', ]P’) is
a probability space and (F;);>o is a complete filtration with the usual assumptions. We assume that W is a
cylindrical Wiener process defined on the probability space (€2, F,P), and the coefficient o is generally nonlinear
and satisfies suitable growth assumptions (see Sect. 2.1 for the complete list of assumptions). In particular, the
map u — o(u) is a Hilbert space valued function signifying the multiplicative nature of the noise.

1.1. Euler equations

The Euler equations are the classical model for the motion of an incompressible, inviscid, homogenous fluid.
The addition of stochastic terms to the governing equations is commonly used to account for empirical, numer-
ical, and physical uncertainties in applications ranging from climatology to turbulence theory.

In the deterministic setup, for general initial data, global existence of a smooth solution remains a well-known
open problem for the Euler equations and also their dissipative counterpart, the Navier—Stokes equations. Non-
uniqueness of solutions for Euler equations was shown for the first time by Scheffer [38] who constructed a
nontrivial weak solution of the 2D incompressible Euler equations with compact support in time. Later, De
Lellis, Székelyhidi [15,16] and Chiodaroli et al. [14] established groundbreaking results, that confirms infinitely
many weak solutions can be constructed for the Euler equations in three dimensions. In these works, the method
of so-called convex integration was used to prove the non-uniqueness of weak solutions to Euler equations.
Furthermore, non-uniqueness results were established among weak solutions with dissipating energy, which is
one of the well-accepted criteria for the selection of physically relevant solutions. In quest for a global-in-time
solution, DiPerna [17] proposed a new concept of solution, known as a measure-valued solution, for the non-
linear system of partial differential equations admitting uncontrollable oscillations. Moreover, Brenier et al. [9]
proposed a new approach, seeing the measure-valued solutions as possibly the largest class, in which the family
of smooth solutions is stable. In particular, they showed the so-called weak (measure-valued)-strong uniqueness
principle for the incompressible Euler equations. More specifically, a classical and a measure-valued solution
emanating from the same initial data coincide as long as the former exists. Following the philosophy of Brenier
et al. [9], we focus on the concept of measure-valued solution in the widest possible sense.

In the stochastic set-up, Glatt-Holtz and Vicol [23] obtained local well-posedness results for strong solutions of
the stochastic incompressible Euler equations in two and three dimensions, and global well-posedness results in
two dimensions for additive and linear multiplicative noise. Local well-posedness results for the three-dimensional
stochastic compressible Euler equations were proved by Breit and Mensah [7]. Moreover, the convex integration
method has already been applied in stochastic setting, namely, to the isentropic Euler system by Breit, Feireisl
and Hofmanova [6] and to the full Euler system by Chiodaroli, Feireisl and Flandoli [13]. There have been
many attempts to define a suitable notion of measure-valued solutions for the stochastic incompressible Euler
equations driven by additive noise, starting from the work of Kim [28], Breit & Moyo [5], and most recently
by Hofmanova et al. [25], where the authors introduced a class of dissipative solutions which allowed them to
demonstrate weak-strong uniqueness property and non-uniqueness of solutions in law. However, none of the
above-mentioned frameworks can be applied to (1.1), since the driving noise is multiplicative in nature. We also
mention recent work [11,12,24] on the Euler equations driven by a multiplicative noise.

1.2. Spectral method

The prototype of spectral methods for the solution of differential equations is the well-known Fourier method
which consists of representing the solution as a truncated series expansion, the unknowns being the expansion
coefficients.

Spectral methods have emerged as a powerful computational technique for the simulation of complex, smooth
physical phenomena. Among other applications, they have contributed to our understanding of turbulence
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by successfully simulating incompressible turbulent flows which have been extensively used in meteorology,
geophysics and have been recently applied to time-domain electromagnetic fields (see [37]). The spectral method
may be viewed as an extreme development of the class of discretization schemes for non-linear differential
equations. We refer to [34,39-42] for spectral method related articles.

We also mention the work of Eitan Tadmor [40] in which he discussed behavior and convergence of Fourier
methods for scalar nonlinear conservation laws that exhibit spontaneous shock discontinuities. Mishra et al.
[33] combined the spectral (viscosity) method and ensemble averaging to propose an algorithm that computes
admissible measure-valued solutions of the incompressible Euler equations.

1.3. Aim and scope of this paper

In view of the wide usage of stochastic fluid dynamics, there is an essential need to improve the mathematical
foundations of the stochastic partial differential equations of fluid flow, and in particular to study inviscid models
such as the stochastic incompressible Euler equations. Spectral methods based on projecting into a finite number
of Fourier modes are widely employed particularly in the simulation of flows with periodic boundary conditions,
while finite difference and finite element methods are very useful when discretizing the Euler equations in a
domain with complex geometry. In that context, we mention the work of Brzézniak [10] where the author studies
finite-element-based space-time discretizations of the incompressible NavierStokes equations with noise. In the
context of compressible flow, we first mention the work of Karper [27], where he has shown the convergence
of a mixed finite element-discontinuous Galerkin scheme to compressible Navier—Stokes system. Subsequently,
a series of works [18-20] by Feireisl et al. analyzed convergence issues for several different numerical schemes
via the framework of dissipative measure-valued solutions. In [12], the authors proved the existence of measure-
valued solutions by showing that weak martingale solutions of the stochastic Navier—Stokes equations converge
to a measure-valued solution of (1.1) as the viscosity tends to zero. But in this work, formulation of measure-
valued solutions is slightly different from the given formulation in [12] (see Def. 3.1). In fact, in comparison to
previous work [12], the main novelty of this work lies in successfully handling the multiplicative noise term.
Note that our work bears some similarities with the recent work of Mishra et al. [33] on the deterministic system
of the Euler equations. However, our problems need to invoke ideas from spectral methods for deterministic
problems and meaningfully fuse them with available approximation methods for SDEs. Indeed, this means that
one needs to handle noise-noise interaction terms carefully. In the realm of stochastic conservation laws, noise-
noise interaction terms play a fundamental role to establish the well-posedness theory, for details see [2—4,29-32].
The main contributions of this article are as follows:

(1) We study the convergence of the spectral method for the incompressible Euler equations driven by a multi-
plicative noise. The Cauchy problem for the Euler equations is in general ill-posed in the class of admissible
weak solutions. This suggests there might be sequences of approximate solutions that develop fine-scale
oscillations. Accordingly, the concept of a measure-valued solution that captures possible oscillations is
more suitable for analysis. We show that the sequence of approximate solutions converges to a dissipative
measure-valued martingale solution to the stochastic Euler equations.

(2) In view of the new framework based on the theory of measure-valued solutions, we adapt the concept of
KC-convergence, first developed in the context of Young measures by Balder [1] (see also Feireisl et al. [20]),
to show the pointwise convergence of arithmetic averages (Cesaro means) of approximate solutions to a
dissipative solution of the limit system (1.1).

(3) We show that dissipative measure—valued martingale solutions satisfy a weakstrong uniqueness principle.
More precisely, if for some initial data there is an analytically strong solution (defined up to a stopping
time), then it coincides with all dissipative measure-valued martingale solutions having the same initial
data.
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(4) When solutions of the stochastic incompressible Euler system possess maximal regularity, by making use
of weak (measure-valued)-strong uniqueness principle, we show unconditional strong L'-convergence of
approximate solutions to the regular solution of the limit system.

The paper is organized as follows. In Section 2, we first introduce mathematical setting, assumptions, and
preliminary results. Then, we introduce the definition of dissipative measure-valued martingale solutions for
the incompressible Euler system driven by a multiplicative noise, keeping in mind that this framework would
allow us to establish weak (measure-valued)-strong uniqueness principle, and state the main results of this
article in Section 3. In Section 4, we give details of the spectral viscosity method to approximate the stochastic
incompressible Euler equations. In Section 5, we prove the convergence of the spectral method in which we
present a proof of convergence of approximate solutions to a dissipative measure-valued martingale solution
using stochastic compactness method. In Section 6, we use the concept of K-convergence to exhibit the point-
wise convergence of approximate solutions. Section 7 is devoted to deriving the weak (measure-valued)-strong
uniqueness principle by making use of a suitable relative energy inequality. Finally, in Section 8, we make use
of weak (measure-valued)-strong uniqueness property to show the convergence of approximations to the regular
solution of the stochastic incompressible Euler system (1.1).

2. MATHEMATICAL SETTING

Function spaces: Let C57, (T?; R?) be the space of infinitely differentiable 3-dimensional vector fields u on T3,
satisfying V-u = 0.
O35, (T% B®) = {p € C®(THRY) : V- = 0},
L3 (T3 R?) = elpa(ps)C5n (T% R?) = {p € L*(T%;R?) : V- = 0},
Helmbholtz projection: An important consequence of elliptic theory is the existence of the Helmholtz decom-
position. It allows to decompose any vector-valued function in L?(T?;R?) into a divergence free part and a

gradient part. Set
(L3, (T?R?)® = {u € L*(T* R%)[u = V¢, ¥ € H'(T%R)}

The Helmholtz decomposition is defined by
u="Pyu+ Quu, for any uec L*(T3R?),

where Py is the projection from L?(T?;R3) to L2, (T?;R?) and Qy = [— Py is also projection from L*(T?;R?)
to (L3, (T3;R3))L. Note that L?(T3;R?) admits a decomposition

L*(T% R®) = L3, (T3 R*)@(L3;, (T R?)) ..

This decomposition is orthogonal with respect to L?(T3; R3)-inner product. By property of projection Py, we
have for u € L?(T3;R3)

(P, ) = (wu),  forall i € L3, (T% RY). (2.1)

2.1. Stochastic framework

Here we specify details of the stochastic forcing term.
Brownian motions: Let (Q, F, (F;)i>0,P) be a stochastic basis with a complete, right-continuous filtration.
The stochastic process W is a cylindrical (F;)-Wiener process in a separable Hilbert space 4. It is formally
given by the expansion

W(t)=> exWi(t),

k>1
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where {Wj}i>1 is a sequence of mutually independent real-valued Brownian motions relative to (F;):>0 and
{ek}r>1 is an orthonormal basis of 4. Finally, we define the auxiliary space ty D i via

2
U = {11: Zﬂkek; Z% < 00}7
k>1 k>1

endowed with the norm

52
[l =S 25 u=3" ther.

E>1 k>1

Note that the embedding il — £l is Hilbert—Schmidt. Moreover, P-a.s., trajectories of W are in C([0,T]; o).

Multiplicative noise: For each u € L?(T?; R?), we introduce a mapping o(u) : & — L?(T3;R3) given by
o(u)ep = op(u()).

In particular, we suppose that the coefficients oy : R?* — R3 are C''-functions that satisfy the following condi-
tions, for every &,( € R3,

S [0k (€)? < Do(1 + [€), (2.2)
k>1
> low(€) — or(Q)* < Dyl€ ¢ (2.3)

k>1
The assumption (2.2) imposed on ¢ implies that
o L*(T3R3) — Ly(4; L*(T3; R?)),

where Lo(4; L?(T3;R?)) denotes the space of Hilbert-Schmidt operators from 4 to L?(T?;R?®). Thus, given a
predictable process u € L?(Q; L?(0, T; L(T3;R?))), the stochastic integral

[otw aw =3 [ ouu) aws

k>1
is a well-defined (F;)-martingale taking values in L?(T?;R?); see Section 2.3 of [8] for a detailed construction.

2.2. Preliminary results

Modified version of Jakubowski-Skorokhod theorem: Note that, strong convergence of approximate
solutions in w variable plays a pivotal role in the upcoming analysis. In that context, we need Jakubowski-
Skorokhod theorem, delivering a new probability space and new random variables, with the same laws as the
original ones, converging almost surely. However, for technical reasons, we have to use a modified version of
Jakubowski-Skorokhod theorem Corollary 7.3 of [35] which is stated below.

Theorem 2.1. Let (2, F,P) be a probability space and S1 be separable metric space and So be a quasi-polish
space (there is a sequence of continuous functions hy, : Sa — [—1,1] that separates points of Sz). B(S1) ® Sy is
sigma algebra associated with product space S1 X Sa, where Sy is the sigma algebra generated by the sequence of
hn. Let Uy : Q@ — S1 x So, n € N, be a family of random variables, such that the sequence {Law(U,) : n € N}
1s weakly convergent on S1 X So. For k=1,2, let m; : S1 X Sy be the projection onto S;, i.e.

UZ(U1,U2) €5 XSQ'—)Wi(U)ZUi € S;.

Finally let us assume that there exists a random variable X : Q — Sy such that Law(n(U,)) = Law(X), Vn € N.
Then, there exist a probability space (Q,F,P), a family of S1 x Sz2-valued random variables {U, : n € N}, on
(Q, F,P) and a random variable U : Q — S7 x S such that
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1. éaw(ff) Law(Up)Vn eN;
2. Up > UinSy X S3, P — a.s.
3. m(Up) (@) = m(U) (@), Vi € Q.

3. DEFINITIONS AND MAIN RESULTS

3.1. Dissipative measure-valued martingale solutions

We are ready to introduce the concept of dissipative measure—valued martingale solution for the stochastic
incompressible Euler system. In what follows, let M = R? be the phase space associated to the incompressible
Euler system.

Definition 3.1 (Dissipative measure-valued martingale solution). Let A be a Borel probability measure on

L3, (T3). Then [(Q,f, (}'t)tzo,]P’);V;fm,W, )\c,)\p,'H] is a dissipative measure-valued martingale solution of

(1.1), with initial condition Vg, ; if

(a) V¥ is a random variable taking values in the space of Young measures on L ([0, 7] x T?; P(M)). In other
words, P-a.s. V¢, : (t,2) € [0,T] x T?> — P(M) is a parametrized family of probability measures on M,

(b) (2, F,(Fi)i=0,P) is a stochastic basis with a complete right-continuous filtration,

(¢) W is a (Fy)-cylindrical Wiener process in 4,

(d) the average velocity (Vi,;u) ? satisfies, for any ¢ € C35,(T%R3?), ¢t — (Ve u)(t,), ) € C([0,T];R?),
P-a.s., the function ¢ — <<Vth7 u)(t,-), @) is progressively measurable, and for any ¢ € C*(T?),

[ Wi Vapds =0
T3

for all t € [0,T], P—a.s., and
B| sup (VR0 | <o
te(0,T) v

for all 1 <p < oo,

(e) A= L[V5:w],
(f) the integral identity

[z pdo= [ 0 eda

// Visu@u): mgodxdtJr/ / Vo) - pdW(t dx+// Vet dAc,
T3 T3 T3

holds P-a.s., for all 7 € [0,7), and for all ¢ € C53 (T3;R?), where A¢ : Q — L2, ([0, T]; M, (T3; R3 x R3)) is
a random variable®; A¢ is called tensor-valued random concentration defect measures;
(g) there exists a real-valued square integrable continuous martingale M?%, such that the following inequality

E(t4) < Z//T Ve ilok(w)?) dedr

k>1

(3.1)

. . (3.2)
2 1 9
_,Z/ (Qn (Vi loww)])) dxdr+§/ d)\p+/ dM2,
k>178 Tf’ s JT3 s
2Here Ve F(w)) == [ F(w)dVy, (u), for any measurable function f.

3For any ¢ € L* ([o,T); C(T3; R3 x R3)), (Ac,¥) : @ — R is a random variable.
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holds P-a.s., for all 0 < s<t € (0,T) with

E(t—) = l’m'nfl/t / Pw ul® dz + H(s) | ds
o i%é* T Ji—r T3 5% 2
|u

2
o 1 t+r |2
E(t+) := lfﬁéﬂlf ) </’J1‘3 <V57$; 2> dz + H(s)) ds

Here Ap : Q — L2, ([0,T]; M(T?)) is a random variable?,
H e L*>*(0,T), H > 0, P-almost surely, and

E[ sup H(t)] < oo,
t€(0,7T)

with initial energy
1
£(0-) = / L aol? da,
Ts 2

(h) there exists a constant C' > 0 such that

/OT/W dIAc|+/OT/T3 d[Ap| SC/OTH(t)dt, (3.3)

Remark 3.2. Notice that, a standard Lebesgue point argument applied to (3.2) reveals that the energy inequal-
ity holds for a.e. 0 < s <t in (0,7):

w ‘u‘Z w |u|2 1 ‘ w 2
T Vt,ac; 7 dz + H(t) < s Vs,ac; 7 dz + H(S) + 5 Z < Jrs <V‘r,x; |Gk(u)| > dxdr

E>1

1 ¢ 2 1 t t
_52/3 /T (Qn (V. losw)])) dxd7+§/s ng)\p+/s Mz, P a.s. (3.4)

E>1

P-as., for every 7 € (0,T).

However, as it is evident from Section 7, we require energy inequality to hold for all s,t € (0,T) to demonstrate
weak-strong uniqueness principle.

Remark 3.3. Note that the above solution concept differs from the dissipative martingale solution concept
Definition 3.1 of [25] introduced by Hofmanova et. al. Indeed, the main difference lies in the successful identifi-
cation of the martingale term present in (3.1), thanks to the weak continuity of It6 integral. Energy inequality
(3.2) also differs from that of Definition 3.1(M3) of [25].

3.2. Strong pathwise solutions

We are also interested in establishing weak (measure-valued)-strong uniqueness principle for dissipative
measure-valued solutions to (1.1). Since such an argument requires the existence of a strong solution, therefore,
we first recall the notion of a local strong pathwise solution for the stochastic incompressible Euler equations.
We remark that such a solution can be constructed on any given stochastic basis, that is, solutions are proba-
bilistically strong, and satisfies the underlying equation (1.1) pointwise (not only in the sense of distributions),
that is, solutions are srtong from the PDE standpoint. Existence of such a solution was first established by
Glatt-Holtz & Vicol in [23].

4For any ¢ € L! ([0,7]; C(T3;R)), (Ap, ¢) : @ — R is a random variable.
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Definition 3.4. (Local strong pathwise solution). Let (Q,F,(F:):t>0,P) be a stochastic basis with a
complete right-continuous filtration, and W be an (F;)-cylindrical Wiener process in . Suppose that p >
2, m> % + 1. Let ug be a W27 (T3; R3)-valued Fy-measurable random variable. Then (u, t) is said to be a local
strong pathwise solution to the system (1.1) provided

(a) tis an a.s. strictly positive (F;)-stopping time;
(b) the velocity u is a WP (T?)-valued (F;)-predictable measurable process satisfying
u(- At) € C([0,T); WiLP(T? R?))  P-as.;

(c) forallt > 0,

tAL tAL
u(tAt) =ug — / Pr(u-Vu)ds + / Pro(u) dW. (3.5)
0 0

It is evident that classical solutions require spatial derivatives of the velocity field u to be continuous P-a.s. This
motivates the following definition.

Definition 3.5. (Maximal strong pathwise solution). Fix an initial condition, and a complete stochastic
basis with a cylindrical Wiener process as in Definition 3.4. Then a triplet

(u, (Tr) Ren, t)
is said to be a maximal strong pathwise solution to system (1.1) provided

(a) tis an a.s. strictly positive (Fy)-stopping time;
(b) (Tr)Ren is an increasing sequence of (F;)-stopping times such that B}im TR = t a.s. and
—00

sup [[u(t)|[wie(rs;rsy > R on [t < T7; (3.6)
t€[0,7r]

(¢) each pair (u,7gr), R € N, is a local strong pathwise solution in the sense of Definition 3.4.

3.3. Statements of main results

We now state the main results of this paper. To begin with, regarding the existence of dissipative measure-
valued martingale solutions, we have the following result.

Theorem 3.6 (Existence of measure-valued solutions). Let uy € L3, (T3;R3). Then approzimating solu-
tions u,, resulted by the spectral viscosity method (4.4) (semi-discrete scheme) generate a dissipative measure-
valued martingale solution [((Nl,]?, (ft)tzo,@);f);jx, W,AC,AD,H] in the sense of Definition 3.1 to the incom-
pressible Euler system (1.1).

Next, we make use of the K-convergence in the context of Young measures to conclude the following pointwise
convergence of averages of approximate solutions to a dissipative martingale solution to (1.1).

Theorem 3.7 (Point-wise convergence to a dissipative solution). Suppose that the approximate solu-
tions u,, to (4.4) for the stochastic Euler system generate a dissipative measure-valued martingale solution
[((NZ,]?, (ﬁt)tzo,ﬁ”);]j;‘jx,w,)\c, /\D,'H] in the sense of Definition 3.1. Then there exists a sequence of approxi-
mate solutions 0, to (4.4) on probability space (ﬁ,]?, (ﬁt)tzo,@) for which following holds true,
1. P-a.s.
U — (Vi) in Cu((0,T), Ly (T% RY)),
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2. ]f”—a,s., there exists subsequence Uy, such that
1
~ 35 ~ ; 3
NZUM — (V¢pa), as N — 00 a.e. in (0,T) x T
k=1

Theorem 3.8 (Weak-strong uniqueness). Let [(Q,]—', (ft)tsz);Vt"fw,VV, )\c,/\p,H} be a dissipative
measure-valued martingale solution to the system (1.1). On the same stochastic basis (Q,}', (ft)tzo,]P’), let
us consider the unique mazimal strong pathwise solution in sense of Definition 3.5 to the Fuler system (1.1)
given by (@, (tr)ren, t) driven by the same cylindrical Wiener process W with the initial data u(0) satisfying

Vo = 0a(0.0), P — a.s., for a.e. x € T3.
Then, P-a.s. a.e. t € [0,T], H(t Atg) =0, and P — a.s.,

intm.x = Ou(tAtg,a)s Jor a.e. (t,z) € (0,T) x 3.

Finally, making use of the weak (measure-valued)-strong uniqueness principle (¢f. Thm. 3.8), we prove the
following result justifying the strong convergence to the regular solution.

Theorem 3.9 (Strong convergence to regular solution). Let uy € L2, (T3 R?). Suppose that the approz-
imate solutions u,, to (4.4) for the stochastic Euler system generate a dissipative measure-valued martingale
solution [(5,.7::, (ﬁt)tzo,ﬂ});17;‘,’37,[7/,)\@,)\@,7'(] in the sense of Definition 3.1. In addition, let the Fuler equa-
tions (1.1) possess the unique strong (continuously differentiable) solution (a,(tr)gren,t) = (@, (tr)ren,t),
emanating form the initial data (1.1). Then there exists a sequence of approximate solutions u, to (4.4) on
probability space (Q, F, (.%t)tzo,fﬁ’) such that P-a.s.

U, (- Atg) — (- A tg) weakly-(*) in L>=(0,T; L3, (T* R*)) and strongly in L*((0,T) x T?;R?).

4. FOURIER METHOD FOR THE INCOMPRESSIBLE EULER SYSTEM

We demonstrate the abstract theory applying the results to the approximate solutions resulting from the
Fourier approximation of the Euler system.

(1) Existence of approximate solutions. First, we recall the existence of the Fourier approximate solutions
u,, of the semi-discrete scheme in Fourier mode for any discretization n € N. Here we introduce a kind of
spectrally accurate vanishing viscosity to augment the Fourier approximation of such nonlinear equations.

(2) Stability and a priori bounds. We assure that the scheme is energy dissipative. We recover required
energy bounds from energy inequality.

(3) Consistency. We provide a consistent formulation and establish suitable bounds on the error terms.

(4) Convergence of spectral method. Using the stochastic compactness technique we show that approxi-
mate solutions generate a dissipative measure-valued martingale solution. The proof relies on a compactness
argument combined with JakubowskiSkorokhods representation theorem. Due to the limited compactness
of the Euler system, it is necessary to work with dissipative rather than analytically weak solutions.

4.1. Preliminaries for spectral method

We begin by reviewing some basic tools associated with the spectral method.

Fourier Coefficient: Consider the spatial Fourier expansion u(z,t) = Y, U (t)e’*® with coefficients Uy, given
by

u(t) = /IFS u(z,t)e* dg,
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Truncation Operator: Truncation Operator 7, project vector field of the form u = ), Uy (t)e™® to
21k <n Uk (t)e’** (only Fourier modes below threshold n). That is

To(uw) = > dg(t)e’*”

|k| <n

Projection Operator: We know Helmholtz projection project vector field u = >, Uy (t)e™** to divergence-free
vector field given by

ko
PH(u) = Z (U.k — %k)eikw
k

Here we consider finite trunction of Holmoltz Projection as Py given by

Pn(u) = T, (Pr(un)) = Z (T — ﬁ|z|'2kk)eik-x

[kI<N
yielding a divergene-free vector field with Fourier modes |k| < N. We also define
Qn.m (u) =T, (u) — Pp(u)
where m<n and Q,, shows the projection onto upper modes.

4.2. Semi-discrete scheme for spectral method
We propose a spectral viscosity method (SVM) to approximate the stochastic incompressible Euler equations
and prove that SVM solution converges to a dissipative measure-valued martingale solution.

Motivation: To motivate the semi-discrete scheme, let (u,II) be solutions to (1.1) with periodic boundary con-
ditions. We focus on the spectral method based on the Fourier expansion and at the heart of a spectral method
lies the assumption that the solutions u(z,t) can be expressed by a series of smooth basis functions. So we con-
sider the spatial Fourier expansion u(z,t) = >, Gx(t)e™*®, B(u(z,t)) = u(z,t) - Vyu(z,t) =3, By (u)(t)etr =
and o;(u(z,t)) = 3, 7k (u)(t)e?**. Therefore divergence free condition gives that

i (k) - k)e™ =0 <= p(t) k=0VEk (4.1)
k

In terms of Fourier coefficients we have equation (1.1) in this form

iy (1) + By (u)(t) dt + ik (t) dt =Y 7 (w) (£)dW; (4.2)
j=z1
Take dot product of (4.2) with k and used (4.1), therefore
Bi(u) - kdt +ilk[*T, dt = > 54 (u) - kdW;
i>1
Eliminate pressure term from (4.2) using above expression,

Ek(u) -k

e k)dt = (G;k(u) - Mlﬂ)de (4.3)

diig + (By(u) - T
ji>1

For the coefficient U, with k=0, we can assume that fﬂ,s ugdx = 0.
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Semi-discrete scheme: To obtain a semi-discretized approximation to system (1.1), we restrict our atten-
tion to only the Fourier modes below some threshold n. In fact, we consider velocity field of the form
u, = Z\k\i ., Ug e"*%_In what follows, we will consider the following spectral vanishing viscosity scheme for the
stochastic incompressible Euler equations:

(4.4)

du, + Pr(u, - Vu,) dt = ediv(Qn mVun) dt + Pro(u,)dW
u,,(0) = 7 (o)

In this scheme, we adopt a small € := £(n) (¢(n) — 0 asn — oo) and an integer m<n. Here the integer m
handles as a threshold between small and large Fourier modes. We have also added a small amount of numerical
viscosity to ensure the stability of the resulting scheme. The idea behind the SVM is that dissipation is only
applied on the upper part of the spectrum (m<n). Above system includes following Navier—Stokes system (for
example m = 0).

(4.5)

du, + P,(u, - Vu,) dt = ¢ Au,, dt + Pro(u,)dW
u,, (0) = 7 (uo)

Existence of approximate solutions u,: The existence of solutions u,, to (4.4) is classical and relies on
a priori bounds that are established using the cancellation property. For a proof, one can follow the similar
approach as proposed in [22].

4.3. Stability and energy bounds

Energy inequality for u,: We derive the energy inequality from the scheme. In fact, the energy inequality
is a direct consequence of the It6 formula.

Lemma 4.1. Let u, be the solution of the semi-discrete scheme (4.4). Then, P-a.s., for all s <t,

S0 Oy +2 [ 1@ (V) sz
1t
Sz + [ [ ) Pt eDAW )+ 3 [ Pt vy . (40
In particular, P-a.s., for all t € [0,T]
1 2 ' 2
§Hun(t)||L2(1r3;1R3) te : 1Qn,m (Vun (7)) 172 (ps 3y AT
1 ) ! 1 [ 2
< Sllao(s) 122 rape) + ) Un(7) - P (o (un(7))dW(T) + 5 ; [Pr o (n(TIDIT, (1,22 (1 2 dwdT. (4.7)
Proof. Apply Ité formula to F(u) = %HuHQLQ(Tg,Rg), we get P-a.s., for all s<t € [0,T]
Hun HLQ(Ts R3) —*||un( HL2(T3 R3) — / / w, - Pp(u, - Vuy,) — ey, - div(Qn,m Vuy,)) dxdr

//Tdun. (o(w))dad W (7 /HP )2, e oo dr,  (48)

/ u, - Pu(uy, - Vu,)de = / u, - (up - Vu,)de = / div(l\un|2un) dx =0, (4.9)
T3 T3 T3 2
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6/ u, - div(Qy mVu,)dx = —¢ Vu, : QpmVu,dz = —E/ QnmVu, : @, »Vu, dz
T3 T3 T3

— / Qo (Vi) da. (4.10)
T.’i

By using (4.8)—(4.10), we get (4.6).
To prove the second part (4.7), we use the fact that ||7;L(u0)||%2(T3;R3) < ||u0||%2(T3;R3). This finishes the
proof. (I

A priori estimates: In what follows, we can now derive a priori bounds from the above energy inequality.
Indeed, after taking p—th power and expectation of both sides (4.7), making use of Gronwall’s and BDG
inequality, we immediately get the following uniform bounds in n, for all p > 1,

E[t:&l}pﬂ Hun(t)”igiv(w;u&?’)] < ||u0||1£2(1r3;11g3)~ (4.11)

4.4. Consistency formulation

In this section, our aim is to prove the consistency of the momentum equation. Indeed, we demonstrate a
consistency formulation and derive suitable bounds on the error terms. The consistency formulation of semi-
discrete scheme for the incompressible Euler equations reads, for all ¢ € [0,T], P-a.s.

<lln(t), §0> = <7;L(u0)7 90> + A <un @ Uy, v§0>d5 + /O <U(un)a Lp>dW(8) + R (’I”L, L, 90) —|—N(’FL, m,t, 90)’ (412)

where R1(n,t, ), N(n,t,m, ) satiesfies P-a.s

t
Rinitig) == [ [ V=P (an o u,) duds,
0 T3

t
N(n,m,t, ) := s/ / (I—Pm)Ap - u, dzds,
o Jrs
Ri(n,t, )| < Cr s [an |2 po o) 1T = Pa) @l /2 rs sy
telo,

‘N(TL, m, t, (P)| S CT g S[u}:,)T] ||unHL2(T3;R3) H(H — Pm)QO”HZ('HG;]R:S).
telo,

To establish this, we procced with each term step by step and estimate the consistency errors. For that, let
@ € O (T3;R3) be a divergence free test function. Then

div
Convective term:

/<P~Pn(unVun)d$:/ div(un @ un) - @ dx+Ra(n, t, )
T3 T3

where R estimated as follows
t t
Ri(n,t, ) = / / @Pyp(u, - Vu,) dzds — / / div(u, ® uy,) - ¢ dxds
0 JT3 o J13
t t
= / / @ - Pp(div(u, @ uy,)) daeds — / / div(u, ® u,) - pdxds
o Jr? o Jrs
¢
=— / @ - div((I = Py)(up ® u,)) dxds
o Jrs
t
= / Ve: (I-P,)(a, ®u,)dzds
o Jr2

t
= / VI-P,)e: (u, ®u,)dzds
o J3
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It implies that

t
|R1(nat><P)|§/ [ [l Lo (v [un | 2 crere) [ V(I = Pr) |l L2 (re;r2) ds
0

< Crn'? sup [ wn(6)]72(rsp0) | V(T = Po)pll 22 (15:29)
t€[0,T]

Cr sup || wn(8)]172 a0 | (T = Pr)@ll mra/2 (rs )
t€[0,T]

IN

where H(H — P7L)90||H3/2(']1'3;R3) — 0asn — oo.

Diffusion term:

¢ t
N(n,m,t,p) = E/ / div(Qn,mVu,) - ¢ dxds = 5/ / div(lT — Pm)Ve - u, dxds
0 T3 0 T3

t
:6//(H7Pm)A4p~undde
o J3

It implies that

N o) < Cre sup a0z 0= Pl e
te(0,T

Stochastic term:

/Ot/TgSO-Pna(un)dxdW(s) :/Ot/wso. () dadiV(s).

5. CONVERGENCE OF SPECTRAL METHOD

In this section, we discuss the tools required for the proof of convergence of the scheme. In fact, our aim is
to verify the passage to the limit which in turn gives the existence of a dissipative measure-valued martingale
solution to the original equation. Nevertheless, the limit argument is quite technical and has to be done in
several steps. It is based on the compactness method: the uniform energy estimates yield tightness of sequence
of approximate solutions and thus, on another probability space, this sequence converges almost surely, thanks to
the Jakubowski-Skorokhod representation theorem. Let us now prepare the setup for our compactness method.
To establish the tightness of the laws generated by the approximations, let us define the path space K to be the
product of the following spaces:

Ku = Cu([0,T); LE;, (T*; R?)), Kw = C([0,T]; Uo),

Ke = (L>(0,T; My(T?; R? x R?)), w*), Ke = (L(0,T; My(T?)), w*),

Kp = (L(0,T; My(T?)), w") Ky = (L2((0,T) x T? P(R%)), w*),

Kg = (L>(0,T; My(T?)), w*), Ka = C([0,T};R).
Let us denote by Ay, , and A\, respectively, the law of u,, and W,, on the corresponding path space. Moreover,
let Ay, denotes the law of martingales N, (t) == > .+, fot Jps Un - Prok(u,) dW on the corresponding path

space. Furthermore, let Ac,, Ap,, A¢g,, and Ay, denote the law of

n? n?

e ._ 1 2 . 1 2 . . 1 2
Cp=u,®u,, D,:= 5}; lok(un)|®, &= §|un\ , Vo :=06u,, Gn:= 5};1 |Qnor(uy,)|”,

respectively, on the corresponding path spaces. Finally, let A™ denotes the joint law of all the variables on K. To
proceed further, it is necessary to establish tightness of {\"; n € N}. To this end, we observe that the tightness
of A\ is immediate. So we show the tightness of other variables. We can easily prove the following uniform
estimate which helps to conclude that laws given by approximate solutions are tight.
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Lemma 5.1 (Compactness in time). Let u,, be the solution of the semi-discrete scheme (4.4). Then there
exists O<a< 5, C>0 such that, for ’y> , T>2

E[llunllca o, 1), w—r2(r3m3))] < C, (5.1)
and
H/ / u, - Pn(o(uy)) dedW < (5.2)
- La (860 ([0,T):R))
Proof. For a proof, we refer to Propositions 3.1 & 3.5 of [12]. O

5.1. Stochastic compactness

Tightness of law: To proceed, it is necessary to establish tightness of {A\";n € N}. In fact, we have all in
hand to conclude our compactness argument by showing the tightness of a certain collection of laws.

Lemma 5.2. {\",n € N} is tight on K.

Proof. Compact embeddings give tightness of laws. For a proof, we refer to Propositions 3.1-3.5, Corollary 3.6
[12]. O

Since the path space IC is not a Polish space, our compactness argument is based on the modified version
of Jakubowski-Skorokhod representation theorem, instead of the classical Skorokhod representation theorem.
To be more precise, passing to a weakly convergent subsequence A" and denoting by A the limit law, we infer
the following result.

Proposition 5.3. There exist a subsequence A" (not relabelled), a probability space (Q,ﬁ, ]I~”) with K-valued
Borel measurable random variables (U, Wy, Cr, Dy Eny Ny Gy, Vi), n € N, and

(w,W,C,D,E,N,G,V) such that
(1) the law of (un Wy Crs Drs Ens N, G, V,)) is given by A", n € N,

(2) the law of (u W.,C,D,E,N,G,V), denoted by X, is a Radon measure,
(3) (un,W Cn,Dn,En,Nn,Qn, n) converges P-almost surely to

(@, W,C,D,E,N,G,V) in the topology of K, i.e.,

U — @ in Cy ([0, T); L3, (T3 R?)), W,, — W in C([0,T); Uy)),
Cn — C weak-+ in L,(0,T; My(T?; R? x R?)), D,, — D weak-+ in L, (0, T; My(T?)),
N,, — N in C(0,T);R), En — & weak-+ in L22,(0,T; My(T?)),
Vo — V weak-+ in L, ((0,T) x T3 P(R?)), Gn — G weak-+ in L2, (0, T; My(T?)),

(4) For any n € N, W, =W.

Proof. Proof of the items (1), (2), and (3) directly follow from Jakubowski-Skorokhod representation theorem.
For the proof of the item (4), we refer to Theorem 2.1, and [26]. |

Martingale solution: In the following result, we will show that 1, is also a solution of the approximate scheme
(4.4) in another probability space.

Proposition 5.4. For every n € N, ((ﬁ,f, (ft)tz O,IF’),ﬁn,W) is a finite energy martingale solution to (4.4)
with the initial data T, (ug).
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Proof. Proof of the above proposition directly follows form the Theorem 2.9.1 of the monograph by Breit et al.
[8]. O

We note that the above proposition implies that the new random variables satisfy the following equations and
the energy inequality on the new probability space,

o for all p € CF,(T?;R?) we have

(T (1), @) = (@0n(0), @) — / (i (5) ® Tin(s), Vasp) ds + / (I = P Vain(s) , Vi) ds
(5.3)

+ [ (9.0 aW + Rt o) + M m.t. )

P-a.s. for all ¢ € [0,T], where ﬁ(n,t,g@), and /\N/'(n,m,t,go) are defined similarly as in (4.12), in the new
probability space. B
e the energy inequality, P-a.s., for all 0 < s<t < T,

1, ! ~
5”11»,1(1,‘)”%2(1*3;]1@3)4' 5/ HQn,m(vun(s))||2L2(1I‘3;R3)d8

1 . -
< 5”“”(3)“%2(1‘3;]}%3) +/ /H*s un(s) Pn(O'(lln( ) / ||7D un ))”L2 (U,L2(T3; R3))d8 (54)

Note that we can easily prove the energy inequality (5.4) in the new probability space from equation (5.3) as
proved in Lemma 4.1. It is a direct consequence of the Itd formula.

Filtration: Note that, since (u,,\,,) are random variables with values in C ([0, T]; L3, (T3;R?)) x C([0, T]; R).
By Lemma A.3 of [43] and Corollary A.2 of [36], (,,AN,) are also random variables with values in
c(lo, 17, Lﬁw(ﬂl‘3 R3)) x C([0,T);R). Let (F") be the P-augmented canonical filtration of the process
(Wn, W, N,,), that is

Fi = U( (rtun7 rtW r N, ) U {N S }' IP’ = 0}) t €10,T],

where we denote by r; the operator of restriction to the interval [0,¢] acting on various path spaces. Let us
remark that by assuming that the initial filtration (ft)f>0 is the one generated by W, by Lemma A.6 of [43],

one can consider (F") = (F,) is the filtration generated by . By Theorem 2.1.34 of [8 8], Wisa (F¢)-cylindrical
Wiener process in i1.

Almost surely limit: The lack of strong convergence of sequence u,, does not allow us to identify the limit of
the terms where the dependence on u,, is nonlinear, namely, the convective term in momentum equation and
nonlinear terms in energy inequality. Next we want to pass the limit n — oo in (5.3) and (5.4). To complete this,
first, we recall that a-priori bounds (4.11) which remains hold for the new random variables. Young measure
capture the weak limit Section 2.8 of [8]. Thus, by the implementation of Theorem 2.8 of [8], we conclude that
P-a.s.,

n — (Vi 1), weakly in L2((0,7); L3, (T R?)). (5.5)

We first introduce the following random concentration defect measures to pass limit in the nonlinear terms
present in the equations.

N s ~ 5 [, 1o ~ ~ ~» 1
Ac =C— <V(“f7,); u® u> dedt, \e =& — <VE‘,’7,); 2|u|2> dz, \p =D — Z <VE‘,’7,); 2|ak(u)|2> dxdt.

k>1
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Ag=G-— % > (QH <\7E7,.); |Uk(ﬁ)|> )2

k>1

Make use of these random concentration defect measures, we conclude that P-as.

C, — <V( HuU® u> dadt + Ae, weak- in L2 (0,T; My(T3; R? x R?)),

Dp— > <17(“f,,); 2|ak(ﬁ)|2> dxdt + Ap, weak- in L2, (0, T; M,(T?)),
k> 1

En — <~ |u|2> dzdt + A, weak-+ in L, (0,T; My(T?)),

~ 1 ~ B 2
Gn — 3 Z <QH <VE‘,’7,); |ak(u)>) + Ag weak-# in L2, (0, T} s ME(T?)).

k>1

These concentration defect measures are P-almost surely, limits of sequences of random variables (consult the
proof of Lemma 2.1 of [21]), so these concentration defect measures are random variables.

Pass to limit in approximation of the momentum equation: By making use of Theorem 2.8 of [8], we
have P-a.s.,

(i) — <1~/§jx;ak(ﬁ)> weakly in L2([0,T]; L2(T%; R?)). (5.6)

<P—>/ 5)dWi(s

is a linear and continuous (hence weakly continuous) map from L?(Q x [0, T]; L*(T?)) to L?*(£2; L?(T?)). There-
fore, we can make use of weak continuity of It6 integral, and item (4) of Proposition 5.3, to conclude I;(ox (1))
converges weakly to It(ON}t“jg:; or(0))) in L?(Q; L*(T3;R3)). Make use of above information and energy bounds
we can conclude that

/@ (V25 ), @)aw)dP(w) = /(2 (V5,0 0) + /0 (a0 ), Ve)ds + /0 t /T Vedic
i /0 t<<17;jx;a(ﬁ)>,@dW(s)]a(w)dﬁ(w) (5.7)

Note that the It6 integral

holds for all ¢ € [0,T), for all & € L*(Q) and for all ¢ € C52,(T3;R3). Since C52,(T3; R?) is separable space with
sup norm, above equation (5.7) implies that

(V55 5), ) :<<95‘jm;ﬁ>,go>+/ <<1~/S@;ﬁ®1~1>,V<p>ds—|—/ Vodie
0 0 T3
/ (V2,5 0 (@), ) AW (s)

for all ¢ € [0, T7, P-a.s., for all ¢ € Cs2 (T3 R3).

Xg is a nonnegative measure: It is clear from (5.6) that P-a.s.,

Qp (01 (Un)) = Qu ((Viy; ox(W))) weakly in L*([0,T]; (L*(T%; R?))™).
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Let ¢ € C([0,T] x T?) with ¢» > 0. Making use of weakly lower semi-continuity of norm, then we have @—a.s.,
(v, 1Qu (Ve on@))?) < liminf (v, [Qu (on(@))I?)

It shows that S\Q is non-negative measure.

Energy inequality and concentration defect: In this subsection, we show that an appropriate form of
energy inequality also holds for dissipative measure-valued martingale solutions in the following steps.

Step-1. Martingale term.

Proposition 5.5. ﬁ’—a.s., '/\7” — N in C([0,T];R), and N is a real valued square-integrable martingale.

Proof. Note that, thanks to Proposition 5.3, we have P-as., N, — N, in C([0,T];R). To conclude that
(N(t))tefo, 1) is a martingale, it is enough to show that

EIN (1) F.] = N (s),
for all ¢,s € [0,T] with s < ¢. To prove this, we have to show that, for A € al
E[Z4(N(t) - N(s)) | =0,
By using the fact that N, is a martingale, we know that
E[Za(Na(®) = No(s))| =0,

for all A € F,. For each t, N, (t) is uniformly bounded in L? ((Nl), with the help of Vitali’s convergence theorem,
we can pass to the limit in n to conclude that N is a martingale. In this manner, we cannot secure the structure
of the martingale A/, which is expected due of lack of sufficient regularity. |

Step 2. Control on concentration defect measures:

Lemma 5.6. The concentration defect 0 < H(r) := Ae(r)(T®) dominates defect measures Ap & Ac. More
precisely, there exists a constant C > 0 such that

//d|Xc|+/ / d|XD\§O/ H(t) dt
0 T3 0 T3 0

P-a.s., for all r € (0,T).

Proof. With the help of Lemma 2.3 of [24], it is clear that Ae dominates defect measures Ac. To show the
dominance of A\¢ over Ap, observe that, by virtue of hypotheses (2.2), (2.3), the function

[u] — |o(u)|? is continuous,

and as such dominated by the total energy

Z'Ok |2<C 1+|u|)

k>1

Hence, a consequence of Lemma 2.3 of [24] completes the proof of the lemma. ([l
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Step 3. Energy inequality. Use the fact that |‘Pn(0(ﬁn))H%Q(u;Lz(TS;RS)) < HPH(U(ﬁn))H2L2(u;L2(11‘3)) then
from (4.6), we have @—a.s, forall 0 <s<t< T,

SRy < 31z + [ [ 00(6) Pulotia () ()

T L A— (58)

Case 1: Suppose that 0<s<t < T. Now we would like to pass limit n — oo in energy inequality. Let r, 0 are
small enough positive real numbers. Then we have P-a.s.,

1 t+r 1 s
— [a, (7)? dzdr < — / [, (a)|* dzda
2r J, T3 20 Jy_s s

+% /t v (% / : / b /T (s) - Pa(0(@a(r)))AW ()da ) b

1 ttr 1 s b B )
25 (5 /g_é/ [ lon(Ein(7)] dzdrda)db

k>1

- er /HT /S 5/ / |Qr (ok(n (7)) d:z:dvda>

k>1

We pass to limit n — oo in above equation and make use of information of limits to conclude that ﬁ’—a.s.,

/Hr/ <va, |u|2> dzdb 4 = tmﬁ )db < f/s 6/T< e |u|2> dzda + < / H(a
+T/tt+r (%/76 (N(b) = N'(a))da)db

2 / (15/5 /b/T (<9(‘*;,x);;|ak(ﬁ)2> + dip(z,a)) deda)db

k>1

7227« /HT /55/ /Td (QH V(az) |ow (1 )|>> deg(x,a))dxda)db

k>1

Letting liminf both sides as 7,0 — 0 and use that Xg is non-negative measure, then we have ﬁ’—a.s., for all
O<s<t < T,

1 t+r - 1 - s -
liminfrﬁof/ [/ <Vg”x; |ﬁ|2> dadb + H(b )]db < hmlnfgﬁo {/ <V;”m; |ﬁ|2> dx—i—H(a)}da
rJt T3 ’ 4 T3

R +Z/s / < ;;|0k(1~1)|2> d:vdb—&-/:/w dAp (z, s)db

k>1

_72/5/ (QH 4 i low(d >|>)2dxdb (5.9)

k>1

Case 2: When s = 0 and ¢ € (0,7] in (5.8). From energy inequality (5.8), we have P-a.s.

/ /Iun )[? dads < /Iun )12 dz + = /t+r(/OS/TSﬁn(b)Pn(a(ﬁn(b)))dW(b))ds
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+> 27,/ / /TF |0k(1~1n(b))\2da:db)ds

k>1

- Z o /H_T /S /w |QH(0k(ﬁn(b)))|2dxdb)ds

k>1

As in the previous case, we can conclude that @-a.s., for all ¢t € (0,77,

N B Sw oL~ ~ ~o 1<
hmlnff/ [/ Vbz;f|u| dxdb—l—H(b)}db < / Ve =|u?) de
r—0 1 J; T3 ’ - EaD
1 t ~
+N (@) +Z//< §2|Uk(ﬁ)|2> dxdb+//d)\p(x,b)db
0 Jrs

k>1

_72/ / <QH Vit low(@ >|>)2dmdb (5.10)

k>1

Last both cases show that there exists a real-valued square-integrable continuous martingale M2 =N , such
that the following inequality

E(t+) < Z// m,\ak |>dxd7

k>1

2 1t ~ t__
/ QH m,\ak( )|>) dxd7+§/ / dADJr/ AM2,
']I‘“" s T3 s

holds P-a.s., for all 0 < s<t € (0,T) with

ral N T 1 K w ‘ ‘ v
E(t—) = hrrg(l)rif; - </TS <st’ 2> dm—i—'H(s)) ds

- o 1 t+r ‘~‘2
E(t+) == hrrg(lﬁf; t </T3 <VSE; 5 >dx+H( ))

1
5(0_):/ Sl da.
TB

(5.11)

Ic>1

and initial energy

6. PROOF OF THEOREM 3.7: CONVERGENCE TO A DISSIPATIVE SOLUTION

With the help of the Proposition 5.3, and convergence results given by (5.5), we conclude that there exists a
subsequence u,, such that P-a.s,

— (Vi) in Gy ([0, T], L3, (T% RY)).

For the pointwise converegnce of approximations, we can make use of Proposition 2.4 of [11]. Indeed, we obtain
P-a.s., there exists a subsequece u,, such that

NZunk (V#,:1), as N — oo a.e. in (0,T) x T?.
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7. WEAK-STRONG UNIQUENESS

Weak It6 formula: Here we give some outlines of proof of weak strong uniqueness. In this section, we prove
Theorem 3.8 through some auxiliary results. We start with the following lemma, which is a variant of Lemma 2.4
of [5]. We give the proof for the convenience of the reader.

Lemma 7.1 (Weak It6 formula). Let V be a stochastic process on (Q,F, (§i)i>0,P) such that

V € Cu([0,T]; L, (T% R?) N L=((0,T); L, (T*R?)) - P — as.

E[ sup HV”%g (11‘3;]R3)] < o0,
t€[0,T] v

¢ ¢
/ V() -pde= [ V(0) pdx —|—/ Vi : Vedzds +/ Ve : d\(z,s)ds
T3 T3 o Jrs o J13

t (7.1)
+ [ teovyawe)
0
for all o € C=(T3;R3), for all t € [0,T], P-a.s. Here V1, \ satisfy with
Vi € L*(; L0, T; LY(T?))), A€ LY L, (0,T; My (T?))).
Let U be a stochastic process on (Q,S, (St)tzo,]P’) satisfying
U € C(0,T); C*(T3;R3)), P — a.s. and E[ sup ||UH%§l (TS;R3)OC(T3;R3)}<OO,
t€(0,T) v
dU = U dt 4+ Uy dWV (7.2)
Here Uy, Uy are progressively measurable with
U € L*(QLY((0,7); LE;, (T R?))) Uz € L(Q L*((0,T); L2 (44 L, (T* R?))))
oo T
> [ IPaUsen) s oy € L1 (@),
k
Then, for allt € [0,T), P-a.s
t t
V(t) -U(t)dz = V(0)-U(0)dx +/ V;:VUdzds +/ VU : dAds
T3 T3 o Jrs 0 J13
t t t
Jr/ U~cr(V)d:17dW+/ U1~deds+/ V.- Uy dW dz
0 Jr3 o Jrs 0o J13
t
—l—/ Pr(c(V))Pr(c(U))dads (7.3)
o JT3

Proof. Let ¢ € L3, (T3 R?), then ¢, = ¢ x p, € C5%,(T3;R?), we have P-a.s., for all ¢ € [0, 7]

t t
/ V() - o.de= [ V() p,.dz +/ Vi : Ve,dxds +/ Ve, : d\(z,s)ds
T3 3 o J13 o Jts

T
+/TS <pr-/0to(V)dW(s)dx
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After shiftting molification on other variable, we have P-a.s., for all ¢ € [0, T

Vr(t)wpd:v: godach/ (V1) chdxder/ / Ve : d\-(z,s)ds
T3 T3

T / 2 / o(V),dW (s) d,

It implies that P-a.s., for all ¢ € [0, T

T3

V. (t) =V,.(0) — /Ot P (div(Vy),)ds — t P (divA,)ds + /Ot Pr(o(V),)dW (s)

0

2013

(7.4)

Let (€i)i>1 is countable orthonormal basis of L?*(T3;R?), and from equations (7.2)—(7.4), we have P-a.s., for all

€ [0, 7]

T t
U().e) = (U0}, + [ (Us(s)ea)ds + [ (Pulo(0).cd(s)
0 0
and
(V. (t),e;) = (V.(0),e;) —/0 (Pr (div(V1)r), €;)ds —/O (Pu (divA,), e;)ds
+ [ Pule i)
Now, we apply It6 product rule to ¢t — (U(t), e;) - (V,(t), e;), we have P-a.s, for all ¢ € [0, T
(U(t), ;) - (Vr(t), €5) = (U(0), e3) - (V(0), €3) +/0 (P (div(V1),), e:) - (U(s), e:)ds
+/O (Pu (divA,), ei) - (U(s), ei)ds +/0 (Pu(a(V))r,ei) - (U(s), e;)dW (s)
+ [ Vot - (O eads + [ (V(0)e0) - (Pl (W), W (s)
+ [ Pulo(U)). ) Pulo(V), s
0
We use the fact that [, U-Vdz = Eiz (U, €;) - (V,e;), then we have, P-a.s., for all ¢ € [0, 7]
LU Ve(t)de = | U0)-V,(0)do + /O N P (div(Vy)), - U(s)) dads
+ / Py (divA,) - U(s) dads —|—/ Pu(c(V)), - U(s) dzdW (s)
0 T3 0 T3
+/ V,.(t) - Uy(s) deds +/ V. (t) - Py (o(U)) dedW (s)
o Jrs 0

T3

- /o - Pr(o(U)) - Pu(o(V)), dzds.

Now we are able to perform the limit » — 0 in the above relation by using the hypotheses of Lemma 7.1,

completing the proof.

O
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7.1. Relative energy inequality (the Euler system)

Relative energy functional: We proceed further and introduce the relative energy (entropy) functional.
The commonly used form of the relative energy functional in the context of measure-valued solutions to the
incompressible Euler system reads, P-a.s, for all ¢ € [0, T]

Cu (u|U) (1) :zlimigfl/tHT [/T <V§f$;;|u|2>dx+7-((s)}ds—/ (Veu) - U(t) da

r— T
1 2
+2 [ U@L d.
2 Jpa

We note that by Lebesgue differentiation theorem and energy inequality (3.4), we have P-a.s, almost every
te0,T]

Cy (u ’U) (t) == /T <V§f$;;u2>dx—/w (Vi) 'U(t)dx—k% 5 IU()[2 da + H(2).

Relative energy inequality:

Proposition 7.2 (Relative Energy). Let [(Q, S, (§t)e0, ]P);ngz, W] be a dissipative measure-valued martingale
solution to the system (1.1). Suppose U be stochastic processes which is adapted to the filtration (F¢)i>o0 and
satisfies

dU =U; dt + P Uy dW,

with

U € O([0,T]; C4i (T R%),  P-as.,  E| sup [[U[72 (page)| < oo, (7.5)
t€[0,T] W

Moreover, U satisfies
Uy € L2(Q; L2(0,T; LX(T%R?))), Uz € LA(Q; L2(0, T; Lo (84 L*(T%; R%)))), (7.6)

T
| S IPaUsenlann € 2@,

0 k>1

Then the following relative energy inequality holds:

e (u ‘U) (1) < Emw ('u, ’U) (0) + Mri(t) + /Ot Ry (] U)(5) ds (7.7)
P-a.s., where

Rmv(u\U):/ <V§fz;u®U>:Vmde+/ <V§fz;u>.U1dxdt7/ VxU:d)\ch%/ drp
T T -

T3 3

+ % Z /Ts <V,§fz; |O’k(ll) - UQ(Gk)|2>d(£

keN

(7.8)

Here Mpg is a real valued square integrable martingale, and the norm of this martingale depends only on the
norms of U in the aforementioned spaces.
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Proof. Here we shall complete proof of mention result in following several steps.

Step 1: In order to compute dfT3 <Vt°fx; u> - Udz, we first recall that V = (V¢,; u> satisfies the hypotheses of
Lemma 7.1. Therefore we can apply the Lemma 7.1 to conclude that P-almost surely, for all 7 € [0, T

/ <Vf7w;u>-U(7')dxdt:/ (Vg iu)-U(0 d:z:dt+/ / V.U : duc dt
T3 T3

/ / (Vipiu) - U(t) + (Ve su@u) - Veu| dadt (7.9)
+Z/ PuUsy ek) PH<V;w;Uk(u)>d$dt+dM1,
k>1

where the square integrable martingale M (¢) is given by

t t
t):/ /U~<V§fx;ak(u)>dex+// (VEiu) - PyrUy dW
T3 JO o JT3

Step 2: Next, we see that P-a.s., for all 7 € [0, 7]

/1r3%|U(T)‘2dx=/ Lu \2dx+/0

/ PuUs(ex)|2 dz dt + d Mo, (7.10)

k>1

where

t
Mo(t) = / U - PyUydWv.
0 T3

Step 3: We have from energy inequality, P-a.s., for all 7 € [0, 7],

E(t+) < Z/ / Ve i lok(u dxds—fZ/ 11‘3 QH S$,|0’]€( )|>)2dxds

k> 1 k>1
1
+ = / dpp + / AM,. (7.11)
2 0 T3

We manipulate the product term in the equality (7.9) using properties of projections Py and Qg . Indeed, note
that

PuUs(er) - PV, or(u))
’]I‘3

= | Usler)  (Viuion(w)) — /11'3 QrUs(er) - Qu(Viyion(u)),

T3

and

|7)HU2 er)| / [Us(ex)? —/ |1QrUs(er)|
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These properties of projections imply that

= |PrUs(ex)|” — PuUal(ex) - Pa(Viy; ox(u)
2/ 1 Us (e k/Hk (Vs o))

k>1
¥z Z/é/(v”,m dxdT—fz/é/ Vo (u)>)2dxd7

lc>1 k>1

/ <V§fm; ok (1) — Us(er)|” JJ—*

k>17 T2 k>1

<V;fx; |0k (u) — Ug(ek)|2> da.

(7.12)

— Qu(V,iok(u))

IA
|~
g
—

Finally, in view of the above observations given by (7.9)—(7.12), we can now add the resulting expressions to
establish (7.7). Note that the square integrable martingale Mgrg(t) is given by Mgg(t) := My (t) + Ma(t) +
M (t). O
7.2. Proof of weak-strong principle 3.8

Since u is the strong pathwise solution to stystem (1.1), so taking U = @ in the relative energy inequality
(7.7). Then we get P-a.s., for all t € [0,T],
tAtr
Qfmv( } )(t/\tR) < emv(u|u) +MRE(t/\tR) +/ ﬁ‘imv(u}ﬁ)(T)dT, (713)
0
where Ry, (u|Q) is given by
Ry (u]) :/ (Vi |(u—1) u)|) [Veu|de + = Z/ (Vi |ore(u) — o (a ’ )da
T3

keN
+/ |Vxﬁ|~d|/\c|+/ d|Ap|.
T3 T3

Now we use the following facts

[allw1oe(rsy < ¢(R) forallt < 7p & [(u—1)® (0 —u)| < |u-— a?,

S ok(u) — ox(@)]* < Difu—af?,

E>1

to conclude that

1 w 2 )

2 Z/m (Veui|ow(u) — ox()]7) dz < (L) Eny (u] @),

keN

and

el eas < ) [ (@@ s _—
0 0

In view of (7.13) and (7.14), a simple consequence of Gronwall’s lemma gives, for all ¢ € [0, T

E[€ony (1 |) (£ A tr)] < c(R) E[Cpny (u]1)(0)].
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Since, initial data are same for both solutions, right hand side of above inequality equals to zero. Therefore it
implies that for all ¢ € [0, T]
E[€n (u]t)(tAtr)] = 0.

This also implies that
T
/ E[@mv (u |ﬁ) (s A tR)}ds =0.
0

In view of a priori estimates, a usual Lebesgue point argument, and application of Fubini’s theorem reveals that
P-a.s.,

T
/ Coy (u|T)(t Atg)dt = 0.
0
Since, the defect measure H > 0, we have P-a.s., for a.e. t € [0,T], H(¢t A tg) = 0, Moreover, P — a.s.
intmz = Oa(tAtg,c), for a.e. (t,r) € (0,T) x T3.
This proves our claim.

8. PROOF OF THEOREM 3.9: CONVERGENCE TO REGULAR SOLUTION

We have proven that the approximate solutions 1, to (4.4) for the stochastic incompressible Euler system
converges to a dissipative measure-valued martingale solution, in the sense of Definition 3.1. Using the corre-
sponding weak (measure-valued)-strong uniqueness results (¢f. Thm. 3.8), we can prove the strong convergence
of approximate solutions to the strong solution of the system on its lifespan.

First observe that, Proposition 5.3 and Theorem 3.8 give the required weak-+ convergence. Indeed, from
Proposition 5.3, we have P-a.s.,

Un (- A tr) = (Vi W) (- Atr) in Cou([0,T], L, (T% R?)),

Information of above convergence and Theorem 3.8 give the required weak-* convergence. In the proof of strong
convergence of u,, in L*(T?), we use the results of Proposition 5.3 & Theorem 3.8, energy bounds (4.11) and
the fact limit Young measure of any subsequence (Sﬁnk (-Atgr) 18 Og(.Atg) to conclude that P-a.s., sequence of young

measure converges to Dirac Young measure, i.e. P-a.s.
0%, (Atr) = Oa(-atg), Weak-x in L>((0,T) x T3; P(R?))

By theory of Young measure Proposition 4.16 of [1], it implies that, P-a.s. u, (- A tg) converges to (- A tg) in
measure respectively. Note that, P-a.s. sequence 0, (- A tg) is uniformly integrable and converges in measure,

therefore Vitali’s convergence theorem implies that P-a.s,
U, (- Atg) — a(- Atg) strongly in L'((0,T) x T3;R?),

This finishes the proof of the Theorem 3.9.
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