Computing the cut locus of a Riemannian manifold via optimal transport
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 6, pp. 1939-1954

In this paper, we give a new characterization of the cut locus of a point on a compact Riemannian manifold as the zero set of the optimal transport density solution of the Monge–Kantorovich equations, a PDE formulation of the optimal transport problem with cost equal to the geodesic distance. Combining this result with an optimal transport numerical solver, based on the so-called dynamical Monge–Kantorovich approach, we propose a novel framework for the numerical approximation of the cut locus of a point in a manifold. We show the applicability of the proposed method on a few examples settled on 2d-surfaces embedded in ℝ3, and discuss advantages and limitations.

DOI : 10.1051/m2an/2022059
Classification : 35J70, 49K20, 49M25, 49Q20, 58J05, 65K10, 65N30
Keywords: Cut locus, Riemannian geometry, Optimal Transport problem, Monge–Kantorovich equations, geodesic distance
@article{M2AN_2022__56_6_1939_0,
     author = {Facca, Enrico and Berti, Luca and Fass\`o, Francesco and Putti, Mario},
     title = {Computing the cut locus of a {Riemannian} manifold \protect\emph{via} optimal transport},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1939--1954},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {6},
     doi = {10.1051/m2an/2022059},
     mrnumber = {4481118},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2022059/}
}
TY  - JOUR
AU  - Facca, Enrico
AU  - Berti, Luca
AU  - Fassò, Francesco
AU  - Putti, Mario
TI  - Computing the cut locus of a Riemannian manifold via optimal transport
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2022
SP  - 1939
EP  - 1954
VL  - 56
IS  - 6
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2022059/
DO  - 10.1051/m2an/2022059
LA  - en
ID  - M2AN_2022__56_6_1939_0
ER  - 
%0 Journal Article
%A Facca, Enrico
%A Berti, Luca
%A Fassò, Francesco
%A Putti, Mario
%T Computing the cut locus of a Riemannian manifold via optimal transport
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2022
%P 1939-1954
%V 56
%N 6
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2022059/
%R 10.1051/m2an/2022059
%G en
%F M2AN_2022__56_6_1939_0
Facca, Enrico; Berti, Luca; Fassò, Francesco; Putti, Mario. Computing the cut locus of a Riemannian manifold via optimal transport. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 6, pp. 1939-1954. doi: 10.1051/m2an/2022059

[1] P. Albano, On the stability of the cut locus. Nonlinear Anal. Theory Methods Appl. 136 (2016) 51–61. | MR | DOI

[2] L. Ambrosio, Lecture notes on optimal transport problems. In: Lecture Notes in Mathematics. Springer, Berlin, Heidelberg (2003) 1–52. | MR | Zbl

[3] E. Bachini and M. Putti, Geometrically intrinsic modeling of shallow water flows. ESAIM: Math. Model. Num. Anal. 54 (2020) 2125–2157. | MR | Numdam | DOI

[4] L. Berti, E. Facca and M. Putti, Numerical solution of the L1-optimal transport problem on surfaces. Preprint (2021). | arXiv

[5] L. E. Blumenson, A derivation of n -dimensional spherical coordinates. Am. Math. Mon. 67 (1960) 63–66. | MR | DOI

[6] B. Bonnard, J. B. Caillau, R. Sinclair and M. Tanaka, Conjugate and cut loci of a two-sphere of revolution with application to optimal control. Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009) 1081–1098. | MR | Zbl | Numdam | DOI

[7] B. Bonnard, O. Cots and L. Jassionnesse, Geometric and Numerical Techniques to Compute Conjugate and Cut Loci on Riemannian Surfaces. Springer International Publishing, Cham (2014) 53–72. | MR | Zbl

[8] G. Bouchitté and G. Buttazzo, Characterization of optimal shapes and masses through Monge–Kantorovich equation. J. Eur. Math. Soc. 3 (2001) 139–168. | MR | Zbl | DOI

[9] G. Buttazzo and E. Stepanov, On regularity of transport density in the Monge–Kantorovich problem. SIAM J. Control Optim. 42 (2003) 1044–1055. | MR | Zbl | DOI

[10] J.-B. Caillau, O. Cots and P. Martinon, ct: control toolbox – numerical tools and examples in optimal control. Working paper or preprint (Feb. 2022). | HAL

[11] I. Chavel, Riemannian Geometry: A Modern Introduction. Cambridge Studies in Advanced Mathematics, 2nd edition. Cambridge University Press (2006). | MR | Zbl

[12] K. Crane, C. Weischedel and M. Wardetzky, Geodesics in heat: a new approach to computing distance based on heat flow. ACM Trans. Graph. 32 (2013) 1–11. | DOI

[13] L. De Pascale, L. C. Evans and A. Pratelli, Integral estimates for transport densities. Bull. London Mat. Soc. 36 (2004) 383–395. | MR | Zbl | DOI

[14] T. K. Dey and K. Li, Cut locus and topology from surface point data. In: Proceedings of the Twenty-fifth Annual Symposium on Computational Geometry (2009) 125–134.

[15] G. Dziuk and C. M. Elliott, Finite element methods for surface pdes. Acta Num. 22 (2013) 289–396. | MR | Zbl | DOI

[16] L. C. Evans and W. Gangbo, Differential Equations Methods for the Monge–Kantorovich Mass Transfer Problem. Vol. 653. American Mathematical Soc. (1999). | MR | Zbl

[17] E. Facca and M. Benzi, Fast iterative solution of the optimal transport problem on graphs. SIAM J. Sci. Comput. 43 (2021) A2295–A2319. | MR | DOI

[18] E. Facca, F. Cardin and M. Putti, Towards a stationary Monge–Kantorovich dynamics: the physarum polycephalum experience. SIAM J. Appl. Math. 78 (2018) 651–676. | MR | DOI

[19] E. Facca, S. Daneri, F. Cardin and M. Putti, Numerical solution of Monge–Kantorovich equations via a dynamic formulation. J. Sci. Comput. 82 (2020) 1–26. | MR | DOI

[20] E. Facca, F. Piazzon and M. Putti, L 1 transport energy. Appl. Math. Optim. 86 (2022) 1–40. | MR | DOI

[21] M. Feldman and R. J. Mccann, Monge’s transport problem on a riemannian manifold. Trans. Amer. Math. Soc. 354 (2001) 1667–1697. | MR | Zbl | DOI

[22] M. Feldman and R.J. Mccann, Uniqueness and transport density in monge’s mass transportation problem. Calc. Var. Part. Diff. Equ. 15 (2002) 81–113. | MR | Zbl | DOI

[23] A. Figalli and L. Rifford, Mass transportation on sub-riemannian manifolds. Geom. Funct. Anal. 20 (2010) 124–159. | MR | Zbl | DOI

[24] A. Figalli and C. Villani, An approximation lemma about the cut locus, with applications in optimal transport theory. Methods App. Anal. 15 (2008) 149–154. | MR | Zbl | DOI

[25] A. Figalli, L. Rifford and C. Villani, Tangent cut loci on surfaces. Differ. Geom. Appl. 29 (2011) 154–159. | MR | Zbl | DOI

[26] F. Générau, E. Oudet and B. Velichkov, Cut locus on compact manifolds and uniform semiconcavity estimates for a variational inequality. Preprint (2020). | arXiv | MR

[27] F. Générau, E. Oudet and B. Velichkov, Numerical computation of the cut locus via a variational approximation of the distance function. ESAIM: Math. Model. Num. Anal. 56 (2022) 105–120. | MR | Zbl | Numdam | DOI

[28] J. Gravesen, S. Markvorsen, R. Sinclair and M. Tanaka, The cut locus of a torus of revolution. Asian J. Math. 9 (2005) 103–120. | MR | Zbl | DOI

[29] J. I. Itoh and K. Kiyohara, The cut loci and the conjugate loci on ellipsoids. Manuscr. Math. 114 (2004) 247–264. | MR | Zbl

[30] J. I. Itoh and R. Sinclair, Thaw: a tool for approximating cut loci on a triangulation of a surface. Exp. Math. 13 (2004) 309–325. | MR | Zbl | DOI

[31] J. I. Itoh and M. Tanaka, The Lipschitz continuity of the distance function to the cut locus. Trans. Amer. Math. Soc. 353 (2001) 21–40. | MR | Zbl | DOI

[32] J. Jost, Riemannian Geometry and Geometric Analysis. Vol. 42005, Springer (2008). | MR | Zbl

[33] B. F. Kimball, Geodesics on a toroid. Am. J. Math. 52 (1930) 29–52. | MR | JFM | DOI

[34] C. Mancinelli, M. Livesu and E. Puppo, Practical computation of the cut locus on discrete surfaces. Comput. Graph Forum 40 (2021) 261–273. | DOI

[35] C. Mantegazza and A. C. Mennucci, Hamilton-Jacobi equations and distance functions on Riemannian manifolds. Appl. Math. Optim. 47 (2003) 1–25. | MR | Zbl | DOI

[36] M. K. Misztal, J. A. Bærentzen, F. Anton and S. Markvorsen, Cut locus construction using deformable simplicial complexes. In: 2011 Eighth International Symposium on Voronoi Diagrams in Science and Engineering (ISVD). IEEE (2011) 134–141. | DOI

[37] J.-M. Morvan, Generalized Curvatures. Vol. 2 of Geometry and Computing. Springer Science & Business Media, Berlin, Heidelberg (2008). | MR | Zbl

[38] P.-O. Persson and G. Strang, A simple mesh generator in Matlab. SIAM Rev. 46 (2004) 329–345. | MR | Zbl | DOI

[39] A. Pratelli, Equivalence between some definitions for the optimal mass transport problem and for the transport density on manifolds. Ann. Mat. Pura App. 184 (2005) 215–238. | MR | Zbl | DOI

[40] T. Sakai, Riemannian Geometry. Vol. 149, American Mathematical Society (1996). | MR | Zbl | DOI

[41] F. Santambrogio, Absolute continuity and summability of transport densities: simpler proofs and new estimates. Calc. Var. Part. Diff. Equ. 36 (2009) 343–354. | MR | Zbl | DOI

[42] F. Santambrogio, Optimal Transport for Applied Mathematicians. Birkäuser, NY (2015). | MR | DOI

[43] R. Sinclair and M. Tanaka, Loki: software for computing cut loci. Exp. Math. 11 (2002) 1–25. | MR | Zbl | DOI

[44] A.-K. Tornberg and B. Engquist, Regularization techniques for numerical approximation of PDEs with singularities. J. Scient. Comput. 19 (2003) 527–552. | MR | Zbl | DOI

[45] A.-K. Tornberg and B. Engquist, Numerical approximations of singular source terms in differential equations. J. Comp. Phys. 200 (2004) 462–488. | MR | Zbl | DOI

[46] C. Villani, Topics in Optimal Transportation. Vol. 58 of Graduate Studies in Mathematics. American Mathematical Society (2003). | MR | Zbl

[47] C. Villani, Optimal Transport: Old and New. Vol. 338, Springer Science & Business Media (2008). | MR | Zbl

[48] C. Villani, Regularity of optimal transport and cut locus: from nonsmooth analysis to geometry to smooth analysis. Discrete Contin. Dyn. Syst. Ser. A 30 (2011) 559–571. | MR | Zbl | DOI

Cité par Sources :