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COMPUTING THE CUT LOCUS OF A RIEMANNIAN MANIFOLD VIA

OPTIMAL TRANSPORT

Enrico Facca1,* , Luca Berti2 , Francesco Fassò3 and Mario Putti3

Abstract. In this paper, we give a new characterization of the cut locus of a point on a compact
Riemannian manifold as the zero set of the optimal transport density solution of the Monge–Kantorovich
equations, a PDE formulation of the optimal transport problem with cost equal to the geodesic distance.
Combining this result with an optimal transport numerical solver, based on the so-called dynamical
Monge–Kantorovich approach, we propose a novel framework for the numerical approximation of the
cut locus of a point in a manifold. We show the applicability of the proposed method on a few examples
settled on 2d-surfaces embedded in R3, and discuss advantages and limitations.
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1. Introduction

Given a compact Riemannian manifold (𝑀, 𝑔) of dimension 𝑛 and a point 𝑝 ∈ 𝑀 , the cut locus 𝐶𝑝 of 𝑝
is, roughly speaking, the set of points where more than one minimizing geodesic starting from 𝑝 arrives. For
example, the cut locus of a point in a 2-sphere embedded in R3 is its anti-podal point.

The cut locus is a fundamental object of Riemannian geometry, e.g., it determines the topology of 𝑀 since
𝑀 ∖𝐶𝑝 is diffeomorphic to an 𝑛-disk [11]. Moreover, the cut locus is intimately related to the singular set of the
distance function [35] and thus to the points where caustics form. However, the construction of the cut locus of
a point on a manifold is rather difficult and cut locus shape is known only in very special cases, for example,
for revolution surfaces [6]. For these reasons there is a strong interest in its numerical construction.

The numerical approximation of the cut locus of 𝑝 has seen only sparse and diverse attempts in the past.
For manifolds for which explicit parametrizations are available, the cut locus can be found by studying where
geodesics collide [43] or studying conjugate points and Jacobi fields [7, 10] (we refer the reader to these two
articles for the definition of such mathematical objects). However, when triangulated manifolds are considered,
it is hard to extend these approaches. In [30] the exponential map is approximated by means of piecewise
polynomial interpolation, and follow the geodesics starting from 𝑝 until they are no longer minimal. Direct
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numerical evaluation of geodesics emanating from 𝑝 is another approach often proposed. This is the method
of choice in [36], who use a direct discretization by finite differences of the Riemannian partial differential
equations. In [14] the authors construct the geodesics from the shortest paths in a graph constructed on the
point data defining the manifold. All these methods require some sort of smoothing at cut points to cope with
the ill-conditioning arising from the tracking of the distance along geodesics. As an alternative to geodesic-
following methods, Crane et al. [12] approximate the geodesic distance by means of the numerical solution of
the heat kernel defined on the manifold. The cut locus is then identified as the set of points where the trace of
the Hessian of the distance explodes, thus again requiring some sort of smoothing for proper approximation. A
similar strategy was adopted in [34].

To overcome these limitations, in [26] the authors propose a characterization of the cut locus as the limit in
the Hausdorff sense of a variationally-defined thawed region around the cut locus. This allows the construction
of a convergent finite-element-based numerical approximation of the cut locus which is described and analyzed
in [27].

In this paper we propose a novel characterization of the cut locus based on Optimal Transport (OT) theory
and exploit it to derive a stable and accurate numerical method for its approximation on compact Riemannian
manifolds. The cut locus has been used extensively together with its properties in the analysis of the regularity
of optimal transport problems [23–25, 48]. However, to the best of our knowledge, our characterization of the
cut locus has never been proposed before.

In OT problems, one looks for the optimal strategy to re-allocate a non-negative measure 𝑓+ into another
non-negative measure 𝑓− with equal mass, given a cost for transporting one unit of mass (see [2, 42, 46, 47] for
a complete overview of the topic). When the transport takes place in a Riemannian manifold with the geodesic
distance as cost, the solutions of the OT problem can be deduced from the solution of a nonlinear system of
PDEs known as Monge–Kantorovich equations (MK equations). We denote the solution of the MK equations
by (𝑢*, 𝜇*). The first element of the solution pair, the so-called Kantorovich potential 𝑢*, is a continuous
function with Lipschitz constant equal to 1. Moreover, its gradient is tangent to the paths (called rays) along
which optimal transport movements occur, which are geodesics [39]. The second solution element, the so-called
Optimal Transport Density (OTD) 𝜇*, is a non-negative measure on 𝑀 that describes the mass flux through
each portion of the manifold in an optimal transportation schedule from 𝑓+ into 𝑓−.

A fundamental property of 𝜇* is that it decays towards zero at the endpoints of the geodesics along which
the mass is moved ([16], [9], Thm. 3). This fact suggests that if we take 𝑓+ = d𝑉𝑔(𝑀)𝛿𝑝 and 𝑓− = d𝑉𝑔 (where
𝛿𝑝 denotes the Dirac measure centered at 𝑝, d𝑉𝑔 is the volume form induced by the metric 𝑔, and d𝑉𝑔(𝑀) is
the measure of 𝑀), the OTD restricted to all geodesics starting at point 𝑝 tends to zero when approaching the
points that form the cut locus of 𝑝 in 𝑀 . This intuition is confirmed by the following theorem, which represents
our characterization of 𝐶𝑝:

Theorem 1.1. Let (𝑀, 𝑔) be a compact and geodesically complete Riemannian manifold of dimension 𝑛 with no
boundary. Given a point 𝑝 ∈ 𝑀 , the OTD 𝜇* solution of the MK equations with 𝑓+ = d𝑉𝑔(𝑀)𝛿𝑝 and 𝑓− = d𝑉𝑔

admits, in the set 𝑀 ∖{𝑝}, a continuous density 𝜇 with respect to the volume form d𝑉𝑔 whose zero set coincides
with 𝐶𝑝 i.e.,

𝜇* = 𝜇 d𝑉𝑔, 𝐶𝑝 =
{︀
𝑥 ∈ 𝑀 ∖ {𝑝} : 𝜇(𝑥) = 0

}︀
.

Based on this characterization, we propose a new variationally-based numerical scheme to approximate the
cut locus on compact surfaces by means of the numerical solution of the MK equations. For the latter, we adopt
the approach described in [4], where the discrete Dynamical Monge–Kantorovich (DMK) framework described
in [18,19] is extended to R3-embedded surfaces. We show the effectiveness of the proposed numerical approach
by identifying the cut locus of the following triangulated surfaces: a torus, for which the cut locus is known,
and two test cases borrowed from [30] to show the applicability to generic surfaces.

The paper is organized as follows. First we present all the Riemannian objects required for the definition of
the cut-locus, together with some of its properties. Then, in Section 3 we recall the definition of the Optimal
Transport Problem with cost equal to the geodesic distance, and the MK equations. Section 4 is dedicated to the
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connection of the MK equations with the cut-locus, and ends with the proof of Theorem 1.1. Finally, Section 5
is dedicated to the presentation of the proposed numerical approach to identify the cut locus of triangulated
surfaces via the DMK strategy and concludes with some numerical experiments.

2. The cut locus of a point on a Riemannian Manifold

We consider a geodesically complete and compact Riemannian manifold (𝑀, 𝑔) with no boundary, equipped
with a smooth metric 𝑔. We denote by ⟨𝑣, 𝑤⟩𝑔(𝑥) the application of the metric 𝑔 evaluated at 𝑥 to the two vectors
𝑣, 𝑤 ∈ 𝑇𝑥𝑀 . The symbols ∇𝑔, | · |𝑔, and d𝑉𝑔 are used to identify the gradient operator, the vector norm, and
the volume form induced by the metric tensor 𝑔 on 𝑀 . The distance between two points 𝑥, 𝑦 ∈ 𝑀 is defined as:

dist𝑔(𝑥, 𝑦) = inf
𝜎

{︃∫︁ 1

0

√︁
⟨𝜎̇(𝑠), 𝜎̇(𝑠)⟩𝑔(𝜎(𝑠)) d𝑠 :

𝜎 ∈ 𝒞1([0, 1], 𝑀)
𝜎(0) = 𝑥, 𝜎(1) = 𝑦

}︃
.

Given a point 𝑝 ∈ 𝑀 , we denote with exp𝑝 : 𝑇𝑝𝑀 → 𝑀 the exponential map of (𝑀, 𝑔) at 𝑝 and with exp−1
𝑝

its inverse, where well defined.

2.1. Cut locus of a point

We now give the definition and some properties of the cut locus 𝐶𝑝 of a point 𝑝 ∈ 𝑀 and of all the related
objects that will be used in the sequel (see [40]). Figure 1 illustrates graphically these definitions for a torus
embedded in R3.

Definition 2.1. Let (𝑀, 𝑔) be a compact and geodesically complete Riemannian manifold of dimension 𝑛, and
consider a point 𝑝 ∈ 𝑀 . Let 𝑈𝑝𝑀 be the set of unit tangent vectors at 𝑝, i.e.:

𝑈𝑝𝑀 :=
{︁

𝜃 ∈ 𝑇𝑝𝑀 : ⟨𝜃, 𝜃⟩𝑔(𝑝) = 1
}︁

.

The cut time 𝒯𝑝(𝜃) of 𝜃 ∈ 𝑈𝑝𝑀 is defined as:

𝒯𝑝(𝜃) := sup
{︀
𝑡 ≥ 0 : exp𝑝(𝑠𝜃)0≤𝑠<𝑡 is a minimizing geodesic

}︀
. (2.1)

The sets:
𝐼𝑝 := {𝑡𝜃 : 𝜃 ∈ 𝑈𝑝𝑀, 0 < 𝑡 < 𝒯𝑝(𝜃)} ⊂ 𝑇𝑝𝑀 and 𝐼𝑝 := exp𝑝

(︁
𝐼𝑝

)︁
⊂ 𝑀 (2.2)

are called the injectivity domain and the interior set at 𝑝. Note that exp𝑝 is a diffeomorphism from 𝐼𝑝 to 𝐼𝑝,
thus exp−1

𝑝 is defined from 𝐼𝑝 to 𝐼𝑝.
The sets:

𝐶𝑝 := {𝒯𝑝(𝜃)𝜃 : 𝜃 ∈ 𝑈𝑝𝑀} ⊂ 𝑇𝑝𝑀 and 𝐶𝑝 := exp𝑝

(︁
𝐶𝑝

)︁
⊂ 𝑀

are called, respectively, the tangent cut locus and the cut locus of 𝑝.

Lemma 2.2 (Properties of the cut time [31]). The functions 𝒯𝑝 and 𝒯 ℬ𝑝 defined in equations (2.1) and (2.4)
are Lipschitz continuous.

Lemma 2.3 (Properties of the cut locus [40]). The manifold 𝑀 is the union of three disjoint sets: the point 𝑝,
the interior set 𝐼𝑝, and the cut locus 𝐶𝑝. Moreover, 𝐶𝑝 is a null set of the volume form d𝑉𝑔.

Lemma 2.4 (Properties of the injectivity domain [40]). The injectivity domain 𝐼𝑝 is a star shaped subset of
𝑇𝑝𝑀 with boundary given by 𝐶𝑝.

As an example, Figure 1 shows the cut locus 𝐶𝑝 (red color) of a point 𝑝 lying on the external “equator” of
the torus (from [28, 33]) and an approximation of the tangent cut locus 𝐶𝑝 ⊂ 𝑇𝑝𝑀 (blue color) obtained by
solving numerically the equations of the geodesic curves emanating from 𝑝 = (3, 0, 0).
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Figure 1. The tangent cut locus and the cut locus of a point on the torus with major and
minor radi 𝑟max = 2 and 𝑟min = 1 embedded in R3. The red curves identify the cut locus of
the point 𝑝 = (𝑅, 0, 0) with 𝑅 := 𝑟max + 𝑟min located on the external “equator”. Note that
the cut locus is formed by the internal “equator”, the opposite “meridian”, and a portion
of the external “equator” connecting the two points 𝑝1 = (𝑅 cos(𝛼), 𝑅 sin(𝛼), 0) and 𝑝2 =
(𝑅 cos(𝛼),−𝑅 sin(𝛼), 0) with 𝛼 = 𝜋𝑟min/

√
𝑅𝑟min (formulae taken from [33], Thm. 9). The blue

lines represent a scaled approximation of the tangent cut locus 𝐶𝑝 obtained by straight-forward
numerical approximation of the geodesics emanating from 𝑝.

2.2. Riemannian polar coordinates

Next we give workable expressions, in local coordinates, for these cut locus-related quantities. To this aim,
we need to fix proper charts and local coordinates. In view of Lemma 2.4, it is convenient to use Riemannian
polar coordinates (see [32]). However we need to be slightly pedantic here about their definition and properties
because we will need to show that our solution of the OT problem is free of the singularities introduced by such
coordinate systems.

Any set of these coordinates depends on the choice of a 𝑔(𝑝)-orthonormal basis ℬ =
{︀
𝑒ℬ1 , . . . , 𝑒ℬ𝑛

}︀
of 𝑇𝑝𝑀 ,

which allows the identification of 𝑇𝑝𝑀 with R𝑛 via the map 𝑣 ↦→
(︀
𝑣ℬ1 , . . . , 𝑣ℬ𝑛

)︀
with 𝑣ℬ𝑖 :=

⟨︀
𝑣, 𝑒ℬ𝑖

⟩︀
𝑔(𝑝)

for
𝑖 = 1, . . . , 𝑛. We define the map

Ψℬ : 𝐼𝑝 → R+ × 𝒮𝑛−1, 𝑣 ↦→

(︃
|𝑣|𝑔,

𝑣ℬ

|𝑣|𝑔

)︃
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and, denoting by 𝒮𝑛−1
∘ = 𝒮𝑛−1 ∖ (0, . . . ,±1), we introduce the (Euclidean) polar coordinates

𝑃 : R+ × 𝒮𝑛−1
∘ → R+ × U𝑛−1, U𝑛−1 =]0, 𝜋[𝑛−2×𝒮1

(𝑟, 𝑦) ↦→ (𝑟, 𝜙1(𝑦), . . . , 𝜙𝑛−1(𝑦))

where 𝜙 = (𝜙1, . . . , 𝜙𝑛−1) are the 𝑛− 1 spherical coordinates parametrizing 𝒮𝑛−1 (see [5] for explicit formulas).
Then, the Riemannian polar coordinates relative to the basis ℬ is the map 𝜑ℬ𝑝 = 𝑃 ∘Ψℬ ∘ exp−1

𝑝 . Explicitly, this
is given by:

𝜑ℬ𝑝 : 𝐼ℬ𝑝
exp−1

𝑝−→ 𝐼ℬ𝑝
Ψℬ−→ R+ × 𝒮𝑛−1

∘
𝑃−→ R+ × U𝑛−1 (2.3)

𝑥 ↦−→ 𝑣 := exp−1
𝑝 (𝑥) ↦−→

(︃
|𝑣|𝑔,

𝑣ℬ

|𝑣|𝑔

)︃
↦−→

(︃
|𝑣|𝑔, 𝜙

(︃
𝑣ℬ

|𝑣|𝑔

)︃)︃

where the sets 𝐼ℬ𝑝 ⊂ 𝐼𝑝 and 𝐼ℬ𝑝 ⊂ 𝐼𝑝 are the preimages under the maps Ψℬ ∘ exp−1
𝑝 and Ψℬ of R+ × 𝒮𝑛−1

∘ ,
respectively. Note that |𝑣|𝑔 = dist𝑔(𝑝, 𝑥).

Remark 2.5. The set 𝐼ℬ𝑝 coincides with 𝐼𝑝 minus a geodesic curve that passes through 𝑝 and depends on the
basis ℬ.

It is clear that, given ℬ, there exists a one-to-one correspondence between elements of 𝑈𝑝𝑀 ∖
{︀
𝑒ℬ𝑛 ,−𝑒ℬ𝑛

}︀
and U𝑛−1. Thus, we define the cut time function 𝒯 ℬ𝑝 that maps the angle variables 𝜙 into the cut time of the
corresponding unit vector in the tangent space i.e.,

𝒯 ℬ𝑝 : U𝑛−1 → R+, 𝒯 ℬ𝑝 (𝜙) := 𝒯𝑝 ∘
(︀
Ψℬ
)︀−1 ∘ 𝑃−1(1, 𝜙) ∀𝜙 ∈ U𝑛−1. (2.4)

Lemma 2.6 (Properties of polar coordinates [32]). For any 𝑔(𝑝)-orthonormal basis ℬ, the matrix representing
the metric 𝑔|𝐼ℬ𝑝 written in Riemannian polar coordinates has the block-diagonal expression

𝑔ℬ(𝑟, 𝜙) =
(︂

1 0
0 ℎℬ(𝑟, 𝜙)

)︂
,

where ℎℬ(𝑟, 𝜙) is a (𝑛− 1)× (𝑛− 1) symmetric and positive-definite matrix.

We denote
𝒥 ℬ(𝑟, 𝜙) d𝑟 ∧ d𝜙1 ∧ . . . ∧ d𝜙𝑛−1

the volume form d𝑉𝑔 expressed in polar coordinates in the interior set 𝐼𝑝.

Lemma 2.7. The function 𝒥 ℬ factorizes as follows:

𝒥 ℬ(𝑟, 𝜙) = 𝐺ℬ(𝑟, 𝜙)𝐽(𝑟, 𝜙), (2.5)

where 𝐺ℬ : R+ × U𝑛−1 → R+ is given by

𝐺ℬ(𝑟, 𝜙) =
√︂

det
(︁
𝑔 ∘
(︀
𝜑ℬ𝑝
)︀−1(𝑟, 𝜙)

)︁
, (2.6)

and 𝐽 is the absolute value of the determinant of the Jacobian matrix of 𝑃−1 and is given by:

𝐽(𝑟, 𝜙1, 𝜙2, . . . , 𝜙𝑛−2) = 𝑟𝑛−1 sin𝑛−2(𝜙1) sin𝑛−3(𝜙2) . . . sin(𝜙𝑛−2). (2.7)

Proof. The proof comes directly from the appropriate composition of the relevant functions defined above. �
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Let 𝑆𝑂(𝑛, 𝑇𝑝𝑀) be the set of all proper (det = +1) linear 𝑔(𝑝)-isometries of 𝑇𝑝𝑀 . Given a 𝑔(𝑝)-orthonormal
basis ℬ =

{︀
𝑒ℬ1 , . . . , 𝑒ℬ𝑛

}︀
of 𝑇𝑝𝑀 , we associate to any 𝑅̂ ∈ 𝑆𝑂(𝑛, 𝑇𝑝𝑀) the matrix 𝑅ℬ ∈ 𝑆𝑂(𝑛) with entries

𝑅ℬ𝑖,𝑗 =
⟨
𝑒ℬ𝑖 , 𝑅̂𝑒ℬ𝑗

⟩
𝑔(𝑝)

. Also, we denote by 𝑅̂ℬ the rotated basis
{︁

𝑅̂𝑒ℬ1 , . . . , 𝑅̂𝑒ℬ𝑛

}︁
.

Lemma 2.8. For any 𝑔(𝑝)-orthonormal basis ℬ and any 𝑅̂ ∈ 𝑆𝑂(𝑛, 𝑇𝑝𝑀),

𝐺𝑅̂ℬ ∘ 𝑃
(︀
𝑟, 𝑅ℬ𝑦

)︀
= 𝐺ℬ ∘ 𝑃 (𝑟, 𝑦)

for all 𝑟 ∈ R+ and 𝑦 ∈ 𝒮𝑛−1
∘ such that

(︁
𝑅̂
)︁𝑇

𝑦 ∈ 𝒮𝑛−1
∘ .

Proof. This follows from the fact that, as we verify,(︁
Ψ𝑅̂ℬ

)︁−1

(𝑟, 𝑅ℬ𝑦) =
(︀
Ψℬ
)︀−1

(𝑟, 𝑦), (2.8)

for all 𝑟, 𝑦 as in the statement. From now on, we write for short 𝑅 for 𝑅ℬ. First note that, ∀𝑣 ∈ 𝑇𝑝𝑀 , 𝑣𝑅̂ℬ = 𝑅𝑇 𝑣ℬ

and
(︁
𝑅̂𝑣
)︁ℬ

= 𝑅𝑣ℬ. Thus

Ψ𝑅̂ℬ
(︁
𝑅̂𝑣
)︁

=

⎛⎜⎜⎝⃒⃒⃒𝑅̂𝑣
⃒⃒⃒
𝑔
,

(︁
𝑅̂𝑣
)︁𝑅̂ℬ⃒⃒⃒

𝑅̂𝑣
⃒⃒⃒
𝑔

⎞⎟⎟⎠ =

⎛⎜⎝|𝑣|𝑔, 𝑅𝑇
(︁
𝑅̂𝑣
)︁ℬ

|𝑣|𝑔

⎞⎟⎠
=
(︂
|𝑣|𝑔,

𝑅𝑇 𝑅𝑣ℬ

|𝑣|𝑔

)︂
= Ψℬ(𝑣).

This implies that, if (𝑟, 𝑦) = Ψℬ(𝑣) then

Ψ𝑅̂ℬ ∘
(︀
Ψℬ
)︀−1

(𝑟, 𝑦) = Ψ𝑅̂ℬ(𝑣) =

(︃
|𝑣|𝑔,

𝑣𝑅̂ℬ

|𝑣|𝑔

)︃

=
(︂
|𝑣|𝑔,

𝑅𝑣ℬ

|𝑣|𝑔

)︂
= (𝑟, 𝑅𝑦),

namely equation (2.8). �

3. Monge–Kantorovich equations on manifolds

In this section we present the Monge–Kantorovich equations (MK equations), an equivalent PDE formulation
of the optimal transport problem on a Riemannian manifold with geodesic distance as transport cost. We use
the formulation described in [8, 39], assuming that one of the transported measures 𝑓+ and 𝑓− on 𝑀 admits
a density with respect to the volume form d𝑉𝑔. Under these assumptions the MK equations can be written as
the problem of finding a pair (𝑢*, 𝜇*), where 𝑢* is a continuous function with Lipschitz constant equal to 1 and
𝜇* is a non-negative measure, that solves

−div𝑔(𝜇*∇𝑔𝑢
*) = 𝑓+ − 𝑓− on 𝑀, (3.1a)

|∇𝑔𝑢
*|𝑔 ≤ 1 on 𝑀, (3.1b)

|∇𝑔𝑢
*|𝑔 = 1 𝜇* − 𝑎.𝑒., (3.1c)
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where equation (3.1a) must be interpreted in the following weak form:∫︁
𝑀

⟨∇𝑔𝑢
*,∇𝑔𝜑⟩𝑔 d𝜇* =

∫︁
𝑀

𝜑 d𝑓+ −
∫︁

𝑀

𝜑 d𝑓−, ∀𝜑 ∈ 𝒞1(𝑀). (3.2)

The components of the solution pair (𝑢*, 𝜇*) of the above system are named Kantorovich potential and OTD,
respectively.

The following lemma summarizes a series of results on the solution of the MK equations from [2, 13, 16, 21,
22,39,41].

Lemma 3.1 (Properties of Monge–Kantorovich equations). The Kantorovich potential 𝑢* is unique up to a
constant within the support of 𝜇* (outside supp(𝜇*) there exist infinitely many functions 𝑢 that satisfy Eq. (3.1)).

If either 𝑓+ or 𝑓− (or both) is absolutely continuous with respect to the volume form d𝑉𝑔, then the OTD 𝜇*

is unique and is absolutely continuous with respect to d𝑉𝑔.

Remark 3.2. Without a priori knowledge of the integrability of 𝜇*, guaranteed by Lemma 3.1 in our problem,
the formulation of the MK equations requires the notion of gradient with respect to a measure [8].

Intuitively speaking, the link between OT and the solution (𝑢*, 𝜇*) of the MK equations equation (3.1) is as
follows. The OTD 𝜇* can be seen as a measure of the flux through each portion of the manifold in the optimal
reallocation of 𝑓+ into 𝑓−. Mass moves along disjoint transport rays that follow the direction of the gradient
of the Kantorovich potential 𝑢*. Intuitively, these transport rays are geodesics connecting points in the support
of 𝑓+ with points in the support of 𝑓− (we refer the reader to [2] for the proper definition of transport rays).
Under certain properties of the transported measures 𝑓+ and 𝑓− (𝐿∞ densities and disjoint supports), Evans
and Gangbo [16] proved that the OTD tends to zero at the endpoints of each transport ray.

4. OT characterization of 𝐶𝑝

From the property of the decay of the OTD along the transport rays we devise the following strategy for the
search of the cut locus: we set 𝑓+ = d𝑉𝑔(𝑀)𝛿𝑝 (with 𝛿𝑝 the Dirac delta centered at 𝑝) and 𝑓− = d𝑉𝑔 and look
at the zero-set of 𝜇*. The intuition is that in the optimal reallocation of the Dirac mass centered at 𝑝, the mass
is “sent” from 𝑝 to all the points of 𝑀 along geodesics. The mass is progressively “absorbed” by the constant
sink term 𝑓− = d𝑉𝑔 until we reach those points where mass is coming also from a different direction. At those
points, 𝜇* becomes zero. For a cleaner understanding of this idea and of the properties of the OTD, we present
a simple example on the unit circle 𝒮1.

Example 4.1. On the unit circle 𝒮1 =
{︀
𝑥2 + 𝑦2 = 1

}︀
we consider the point 𝑝 = (1, 0) and source terms given

by 𝑓+ = 2𝜋𝛿𝑝 and 𝑓− = 1 d𝜙. Using the angle coordinate 𝜙 ∈ 𝒮1 the Kantorovich potential and the OTD are
given by:

𝑢*(𝜙) = −|𝜙|, 𝜇*(𝜙) = 𝜋 − |𝜙|, 𝜙 ∈ 𝒮1. (4.1)

The graphs of 𝜇* and the transported measures are reported in Figure 2. The OTD 𝜇* progressively decays
moving away from the point 𝑝, until the antipodal point is reached, where it vanishes. According to the definition
given in [2], in this example the arcs ]− 𝜋, 0[ and ]0, 𝜋[ are the transport rays.

The extension of this idea to a general manifold leads to the following theorem, which is a more complete
version of Theorem 1.1.

Theorem 4.2. Let (𝑀, 𝑔) be a compact and geodesically complete Riemannian manifold of dimension 𝑛 and
with no boundary. Consider a point 𝑝 ∈ 𝑀 and the measures

𝑓+ = d𝑉𝑔(𝑀)𝛿𝑝, 𝑓− = d𝑉𝑔. (4.2)

Let (𝑢*, 𝜇*) be the solution of the MK equations with measures given by equation (4.2). Then:
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Figure 2. Graph of the OTD 𝜇* (black) solution of the MK equations in the unit circle 𝒮1

(the point −𝜋 is identified with 𝜋) with 𝑓+ = 2𝜋𝛿0 (red) and 𝑓− = d𝜙 (blue).

(i) the Kantorovich Potential 𝑢* coincides with minus the geodesic distance from 𝑝:

𝑢*(𝑥) = −dist𝑔(𝑥, 𝑝); (4.3)

(ii) when restricted to 𝑀 ∖ {𝑝}, the OTD 𝜇* admits a continuous density 𝜇 with respect to the volume form
d𝑉𝑔:

𝜇* = 𝜇 d𝑉𝑔, 𝜇 ∈ 𝒞0(𝑀 ∖ {𝑝});

(iii) the zero set of 𝜇 coincides with the cut locus 𝐶𝑝 of 𝑝:

𝐶𝑝 =
{︀
𝑥 ∈ 𝑀 ∖ {𝑝} : 𝜇(𝑥) = 0

}︀
;

(iv) for any 𝑔(𝑝)-orthonormal basis ℬ, the local representative 𝜇ℬ := 𝜇 ∘ (𝜑ℬ𝑝 )−1 in the chart 𝜑ℬ𝑝 of the function
𝜇 is given by

𝜇ℬ(𝑟, 𝜙) =
1

𝐺ℬ(𝑟, 𝜙)𝑟𝑛−1

∫︁ 𝒯 ℬ𝑝 (𝜙)

𝑟

𝐺ℬ(𝑠, 𝜙)𝑠𝑛−1 d𝑠, (4.4)

for all (𝑟, 𝜙) ∈ 𝜑ℬ𝑝
(︀
𝐼ℬ𝑝
)︀
⊂ R+ × U𝑛−1.

Proof. We first observe that thanks to Lemma 2.8, given two 𝑔(𝑝)-orthonormal basis ℬ and ℬ′ the functions
𝜇ℬ ∘𝜑ℬ𝑝 and 𝜇ℬ

′ ∘𝜑ℬ
′

𝑝 coincide in the intersection of their domains. Therefore, there exists a continuous function
𝜇 on 𝐼𝑝 with local representative 𝜇ℬ in any chart 𝜑ℬ𝑝 given by equation (4.4). Moreover, since for every ℬ 𝜇ℬ is
positive in its domain 𝜑ℬ𝑝 (𝐼ℬ𝑝 ) and, for every 𝜙,

lim
𝑟→𝒯 ℬ𝑝 (𝜙)

𝜇ℬ(𝑟, 𝜙) = 0,

the function 𝜇 admits a (unique) continuous extension on 𝐼𝑝 ∪ 𝐶𝑝 = 𝑀 ∖ {𝑝}, which we will continue to
denote with 𝜇. This extension is non-negative and its zero set coincides with the cut locus of 𝑝. This proves
statement (iii). The term 𝐺ℬ, defined in equation (2.6), is clearly bounded from above and from below. Hence,
the integral in equation (4.4) tends to zero as 𝑟 → 𝒯 ℬ𝑝 (𝜙).
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Now, we note that the source term 𝑓− in equation (4.2) is absolutely continuous with respect to the volume
form d𝑉𝑔. Thus, Lemma 3.1 ensures that the OTD 𝜇* admits a unique density with respect to the volume form
d𝑉𝑔. We now show that, with 𝜇 defined above, the pair (𝑢*, 𝜇*) given by

𝑢*(𝑥) = −dist𝑔(𝑥, 𝑝), 𝜇*
𝑎.𝑒.= 𝜇 d𝑉𝑔, (4.5)

solves equation (3.1). It is clear that 𝑢* satisfies the constraints in equations (3.1c) and (3.1b). Thus, we only
have to prove that (𝑢*, 𝜇*) solves equation (3.2) for 𝑓+ and 𝑓− in equation (4.2) i.e.,∫︁

𝑀

⟨∇𝑔𝑢
*,∇𝑔𝜑⟩𝑔 d𝜇* =

∫︁
𝑀

( d𝑉𝑔(𝑀))𝜑𝛿𝑝 −
∫︁

𝑀

𝜑 d𝑉𝑔 ∀𝜑 ∈ 𝒞1(𝑀). (4.6)

For all 𝜑 ∈ 𝒞1(𝑀), the right-hand side RHS of the above equation can be evaluated as

RHS = ( d𝑉𝑔(𝑀))𝜑(𝑝)−
∫︁

𝑀

𝜑 d𝑉𝑔. (4.7)

We know, from Lemma 2.3 and Remark 2.5, that for any 𝑔(𝑝)-orthonormal basis ℬ the set 𝑀∖𝐼ℬ𝑝 has zero measure
on 𝑀 . Thus, we can restrict the integrals on the left-hand side of equation (4.6) to 𝐼ℬ𝑝 and use the Riemannian
polar coordinates to compute them. Write 𝜑ℬ = 𝜑 ∘ (𝜑ℬ𝑝 )−1 and 𝑢ℬ = 𝑢* ∘ (𝜑ℬ𝑝 )−1. Thus, 𝑢ℬ(𝑟, 𝜙) = −𝑟 and the
left-hand side LHS of equation (4.6) becomes:

LHS =
∫︁

U𝑛−1

∫︁ 𝒯 ℬ𝑝 (𝜙)

0

∇𝑢ℬ(𝑟 , 𝜙) · 𝑔ℬ(𝑟 , 𝜙)−1∇𝜑ℬ(𝑟 , 𝜙)𝜇ℬ(𝑟, 𝜙)𝒥 ℬ(𝑟 , 𝜙) d𝑟 d𝜙.

Now, ∇𝑢ℬ(𝑟 , 𝜙) = (−1, 0, . . . , 0) and from Lemma 2.6 we have

∇𝑢ℬ(𝑟 , 𝜙) · 𝑔ℬ(𝑟 , 𝜙)−1∇𝜑ℬ(𝑟 , 𝜙) = −𝜕𝑟 𝜑ℬ(𝑟 , 𝜙).

Thus, recalling equations (4.4) and (2.5) of Lemma 2.7

LHS = −
∫︁

U𝑛−1

∫︁ 𝒯 ℬ𝑝 (𝜙 )

0

(︃∫︁ 𝒯 ℬ𝑝 (𝜙 )

𝑟

𝒥 ℬ(𝑠, 𝜙) d𝑠

)︃
𝜕𝑟 𝜑ℬ(𝑟 , 𝜙) d𝑟 d𝜙.

Integration by parts yields:

LHS = −
∫︁

U𝑛−1

⎛⎝[︃(︃∫︁ 𝒯 ℬ𝑝 (𝜙 )

𝑟

𝒥 ℬ(𝑠, 𝜙) d𝑠

)︃
𝜑ℬ(𝑟 , 𝜙)

]︃𝒯 ℬ𝑝 (𝜙 )

0

⎞⎠ d𝜙

+
∫︁

U𝑛−1

(︃∫︁ 𝒯 ℬ𝑝 (𝜙 )

0

𝜕𝑟

(︃∫︁ 𝒯 ℬ𝑝 (𝜙 )

𝑟

𝒥 ℬ(𝑠, 𝜙) d𝑠

)︃
𝜑ℬ(𝑟 , 𝜙) d𝑟

)︃
d𝜙.

The first term is evaluated by taking the separate limits as 𝑟 → 𝒯 ℬ𝑝 (𝜙) and as 𝑟 → 0, with the former yielding
zero. In conclusion,

LHS = 𝜑(𝑝)
∫︁

U𝑛−1

∫︁ 𝒯 ℬ𝑝 (𝜙)

0

𝒥 ℬ(𝑠, 𝜙) d𝑠 d𝜙 −
∫︁

U𝑛−1

∫︁ 𝒯 ℬ𝑝 (𝜙 )

0

𝒥 ℬ(𝑟 , 𝜙)𝜑ℬ(𝑟 , 𝜙) d𝑟 d𝜙

= ( d𝑉𝑔(𝑀))𝜑(𝑝)−
∫︁

𝐼ℬ𝑝

𝜑 d𝑉𝑔,

and then LHS = RHS for all 𝜑 ∈ 𝒞1(𝑀), proving equation (4.6). This shows that the pair (𝑢*, 𝜇*) in equa-
tion (4.5) solves of the MK equations for 𝑓+ and 𝑓− in equation (4.2). This proves statements (i), (ii), and (iv).
Statement (iii) has already been proved. �



1948 E. FACCA ET AL.

Remark 4.3. It is worth noting that, thanks to Theorem 4.2 and to the results in [19, 20], we can give a
variational characterization of the OTD as the minimizer of:

min
𝜇

{︀
ℒ𝑔(𝜇) : 𝜇 ∈ 𝒞0(𝑀 ∖ {𝑝}, R+)

}︀
,

with ℒ𝑔 = ℰ𝑔 + 𝑀𝑔 and

ℰ𝑔(𝜇) := sup
𝜑∈Lip (𝑀)

{︃∫︁
𝑀

( d𝑉𝑔(𝑀)𝛿𝑝 − d𝑉𝑔)𝜑− 𝜇
|∇𝑔𝜑|2

2
d𝑉𝑔

}︃
,

ℳ𝑔(𝜇) :=
1
2

∫︁
𝑀

𝜇 d𝑉𝑔.

This provides a variational characterization of the cut locus of a point 𝑝 ∈ 𝑀 as the zero set of the minimizer
𝜇* of ℒ𝑔(𝜇).

5. Numerical approximation of the cut locus

In this section we present our strategy for the calculation of the cut locus based on Theorem 4.2. Unfortunately,
it is numerically challenging to look directly at the zero set of the expression for OTD 𝜇* given in equation (4.4).
Indeed, this would require the approximation of the distance and cut time functions, i.e., the same unknowns
in the identification problem of the cut locus. As an alternative, at least in the case of a surface Γ embedded
in R3, we approach the numerical solution of the MK equations equation (3.1) by means of the “dynamic”
reformulation of the MK equations, called DMK, recently proposed in [18], analized in [20], and its finite-
element-based discretization, described in [19]. More precisely, we use the extension to the surface setting of
the DMK approach as described in [4], in which the numerical schemes developed in [19] are extended to the
surface setting using the Surface Finite Element Method (SFEM) framework reviewed in [15].

We summarize here the fundamental steps of SFEM-DMK that impact on our goal of calculating the cut
locus. First, let the surface Γ be decomposed with a geodesic triangulation Γ = 𝒯 (Γ), formed by triangles whose
edges are the geodesics between the vertices. Next, this triangulation is approximated by its piecewise linear
interpolant Γℎ = 𝒯ℎ(Γ) = ∪E𝑟, i.e., the union of 2-simplices E𝑟 in R3 having the same vertices as 𝒯 (Γ) (for
more details see [15, 37]). Using Γℎ it is possible to define appropriate discrete geometric quantities, such as
surface gradients and discrete finite element function spaces, that allow the numerical discretization of the MK
equations on surfaces embedded in R3. We refer to [15] for details on SFEM and to [4] for details and application
examples of SFEM to the DMK on surfaces.

In practice, the calculation of the cut locus takes place on the piecewise linear interpolation Γℎ of Γ by means
of the SFEM discretization of the MK equations with 𝑓+ = d𝑉𝑔(Γℎ)𝛿𝑝 and 𝑓− = d𝑉𝑔. To maintain stability
we follow the procedure described in [19] whereby the Kantorovich potential 𝑢* is interpolated on a uniformly
refined mesh 𝒯ℎ/2(Γℎ) ⊂ 𝒯ℎ(Γℎ) by piecewise linear polynomials, while the OT density 𝜇* is approximated on
𝒯ℎ(Γℎ) by piecewise constants. As a consequence, the approximated cut locus is formed by the union of the
triangles E𝑟 ∈ 𝒯ℎ(Γℎ) where our numerically evaluated OTD, 𝜇*ℎ, is close to zero. Thus, we give the following
definition of the approximate cut locus (𝐶𝑝,ℎ,𝜖):

𝐶𝑝,ℎ,𝜖 := {∪E𝑟 ∈ 𝒯ℎ(Γℎ) s.t. (𝜇*ℎ)|E𝑟
≤ 𝜖}

where 𝜖 is an appropriate preselected tolerance.

Remark 5.1. The definition of this tolerance is crucial for a proper approximation of 𝐶𝑝. Indeed, it is rather
difficult to approximate a one-dimensional structure, and more so single points, as a union of triangles of 𝒯ℎ(Γ),
and we will see by experimentation that different values of 𝜖 lead to different 𝐶𝑝,ℎ,𝜖. Another difficulty arises
from the use of the singular source term 𝑓+ = d𝑉𝑔(Γ)𝛿𝑝, which does not belong to the dual of 𝐻1(Γ). This is
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a typical problem in applications and yields suboptimal SFEM convergence rates for 𝑢*. To address this issue
one may either use regularization along the lines of [44,45] or a posteriori error estimations to adapt the surface
mesh. We choose not to employ any of these approaches since first order global accuracy is in any case enforced
by the piecewise constant discretization of 𝜇*.

We would like to note that according to [1] the cut locus is stable under 𝒞2 perturbations of the domain or
of the metric but stability may be lost in case of 𝒞1 perturbations. However, the ensuing experimental results
show that our piecewise constant approximation of the transport density introduces enough regularization to
our numerical solution, at least for the sample problems addressed in this work.

5.1. Numerical experiments

First we would like to note that a Python notebook reproducing the experiments presented in this
section can be found at this link https://doi.org/10.5281/zenodo.5710660. The source code is available
at the following repository https://gitlab.com/enrico facca/dmk solver (subdirectory FaccaBertiFassoP-
utti2021 CutLocus).

The first test case, described in Section 2.1 and shown in Figure 1, deals with the calculation of the cut
locus 𝐶𝑝 of a torus 𝑇 with radii 𝑟max = 2 and 𝑟min = 1 with respect to the point 𝑝 = (3, 0, 0). The results
of our simulations are shown in Figure 3. The top panels of the figure depict the 𝐶𝑝,ℎ,𝜖 obtained using a
tolerance 𝜖 = 10−3 on four mesh refinement levels. It is clear that 𝐶𝑝,ℎ,𝜖 approximates the real cut locus
with satisfactory accuracy already on the coarsest grid, with progressively improving resolution as expected by
the higher refinement levels. The effect of the mesh finite size is clearly discernible but no instabilities in the
identification of the cut locus are visible. Note that perturbations of Γ and 𝑔 in the refinement step from 𝒯ℎ(Γ)
to 𝒯ℎ/2(Γ) are not strictly 𝒞1,1-regular. However, we can view 𝒯ℎ(Γ) as a linear interpolation of Γ whose error
can be bounded by ℎ2 times the norm of the second fundamental form of Γ [3,15,37]. This regularity is sufficient
to provide empirical justification of the stability of our calculations. This rationale is further strengthened by
the results at the finest grid level.

The 𝐶𝑝,ℎ,𝜖 for 𝜖 = 10−4 is shown in the bottom panel of Figure 3. A much better approximation of the real
cut locus is displayed with increased level of details. However, one portion of the “internal equator” opposite to
𝑝 is not identified. We can give a heuristic explanation for this phenomenon by looking at the explicit formula
of the OTD in equation (4.4). Roughly, this formula predicts an increased value of the OTD in the regions
of larger mass fluxes. In our case this corresponds to the region surrounding the internal equator, where the
geodesics starting at 𝑝 arrive with a small angle with respect to the internal great circle. Thus, the values of 𝜇*ℎ
in these triangles are relatively large, and the approximation of the cut locus becomes problematic when using
an absolute identification criterion. This problem could of course be relieved by employing standard strategies
that combine relative error measures and adaptive mesh refinements, tasks that go beyond the purpose of this
paper.

The second test case is taken from Section 5 of [30] where the authors consider the triaxial ellipsoid given by

𝐸 :=
{︀

(𝑥, 𝑦, 𝑧) ∈ R3 : (𝑥/0.2)2 + (𝑦/0.6)2 + 𝑧2 = 1
}︀
.

The cut loci of two points in 𝐸 are studied. The first point considered is 𝑝1 = (−0.115470, 0, 0.816497), an umbilic
point whose cut locus consists of a single point. The second point is 𝑝2 = (−0.151128,−0.350718, 0.295520) and
its cut locus is an arc on the opposite side of the ellipsoid [29].

In Figure 4 we report the spatial distribution of the approximate OTD 𝜇*ℎ associated to the points 𝑝1 and
𝑝2, on the top and bottom panels, respectively. We start from an initial triangulation 𝒯ℎ of the ellipsoid with
534 nodes and 1064 triangles, obtained by means of the software described in [38]. We generate a sequence of
finer grids conformally refining 𝒯ℎ and “lifting” the added nodes (the mid-points of the edges of the triangles)
to the ellipsoid. We report the spatial distribution of 𝜇*ℎ only on those triangles where 𝜇*ℎ < 0.04 to appreciate
the decay of the OTD as it approaches the cut locus. Already at the coarsest grid, the region were 𝜇*ℎ attains
the lowest values (in black in Fig. 4) strongly resembles the approximate cut locus computed in [30].

https://doi.org/10.5281/zenodo.5710660
https://gitlab.com/enrico_facca/dmk_solver
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Figure 3. Numerical identification of the 𝐶𝑝,ℎ,𝜖 of a torus obtained at four uniform mesh
refinement levels for 𝜖 = 0.001. The color map refers to 𝜇*ℎ values. The coarsest mesh level
contains 2712 nodes and 5424 triangles. The two segments in black intersect the surface of
the torus at points 𝑝1 and 𝑝2 described in Figure 1. The bottom panel shows the 𝐶𝑝,ℎ,𝜖 for
𝜖 = 0.0001 on the finest grid level.
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Figure 4. Ellipsoid (𝑥/0.2)2 + (𝑦/0.6)2 + (𝑧)2 = 1. Upper panels: spatial distribution of
𝜇*ℎ for the point 𝑝1 = (−0.115470, 0, 0.816497). We report the results for three meshes, one
the conformal refinement of the other, with the first having 534 nodes and 1064 triangles,
and the latter 8514 nodes 17 024 triangles. The point 𝑝1 is located “behind” the visible
ellipsoid and it is marked with a black circle. We report only those triangles where 𝜇*ℎ is
below 0.04. We also report the contour lines of 𝑢*ℎ. Lower panels: same plots for the point
𝑝2 = (−0.151128,−0.350718, 0.295520).

The final test-case, again taken from [30], looks for the cut locus of the quartic equation surface defined by

𝑄 :=
{︀

(𝑥, 𝑦, 𝑧) ∈ R3 : 𝑥4 + 𝑦4 + 𝑧4 = 1
}︀

with respect to the point 𝑝 = (0.533843, 0.800764, 0.844080). Figure 5 shows the spatial distribution of 𝜇*ℎ
obtained on two different triangulations. The first mesh (left panel) is characterized by 34 178 nodes and 68 352
triangles in 𝒯ℎ, where 𝜇*ℎ is defined, and 136 712 nodes and 273 408 triangles, in 𝒯ℎ/2, where 𝑢*ℎ lives. The
second mesh level (right panel) is exactly four times larger. The approximate zero set of 𝜇*ℎ shown on the two
refinements in Figure 5 compares well with the approximate cut locus reported in [30].
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Figure 5. Spatial distribution of the 𝜇*ℎ on the surface 𝑄 using 𝑓+ = |𝑄|𝛿𝑝 with 𝑝 =
(0.533843, 0.800764, 0.844080) and 𝑓 = 1. Left panel: result using a mesh containing 34 178
nodes and 68 352 cells. The color scale has its maximum at 0.01 to highlight the region where
𝜇*ℎ attains the lowest value. Right panel: same results using the conformal refinement of the
surface triangulation (136 706 nodes and 273 408 cells).

We would like to note here that our DMK-based approach is much more computationally efficient than
[30]. Indeed, the computational cost for these simulations on a laptop computer equipped with a 2014 Intel
Core-I5 processor with 8 GB of RAM are 782 and 4606 s for the two meshes. This is to be compared with the
computational cost of 35 506 s reported in [30] to solve the same problem on a mesh with 49 152 triangles (with
an unspecified CPU). The difference in performance has to be attributed to the fact that the algorithm in [30]
has a computational complexity that grows exponentially with the size of the triangulation, while our algorithm
is affected by the classical polynomial computational complexity of FEM methods. Finally, we would like to note
that the computational cost of our method is comparable if not better to the approach described in [27]. The
use of implicit time-stepping in combination with Newton method as proposed in [17], which allows a drastic
improvement in computational efficiency, is the next step in our future studies.

6. Conclusions

We presented a new result showing the one-to-one correspondence between the cut locus of a point 𝑝 in a
Riemannian manifold (𝑀, 𝑔) and the zero set of the OTD 𝜇* solution of the MK equations with 𝑓+ = d𝑉𝑔(𝑀)𝛿𝑝

and 𝑓− = d𝑉𝑔. This new PDE-based characterization allows us to exploit standard finite element methods in
combination with optimization techniques for the numerical approximation of the cut locus. Based on this result,
we proposed a novel numerical approach for the identification of the cut locus of a point on 2d surfaces embedded
in R3 using the DMK method proposed in [4] for the solution of the of the MK equations. Numerical tests on
few examples show that the cut locus can be efficiently identified with the developed strategy. The scheme seems
to be reliable also for singular sets that have branches, such as those arising in the torus or the quartic surface.
Finally, we would like to mention that the proposed DMK-based numerical approach can be easily extended
to manifolds with dimension greater than two as long as the numerical solution of the PDE equation (3.1a) is
feasible.
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