Singular solutions, graded meshes,and adaptivity for total-variation regularized minimization problems
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 6, pp. 1871-1888

Recent quasi-optimal error estimates for the finite element approximation of total-variation regularized minimization problems require the existence of a Lipschitz continuous dual solution. We discuss the validity of this condition and devise numerical methods using locally refined meshes that lead to improved convergence rates despite the occurrence of discontinuities. It turns out that linear convergence is possible on suitably constructed meshes.

DOI : 10.1051/m2an/2022056
Classification : 49M29, 65N15, 65N50
Keywords: Nonsmooth minimization, graded meshes, adaptivity, total variation, error estimates
@article{M2AN_2022__56_6_1871_0,
     author = {Bartels, S\"oren and Tovey, Robert and Wassmer, Friedrich},
     title = {Singular solutions, graded meshes,and adaptivity for total-variation regularized minimization problems},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1871--1888},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {6},
     doi = {10.1051/m2an/2022056},
     mrnumber = {4467102},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2022056/}
}
TY  - JOUR
AU  - Bartels, Sören
AU  - Tovey, Robert
AU  - Wassmer, Friedrich
TI  - Singular solutions, graded meshes,and adaptivity for total-variation regularized minimization problems
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2022
SP  - 1871
EP  - 1888
VL  - 56
IS  - 6
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2022056/
DO  - 10.1051/m2an/2022056
LA  - en
ID  - M2AN_2022__56_6_1871_0
ER  - 
%0 Journal Article
%A Bartels, Sören
%A Tovey, Robert
%A Wassmer, Friedrich
%T Singular solutions, graded meshes,and adaptivity for total-variation regularized minimization problems
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2022
%P 1871-1888
%V 56
%N 6
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2022056/
%R 10.1051/m2an/2022056
%G en
%F M2AN_2022__56_6_1871_0
Bartels, Sören; Tovey, Robert; Wassmer, Friedrich. Singular solutions, graded meshes,and adaptivity for total-variation regularized minimization problems. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 6, pp. 1871-1888. doi: 10.1051/m2an/2022056

[1] F. Alter, V. Caselles and A. Chambolle, A characterization of convex calibrable sets in N . Math. Ann. 332 (2005) 329–366. | MR | Zbl | DOI

[2] L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (2000). | MR | Zbl | DOI

[3] H. Attouch, G. Buttazzo and G. Michaille, Variational Analysis in Sobolev and BV Spaces – Applications to PDEs and Optimization. Vol. 4 of MPS-SIAM Series on Optimization. Society for Industrial and Applied Mathematics, Philadelphia (2006). | MR | Zbl

[4] S. Bartels, Total variation minimization with finite elements: convergence and iterative solution. SIAM J. Numer. Anal. 50 (2012) 1162–1180. | MR | Zbl | DOI

[5] S. Bartels, Error control and adaptivity for a variational model problem defined on functions of bounded variation. Math. Comput. 84 (2015) 1217–1240. | MR | DOI

[6] S. Bartels, Numerical Methods for Nonlinear Partial Differential Equations. Vol. 47 of Springer Series in Computational Mathematics. Springer, Cham (2015). | MR | Zbl | DOI

[7] S. Bartels, Numerical Approximation of Partial Differential Equations. Vol. 64 of Texts in Applied Mathematics. Springer, Berlin, Heidelberg (2016). | MR | DOI

[8] S. Bartels, Error estimates for a class of discontinuous Galerkin methods for nonsmooth problems via convex duality relations. Math. Comput. 90 (2021) 2579–2602. | MR | DOI

[9] S. Bartels, Nonconforming discretizations of convex minimization problems and precise relations to mixed methods. Comput. Math. App. 93 (2021) 214–229. | MR

[10] S. Bartels and M. Milicevic, Primal-dual gap estimators for a posteriori error analysis of nonsmooth minimization problems. ESAIM: Math. Model. Numer. Anal. 54 (2020) 1635–1660. | MR | Zbl | Numdam | DOI

[11] S. Bartels, R. H. Nochetto and A. J. Salgado, A total variation diminishing interpolation operator and applications. Math. Comput. 84 (2015) 2569–2587. | MR | DOI

[12] S. Bartels, L. Diening and R. H. Nochetto, Unconditional stability of semi-implicit discretizations of singular flows. SIAM J. Numer. Anal. 56 (2018) 1896–1914. | MR | DOI

[13] B. Berkels, A. Effland and M. Rumpf, A posteriori error control for the binary Mumford-Shah model. Math. Comput. 86 (2017) 1769–1791. | MR | DOI

[14] S. C. Brenner, Forty years of the Crouzeix-Raviart element. Numer. Methods Part. Differ. Equ. 31 (2015) 367–396. | MR | DOI

[15] S. C. Brenner and L. Ridgway Scott, The Mathematical Theory of Finite Element Methods. Vol. 15 of Texts in Applied Mathematics, 3rd edition. Springer, New York (2008). | MR | Zbl

[16] M. Burger, Bregman distances in inverse problems and partial differential equations. In: Advances in Mathematical Modeling, Optimization and Optimal Control. Vol. 109 of Springer Optim. Appl. Springer, Cham (2016) 3–33. | MR | DOI

[17] C. Caillaud and A. Chambolle, Error estimates for finite differences approximations of the total variation. HAL preprint nr. 02539136 (2020). | MR

[18] V. Caselles, A. Chambolle and M. Novaga, The Discontinuity Set of Solutions of the TV Denoising Problem and Some Extensions. Multiscale Model. Simul. 6 (2007) 879–894. | MR | Zbl | DOI

[19] A. Chambolle and P.-L. Lions, Image recovery via total variation minimization and related problems. Numer. Math. 76 (1997) 167–188. | MR | Zbl | DOI

[20] A. Chambolle and T. Pock, Crouzeix-Raviart approximation of the total variation on simplicial meshes. J. Math. Imaging Vision 62 (2020) 872–899. | MR | DOI

[21] A. Chambolle and T. Pock, Approximating the total variation with finite differences or finite elements. In: Handbook of Numerical Analysis: Geometric Partial Differential Equations II. Elsevier (2021). | MR

[22] A. Chambolle, V. Caselles, D. Cremers, M. Novaga and T. Pock, An introduction to total variation for image analysis. In: Theoretical Foundations and Numerical Methods for Sparse Recovery. Vol. 9 of Radon Ser. Comput. Appl. Math. Walter de Gruyter, Berlin (2010) 263–340. | MR | Zbl | DOI

[23] A. Chambolle, S. E. Levine and B. J. Lucier, An upwind finite-difference method for total variation-based image smoothing. SIAM J. Imaging Sci. 4 (2011) 277–299. | MR | Zbl | DOI

[24] M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations I. R.A.I.R.O. 7 (1973) 33–75. | MR | Numdam | Zbl

[25] F. Fierro and A. Veeser, A posteriori error estimators for regularized total variation of characteristic functions. SIAM J. Numer. Anal. 41 (2003) 2032–2055. | MR | Zbl | DOI

[26] M. Herrmann, R. Herzog, S. Schmidt, J. Vidal-Núñez and G. Wachsmuth, Discrete total variation with finite elements and applications to imaging. J. Math. Imaging Vision 61 (2019) 411–431. | MR | DOI

[27] M. Hintermüller and K. Kunisch, Total bounded variation regularization as a bilaterally constrained optimization problem. SIAM J. Appl. Math. 64 (2004) 1311–1333. | MR | Zbl | DOI

[28] M.-J. Lai and L. Matamba Messi, Piecewise linear approximation of the continuous Rudin–Osher–Fatemi model for image denoising. SIAM J. Numer. Anal. 50 (2012) 2446–2466. | MR | Zbl | DOI

[29] P. A. Raviart and J. M. Thomas, A mixed finite element method for 2-nd order elliptic problems. In: Mathematical Aspects of Finite Element Methods, edited by I. Galligani and E. Magenes. Springer, Berlin, Heidelberg (1977) 292–315. | MR | Zbl | DOI

[30] L. I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms. Phys. D: Nonlinear Phenom. 60 (1992) 259–268. | MR | Zbl | DOI

[31] R. Tovey, Mathematical challenges in electron microscopy. Ph.D. thesis, University of Cambridge (2020).

[32] J. Wang and B. J. Lucier, Error bounds for finite-difference methods for Rudin–Osher–Fatemi image smoothing. SIAM J. Numer. Anal. 49 (2011) 845–868. | MR | Zbl | DOI

Cité par Sources :