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SINGULAR SOLUTIONS, GRADED MESHES,AND ADAPTIVITY FOR
TOTAL-VARIATION REGULARIZED MINIMIZATION PROBLEMS

SOREN BARTELSY, ROBERT TOVEY? AND FRIEDRICH WASSMER!

Abstract. Recent quasi-optimal error estimates for the finite element approximation of total-variation
regularized minimization problems require the existence of a Lipschitz continuous dual solution. We
discuss the validity of this condition and devise numerical methods using locally refined meshes that
lead to improved convergence rates despite the occurrence of discontinuities. It turns out that linear
convergence is possible on suitably constructed meshes.
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1. INTRODUCTION

In this article we consider the finite element discretization of the Rudin—Osher—Fatemi (ROF) model from
[30] which serves as a model problem for general convex and nonsmooth minimization problems. This widely
used model in image processing determines a function u € BV(Q) N L?(2) via a minimization of

(0%
I(u) = [Dul(@) + S g = ull?,

where |Du|(Q2) denotes the total variation of u € BV(Q) N L2(Q), g € L*(N) is the input data, for example
a noisy image, and ||g — u|| is the L? distance between the given image and its regularization. The fidelity
parameter « > 0 is also given and determines the balance between denoising and preserving the input image.
For more information on analytical features, explicit solutions in particular examples, and numerical methods
concerning this model we refer the reader to [2—4,13,16,17, 19, 21-23, 26-28, 32]. Since this model allows for
and preserves discontinuities of the input function g, c¢f. [18], continuous finite element methods are known
to perform suboptimally, cf. [9,11]. Recent results in [8,9,20] show that optimal convergence rates O(h'/?)
for discontinuous solutions on quasi-uniform triangulations can be obtained by using discontinuous, low order
Crouzeix—Raviart finite elements from [24] or appropriate discontinous Galerkin methods. These error estimates
bound the error for approximating minimizers for I by minimizing the discrete functional

(6%
() = [ [Vl do -+ 5 Mg — un)]?
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over piecewise affine functions u;, € S (7;,) that are continuous at midpoints of element sides. Here V}, denotes
the elementwise gradient and Il is the projection onto elementwise constant functions on the triangulation
7r. Note that the functional I;, defines a nonconforming approximation of I, as, e.g., jump terms of u; across
interelement sides are not included. The quasi-optimal rate applies if the dual problem, given by a maximization
of

1 . a
D(z) = —5lldivz+ agl|® + §H9H2 — I, (0)(2)

over vector fields z € WZ(div; Q) admits a Lipschitz continuous solution. The indicator functional I, (0) of the
closed unit ball centered at the origin enforces the pointwise constraint |z| < 1. Although Lipschitz continuity
is known to be true in some settings, following an idea from [31] we show that the condition is not satisfied in
general and lower convergence rates have to be expected. Our simple counterexample uses the difference of two
characteristic functions of balls Bf = B,.(+r,0) with radius 7 > 0 that touch at the origin, i.e.,

9= X+ — XB7-
Precise characterizations, cf. [18], of dual solutions along the jump set of the primal solution, given by
U= Craf, Croq=max{l—d/(ar),0},

imply that Lipschitz continuity of dual solutions fails at the origin if ar > d. Surprisingly, this singularity does
not appear to affect the convergence rates of approximations on sequences of uniform triangulations.

To obtain the rate O(h) of the quasi-interpolation of a weakly differentiable function we investigate two
numerical methods that construct locally refined meshes. The first approach uses the fact that the jump set J,
of the primal solution w is contained in the jump set J,; of the given function g, i.e.,

Ju C Jy

cf. [18]. Reduced convergence rates are related to the suboptimal approximation of jumps and therefore our idea
is to refine triangulations in a neighborhood of the jump set .J,. Since we aim at preserving shape regularity
of triangulations, the grading strength is limited and it turns out that the minimal mesh-size hyi, used at
the discontinuity set cannot be smaller than h? with 0 < 2 and the average mesh-size h. Our numerical
analysis shows that a quadratic grading is, under suitable conditions on a piecewise regular solution, the correct
refinement strength to obtain a linear convergence rate, i.e., we have

[u = unl| = O(h),

where uy, is the Crouzeix—Raviart finite element solution. In one-dimensional situations it coincides with the P1
approximation.

The approach of using graded meshes can only be efficiently applied if the given function ¢ is piecewise
regular and the jump set J, is sufficiently simple. A more general concept uses refinement indicators based on
a posteriori error estimates that bound the approximation error of an approximation uy, €.g., a continuous P1
approximation, by computable quantities. These depend on an approximation uy of the discrete primal problem
and an admissible vector field ¢ for the continuous dual problem, i.e., we have

«
S llu— up||® < I(un) = I(w) < I(un) = D(q) = nji(un, q),
which follows from coercivity properties of the functional I and the duality principle I(u) > D(q) for every

admissible vector field ¢q. A simple calculation shows that if uy, is weakly differentiable and g satisfies |¢| < 1 in
), the error estimator is given as a sum of local, nonnegative quantities, i.e.,

1 .
77%(W’q):/Wuh|_wh'qdm+7/(dlvq—a(uh—g))zd:c.
Q a Jo
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By using the partitioning of the domain €2 given by the triangulation 7, we obtain refinement indicators n%(us, q)
that are used to refine elements T° € 7. The reliable error estimator can only be efficient if the vector field
q is a nearly optimal approximation of a dual solution z. To avoid the expensive solution of a discretization
of the dual problem we use the observation that an approximation can be obtained wvia post-processing the
Crouzeix—Raviart approximation, cf. [9]. In particular, this provides a maximizing vector field for the discrete
dual functional

1 . «
Dh(zh) = —%H div zp + OéthH2 + 5”th||2 — IKl(O) (thh),

defined on Raviart-Thomas vector fields z;, € RTY (7). For this definition we have the discrete duality principle
I, (up) > Dp(zp). However, the unit length constraint |z| < 1 is only imposed at midpoints so that the optimal
zp is in general inadmissible in the continuous dual functional D. Since only the midpoint values of z; and
its elementwise constant divergence enter the error estimator it nevertheless appears to be a reasonable way
to define error indicators (n7)rer, although the error bound may fail to hold; obvious corrections of z, do
not seem to lead to efficient error estimators. Our numerical experiments based on a related adaptive mesh
refinement algorithm lead to improved experimental convergence rates that are lower than the ones obtained
for graded meshes. Our explanation for this is that the graded meshes are optimal for the L? error while the
coercivity estimate leading to the a posteriori error estimate controls a stronger error quantity.

This article is organized as follows. In Section 2 we introduce the used notation and define the relevant finite
element spaces. The example with a non-Lipschitz dual solution for the ROF model is investigated in Section 3.
In Section 4 the graded grid approaches are devised and analyzed. In Section 5 the primal-dual error estimator
is defined and the construction of an optimal discrete dual vector field via discrete duality relations is shown.
Numerical experiments are presented in Section 6.

2. NOTATION AND FINITE ELEMENT SPACES

Given a bounded Lipschitz domain Q C R? we use standard notation for Sobolev spaces W*P((2) and
abbreviate the norm in L?(Q) by

=1 M2 -

The space of functions of bounded variation BV () consists of all u € L' (£2) such that its total variation

|Du|() = sup —/ udiv¢dx
$€C (4RY), [¢]<1 Q

is bounded. We refer the reader to [2,3] for properties of the space and note here that distributional gradients
Du of functions u € BV(2) can be decomposed into a regular, a jump, and a Cantor part via

Du=Vu® dz — [un] ® ds|s, + C,.

Vector fields w € L4(2;R?) that have a weak divergence divw € L?() and whose normal component w - n
vanishes on the boundary part I'y = 9Q \ I'p are contained in the set W (div; ), we omit the subindex if
I'n = 0. Note that in the standard ROF model we have I'p = (), occasionally we assume I'p = 9.

In the following (73)n>0 denotes a sequence of regular, i.e., uniformly shape regular and conforming, trian-
gulations of the bounded Lipschitz domain § C R?. The set S contains the sides of elements. The parameter
h refers to an average mesh-size h ~ (|Q2|/N)*/4, where N is the number of vertices of 7;,. We furthermore let
hp = diam(T) for T' € 75, and

Pmax = %nea%i hTa Rmin = ,11%17% hr.
On quasi-uniform triangulations all mesh-sizes are comparable, i.e., hmin ~ Amax ~ h. We let Pr(T) denote
the set of polynomials of maximal total degree k on T" € 7, and define the set of discontinuous, elementwise
polynomial functions or vector fields as
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£k(771)e = {wh e L™ (Q,Re) cwp|r € PH(T) for all T € Th}

Barycenters of elements and sides will be referred to as midpoints denoted by x7 for all T' € 7, and zg for all
S € Sp,. The L? projection onto piecewise constant functions or vector fields is given by elementwise averages
and denoted by

I, : L' (Q,RY) — L£O(Ty,)".

Note that we have vy (z1) = Hyvp|r for all T € T;, and vy, € LY(T},).
We next collect some elementary properties of standard and nonstandard finite elements and refer the reader
to [7,14,15,24,29] for further details. The P1-finite element space is defined via

SYT) = {vh € £Y(73,) : vy continuous in ﬁ}
A low order Crouzeix—Raviart finite element space is given by

Sher(T,) = {vh € LY(T,) : vy, continuous in zg for all S € Sh}.

We let SL(7,) and S]ID’CT('E) denote the subspaces of functions satisfying boundary conditions in vertices or in
midpoints of sides on I'p, respectively. The elementwise gradient Vv, € £°(73)¢ of a function v, € S¥"(73,)
is defined via

(vhvh)|T = V(Uh|T)

for all T' € 7;,. A low order Raviart—Thomas-finite element space is given by
RT(T;) = {yn € W'(div; Q) : yp|r(2) = ar + br(z — 27), for all T € Ty, ar € R by € R}.

Vector fields q;, € RT?(7}) belong to W (div; Q) and have continuous constant normal components on sides of
elements, we set RTY(7,) = RT°(T,) N Wi (div; Q). The spaces Sy (75,) and RTY(75,) are connected via the

integration-by-parts formula
/ v div gy dx = —/ Vivp - qn dx
Q Q

for all vy, € S5 (7,) and g5 € RTY(T5).

Given a function v € BV(Q) there exists a sequence (v.).~q C WH1(Q) N C(Q) such that v. — v in L(Q)
and ||Vu||pi) — |Dv|(Q), ¢f. [2,3]. With this we define an extension of the nodal interpolation operator
I : C(Q) — SY(Tp) via

Ihv = gi_)I%Ih”Us,

possibly after selection of a subsequence. If d = 1 then we have the nodal interpolation estimates
v = ZnollLrry < ehpl|o™ || pa (2.1)

for T € Tp, v € W™P(T), and r € {1,2}, ¢f. [15]. Via a limit passage for ¢ — 0 it follows that the estimate
holds for » = 1 and v € BV(T) and the right-hand side chp|Dv|(T). A straightforward calculation reveals the
total-variation diminishing property of the nodal interpolation operator and its extension to BV(Q), i.e.,

1(Znv) 22 0y < [Dvl(€)

for v € BV(Q) if O C R. This estimate fails in higher dimensional situations, ¢f. [11]. As a consequence of
Jensen’s inequality, the Crouzeix—Raviart quasi-interpolation operator J¢" : Wh1(Q) — S1¢"(7},) satisfies the
discrete variant

IVLTy vl < IVoll o)
for every v € WH1(Q). Note that the left-hand side of the inequality does not coincide with the total variation
of J¢"v as jump terms are excluded. From a Poincaré inequality we deduce that

v =T vllLrry < chr |Vl Lir) (2.2)
for all T' € T;,. The operator and estimates can be extended to v € BV(Q).
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3. JRREGULAR SOLUTION

The construction of a function g € L*(Q) that leads to dual solutions which are not Lipschitz continuous

uses an idea from [31] and the function
9= XB+ — XBr

in a sufficiently large domain 2 that is symmetric with respect to the x; coordinate. Without making use of the
co-area formula, we show here that the example can be understood by using uniqueness of minimizers for I and
resulting antisymmetry properties. Hence, the problem reduces to a simpler problem for which the solution can
be explicitly derived. We impose Dirichlet conditions on w which eliminates explicit boundary conditions from
the dual problem.

Proposition 3.1. Assume that Q C R? is symmetric with respect to the x1 coordinate, i.e., @ = QT ULyUQ™,
where © = (21,2, ...,xq) € QT if and only if T = (—x1,72,...,24) € Q™ and Ly C {0} x R, Assume that
r > 0 is such that BE C Q. Then for g = Xp+ —Xp- the minimizer u € BV (Q)NL2(Q) for I subject to u|apn =0
s given by

U=Crag, Cro=max{l—d/(ar),0}.

Proof. Given a minimizer u € BV(Q2) N L?(2) we define its antisymmetric reflection by @(zy, zo,...,2q4) =
—u(—x1,x2,...,24) and note that by the antisymmetry of g we have I(u) = I(@). By convexity of I we have
for & = (u+w)/2 that I(z) < I(u) and conclude by uniqueness that « = @ = @, i.e., u is antisymmetric in
x1. Since the jump set J, of w is contained in the jump set J, of g, cf. [18], we find that u is continuous with
value 0 in Lg \ {0}. It thus suffices to consider the reduced minimization of It on Q1 with g™ = Xp:+ subject
to uT|pq+ = 0. The solution is given by ut = ¢, o™, ¢f. e.g., [6,22], which implies the assertion. O

The explicit representation of the solution u implies properties of dual solutions. The idea for proving the
failure of Lipschitz continuity is illustrated in Figure 1. We make use of the fact that every dual solution equals
a normal along the jump set of a piecewise constant primal solution. This follows from the characterization of
|Du|(2) via a supremum, the strong duality property, and an integration by parts in the resulting optimality
relation |Du|(€2) = —(u, div z). We refer the reader to [1,18] for related results. More specifically, we have that
z - Du = |Du| pointwise almost everywhere and Du is parallel to the normal of the jump set, ¢f. Equation (26)
and Theorem 4 of [22].

Corollary 3.2. Assume that ar > d. Any dual solution z € W2(div; Q) for the setting considered in Proposi-
tion 3.1 satisfies divz = a(u — g), i.e., divz = —(d/r)g, and z € d|Dul, i.e., on IB;} UIB,. we have

z =T

with the outer unit normals v+ on OBE. In particular, z is not -Hélder continuous at x = 0 for every 6 > 1/2.

Proof. A piecewise integration by parts in the representation of |Du|(€2) via z yields the relation z = Fr* on
the jump set dB;F UJB; . Given an angle ¢ € (0,7/2) we define points 2+ € B by

xt =r(—cosp+1,sinp,0), 2~ =r(cosg — 1,sinp,0).
Any dual solution z satisfies

z(xT) = (cos ¢, —sin,0), z(z7) = (cosp,sinp,0).

We show that the modulus of the 6-difference quotient Ly, for z defined with 2+ and 2~ is unbounded as ¢ — 0,
i.e., we have
L) ) e simp
v |zt —x—|? r?(1 — cos )?
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FIGURE 1. Failure of Lipschitz continuity of a dual solution 2z at z = 0 resulting from |21 —
7| = rp? and |z(xt) — 2(27)| & 2¢ for p — 0.

Using the Taylor expansions sing = ¢ + O(¢?) and 1 — cos ¢ = ©?/2 + O(¢*) or 'Hospital’s rule we find that
L, — oo as ¢ — 0 whenever 6 > 1/2. O

Remark 3.3. If we repeat the proof of Corollary 3.2 in the more general case where two levelsets meet with
a rate [zt — 27| = O(pP) for p > 1, we get Holder exponent § < 1 — 1. In particular, if the levelsets meet
with vanishing curvature, i.e., p > 2, then a larger Holder exponent is possible; Lipschitz continuity can only
be achieved if p = co. We thus conjecture that the example of Proposition 3.1, i.e., p = 2, is a worst-case for
TV minimisation problems. If g contains a singularity p < 2, then the minimiser v must smooth the levelsets at
this point. We refer the reader to [1] for results concerning the invariance of jump sets in the minimization of I.

4. GRADED MESHES

To improve convergence results for discontinuous solutions, we use a graded grid approach. This capitalizes
on the precise observations about the approximation of a discontinuity by linear finite elements. We motivate
the use of graded meshes with the following canonical example.

Proposition 4.1. For £ > 0 let Q = (—¢,¢) C R and u(z) = sign(z) + v(x) with a function v € WH2(Q). Let
u} = Pyu € SY(Ty) be the L? projection of u onto S*(73,). Assume that the partitioning T, is symmetric with
respect to x = 0. Then we have

erhg’ < = wil < ea (b + bl )

where hg is the length of the elements containing the origin.

Proof. We decompose v = a + s into antisymmetric and symmetric, continuous parts a,s € W12(Q) with
a(0) = 0. We then have by L? orthogonality that

2 . . 2 2
u—uill” = min sign +a — a s—s
Ju= il = min - flsigata = anlP + s - s,

where ap, s;, are antisymmetric and symmetric, respectively. In particular, it suffices to consider the interval
(0,¢) and the restriction ap(0) = 0. The upper bound for the approximation error is obtained by defining a;, via
the nodal values of 1 + a except for the origin and choosing s;, as the nodal interpolant of s. We then find that
lw = ujll < 22hg"% + [la = Tnal + |ls — Zus|
< 221" + cxhumas (0] + [|5])
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To verify the lower bound we consider the contribution from the element Ty = [0, ko] to the antisymmetric part.
Since ap,(0) = 0, we have ap(z) = cz on Tj and find that

[sign+a — an)® > |1+ a — cxl|72(0 po)-

For the optimal slope ¢ we have Pythagoras’ identity

ho
11+ a—czl|F20.n,) :/0 (1+a)* dz — [lezllZ2(0,n)-

Since 1 4+ a and z are linearly independent there exists 0 < 7, < 1 with

ho
ol oy = [+ a)ede < 5l + allagon ol
0
The continuity of a and a(0) = 0 show that ||1 + al[z2(0,ny) > cahé/2 which implies that we have ||1 + a —
cxll72(0,n0) = (1 = 72)c2ho- D

Meshes with a grading towards a given point are obtained from affine mappings of a graded grid of the
reference interval to a macro element.

Definition 4.2. A 3-graded grid of the reference element T= [0,1] is for J € N and 8 > 1 given by the points
0= <& << =1

with & = (j/J)?. The length of the interval [£;_1,¢;] is bounded by J #3871, in particular, we have hyin =
J B hpax = BJ Y, and h = J~ L.

Proposition 4.1 implies that, for a grading strength 8 = 2 towards the origin, so that hg = h? and hyax < ch,
we obtain the linear rate
llu—up| < ch.

For the approximation of the ROF problem a similar result can be obtained.

Proposition 4.3. Let Q = (a,b) C R, g € L>=(Q), and assume that the minimizer u € BV(Q) N L2(Q) of I is
a piecewise W21 function. Then if T, is graded with strength 3 towards the jumps J,, of u we have for the P1
finite element minimizer up, € S(7) for I that

lu = un|* < (W[ Dul(Q) + 821w || L1 @) 9] L= ()
Proof. By minimality of u and coercivity properties of I, we find that for every uy, € S} (75) we have
! -
Sl = unl® < Iun) = I(u) < I(in) = I(w).

Via regularization we set up, = Zpu and use the total-variation diminishing property of Z;, to deduce with a
binomial formula that

(67 ~
Sl < [ @ -9 - (u-g)*da
Q
< [an — ull L@ [an + v — 29[| L= (q)-

By properties of nodal interpolation we have |[up| 1) < [|ul|z~(q). Moreover, truncating u at the essential
extrema g and g of g decreases its energy and by uniqueness implies ||u|| o) < [|g] Lo (). We decompose the
first factor into elementwise contributions. If T'N .J, # () we have

[tn = ull g1 7y < chmin| Dul(T).
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Otherwise, standard interpolation estimates show that
@ = ull pr gy < el [l L1y

A summation over the elements leads to the asserted estimate. O

Remark 4.4. If the solution u is piecewise linear then the estimate can be improved to the convergence rate
O(hB/?) for every 8 > 1.

Because the total-variation diminishing property is not satisfied, the generalization of Proposition 4.3 to a
higher-dimensional setting requires additional assumptions on a dual solution. A key difficulty is that the quasi-
interpolation of a dual solution in the space RT%(7) leads to a local violation of the constraint |z, (z7)| < 1
of order O(hr) independently of additional regularity properties. For piecewise constant primal solutions we
assume the strict inequality |z(z)| < 1 with linear decay away from discontinuities so that no violation occurs,
while in a neighborhood of the jump set we have a quadratic violation O(h?) on suitably graded meshes.

Proposition 4.5. For Q C R? let g € L*°(Q) and assume that the primal solution u € BV(Q) N L*°()
is piecewise constant with piecewise reqular jump set J,, and there ezists a dual solution z € W(div;Q) N
W1oo(Q;R?) with Lipschitz constant L > 0 and such that there exists £, > 0 with

|z(x)] <1 —4L.dy, (x)

where dj, (x) = infy ey, |v—y|. Let (Tn)n>0 be a sequence of quadratically graded triangulations towards J,, i.e.,
with dy, (T) = infer dy, (z) there exists cqg > 0 such that for all T € Ty, we have

hr < ca max{hd‘]u (T)V2, h2}
Then, the Crouzeiz—Raviart finite element solution uy, € Sllj’cr(’]]l) of the ROF model satisfies
[Th (u = un)|| < h M(a, u, 2, 9).

The factor M(a,u, z,g) depends on generic quantities related to T, and Q as well as the indicated quantities
that are well defined by the stated assumptions.

Proof. We follow the strategies of [9,20] that make use of projection operators related to the spaces Sllj’cr(’fh)
and RTON (75,) and Jensen’s inequality as well as binomial formulas. Letting g, = II,g this shows that there
exists a Crouzeix Raviart quasi-interpolant @, € Sy (7) of u such that

~ o - o
In(up) < I(u) + §\|Hhuh - u||L1(Q)4||g||L°°(Q) - 5”9 — gnl*.

If 4, > 1 is such that for the corrected Raviart-Thomas quasi-interpolant z; = v, Y Twrz € RT %(’Th) of z we
have |z (z7)| <1 for all T € 7}, then we have

~ — . @
Dy(2) = D(2) = (1=, ") lgllll div z|| — 5 llg = gnll*.

Using the coercivity of Ij,, the minimality of uj, the discrete duality relation Ij,(up) > Dp(Zp), and the strong
duality relation I(u) = D(z), we find that

%Hﬂh(ﬂh —up)||® < In(un) — In(un) < In(an) — Dp(Zn)

o - - .
< S =l @4llgll= @ + (1=, ") gl div 2]
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F1GURE 2. Triangulation 73 in Example 4.7 obtained by refinements of 75 with a grading
towards the side {0} x [0, ¢].

To bound the correction factor v, we estimate v = |Jrrz(z7)| for every T € Tp, using that vp < |z(xr)| +
CRThTL.
We seek to prove yp <1+ cvh2 for some ¢, > 0. From the decay condition we have

yr <1— gzd,]u (T) + crrLhy.
If hy < cgh?, then ¢, > ¢4 suffices. Otherwise, we focus on the case hy < cghdy, (T)/? and let C =
crreal/(2¢,). Then, using (Ch — dj, (T)Y/?)? > 0 we have
A <140, (2ChdJu (T)/2 - dj, (T)) <14 6,C%h2.

We conclude that v, < 1+ cpyh27 S0 (1 — 'y,:l) < c,YhQ. To bound the term |[TI5u, — ul|L1(q), we note that if
T N J, # 0 we obtain with (2.2) that

lu = Mptnllpa oy < llu = tnllrer) + [ — atnllpa gy < chr[Dul(T)

with hy < cqh?. Otherwise, if TN J, = () we have that v is constant and v = Iy, on T. The estimate of the
proposition follows from a combination of the estimates and the triangle inequality, noting that by Jensen’s and
Hélder’s inequalities we have [|TI; (u — up) |2 < |lu — Un| 21 (o) | — n || L ) - O

The assumptions of the proposition apply to certain settings with piecewise constant solutions.

Example 4.6. If g = xp (o) for 7 > 0 with B,.(0) C Q and if Dirichlet conditions on u are imposed on I'p = 912,

then we have u = ¢, g and
z(z) = c;,a{rlx’ el <

ra/lz?, |z| =,
for every x € Q, where c;. , = min{1,ra/d}, cf. [1,6,22].

A quadratic grading is the optimal grading strength to locally refine a two-dimensional triangulation towards
a one-dimensional subset.

Example 4.7. Let Q = (0,¢)? C R? with £ > 0 with initial triangulation 7y = {T1,T2}. We inductively
define 71 by first applying a red refinement to all elements in 7, that intersect the xs-axis and then refining
further elements to avoid hanging nodes by a red-green-blue refinement strategy as, e.g., in Algorithm 4.2 of
[7], ¢f. Figure 2.

We define the (asymptotic) grading strength of a sequence of regular triangulations (73)r>0 as the logarithmic
relation of the minimal and average mesh-size, i.e.,

1Og(hk min)
= 1 o\ M/,
g hoo log(hy)
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We note that the speed of convergence depends on the diameter of €2, e.g., for the triangulations defined in
Example 4.7 we have that h; min and hj are proportional to ¢, which is irrelevant in the limit passage. For the
generic setting of Example 4.7 we identify a quadratic grading strength.

Proposition 4.8. Let (7;)k—0.1,.. be a sequence of triangulations of (0,€)? such that triangles along the side
{0} x [0, 4] are k-times refined with hp ~ hg min ~ qkhkymax and for triangles along the side {¢} x [0, ] we have
ht = himax- If k71 log(hk max) — O then the graduation strenth is 3 = 2.

Proof. To determine the average mesh-size we note that the refinement process defines after k-steps a parti-
tioning into stripes S;, j = 0,1,...,k, with nj ~ ¢ /hmax elements. A summation shows that 7 contains
Ni ~ ¢ *hmax elements so that hy, ~ q’“/2 and

log(cq®hg max) ) log(chi max) + klog(q)

= 1. = 1 :2
f= lim 108(C' 0" 2 g mmax) K00 10g(/ T max) + (6/2) log(q)

which proves the assertion. O

5. PRIMAL-DUAL GAP ESTIMATOR VIA DISCRETE DUALITY

We next devise a strategy that leads to an automatic and adaptive local mesh refinement algorithm. To
illustrate the main ideas we consider a general convex minimization problem

I(u) = /qu(Vu) +¢(z,u)dz

defined on a Sobolev space X = Wé’p(Q), 1 < p < oo, oron X = BV(Q), whose dual is given by the
maximization of

D(z) = — | ¢*(2) + ¢*(x,div 2) dz
Q

on a space of vector fields W = Wﬁ/(div; Q). Here, ¢ : RY — RU {400} and 1 : 2 x R — RU {+00} are convex
functionals and ¢* and ¢* are their convex conjugates. The duality relation I(u) > D(z) in combination with

coercivity properties of I described by a functional o7 imply, for the minimizer u € X and arbitrary v € X and
q € W that

o3(u,v) < I(v) = I(u) < I(v) = D(q) =: mj (v, q). (5.1)
If v = wy, for an approximation uj, € X of u, then ny,(up, q) provides a computable bound on the approximation
error o(u,up) whenever an admissible ¢ is explicitly given. We use the following extended result from [5].

Proposition 5.1. Let u € BV(Q2) N L%(Q) be the minimizer for the ROF functional I and u, € Sh(73,) an
approzimation. We then have, for every ¢ € W(div; Q) with |q| <1 in Q, that

1/2
lu —unll < (2/@)"* mn(un, @) + llg — Tagll,
where 1
) 2
07 (un, q) = / |Vup| — Vauy, - g ds + 2*_/ (divg — a(up — gn))”~ dz.
Q @ Jo

Proof. We define g, = IIj,g and let I be the ROF functional with g replaced by ¢;, whose minimizer we denote
by 4 € BV(Q)N L%(Q). By the strong convexity of the L? term in I we find that ||u—u|| < |lg—gnll, cf. e.g., [6].
We apply the error estimate (5.1) to I and obtain that

ST~ wnl? < T(w) = Do) ~ [ Vun-qdo— [ wdivgde,
Q Q

A straightforward calculation, the fact that Vuy is elementwise constant, and the triangle inequality lead to
the formula for 0, (up, q). O
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Remark 5.2. If the estimate is derived for a Crouzeix—Raviart approximation w, € S]ID’CT(’]}), then jumps
across sides occur on the right-hand side of the identity for n? (up, ).

The optimal estimator ny,(un, ¢) requires an exact solution of the dual problem or a numerical approximation
of sufficient accuracy, cf. [10]. Since the numerical solution of the dual problem is computationally expensive,
we aim at the construction of a nearly optimal approximation at a computational cost that is comparable to
the numerical solution of the discretized primal problem. For this we use a reconstruction of a discrete dual
solution from the Crouzeix—Raviart approximation of the primal problem from [9].

Proposition 5.3 ([9], Prop. 3.1). Let I, and Dy, be defined on S5 (T1,) and RTX(T5) with ¢p(-,a) = (-, a)
for all a € R via

Tn(up) = /Q(b(vhuh) + ¢ (x, Hpup) de,

Di(z1) = — /Q ¢* (Tpzp) + V5 (z, div zp,) dz.

We then have the duality relation I (uy,) > Dy (z1). If s — ¢(s) and a — 1y (x, a) are continuously differentiable
and if up, s minimal for Iy, then a mazimizing element zp, for Dy is given by

zn = &' (Viun) + d™ 1y (- un) (- — 27),
where 7 = I id, and strong duality INh(uh) = ﬁh(zh) applies.

To apply the result to the discretized ROF functional, we consider for € > 0 the regularization ¢(a) = |a|. =
(la|? + £2)1/2 of the non-differentiable modulus. We then obtain the reconstruction z;, € RTY(7,) given by

Vuh

Zh = ————
|V hun e

+ S T (un — g)(- — @7).

The vector field zj satisfies |z5(z7)| < 1 for all T' € 7}, but in general not |z, (z)| < 1 for almost every z € .
We have for every T' € 7y, that

(0%
|znl7] Sl‘*‘g\(uh—gh)(ﬂﬁTﬂ hr =~r.

d+1

The globally re-scaled vector field zj, = (maxger, yr) 125 satisfies [2,| < 1 but does not lead to an efficient
error estimator. Our experiments reported below indicate that also the scaling z;, = 7, 12, with a continuous
function 7, satisfying 7|7 > 7 for all T € 7, does not lead to an efficient estimator.

Remark 5.4. The error estimator ny (us, q) controls the approximation error o3(u, up,) defined by the maximal

coercivity of the functional I. For the ROF functional I the scaled squared L? norm is a lower bound for this
quantity and the error estimator controls a stronger error quantity. For the regularized ROF functional I¢ and
a minimizers w, i.e., 6I°(u) = 0, a Taylor expansion formally yields with a suitable function £ that

P un) = () + [ 0O = ). V= )] do + G lu—

where the convex function ¢. = | - | has a positive definite Hessian, cf. [25].
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FIGURE 3. Experimental convergence rates h'/2 ~ N~/4 for Crouzeix-Raviart finite element
approximations of the ROF model on sequences of uniform triangulations for a solution with
non-Lipschitz continuous dual solutions defined in Example 6.1 and different magnifications of
the irregular region at the origin.

6. NUMERICAL EXPERIMENTS

We verify in this section the theoretical results and investigate the performance of numerical methods beyond
their validity. Our computations are based on the use of the regularized ROF functional

«
I(w) = [ Vuledo+ Gu—gl?

with the regularized modulus |a|. = (|a]? +£2)/? for a € R? and € > 0. Owing to the bounds 0 < |a|. — |a| < ¢,
the error estimates and identified convergence rates remain valid provided that € = O(h?) with 0 =1 or 0 = 2
to obtain an L? error O(h?/?) on uniform and locally refined meshes. The iterative minimization of I° was
realized with the unconditionally stable semi-implicit L? gradient flow from [12]. We always use the step-size
7 =1 but different stopping criteria [|[u* — u*~1|| < estop-

6.1. Irregular solution

We investigate the numerical approximation of the example from Section 3 to verify whether the failure of
Lipschitz continuity of dual solutions affects the convergence rate O(h'/?) for the Crouzeix-Raviart method on
uniform triangulations. We use a coordinate transformation to avoid superconvergence phenomena related to
mesh symietries.

Example 6.1 (Non-Lipschitz dual). Let Q = (—1,1)2 C R?, a = 10, and § = Xp+ — Xp- forr € {0.4,5.0} and
g =go®, where ®(x) = Qz + b realizes a rotation by ¢ = 70° and shift by b = (0.1,0)". Dirichlet conditions
up = ulaq from the solution u = ¢, 49, ¢ro =1 —2/(ra), are imposed.

The experimental convergence rates shown in Figure 3 are obtained on k-times red-refined triangulations
7Tr of an initial triangulation 7y with four elements. We have hy = 27k and use Estop = hi/20. The optimal
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FIGURE 4. Numerical solution uj, € SH¢"(7g) (left) and its projection Il,uy, (right) in Exam-
ple 6.1 for » = 0.4. Large discrete gradients occur near the origin where dual solutions are not
Lipschitz continuous.

convergence rate O(h'/?) is observed for both choices of r = 0.4 and r = 5.0, despite the lack of a Lipschitz
continuous dual solution. Also the scaling of the problem towards the singular point obtained by increasing
the radius r does not affect the experimental convergence rates. In Figure 4 the numerical solution w; on the
triangulation 7g and its projection onto elementwise constant functions are displayed for the parameter r = 0.4.
Large gradients occur near the origin, the midpoint values do not, however, show artifacts.

6.2. Mesh grading in one dimension

We next confirm our theoretical findings for the use graded meshes for the approximation of the ROF model
in one-dimensional settings. The problem specification leads to a multiple of the sign function as exact solution.

Example 6.2 (1D sign function). Let Q@ = (—1,1), a = 10, and define g(x) = sign(x). The minimizer for the
ROF functional subject to Dirichlet boundary conditions is given by u = ¢ 09, ¢ro = (1 —1/(ra)), for r = 2.

In our experiments we choose the regularization ¢ = h” so that the corresponding error contribution is of
the same order as the discretization error. We note that the stopping criterion has to be carefully chosen and
we used egop = h/20 for § = 1 and the finer tolerance egyop = hP+1/20 for non-uniform meshes with grading
strength 8 > 1. The experimental convergence rates obtained with these settings for a P1 method are given in
Figure 5, typical numerical solutions are displayed in Figure 6.

6.3. Mesh grading in two dimensions

We experimentally investigate the performance of finite element approximations for a standard example using
mesh grading based on the discontinuity set of the given function g.

Example 6.3 (Single disc phantom). Let Q = (—1,1)%, @ = 10, and g = XB,(0) for r =1/2. For homogeneous
Dirichlet boundary conditions the minimizer of the ROF model is given by u = ¢, g with ¢, o =1 —2/(ra).

Our initial triangulation 7 consists of two right triangles that partition 2 and we iteratively define a sequence
of regular triangulations (7% )k=o,1,... by performing a red refinement for all triangles in 7 that have a non-empty
intersection with the discontinuity set J, = 9B,(0) of g and then carrying out a red-green-blue refinement
procedure to avoid hanging nodes. We verified that this leads to a quadratic grading strength. To allow for
a nearly linear experimental convergence rate, we choose estop = h?/20 and € = h%. For the approximations
obtained with the Crouzeix—Raviart method we observe a nearly linear experimental convergence rate. This is
not the case for approximations obtained with less flexible P1 finite elements, as can be seen in Figure 7. We
also illustrated the convergence behavior of the error estimator from Section 5 and observe that it serves as a
reliable but non-efficient error bound. An explanation for this observation is that the graded meshes are optimal
for the L? error, but not necessarily for the error quantity controlled by the estimator, cf. Remark 5.4.
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F1GURE 5. Experimental convergence rates in approximating the one-dimensional ROF model
defined in Example 6.2 on meshes with a grading towards the discontinuity with different

grading strengths § leading to convergence rates h%/2 ~ N—5/2,
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FIGURE 6. Numerical solutions on a uniform and a graded mesh in the one-dimensional setting
with piecewise constant solution specified in Example 6.2. The strong grading with 8 = 4 (right)
leads to a high accuracy in comparison with the uniform grid corresponding to 8 =1 (left).

6.4. Adaptive mesh refinement

We finally investigate the automatic generation of locally refined triangulations based on the a posterior:
error estimate provided by Proposition 5.1. We use the reconstructed, unscaled approximation zj of the dual
problem provided by the Crouzeix-Raviart approximation u§" for the primal problem. This defines the error

estimator

5 1/2 1/2
FEest = (a Z U%,T(%Jh)) + (Z ||9—Hh9|%2(T)> )

TeT, TeT,
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FiGUure 7. Experimental convergence rates on quadratically graded triangulations in the
approximation of the two-dimensional ROF-problem with piecewise constant solution speci-
fied in Example 6.3. Crouzeix—Raviart approximations lead to nearly linear convergence of the

L2 error.
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F1GURE 8. Experimental convergence rates in the adaptive approximation of the ROF-problem
defined in Example 6.4 using the primal-dual-gap error estimator Eg. Different experimental
convergence rates are observed for Crouzeix—Raviart and P1 finite element approximations. The
estimators Eest and Fes obtained from globally and locally scaled dual variables are inefficient.
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FIGURE 9. Adaptively generated P1 approximation in Example 6.4. The automatic mesh
refinement procedure leads to a local refinement in a neighborhood of the discontinuity set.

F1GURE 10. Projection IIpu; of the Crouzeix—Raviart approximation on the quadratically
graded triangulation 773 in Example 6.3. The localized refinement of the jump set leads to a
high accuracy.

where the second sum contains data oscillation terms and the first one the local refinement indicators 7, r which
are given by the element residuals

1 .
M 7 (un, 2n) = / |Vup| — Vuy, - Iz, dz + % / (div z;, — a(up — gp))° dz.
T @ Jr

We follow established strategies in adaptive mesh refinement methods and select a minimal subset My C 7},
for refinement, cf. [7], that constitutes 50% of the total error estimator. We used the regularization parameter
e = h? to allow for an overall linear convergence rate, as stopping criterion we used egop = h?/20. We again
use a setting with a piecewise constant solution.
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Example 6.4 (Piecewise constant solution). Let Q@ = (—1,1)?, a = 10, and g = XB,(0) for r = 1/2. For
homogeneous Dirichlet boundary conditions the minimizer of the ROF model is given by v = ¢, o9 with
Croa=1—2/(ra).

The experimental convergence rates for P1 and Crouzeix—Raviart finite element approximations on adaptively
generated triangulations in Example 6.4 are shown in Figure 8. For both methods we observe an improvement
over the optimal rate O(hl/ 2) on sequences of uniform triangulations. The Crouzeix—Raviart method leads
to the experimental convergence rate O(h%7) while for the P1 method we obtain the lower rate O(h%%).
Our explanation for this is the good compatibilty of the Crouzeix—Raviart method specified by the projection
property of the quasi-interpolation operator and the resulting discrete total-variation diminishing property. As
addressed in Remark 5.4 the error estimator Fog cannot be expected to lead to meshes that are optimal for the
L? approximation error. The error estimator Fey converges with nearly the same rate as the P1 approximation
error indicating good reliability and efficiency properties. A P1 finite element approximation obtained with
the adaptive mesh refinement strategy is shown in Figure 9. We observe an automatic local mesh refinement
towards the discontinuity set of the solution but a weaker grading of approximately § ~ 1.7 in comparison with
Figure 10. The reliable estimators Eest and Eest, obtained from using the globally and locally scaled vector
fields zj, and Zz, lead to meshes on which these estimators converges suboptimally, cf. Figure 8. The L? error
converged with similar rates reported above for meshes constructed with Feg; but not with Fegt.
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