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SINGULAR SOLUTIONS, GRADED MESHES,AND ADAPTIVITY FOR
TOTAL-VARIATION REGULARIZED MINIMIZATION PROBLEMS

Sören Bartels1,*, Robert Tovey2 and Friedrich Wassmer1

Abstract. Recent quasi-optimal error estimates for the finite element approximation of total-variation
regularized minimization problems require the existence of a Lipschitz continuous dual solution. We
discuss the validity of this condition and devise numerical methods using locally refined meshes that
lead to improved convergence rates despite the occurrence of discontinuities. It turns out that linear
convergence is possible on suitably constructed meshes.
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1. Introduction

In this article we consider the finite element discretization of the Rudin–Osher–Fatemi (ROF) model from
[30] which serves as a model problem for general convex and nonsmooth minimization problems. This widely
used model in image processing determines a function 𝑢 ∈ BV(Ω) ∩ 𝐿2(Ω) via a minimization of

𝐼(𝑢) = |𝐷𝑢|(Ω) +
𝛼

2
‖𝑔 − 𝑢‖2,

where |𝐷𝑢|(Ω) denotes the total variation of 𝑢 ∈ BV(Ω) ∩ 𝐿2(Ω), 𝑔 ∈ 𝐿2(Ω) is the input data, for example
a noisy image, and ‖𝑔 − 𝑢‖ is the 𝐿2 distance between the given image and its regularization. The fidelity
parameter 𝛼 > 0 is also given and determines the balance between denoising and preserving the input image.
For more information on analytical features, explicit solutions in particular examples, and numerical methods
concerning this model we refer the reader to [2–4, 13, 16, 17, 19, 21–23, 26–28, 32]. Since this model allows for
and preserves discontinuities of the input function 𝑔, cf. [18], continuous finite element methods are known
to perform suboptimally, cf. [9, 11]. Recent results in [8, 9, 20] show that optimal convergence rates 𝑂(ℎ1/2)
for discontinuous solutions on quasi-uniform triangulations can be obtained by using discontinuous, low order
Crouzeix–Raviart finite elements from [24] or appropriate discontinous Galerkin methods. These error estimates
bound the error for approximating minimizers for 𝐼 by minimizing the discrete functional

𝐼ℎ(𝑢ℎ) =
∫︁

𝜋

|∇ℎ𝑢ℎ|d𝑥+
𝛼

2
‖Πℎ(𝑔 − 𝑢ℎ)‖2
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over piecewise affine functions 𝑢ℎ ∈ 𝒮1,𝑐𝑟(𝒯ℎ) that are continuous at midpoints of element sides. Here ∇ℎ denotes
the elementwise gradient and Πℎ is the projection onto elementwise constant functions on the triangulation
𝒯ℎ. Note that the functional 𝐼ℎ defines a nonconforming approximation of 𝐼, as, e.g., jump terms of 𝑢ℎ across
interelement sides are not included. The quasi-optimal rate applies if the dual problem, given by a maximization
of

𝐷(𝑧) = − 1
2𝛼
‖div 𝑧 + 𝛼𝑔‖2 +

𝛼

2
‖𝑔‖2 − 𝐼𝐾1(0)(𝑧)

over vector fields 𝑧 ∈𝑊 2
N(div; Ω) admits a Lipschitz continuous solution. The indicator functional 𝐼𝐾1(0) of the

closed unit ball centered at the origin enforces the pointwise constraint |𝑧| ≤ 1. Although Lipschitz continuity
is known to be true in some settings, following an idea from [31] we show that the condition is not satisfied in
general and lower convergence rates have to be expected. Our simple counterexample uses the difference of two
characteristic functions of balls 𝐵±𝑟 = 𝐵𝑟(±𝑟, 0) with radius 𝑟 > 0 that touch at the origin, i.e.,

𝑔 = 𝜒𝐵+
𝑟
− 𝜒𝐵−𝑟

.

Precise characterizations, cf. [18], of dual solutions along the jump set of the primal solution, given by

𝑢 = 𝑐𝑟,𝛼𝑔, 𝑐𝑟,𝛼 = max{1− 𝑑/(𝛼𝑟), 0},

imply that Lipschitz continuity of dual solutions fails at the origin if 𝛼𝑟 > 𝑑. Surprisingly, this singularity does
not appear to affect the convergence rates of approximations on sequences of uniform triangulations.

To obtain the rate 𝑂(ℎ) of the quasi-interpolation of a weakly differentiable function we investigate two
numerical methods that construct locally refined meshes. The first approach uses the fact that the jump set 𝐽𝑢

of the primal solution 𝑢 is contained in the jump set 𝐽𝑔 of the given function 𝑔, i.e.,

𝐽𝑢 ⊂ 𝐽𝑔

cf. [18]. Reduced convergence rates are related to the suboptimal approximation of jumps and therefore our idea
is to refine triangulations in a neighborhood of the jump set 𝐽𝑔. Since we aim at preserving shape regularity
of triangulations, the grading strength is limited and it turns out that the minimal mesh-size ℎmin used at
the discontinuity set cannot be smaller than ℎ𝛽 with 𝛽 ≤ 2 and the average mesh-size ℎ. Our numerical
analysis shows that a quadratic grading is, under suitable conditions on a piecewise regular solution, the correct
refinement strength to obtain a linear convergence rate, i.e., we have

‖𝑢− 𝑢ℎ‖ = 𝑂(ℎ),

where 𝑢ℎ is the Crouzeix–Raviart finite element solution. In one-dimensional situations it coincides with the 𝑃1
approximation.

The approach of using graded meshes can only be efficiently applied if the given function 𝑔 is piecewise
regular and the jump set 𝐽𝑔 is sufficiently simple. A more general concept uses refinement indicators based on
a posteriori error estimates that bound the approximation error of an approximation 𝑢ℎ, e.g., a continuous 𝑃1
approximation, by computable quantities. These depend on an approximation 𝑢ℎ of the discrete primal problem
and an admissible vector field 𝑞 for the continuous dual problem, i.e., we have

𝛼

2
‖𝑢− 𝑢ℎ‖2 ≤ 𝐼(𝑢ℎ)− 𝐼(𝑢) ≤ 𝐼(𝑢ℎ)−𝐷(𝑞) = 𝜂2

ℎ(𝑢ℎ, 𝑞),

which follows from coercivity properties of the functional 𝐼 and the duality principle 𝐼(𝑢) ≥ 𝐷(𝑞) for every
admissible vector field 𝑞. A simple calculation shows that if 𝑢ℎ is weakly differentiable and 𝑞 satisfies |𝑞| ≤ 1 in
Ω, the error estimator is given as a sum of local, nonnegative quantities, i.e.,

𝜂2
ℎ(𝑢ℎ, 𝑞) =

∫︁
Ω

|∇𝑢ℎ| − ∇𝑢ℎ · 𝑞 d𝑥+
1

2𝛼

∫︁
Ω

(︀
div 𝑞 − 𝛼(𝑢ℎ − 𝑔)

)︀2 d𝑥.
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By using the partitioning of the domain Ω given by the triangulation 𝒯ℎ we obtain refinement indicators 𝜂2
𝑇 (𝑢ℎ, 𝑞)

that are used to refine elements 𝑇 ∈ 𝒯ℎ. The reliable error estimator can only be efficient if the vector field
𝑞 is a nearly optimal approximation of a dual solution 𝑧. To avoid the expensive solution of a discretization
of the dual problem we use the observation that an approximation can be obtained via post-processing the
Crouzeix–Raviart approximation, cf. [9]. In particular, this provides a maximizing vector field for the discrete
dual functional

𝐷ℎ(𝑧ℎ) = − 1
2𝛼
‖ div 𝑧ℎ + 𝛼Πℎ𝑔‖2 +

𝛼

2
‖Πℎ𝑔‖2 − 𝐼𝐾1(0)(Πℎ𝑧ℎ),

defined on Raviart–Thomas vector fields 𝑧ℎ ∈ ℛ𝑇 0
N(𝒯ℎ). For this definition we have the discrete duality principle

𝐼ℎ(𝑢ℎ) ≥ 𝐷ℎ(𝑧ℎ). However, the unit length constraint |𝑧| ≤ 1 is only imposed at midpoints so that the optimal
𝑧ℎ is in general inadmissible in the continuous dual functional 𝐷. Since only the midpoint values of 𝑧ℎ and
its elementwise constant divergence enter the error estimator it nevertheless appears to be a reasonable way
to define error indicators (𝜂𝑇 )𝑇∈𝒯ℎ

although the error bound may fail to hold; obvious corrections of 𝑧ℎ do
not seem to lead to efficient error estimators. Our numerical experiments based on a related adaptive mesh
refinement algorithm lead to improved experimental convergence rates that are lower than the ones obtained
for graded meshes. Our explanation for this is that the graded meshes are optimal for the 𝐿2 error while the
coercivity estimate leading to the a posteriori error estimate controls a stronger error quantity.

This article is organized as follows. In Section 2 we introduce the used notation and define the relevant finite
element spaces. The example with a non-Lipschitz dual solution for the ROF model is investigated in Section 3.
In Section 4 the graded grid approaches are devised and analyzed. In Section 5 the primal-dual error estimator
is defined and the construction of an optimal discrete dual vector field via discrete duality relations is shown.
Numerical experiments are presented in Section 6.

2. Notation and finite element spaces

Given a bounded Lipschitz domain Ω ⊂ R𝑑 we use standard notation for Sobolev spaces 𝑊 𝑠,𝑝(Ω) and
abbreviate the norm in 𝐿2(Ω) by

‖ · ‖ = ‖ · ‖𝐿2(Ω).

The space of functions of bounded variation BV(Ω) consists of all 𝑢 ∈ 𝐿1(Ω) such that its total variation

|𝐷𝑢|(Ω) = sup
𝜑∈𝐶∞𝑐 (Ω;R𝑑), |𝜑|≤1

−
∫︁

Ω

𝑢div 𝜑d𝑥

is bounded. We refer the reader to [2, 3] for properties of the space and note here that distributional gradients
𝐷𝑢 of functions 𝑢 ∈ BV(Ω) can be decomposed into a regular, a jump, and a Cantor part via

𝐷𝑢 = ∇𝑢⊗ d𝑥− J𝑢𝑛K⊗ d𝑠|𝐽𝑢
+ 𝐶𝑢.

Vector fields 𝑤 ∈ 𝐿𝑞(Ω; R𝑑) that have a weak divergence div𝑤 ∈ 𝐿𝑞(Ω) and whose normal component 𝑤 · 𝑛
vanishes on the boundary part ΓN = 𝜕Ω ∖ ΓD are contained in the set 𝑊 𝑞

N(div; Ω), we omit the subindex if
ΓN = ∅. Note that in the standard ROF model we have ΓD = ∅, occasionally we assume ΓD = 𝜕Ω.

In the following (𝒯ℎ)ℎ>0 denotes a sequence of regular, i.e., uniformly shape regular and conforming, trian-
gulations of the bounded Lipschitz domain Ω ⊂ R𝑑. The set 𝒮ℎ contains the sides of elements. The parameter
ℎ refers to an average mesh-size ℎ ∼ (|Ω|/𝑁)1/𝑑, where 𝑁 is the number of vertices of 𝒯ℎ. We furthermore let
ℎ𝑇 = diam(𝑇 ) for 𝑇 ∈ 𝒯ℎ and

ℎmax = max
𝑇∈𝒯ℎ

ℎ𝑇 , ℎmin = min
𝑇∈𝒯ℎ

ℎ𝑇 .

On quasi-uniform triangulations all mesh-sizes are comparable, i.e., ℎmin ∼ ℎmax ∼ ℎ. We let 𝒫𝑘(𝑇 ) denote
the set of polynomials of maximal total degree 𝑘 on 𝑇 ∈ 𝒯ℎ and define the set of discontinuous, elementwise
polynomial functions or vector fields as
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ℒ𝑘(𝒯ℎ)ℓ =
{︀
𝑤ℎ ∈ 𝐿∞

(︀
Ω,Rℓ

)︀
: 𝑤ℎ|𝑇 ∈ 𝑃 𝑘(𝑇 )ℓ for all 𝑇 ∈ 𝒯ℎ

}︀
.

Barycenters of elements and sides will be referred to as midpoints denoted by 𝑥𝑇 for all 𝑇 ∈ 𝒯ℎ and 𝑥𝑆 for all
𝑆 ∈ 𝒮ℎ. The 𝐿2 projection onto piecewise constant functions or vector fields is given by elementwise averages
and denoted by

Πℎ : 𝐿1
(︀
Ω,Rℓ

)︀
→ ℒ0(𝒯ℎ)ℓ.

Note that we have 𝑣ℎ(𝑥𝑇 ) = Πℎ𝑣ℎ|𝑇 for all 𝑇 ∈ 𝒯ℎ and 𝑣ℎ ∈ ℒ1(𝒯ℎ).
We next collect some elementary properties of standard and nonstandard finite elements and refer the reader

to [7, 14,15,24,29] for further details. The 𝑃1-finite element space is defined via

𝒮1(𝒯ℎ) =
{︀
𝑣ℎ ∈ ℒ1(𝒯ℎ) : 𝑣ℎ continuous in Ω

}︀
.

A low order Crouzeix–Raviart finite element space is given by

𝒮1,𝑐𝑟(𝒯ℎ) =
{︀
𝑣ℎ ∈ ℒ1(𝒯ℎ) : 𝑣ℎ continuous in 𝑥𝑆 for all 𝑆 ∈ 𝑆ℎ

}︀
.

We let 𝒮1
D(𝒯ℎ) and 𝒮1,𝑐𝑟

D (𝒯ℎ) denote the subspaces of functions satisfying boundary conditions in vertices or in
midpoints of sides on ΓD, respectively. The elementwise gradient ∇ℎ𝑣ℎ ∈ ℒ0(𝒯ℎ)𝑑 of a function 𝑣ℎ ∈ 𝒮1,𝑐𝑟(𝒯ℎ)
is defined via

(∇ℎ𝑣ℎ)|𝑇 = ∇(𝑣ℎ|𝑇 )

for all 𝑇 ∈ 𝒯ℎ. A low order Raviart–Thomas-finite element space is given by

ℛ𝑇 0(𝒯ℎ) =
{︀
𝑦ℎ ∈𝑊 1(div; Ω) : 𝑦ℎ|𝑇 (𝑥) = 𝑎𝑇 + 𝑏𝑇 (𝑥− 𝑥𝑇 ), for all 𝑇 ∈ 𝒯ℎ, 𝑎𝑇 ∈ R𝑑, 𝑏𝑇 ∈ R

}︀
.

Vector fields 𝑞ℎ ∈ ℛ𝑇 0(𝒯ℎ) belong to 𝑊 1(div; Ω) and have continuous constant normal components on sides of
elements, we set ℛ𝑇 0

N(𝒯ℎ) = ℛ𝑇 0(𝒯ℎ) ∩𝑊 1
N(div; Ω). The spaces 𝒮1,𝑐𝑟

D (𝒯ℎ) and ℛ𝑇 0
N(𝒯ℎ) are connected via the

integration-by-parts formula ∫︁
Ω

𝑣ℎ div 𝑞ℎ d𝑥 = −
∫︁

Ω

∇ℎ𝑣ℎ · 𝑞ℎ d𝑥

for all 𝑣ℎ ∈ 𝒮1,𝑐𝑟
D (𝒯ℎ) and 𝑞ℎ ∈ ℛ𝑇 0

N(𝒯ℎ).
Given a function 𝑣 ∈ BV(Ω) there exists a sequence (𝑣𝜀)𝜀>0 ⊂ 𝑊 1,1(Ω) ∩ 𝐶(Ω) such that 𝑣𝜀 → 𝑣 in 𝐿1(Ω)

and ‖∇𝑣𝜀‖𝐿1(Ω) → |𝐷𝑣|(Ω), cf. [2, 3]. With this we define an extension of the nodal interpolation operator
ℐℎ : 𝐶(Ω) → 𝒮1(𝒯ℎ) via

ℐℎ𝑣 = lim
𝜀→0

ℐℎ𝑣𝜀,

possibly after selection of a subsequence. If 𝑑 = 1 then we have the nodal interpolation estimates

‖𝑣 − ℐℎ𝑣‖𝐿1(𝑇 ) ≤ 𝑐ℎ𝑟
𝑇 ‖𝑣(𝑟)‖𝐿1(𝑇 ) (2.1)

for 𝑇 ∈ 𝒯ℎ, 𝑣 ∈ 𝑊 𝑟,𝑝(𝑇 ), and 𝑟 ∈ {1, 2}, cf. [15]. Via a limit passage for 𝜀 → 0 it follows that the estimate
holds for 𝑟 = 1 and 𝑣 ∈ BV(𝑇 ) and the right-hand side 𝑐ℎ𝑇 |𝐷𝑣|(𝑇 ). A straightforward calculation reveals the
total-variation diminishing property of the nodal interpolation operator and its extension to BV(Ω), i.e.,

‖(ℐℎ𝑣)′‖𝐿1(Ω) ≤ |𝐷𝑣|(Ω)

for 𝑣 ∈ BV(Ω) if Ω ⊂ R. This estimate fails in higher dimensional situations, cf. [11]. As a consequence of
Jensen’s inequality, the Crouzeix–Raviart quasi-interpolation operator 𝒥 𝑐𝑟

ℎ : 𝑊 1,1(Ω) → 𝒮1,𝑐𝑟(𝒯ℎ) satisfies the
discrete variant

‖∇ℎ𝒥 𝑐𝑟
ℎ 𝑣‖𝐿1(Ω) ≤ ‖∇𝑣‖𝐿1(Ω)

for every 𝑣 ∈𝑊 1,1(Ω). Note that the left-hand side of the inequality does not coincide with the total variation
of 𝒥 𝑐𝑟

ℎ 𝑣 as jump terms are excluded. From a Poincaré inequality we deduce that

‖𝑣 − 𝒥 𝑐𝑟
ℎ 𝑣‖𝐿1(𝑇 ) ≤ 𝑐ℎ𝑇 ‖∇𝑣‖𝐿1(𝑇 ) (2.2)

for all 𝑇 ∈ 𝒯ℎ. The operator and estimates can be extended to 𝑣 ∈ BV(Ω).
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3. Irregular solution

The construction of a function 𝑔 ∈ 𝐿2(Ω) that leads to dual solutions which are not Lipschitz continuous
uses an idea from [31] and the function

𝑔 = 𝜒𝐵+
𝑟
− 𝜒𝐵−𝑟

in a sufficiently large domain Ω that is symmetric with respect to the 𝑥1 coordinate. Without making use of the
co-area formula, we show here that the example can be understood by using uniqueness of minimizers for 𝐼 and
resulting antisymmetry properties. Hence, the problem reduces to a simpler problem for which the solution can
be explicitly derived. We impose Dirichlet conditions on 𝑢 which eliminates explicit boundary conditions from
the dual problem.

Proposition 3.1. Assume that Ω ⊂ R𝑑 is symmetric with respect to the 𝑥1 coordinate, i.e., Ω = Ω+∪𝐿0∪Ω−,
where 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑑) ∈ Ω+ if and only if ̂︀𝑥 = (−𝑥1, 𝑥2, . . . , 𝑥𝑑) ∈ Ω− and 𝐿0 ⊂ {0} × R𝑑−1. Assume that
𝑟 > 0 is such that 𝐵±𝑟 ⊂ Ω. Then for 𝑔 = 𝜒𝐵+

𝑟
−𝜒𝐵−𝑟

the minimizer 𝑢 ∈ BV(Ω)∩𝐿2(Ω) for 𝐼 subject to 𝑢|𝜕Ω = 0
is given by

𝑢 = 𝑐𝑟,𝛼𝑔, 𝑐𝑟,𝛼 = max{1− 𝑑/(𝛼𝑟), 0}.

Proof. Given a minimizer 𝑢 ∈ BV(Ω) ∩ 𝐿2(Ω) we define its antisymmetric reflection by ̂︀𝑢(𝑥1, 𝑥2, . . . , 𝑥𝑑) =
−𝑢(−𝑥1, 𝑥2, . . . , 𝑥𝑑) and note that by the antisymmetry of 𝑔 we have 𝐼(𝑢) = 𝐼(̂︀𝑢). By convexity of 𝐼 we have
for ̃︀𝑢 = (𝑢 + ̂︀𝑢)/2 that 𝐼(̃︀𝑢) ≤ 𝐼(𝑢) and conclude by uniqueness that 𝑢 = ̃︀𝑢 = ̂︀𝑢, i.e., 𝑢 is antisymmetric in
𝑥1. Since the jump set 𝐽𝑢 of 𝑢 is contained in the jump set 𝐽𝑔 of 𝑔, cf. [18], we find that 𝑢 is continuous with
value 0 in 𝐿0 ∖ {0}. It thus suffices to consider the reduced minimization of 𝐼+ on Ω+ with 𝑔+ = 𝜒𝐵+

𝑟
subject

to 𝑢+|𝜕Ω+ = 0. The solution is given by 𝑢+ = 𝑐𝑟,𝛼𝑔
+, cf. e.g., [6, 22], which implies the assertion. �

The explicit representation of the solution 𝑢 implies properties of dual solutions. The idea for proving the
failure of Lipschitz continuity is illustrated in Figure 1. We make use of the fact that every dual solution equals
a normal along the jump set of a piecewise constant primal solution. This follows from the characterization of
|𝐷𝑢|(Ω) via a supremum, the strong duality property, and an integration by parts in the resulting optimality
relation |𝐷𝑢|(Ω) = −(𝑢,div 𝑧). We refer the reader to [1, 18] for related results. More specifically, we have that
𝑧 ·𝐷𝑢 = |𝐷𝑢| pointwise almost everywhere and 𝐷𝑢 is parallel to the normal of the jump set, cf. Equation (26)
and Theorem 4 of [22].

Corollary 3.2. Assume that 𝛼𝑟 > 𝑑. Any dual solution 𝑧 ∈ 𝑊 2(div; Ω) for the setting considered in Proposi-
tion 3.1 satisfies div 𝑧 = 𝛼(𝑢− 𝑔), i.e., div 𝑧 = −(𝑑/𝑟)𝑔, and 𝑧 ∈ 𝜕|𝐷𝑢|, i.e., on 𝜕𝐵+

𝑟 ∪ 𝜕𝐵−𝑟 we have

𝑧 = ∓𝜈±

with the outer unit normals 𝜈± on 𝜕𝐵±𝑟 . In particular, 𝑧 is not 𝜃-Hölder continuous at 𝑥 = 0 for every 𝜃 > 1/2.

Proof. A piecewise integration by parts in the representation of |𝐷𝑢|(Ω) via 𝑧 yields the relation 𝑧 = ∓𝜈± on
the jump set 𝜕𝐵+

𝑟 ∪ 𝜕𝐵−𝑟 . Given an angle 𝜙 ∈ (0, 𝜋/2) we define points 𝑥± ∈ 𝜕𝐵±𝑟 by

𝑥+ = 𝑟(− cos𝜙+ 1, sin𝜙, 0), 𝑥− = 𝑟(cos𝜙− 1, sin𝜙, 0).

Any dual solution 𝑧 satisfies

𝑧(𝑥+) = (cos𝜙,− sin𝜙, 0), 𝑧(𝑥−) = (cos𝜙, sin𝜙, 0).

We show that the modulus of the 𝜃-difference quotient 𝐿𝜙 for 𝑧 defined with 𝑥+ and 𝑥− is unbounded as 𝜙→ 0,
i.e., we have

𝐿𝜙 =
|𝑧(𝑥+)− 𝑧(𝑥−)|
|𝑥+ − 𝑥−|𝜃

= 21−𝜃 sin𝜙
𝑟𝜃(1− cos𝜙)𝜃

·
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Figure 1. Failure of Lipschitz continuity of a dual solution 𝑧 at 𝑥 = 0 resulting from |𝑥+ −
𝑥−| ≈ 𝑟𝜙2 and |𝑧(𝑥+)− 𝑧(𝑥−)| ≈ 2𝜙 for 𝜙→ 0.

Using the Taylor expansions sin𝜙 = 𝜙+𝑂(𝜙3) and 1− cos𝜙 = 𝜙2/2 +𝑂(𝜙4) or l’Hospital’s rule we find that
𝐿𝜙 →∞ as 𝜙→ 0 whenever 𝜃 > 1/2. �

Remark 3.3. If we repeat the proof of Corollary 3.2 in the more general case where two levelsets meet with
a rate |𝑥+ − 𝑥−| = 𝑂(𝜙𝑝) for 𝑝 ≥ 1, we get Hölder exponent 𝜃 ≤ 1 − 1

𝑝 . In particular, if the levelsets meet
with vanishing curvature, i.e., 𝑝 > 2, then a larger Hölder exponent is possible; Lipschitz continuity can only
be achieved if 𝑝 = ∞. We thus conjecture that the example of Proposition 3.1, i.e., 𝑝 = 2, is a worst-case for
TV minimisation problems. If 𝑔 contains a singularity 𝑝 < 2, then the minimiser 𝑢 must smooth the levelsets at
this point. We refer the reader to [1] for results concerning the invariance of jump sets in the minimization of 𝐼.

4. Graded meshes

To improve convergence results for discontinuous solutions, we use a graded grid approach. This capitalizes
on the precise observations about the approximation of a discontinuity by linear finite elements. We motivate
the use of graded meshes with the following canonical example.

Proposition 4.1. For ℓ > 0 let Ω = (−ℓ, ℓ) ⊂ R and 𝑢(𝑥) = sign(𝑥) + 𝑣(𝑥) with a function 𝑣 ∈ 𝑊 1,2(Ω). Let
𝑢*ℎ = 𝑃ℎ𝑢 ∈ 𝒮1(𝒯ℎ) be the 𝐿2 projection of 𝑢 onto 𝒮1(𝒯ℎ). Assume that the partitioning 𝒯ℎ is symmetric with
respect to 𝑥 = 0. Then we have

𝑐1ℎ
1/2
0 ≤ ‖𝑢− 𝑢*ℎ‖ ≤ 𝑐2

(︁
ℎ

1/2
0 + ℎmax‖𝑣′‖

)︁
,

where ℎ0 is the length of the elements containing the origin.

Proof. We decompose 𝑣 = 𝑎 + 𝑠 into antisymmetric and symmetric, continuous parts 𝑎, 𝑠 ∈ 𝑊 1,2(Ω) with
𝑎(0) = 0. We then have by 𝐿2 orthogonality that

‖𝑢− 𝑢*ℎ‖
2 = min

𝑎ℎ,𝑠ℎ∈𝒮1(𝒯ℎ)
‖ sign +𝑎− 𝑎ℎ‖2 + ‖𝑠− 𝑠ℎ‖2,

where 𝑎ℎ, 𝑠ℎ are antisymmetric and symmetric, respectively. In particular, it suffices to consider the interval
(0, ℓ) and the restriction 𝑎ℎ(0) = 0. The upper bound for the approximation error is obtained by defining 𝑎ℎ via
the nodal values of 1 + 𝑎 except for the origin and choosing 𝑠ℎ as the nodal interpolant of 𝑠. We then find that

‖𝑢− 𝑢*ℎ‖ ≤ 21/2ℎ
1/2
0 + ‖𝑎− ℐℎ𝑎‖+ ‖𝑠− ℐℎ𝑠‖

≤ 21/2ℎ
1/2
0 + 𝑐ℐℎmax

(︀
‖𝑎′‖+ ‖𝑠′‖

)︀
.
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To verify the lower bound we consider the contribution from the element 𝑇0 = [0, ℎ0] to the antisymmetric part.
Since 𝑎ℎ(0) = 0, we have 𝑎ℎ(𝑥) = 𝑐𝑥 on 𝑇0 and find that

‖ sign +𝑎− 𝑎ℎ‖2 ≥ ‖1 + 𝑎− 𝑐𝑥‖2𝐿2(0,ℎ0)
.

For the optimal slope 𝑐 we have Pythagoras’ identity

‖1 + 𝑎− 𝑐𝑥‖2𝐿2(0,ℎ0)
=
∫︁ ℎ0

0

(1 + 𝑎)2 d𝑥− ‖𝑐𝑥‖2𝐿2(0,ℎ0)
.

Since 1 + 𝑎 and 𝑥 are linearly independent there exists 0 ≤ 𝛾𝑎 < 1 with

𝑐‖𝑥‖2𝐿2(0,ℎ0)
=
∫︁ ℎ0

0

(1 + 𝑎)𝑥d𝑥 ≤ 𝛾𝑎‖1 + 𝑎‖𝐿2(0,ℎ0)‖𝑥‖𝐿2(0,ℎ0).

The continuity of 𝑎 and 𝑎(0) = 0 show that ‖1 + 𝑎‖𝐿2(0,ℎ0) ≥ 𝑐𝑎ℎ
1/2
0 which implies that we have ‖1 + 𝑎 −

𝑐𝑥‖2𝐿2(0,ℎ0)
≥ (1− 𝛾2

𝑎)𝑐2𝑎ℎ0. �

Meshes with a grading towards a given point are obtained from affine mappings of a graded grid of the
reference interval to a macro element.

Definition 4.2. A 𝛽-graded grid of the reference element ̂︀𝑇 = [0, 1] is for 𝐽 ∈ N and 𝛽 ≥ 1 given by the points

0 = 𝜉0 < 𝜉1 < · · · < 𝜉𝐽 = 1

with 𝜉𝑗 = (𝑗/𝐽)𝛽 . The length of the interval [𝜉𝑗−1, 𝜉𝑗 ] is bounded by 𝐽−𝛽𝛽𝑗𝛽−1, in particular, we have ℎmin =
𝐽−𝛽 , ℎmax = 𝛽𝐽−1, and ℎ = 𝐽−1.

Proposition 4.1 implies that, for a grading strength 𝛽 = 2 towards the origin, so that ℎ0 = ℎ2 and ℎmax ≤ 𝑐ℎ,
we obtain the linear rate

‖𝑢− 𝑢*ℎ‖ ≤ 𝑐ℎ.

For the approximation of the ROF problem a similar result can be obtained.

Proposition 4.3. Let Ω = (𝑎, 𝑏) ⊂ R, 𝑔 ∈ 𝐿∞(Ω), and assume that the minimizer 𝑢 ∈ BV(Ω) ∩ 𝐿2(Ω) of 𝐼 is
a piecewise 𝑊 2,1 function. Then if 𝒯ℎ is graded with strength 𝛽 towards the jumps 𝐽𝑢 of 𝑢 we have for the 𝑃1
finite element minimizer 𝑢ℎ ∈ 𝒮1

D(𝒯ℎ) for 𝐼 that

‖𝑢− 𝑢ℎ‖2 ≤ 𝑐
(︀
ℎ𝛽 |𝐷𝑢|(Ω) + 𝛽2ℎ2‖𝑢′′‖𝐿1(Ω∖𝐽𝑢)

)︀
‖𝑔‖𝐿∞(Ω).

Proof. By minimality of 𝑢 and coercivity properties of 𝐼, we find that for every ̃︀𝑢ℎ ∈ 𝒮1
D(𝒯ℎ) we have

𝛼

2
‖𝑢− 𝑢ℎ‖2 ≤ 𝐼(𝑢ℎ)− 𝐼(𝑢) ≤ 𝐼(̃︀𝑢ℎ)− 𝐼(𝑢).

Via regularization we set ̃︀𝑢ℎ = ℐℎ𝑢 and use the total-variation diminishing property of ℐℎ to deduce with a
binomial formula that

𝛼

2
‖𝑢− 𝑢ℎ‖2 ≤

∫︁
Ω

(̃︀𝑢ℎ − 𝑔)2 − (𝑢− 𝑔)2 d𝑥

≤ ‖̃︀𝑢ℎ − 𝑢‖𝐿1(Ω)‖̃︀𝑢ℎ + 𝑢− 2𝑔‖𝐿∞(Ω).

By properties of nodal interpolation we have ‖̃︀𝑢ℎ‖𝐿∞(Ω) ≤ ‖𝑢‖𝐿∞(Ω). Moreover, truncating 𝑢 at the essential
extrema 𝑔 and 𝑔 of 𝑔 decreases its energy and by uniqueness implies ‖𝑢‖𝐿∞(Ω) ≤ ‖𝑔‖𝐿∞(Ω). We decompose the
first factor into elementwise contributions. If 𝑇 ∩ 𝐽𝑢 ̸= ∅ we have

‖̃︀𝑢ℎ − 𝑢‖𝐿1(𝑇 ) ≤ 𝑐ℎmin|𝐷𝑢|(𝑇 ).
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Otherwise, standard interpolation estimates show that

‖̃︀𝑢ℎ − 𝑢‖𝐿1(𝑇 ) ≤ 𝑐ℎ2
max‖𝑢′′‖𝐿1(𝑇 ).

A summation over the elements leads to the asserted estimate. �

Remark 4.4. If the solution 𝑢 is piecewise linear then the estimate can be improved to the convergence rate
𝑂(ℎ𝛽/2) for every 𝛽 ≥ 1.

Because the total-variation diminishing property is not satisfied, the generalization of Proposition 4.3 to a
higher-dimensional setting requires additional assumptions on a dual solution. A key difficulty is that the quasi-
interpolation of a dual solution in the space ℛ𝑇 0

N(𝒯ℎ) leads to a local violation of the constraint |𝑧ℎ(𝑥𝑇 )| ≤ 1
of order 𝑂(ℎ𝑇 ) independently of additional regularity properties. For piecewise constant primal solutions we
assume the strict inequality |𝑧(𝑥)| < 1 with linear decay away from discontinuities so that no violation occurs,
while in a neighborhood of the jump set we have a quadratic violation 𝑂(ℎ2) on suitably graded meshes.

Proposition 4.5. For Ω ⊂ R2 let 𝑔 ∈ 𝐿∞(Ω) and assume that the primal solution 𝑢 ∈ BV(Ω) ∩ 𝐿∞(Ω)
is piecewise constant with piecewise regular jump set 𝐽𝑢, and there exists a dual solution 𝑧 ∈ 𝑊 1

N(div; Ω) ∩
𝑊 1,∞(Ω; R2) with Lipschitz constant 𝐿 ≥ 0 and such that there exists ℓ𝑧 > 0 with

|𝑧(𝑥)| ≤ 1− ℓ𝑧𝑑𝐽𝑢(𝑥)

where 𝑑𝐽𝑢
(𝑥) = inf𝑦∈𝐽𝑢

|𝑥−𝑦|. Let (𝒯ℎ)ℎ>0 be a sequence of quadratically graded triangulations towards 𝐽𝑢, i.e.,
with 𝑑𝐽𝑢

(𝑇 ) = inf𝑥∈𝑇 𝑑𝐽𝑢
(𝑥) there exists 𝑐𝑑 > 0 such that for all 𝑇 ∈ 𝒯ℎ we have

ℎ𝑇 ≤ 𝑐𝑑 max
{︁
ℎ𝑑𝐽𝑢

(𝑇 )1/2, ℎ2
}︁

Then, the Crouzeix–Raviart finite element solution 𝑢ℎ ∈ 𝒮1,𝑐𝑟
D (𝒯ℎ) of the ROF model satisfies

‖Πℎ(𝑢− 𝑢ℎ)‖ ≤ ℎ𝑀(𝛼, 𝑢, 𝑧, 𝑔).

The factor 𝑀(𝛼, 𝑢, 𝑧, 𝑔) depends on generic quantities related to 𝒯ℎ and Ω as well as the indicated quantities
that are well defined by the stated assumptions.

Proof. We follow the strategies of [9, 20] that make use of projection operators related to the spaces 𝒮1,𝑐𝑟
D (𝒯ℎ)

and ℛ𝑇 0
N(𝒯ℎ) and Jensen’s inequality as well as binomial formulas. Letting 𝑔ℎ = Πℎ𝑔 this shows that there

exists a Crouzeix–Raviart quasi-interpolant ̃︀𝑢ℎ ∈ 𝒮1,𝑐𝑟
D (𝒯ℎ) of 𝑢 such that

𝐼ℎ(̃︀𝑢ℎ) ≤ 𝐼(𝑢) +
𝛼

2
‖Πℎ̃︀𝑢ℎ − 𝑢‖𝐿1(Ω)4‖𝑔‖𝐿∞(Ω) −

𝛼

2
‖𝑔 − 𝑔ℎ‖2.

If 𝛾ℎ ≥ 1 is such that for the corrected Raviart–Thomas quasi-interpolant ̃︀𝑧ℎ = 𝛾−1
ℎ 𝒥𝑅𝑇 𝑧 ∈ ℛ𝑇 0

N(𝒯ℎ) of 𝑧 we
have |̃︀𝑧ℎ(𝑥𝑇 )| ≤ 1 for all 𝑇 ∈ 𝒯ℎ then we have

𝐷ℎ(̃︀𝑧ℎ) ≥ 𝐷(𝑧)−
(︀
1− 𝛾−1

ℎ

)︀
‖𝑔‖‖div 𝑧‖ − 𝛼

2
‖𝑔 − 𝑔ℎ‖2.

Using the coercivity of 𝐼ℎ, the minimality of 𝑢ℎ, the discrete duality relation 𝐼ℎ(𝑢ℎ) ≥ 𝐷ℎ(̃︀𝑧ℎ), and the strong
duality relation 𝐼(𝑢) = 𝐷(𝑧), we find that

𝛼

2
‖Πℎ(̃︀𝑢ℎ − 𝑢ℎ)‖2 ≤ 𝐼ℎ(̃︀𝑢ℎ)− 𝐼ℎ(𝑢ℎ) ≤ 𝐼ℎ(̃︀𝑢ℎ)−𝐷ℎ(̃︀𝑧ℎ)

≤ 𝛼

2
‖Πℎ̃︀𝑢ℎ − 𝑢‖𝐿1(Ω)4‖𝑔‖𝐿∞(Ω) +

(︀
1− 𝛾−1

ℎ

)︀
‖𝑔‖‖div 𝑧‖.
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Figure 2. Triangulation 𝒯3 in Example 4.7 obtained by refinements of 𝒯0 with a grading
towards the side {0} × [0, ℓ].

To bound the correction factor 𝛾ℎ we estimate 𝛾𝑇 = |𝒥ℛ𝑇 𝑧(𝑥𝑇 )| for every 𝑇 ∈ 𝒯ℎ using that 𝛾𝑇 ≤ |𝑧(𝑥𝑇 )| +
𝑐𝑅𝑇ℎ𝑇𝐿.

We seek to prove 𝛾𝑇 ≤ 1 + 𝑐𝛾ℎ
2 for some 𝑐𝛾 > 0. From the decay condition we have

𝛾𝑇 ≤ 1− ℓ𝑧𝑑𝐽𝑢(𝑇 ) + 𝑐𝑅𝑇𝐿ℎ𝑇 .

If ℎ𝑇 ≤ 𝑐𝑑ℎ
2, then 𝑐𝛾 ≥ 𝑐𝑑 suffices. Otherwise, we focus on the case ℎ𝑇 ≤ 𝑐𝑑ℎ𝑑𝐽𝑢(𝑇 )1/2 and let 𝐶 =

𝑐𝑅𝑇 𝑐𝑑𝐿/(2ℓ𝑧). Then, using (𝐶ℎ− 𝑑𝐽𝑢
(𝑇 )1/2)2 ≥ 0 we have

𝛾𝑇 ≤ 1 + ℓ𝑧

(︁
2𝐶ℎ𝑑𝐽𝑢

(𝑇 )1/2 − 𝑑𝐽𝑢
(𝑇 )
)︁
≤ 1 + ℓ𝑧𝐶

2ℎ2.

We conclude that 𝛾ℎ ≤ 1 + 𝑐𝛾ℎ
2, so

(︀
1− 𝛾−1

ℎ

)︀
≤ 𝑐𝛾ℎ

2. To bound the term ‖Πℎ̃︀𝑢ℎ − 𝑢‖𝐿1(Ω), we note that if
𝑇 ∩ 𝐽𝑢 ̸= ∅ we obtain with (2.2) that

‖𝑢−Πℎ̃︀𝑢ℎ‖𝐿1(𝑇 ) ≤ ‖𝑢− ̃︀𝑢ℎ‖𝐿1(𝑇 ) + ‖̃︀𝑢ℎ −Πℎ̃︀𝑢ℎ‖𝐿1(𝑇 ) ≤ 𝑐ℎ𝑇 |𝐷𝑢|(𝑇 )

with ℎ𝑇 ≤ 𝑐𝑑ℎ
2. Otherwise, if 𝑇 ∩ 𝐽𝑢 = ∅ we have that 𝑢 is constant and 𝑢 = Πℎ̃︀𝑢ℎ on 𝑇 . The estimate of the

proposition follows from a combination of the estimates and the triangle inequality, noting that by Jensen’s and
Hölder’s inequalities we have ‖Πℎ(𝑢− ̃︀𝑢ℎ)‖2 ≤ ‖𝑢− ̃︀𝑢ℎ‖𝐿1(Ω)‖𝑢− ̃︀𝑢ℎ‖𝐿∞(Ω). �

The assumptions of the proposition apply to certain settings with piecewise constant solutions.

Example 4.6. If 𝑔 = 𝜒𝐵𝑟(0) for 𝑟 > 0 with 𝐵𝑟(0) ⊂ Ω and if Dirichlet conditions on 𝑢 are imposed on ΓD = 𝜕Ω,
then we have 𝑢 = 𝑐𝑟,𝛼𝑔 and

𝑧(𝑥) = −𝑐′𝑟,𝛼

{︃
𝑟−1𝑥, |𝑥| ≤ 𝑟,

𝑟𝑥/|𝑥|2, |𝑥| ≥ 𝑟,

for every 𝑥 ∈ Ω, where 𝑐′𝑟,𝛼 = min{1, 𝑟𝛼/𝑑}, cf. [1, 6, 22].

A quadratic grading is the optimal grading strength to locally refine a two-dimensional triangulation towards
a one-dimensional subset.

Example 4.7. Let Ω = (0, ℓ)2 ⊂ R2 with ℓ > 0 with initial triangulation 𝒯0 = {𝑇1, 𝑇2}. We inductively
define 𝒯𝑘+1 by first applying a red refinement to all elements in 𝒯𝑘 that intersect the 𝑥2-axis and then refining
further elements to avoid hanging nodes by a red-green-blue refinement strategy as, e.g., in Algorithm 4.2 of
[7], cf. Figure 2.

We define the (asymptotic) grading strength of a sequence of regular triangulations (𝒯𝑘)𝑘≥0 as the logarithmic
relation of the minimal and average mesh-size, i.e.,

𝛽 = lim
𝑘→∞

log(ℎ𝑘,min)
log(ℎ𝑘)

·
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We note that the speed of convergence depends on the diameter of Ω, e.g., for the triangulations defined in
Example 4.7 we have that ℎ𝑘,min and ℎ𝑘 are proportional to ℓ, which is irrelevant in the limit passage. For the
generic setting of Example 4.7 we identify a quadratic grading strength.

Proposition 4.8. Let (𝒯𝑘)𝑘=0,1,... be a sequence of triangulations of (0, ℓ)2 such that triangles along the side
{0} × [0, ℓ] are 𝑘-times refined with ℎ𝑇 ∼ ℎ𝑘,min ∼ 𝑞𝑘ℎ𝑘,max and for triangles along the side {ℓ} × [0, ℓ] we have
ℎ𝑇 = ℎ𝑘,max. If 𝑘−1 log(ℎ𝑘,max) → 0 then the graduation strenth is 𝛽 = 2.

Proof. To determine the average mesh-size we note that the refinement process defines after 𝑘-steps a parti-
tioning into stripes 𝑆𝑗 , 𝑗 = 0, 1, . . . , 𝑘, with 𝑛𝑗 ∼ 𝑞−𝑗ℎmax elements. A summation shows that 𝒯𝑘 contains
𝑁𝑘 ∼ 𝑞−𝑘ℎmax elements so that ℎ𝑘 ∼ 𝑞𝑘/2 and

𝛽 = lim
𝑘→∞

log(𝑐𝑞𝑘ℎ𝑘,max)
log(𝑐′𝑞𝑘/2ℎ𝑘,max)

= lim
𝑘→∞

log(𝑐ℎ𝑘,max) + 𝑘 log(𝑞)
log(𝑐′ℎ𝑘,max) + (𝑘/2) log(𝑞)

= 2,

which proves the assertion. �

5. Primal-dual gap estimator via discrete duality

We next devise a strategy that leads to an automatic and adaptive local mesh refinement algorithm. To
illustrate the main ideas we consider a general convex minimization problem

̃︀𝐼(𝑢) =
∫︁

Ω

𝜑(∇𝑢) + 𝜓(𝑥, 𝑢) d𝑥

defined on a Sobolev space 𝑋 = 𝑊 1,𝑝
D (Ω), 1 < 𝑝 < ∞, or on 𝑋 = BV(Ω), whose dual is given by the

maximization of ̃︀𝐷(𝑧) = −
∫︁

Ω

𝜑*(𝑧) + 𝜓*(𝑥, div 𝑧) d𝑥

on a space of vector fields 𝑊 = 𝑊 𝑝′

N (div; Ω). Here, 𝜑 : R𝑑 → R∪ {+∞} and 𝜓 : Ω×R → R∪ {+∞} are convex
functionals and 𝜑* and 𝜓* are their convex conjugates. The duality relation ̃︀𝐼(𝑢) ≥ ̃︀𝐷(𝑧) in combination with
coercivity properties of ̃︀𝐼 described by a functional 𝜎̃︀𝐼 imply, for the minimizer 𝑢 ∈ 𝑋 and arbitrary 𝑣 ∈ 𝑋 and
𝑞 ∈𝑊 that

𝜎2
̃︀𝐼 (𝑢, 𝑣) ≤ ̃︀𝐼(𝑣)− ̃︀𝐼(𝑢) ≤ ̃︀𝐼(𝑣)− ̃︀𝐷(𝑞) =: 𝜂2

ℎ(𝑣, 𝑞). (5.1)

If 𝑣 = 𝑢ℎ for an approximation 𝑢ℎ ∈ 𝑋 of 𝑢, then 𝜂ℎ(𝑢ℎ, 𝑞) provides a computable bound on the approximation
error 𝜎(𝑢, 𝑢ℎ) whenever an admissible 𝑞 is explicitly given. We use the following extended result from [5].

Proposition 5.1. Let 𝑢 ∈ BV(Ω) ∩ 𝐿2(Ω) be the minimizer for the ROF functional 𝐼 and 𝑢ℎ ∈ 𝒮1
𝒟(𝒯ℎ) an

approximation. We then have, for every 𝑞 ∈𝑊 2
N(div; Ω) with |𝑞| ≤ 1 in Ω, that

‖𝑢− 𝑢ℎ‖ ≤
(︀
2/𝛼

)︀1/2
𝜂ℎ(𝑢ℎ, 𝑞) + ‖𝑔 −Πℎ𝑔‖,

where
𝜂2

ℎ(𝑢ℎ, 𝑞) =
∫︁

Ω

|∇𝑢ℎ| − ∇𝑢ℎ ·Πℎ𝑞 d𝑥+
1

2𝛼

∫︁
Ω

(︀
div 𝑞 − 𝛼(𝑢ℎ − 𝑔ℎ)

)︀2 d𝑥.

Proof. We define 𝑔ℎ = Πℎ𝑔 and let ̃︀𝐼 be the ROF functional with 𝑔 replaced by 𝑔ℎ whose minimizer we denote
by ̃︀𝑢 ∈ BV(Ω)∩𝐿2(Ω). By the strong convexity of the 𝐿2 term in 𝐼 we find that ‖𝑢− ̃︀𝑢‖ ≤ ‖𝑔−𝑔ℎ‖, cf. e.g., [6].
We apply the error estimate (5.1) to ̃︀𝐼 and obtain that

𝛼

2
‖̃︀𝑢− 𝑢ℎ‖2 ≤ ̃︀𝐼(𝑢ℎ)− ̃︀𝐷(𝑞)−

∫︁
Ω

∇𝑢ℎ · 𝑞 d𝑥−
∫︁

Ω

𝑢ℎ div 𝑞 d𝑥.

A straightforward calculation, the fact that ∇𝑢ℎ is elementwise constant, and the triangle inequality lead to
the formula for 𝜂ℎ(𝑢ℎ, 𝑞). �
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Remark 5.2. If the estimate is derived for a Crouzeix–Raviart approximation 𝑢ℎ ∈ 𝒮1,𝑐𝑟
D (𝒯ℎ), then jumps

across sides occur on the right-hand side of the identity for 𝜂2
ℎ(𝑢ℎ, 𝑞).

The optimal estimator 𝜂ℎ(𝑢ℎ, 𝑞) requires an exact solution of the dual problem or a numerical approximation
of sufficient accuracy, cf. [10]. Since the numerical solution of the dual problem is computationally expensive,
we aim at the construction of a nearly optimal approximation at a computational cost that is comparable to
the numerical solution of the discretized primal problem. For this we use a reconstruction of a discrete dual
solution from the Crouzeix–Raviart approximation of the primal problem from [9].

Proposition 5.3 ([9], Prop. 3.1). Let ̃︀𝐼ℎ and ̃︀𝐷ℎ be defined on 𝒮1,𝑐𝑟
D (𝒯ℎ) and ℛ𝑇 0

N(𝒯ℎ) with 𝜓ℎ(·, 𝑎) = Πℎ𝜓(·, 𝑎)
for all 𝑎 ∈ R via

̃︀𝐼ℎ(𝑢ℎ) =
∫︁

Ω

𝜑(∇ℎ𝑢ℎ) + 𝜓ℎ(𝑥,Πℎ𝑢ℎ) d𝑥,

̃︀𝐷ℎ(𝑧ℎ) = −
∫︁

Ω

𝜑*(Πℎ𝑧ℎ) + 𝜓*ℎ(𝑥, div 𝑧ℎ) d𝑥.

We then have the duality relation ̃︀𝐼ℎ(𝑢ℎ) ≥ ̃︀𝐷ℎ(𝑧ℎ). If 𝑠 ↦→ 𝜑(𝑠) and 𝑎 ↦→ 𝜓ℎ(𝑥, 𝑎) are continuously differentiable
and if 𝑢ℎ is minimal for ̃︀𝐼ℎ then a maximizing element 𝑧ℎ for ̃︀𝐷ℎ is given by

𝑧ℎ = 𝜑′(∇ℎ𝑢ℎ) + 𝑑−1 𝜓′ℎ(·,Πℎ𝑢ℎ)(· − 𝑥𝒯 ),

where 𝑥𝒯 = Πℎ id, and strong duality ̃︀𝐼ℎ(𝑢ℎ) = ̃︀𝐷ℎ(𝑧ℎ) applies.

To apply the result to the discretized ROF functional, we consider for 𝜀 > 0 the regularization 𝜑(𝑎) = |𝑎|𝜀 =(︀
|𝑎|2 + 𝜀2)1/2 of the non-differentiable modulus. We then obtain the reconstruction 𝑧ℎ ∈ ℛ𝑇 0

N(𝒯ℎ) given by

𝑧ℎ =
∇𝑢ℎ

|∇ℎ𝑢ℎ|𝜀
+
𝛼

𝑑
Πℎ(𝑢ℎ − 𝑔)(· − 𝑥𝒯 ).

The vector field 𝑧ℎ satisfies |𝑧ℎ(𝑥𝑇 )| ≤ 1 for all 𝑇 ∈ 𝒯ℎ, but in general not |𝑧ℎ(𝑥)| ≤ 1 for almost every 𝑥 ∈ Ω.
We have for every 𝑇 ∈ 𝒯ℎ that

⃒⃒
𝑧ℎ|𝑇

⃒⃒
≤ 1 +

𝛼

𝑑
|(𝑢ℎ − 𝑔ℎ)(𝑥𝑇 )| 𝑑

𝑑+ 1
ℎ𝑇 = 𝛾𝑇 .

The globally re-scaled vector field ̂︀𝑧ℎ = (max𝑇∈𝒯ℎ
𝛾𝑇 )−1𝑧ℎ satisfies |̂︀𝑧ℎ| ≤ 1 but does not lead to an efficient

error estimator. Our experiments reported below indicate that also the scaling ̃︀𝑧ℎ = ̃︀𝛾−1
ℎ 𝑧ℎ with a continuous

function ̃︀𝛾ℎ satisfying ̃︀𝛾ℎ|𝑇 ≥ 𝛾𝑇 for all 𝑇 ∈ 𝒯ℎ does not lead to an efficient estimator.

Remark 5.4. The error estimator 𝜂ℎ(𝑢ℎ, 𝑞) controls the approximation error 𝜎̃︀𝐼(𝑢, 𝑢ℎ) defined by the maximal
coercivity of the functional ̃︀𝐼. For the ROF functional 𝐼 the scaled squared 𝐿2 norm is a lower bound for this
quantity and the error estimator controls a stronger error quantity. For the regularized ROF functional 𝐼𝜀 and
a minimizers 𝑢, i.e., 𝛿𝐼𝜀(𝑢) = 0, a Taylor expansion formally yields with a suitable function 𝜉 that

𝐼𝜀(𝑢ℎ) = 𝐼𝜀(𝑢) +
∫︁

Ω

𝜑′′𝜀 (∇𝜉)[∇(𝑢− 𝑢ℎ),∇(𝑢− 𝑢ℎ)] d𝑥+
𝛼

2
‖𝑢− 𝑢ℎ‖2,

where the convex function 𝜑𝜀 = | · |𝜀 has a positive definite Hessian, cf. [25].
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Figure 3. Experimental convergence rates ℎ1/2 ∼ 𝑁−1/4 for Crouzeix–Raviart finite element
approximations of the ROF model on sequences of uniform triangulations for a solution with
non-Lipschitz continuous dual solutions defined in Example 6.1 and different magnifications of
the irregular region at the origin.

6. Numerical experiments

We verify in this section the theoretical results and investigate the performance of numerical methods beyond
their validity. Our computations are based on the use of the regularized ROF functional

𝐼𝜀(𝑢) =
∫︁

Ω

|∇𝑢|𝜀 d𝑥+
𝛼

2
‖𝑢− 𝑔‖2

with the regularized modulus |𝑎|𝜀 = (|𝑎|2 + 𝜀2)1/2 for 𝑎 ∈ R𝑑 and 𝜀 > 0. Owing to the bounds 0 ≤ |𝑎|𝜀− |𝑎| ≤ 𝜀,
the error estimates and identified convergence rates remain valid provided that 𝜀 = 𝑂(ℎ𝜎) with 𝜎 = 1 or 𝜎 = 2
to obtain an 𝐿2 error 𝑂(ℎ𝜎/2) on uniform and locally refined meshes. The iterative minimization of 𝐼𝜀 was
realized with the unconditionally stable semi-implicit 𝐿2 gradient flow from [12]. We always use the step-size
𝜏 = 1 but different stopping criteria ‖𝑢𝑘 − 𝑢𝑘−1‖ ≤ 𝜀stop.

6.1. Irregular solution

We investigate the numerical approximation of the example from Section 3 to verify whether the failure of
Lipschitz continuity of dual solutions affects the convergence rate 𝑂(ℎ1/2) for the Crouzeix–Raviart method on
uniform triangulations. We use a coordinate transformation to avoid superconvergence phenomena related to
mesh symmetries.

Example 6.1 (Non-Lipschitz dual). Let Ω = (−1, 1)2 ⊂ R2, 𝛼 = 10, and ̃︀𝑔 = 𝜒𝐵+
𝑟
−𝜒𝐵−𝑟

for 𝑟 ∈ {0.4, 5.0} and
𝑔 = ̃︀𝑔 ∘ Φ, where Φ(𝑥) = 𝑄𝑥 + 𝑏 realizes a rotation by 𝜑 = 70∘ and shift by 𝑏 = (0.1, 0)T. Dirichlet conditions
𝑢D = 𝑢|𝜕Ω from the solution 𝑢 = 𝑐𝑟,𝛼𝑔, 𝑐𝑟,𝛼 = 1− 2/(𝑟𝛼), are imposed.

The experimental convergence rates shown in Figure 3 are obtained on 𝑘-times red-refined triangulations
𝒯𝑘 of an initial triangulation 𝒯0 with four elements. We have ℎ𝑘 = 2−𝑘 and use 𝜀stop = ℎ𝑘/20. The optimal
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Figure 4. Numerical solution 𝑢ℎ ∈ 𝒮1,𝑐𝑟(𝒯6) (left) and its projection Πℎ𝑢ℎ (right) in Exam-
ple 6.1 for 𝑟 = 0.4. Large discrete gradients occur near the origin where dual solutions are not
Lipschitz continuous.

convergence rate 𝑂(ℎ1/2) is observed for both choices of 𝑟 = 0.4 and 𝑟 = 5.0, despite the lack of a Lipschitz
continuous dual solution. Also the scaling of the problem towards the singular point obtained by increasing
the radius 𝑟 does not affect the experimental convergence rates. In Figure 4 the numerical solution 𝑢ℎ on the
triangulation 𝒯6 and its projection onto elementwise constant functions are displayed for the parameter 𝑟 = 0.4.
Large gradients occur near the origin, the midpoint values do not, however, show artifacts.

6.2. Mesh grading in one dimension

We next confirm our theoretical findings for the use graded meshes for the approximation of the ROF model
in one-dimensional settings. The problem specification leads to a multiple of the sign function as exact solution.

Example 6.2 (1D sign function). Let Ω = (−1, 1), 𝛼 = 10, and define 𝑔(𝑥) = sign(𝑥). The minimizer for the
ROF functional subject to Dirichlet boundary conditions is given by 𝑢 = 𝑐𝑟,𝛼𝑔, 𝑐𝑟,𝛼 = (1− 1/(𝑟𝛼)), for 𝑟 = 2.

In our experiments we choose the regularization 𝜀 = ℎ𝛽 so that the corresponding error contribution is of
the same order as the discretization error. We note that the stopping criterion has to be carefully chosen and
we used 𝜀stop = ℎ/20 for 𝛽 = 1 and the finer tolerance 𝜀stop = ℎ𝛽+1/20 for non-uniform meshes with grading
strength 𝛽 > 1. The experimental convergence rates obtained with these settings for a 𝑃1 method are given in
Figure 5, typical numerical solutions are displayed in Figure 6.

6.3. Mesh grading in two dimensions

We experimentally investigate the performance of finite element approximations for a standard example using
mesh grading based on the discontinuity set of the given function 𝑔.

Example 6.3 (Single disc phantom). Let Ω = (−1, 1)2, 𝛼 = 10, and 𝑔 = 𝜒𝐵𝑟(0) for 𝑟 = 1/2. For homogeneous
Dirichlet boundary conditions the minimizer of the ROF model is given by 𝑢 = 𝑐𝑟,𝛼𝑔 with 𝑐𝑟,𝛼 = 1− 2/(𝑟𝛼).

Our initial triangulation 𝒯0 consists of two right triangles that partition Ω and we iteratively define a sequence
of regular triangulations (𝒯𝑘)𝑘=0,1,... by performing a red refinement for all triangles in 𝒯𝑘 that have a non-empty
intersection with the discontinuity set 𝐽𝑔 = 𝜕𝐵𝑟(0) of 𝑔 and then carrying out a red-green-blue refinement
procedure to avoid hanging nodes. We verified that this leads to a quadratic grading strength. To allow for
a nearly linear experimental convergence rate, we choose 𝜀stop = ℎ2/20 and 𝜀 = ℎ2. For the approximations
obtained with the Crouzeix–Raviart method we observe a nearly linear experimental convergence rate. This is
not the case for approximations obtained with less flexible 𝑃1 finite elements, as can be seen in Figure 7. We
also illustrated the convergence behavior of the error estimator from Section 5 and observe that it serves as a
reliable but non-efficient error bound. An explanation for this observation is that the graded meshes are optimal
for the 𝐿2 error, but not necessarily for the error quantity controlled by the estimator, cf. Remark 5.4.
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Figure 5. Experimental convergence rates in approximating the one-dimensional ROF model
defined in Example 6.2 on meshes with a grading towards the discontinuity with different
grading strengths 𝛽 leading to convergence rates ℎ𝛽/2 ∼ 𝑁−𝛽/2.

Figure 6. Numerical solutions on a uniform and a graded mesh in the one-dimensional setting
with piecewise constant solution specified in Example 6.2. The strong grading with 𝛽 = 4 (right)
leads to a high accuracy in comparison with the uniform grid corresponding to 𝛽 = 1 (left).

6.4. Adaptive mesh refinement

We finally investigate the automatic generation of locally refined triangulations based on the a posteriori
error estimate provided by Proposition 5.1. We use the reconstructed, unscaled approximation 𝑧ℎ of the dual
problem provided by the Crouzeix–Raviart approximation 𝑢𝑐𝑟

ℎ for the primal problem. This defines the error
estimator

𝐸est =

(︃
2
𝛼

∑︁
𝑇∈𝒯ℎ

𝜂2
ℎ,𝑇 (𝑢ℎ, 𝑧ℎ)

)︃1/2

+

(︃∑︁
𝑇∈𝒯ℎ

‖𝑔 −Πℎ𝑔‖2𝐿2(𝑇 )

)︃1/2

,
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Figure 7. Experimental convergence rates on quadratically graded triangulations in the
approximation of the two-dimensional ROF-problem with piecewise constant solution speci-
fied in Example 6.3. Crouzeix–Raviart approximations lead to nearly linear convergence of the
𝐿2 error.

Figure 8. Experimental convergence rates in the adaptive approximation of the ROF-problem
defined in Example 6.4 using the primal-dual-gap error estimator 𝐸est. Different experimental
convergence rates are observed for Crouzeix–Raviart and 𝑃1 finite element approximations. The
estimators ̂︀𝐸est and ̃︀𝐸est obtained from globally and locally scaled dual variables are inefficient.



1886 S. BARTELS ET AL.

Figure 9. Adaptively generated 𝑃1 approximation in Example 6.4. The automatic mesh
refinement procedure leads to a local refinement in a neighborhood of the discontinuity set.

Figure 10. Projection Πℎ𝑢ℎ of the Crouzeix–Raviart approximation on the quadratically
graded triangulation 𝒯13 in Example 6.3. The localized refinement of the jump set leads to a
high accuracy.

where the second sum contains data oscillation terms and the first one the local refinement indicators 𝜂ℎ,𝑇 which
are given by the element residuals

𝜂2
ℎ,𝑇 (𝑢ℎ, 𝑧ℎ) =

∫︁
𝑇

|∇𝑢ℎ| − ∇𝑢ℎ ·Πℎ𝑧ℎ d𝑥+
1

2𝛼

∫︁
𝑇

(div 𝑧ℎ − 𝛼(𝑢ℎ − 𝑔ℎ))2 d𝑥.

We follow established strategies in adaptive mesh refinement methods and select a minimal subset 𝑀ℎ ⊂ 𝒯ℎ

for refinement, cf. [7], that constitutes 50% of the total error estimator. We used the regularization parameter
𝜀 = ℎ2 to allow for an overall linear convergence rate, as stopping criterion we used 𝜀stop = ℎ2/20. We again
use a setting with a piecewise constant solution.



LOCAL MESH REFINEMENT FOR TV MINIMIZATION 1887

Example 6.4 (Piecewise constant solution). Let Ω = (−1, 1)2, 𝛼 = 10, and 𝑔 = 𝜒𝐵𝑟(0) for 𝑟 = 1/2. For
homogeneous Dirichlet boundary conditions the minimizer of the ROF model is given by 𝑢 = 𝑐𝑟,𝛼𝑔 with
𝑐𝑟,𝛼 = 1− 2/(𝑟𝛼).

The experimental convergence rates for 𝑃1 and Crouzeix–Raviart finite element approximations on adaptively
generated triangulations in Example 6.4 are shown in Figure 8. For both methods we observe an improvement
over the optimal rate 𝑂(ℎ1/2) on sequences of uniform triangulations. The Crouzeix–Raviart method leads
to the experimental convergence rate 𝑂(ℎ0.76) while for the 𝑃1 method we obtain the lower rate 𝑂(ℎ0.58).
Our explanation for this is the good compatibilty of the Crouzeix–Raviart method specified by the projection
property of the quasi-interpolation operator and the resulting discrete total-variation diminishing property. As
addressed in Remark 5.4 the error estimator 𝐸est cannot be expected to lead to meshes that are optimal for the
𝐿2 approximation error. The error estimator 𝐸est converges with nearly the same rate as the 𝑃1 approximation
error indicating good reliability and efficiency properties. A 𝑃1 finite element approximation obtained with
the adaptive mesh refinement strategy is shown in Figure 9. We observe an automatic local mesh refinement
towards the discontinuity set of the solution but a weaker grading of approximately 𝛽 ≈ 1.7 in comparison with
Figure 10. The reliable estimators ̂︀𝐸est and ̃︀𝐸est, obtained from using the globally and locally scaled vector
fields ̂︀𝑧ℎ and ̃︀𝑧ℎ lead to meshes on which these estimators converges suboptimally, cf. Figure 8. The 𝐿2 error
converged with similar rates reported above for meshes constructed with ̂︀𝐸est but not with ̃︀𝐸est.
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