Numerical analysis for time-dependent advection-diffusion problems with random discontinuous coefficients
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 5, pp. 1545-1578

As an extension to the well-established stationary elliptic partial differential equation (PDE) with random continuous coefficients we study a time-dependent advection-diffusion problem, where the coefficients may have random spatial discontinuities. In a subsurface flow model, the randomness in a parabolic equation may account for insufficient measurements or uncertain material procurement, while the discontinuities could represent transitions in heterogeneous media. Specifically, a scenario with coupled advection and diffusion coefficients that are modeled as sums of continuous random fields and discontinuous jump components are considered. The respective coefficient functions allow a very flexible modeling, however, they also complicate the analysis and numerical approximation of the corresponding random parabolic PDE. We show that the model problem is indeed well-posed under mild assumptions and show measurability of the pathwise solution. For the numerical approximation we employ a sample-adapted, pathwise discretization scheme based on a finite element approach. This semi-discrete method accounts for the discontinuities in each sample, but leads to stochastic, finite-dimensional approximation spaces. We ensure measurability of the semi-discrete solution, which in turn enables us to derive moments bounds on the mean-squared approximation error. By coupling this semi-discrete approach with suitable coefficient approximation and a stable time stepping, we obtain a fully discrete algorithm to solve the random parabolic PDE. We provide an overall error bound for this scheme and illustrate our results with several numerical experiments.

DOI : 10.1051/m2an/2022054
Classification : 65M60, 60H25, 60H30, 60H35, 35R60, 58J65, 35K10
Keywords: Flow in heterogeneous media, fractured media, porous media, jump-diffusion coefficient, non-continuous random fields, parabolic equation, finite element method, uncertainty quantification
@article{M2AN_2022__56_5_1545_0,
     author = {Barth, Andrea and Stein, Andreas},
     title = {Numerical analysis for time-dependent advection-diffusion problems with random discontinuous coefficients},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1545--1578},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {5},
     doi = {10.1051/m2an/2022054},
     mrnumber = {4454163},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2022054/}
}
TY  - JOUR
AU  - Barth, Andrea
AU  - Stein, Andreas
TI  - Numerical analysis for time-dependent advection-diffusion problems with random discontinuous coefficients
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2022
SP  - 1545
EP  - 1578
VL  - 56
IS  - 5
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2022054/
DO  - 10.1051/m2an/2022054
LA  - en
ID  - M2AN_2022__56_5_1545_0
ER  - 
%0 Journal Article
%A Barth, Andrea
%A Stein, Andreas
%T Numerical analysis for time-dependent advection-diffusion problems with random discontinuous coefficients
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2022
%P 1545-1578
%V 56
%N 5
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2022054/
%R 10.1051/m2an/2022054
%G en
%F M2AN_2022__56_5_1545_0
Barth, Andrea; Stein, Andreas. Numerical analysis for time-dependent advection-diffusion problems with random discontinuous coefficients. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 5, pp. 1545-1578. doi: 10.1051/m2an/2022054

[1] A. Abdulle, A. Barth and C. Schwab, Multilevel Monte Carlo methods for stochastic elliptic multiscale PDEs. Multiscale Model. Simul. 11 (2013) 1033–1070. | MR | Zbl | DOI

[2] R. J. Adler and J. E. Taylor, Random Fields and Geometry. Springer Science & Business Media (2009). | MR | Zbl

[3] C. Aliprantis and K. Border, Infinite Dimensional Analysis: A Hitchhiker’s Guide. Springer (2006). | MR | Zbl

[4] C. Audouze and P. B. Nair, Some a priori error estimates for finite element approximations of elliptic and parabolic linear stochastic partial differential equations. Int. J. Uncertain. Quantif. 4 (2014). | MR | DOI

[5] I. Babuška, R. Tempone and G. E. Zouraris, Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM J. Numer. Anal. 42 (2004) 800–825 (electronic). | MR | Zbl | DOI

[6] I. Babuška, F. Nobile and R. Tempone, A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 45 (2007) 1005–1034 (electronic). | MR | Zbl | DOI

[7] D. A. Barajas-Solano and D. M. Tartakovsky, Stochastic collocation methods for nonlinear parabolic equations with random coefficients. SIAM/ASA J. Uncertain. Quantif. 4 (2016) 475–494. | MR | DOI

[8] O. E. Barndorff-Nielsen, Hyperbolic distributions and distributions on hyperbolae. Scand. J. Stat. 5 (1978) 151–157. | MR | Zbl

[9] A. Barth and A. Lang, Simulation of stochastic partial differential equations using finite element methods. Stochastics 84 (2012, April–June) 217–231. | MR | Zbl | DOI

[10] A. Barth and A. Stein, Approximation and simulation of infinite-dimensional Lévy processes. Stoch. Part. Differ. Equ.: Anal. Comput. 6 (2018) 286–334. | MR

[11] A. Barth and A. Stein, A study of elliptic partial differential equations with jump diffusion coefficients. SIAM/ASA J. Uncertain. Quantif. 6 (2018) 1707–1743. | MR

[12] A. Barth, C. Schwab and N. Zollinger, Multi-level Monte Carlo finite element method for elliptic PDEs with stochastic coefficients. Numer. Math. 119 (2011) 123–161. | MR | Zbl

[13] S. Brenner and R. Scott, The Mathematical Theory of Finite Element Methods. Vol. 15. Springer Science & Business Media (2007). | MR | Zbl

[14] J. Charrier, Strong and weak error estimates for elliptic partial differential equations with random coefficients. SIAM J. Numer. Anal. 50 (2012) 216–246. | MR | Zbl

[15] J. Charrier, R. Scheichl and A. L. Teckentrup, Finite element error analysis of elliptic PDEs with random coefficients and its application to multilevel Monte Carlo methods. SIAM J. Numer. Anal. 51 (2013) 322–352. | MR | Zbl

[16] K. A. Cliffe, M. B. Giles, R. Scheichl and A. L. Teckentrup, Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients. Comput. Visual. Sci.. | MR | Zbl

[17] A. Cohen, R. Devore and C. Schwab, Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDEs. Anal. App. 9 (2011) 11–47. | MR | Zbl

[18] G. Detommaso, T. Dodwell and R. Scheichl, Continuous level Monte Carlo and sample-adaptive model hierarchies. SIAM/ASA J. Uncertain. Quantif. 7 (2019) 93–116. | MR

[19] E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136 (2012) 521–573. | MR | Zbl

[20] Z. Ding, A proof of the trace theorem of Sobolev spaces on Lipschitz domains. Proc. Am. Math. Soc. 124 (1996) 591–600. | MR | Zbl

[21] M. Eigel, C. Merdon and J. Neumann, An adaptive multilevel Monte Carlo method with stochastic bounds for quantities of interest with uncertain data. SIAM/ASA J. Uncertain. Quantif. 4 (2016) 1219–1245. | MR

[22] L. Evans, Partial Differential Equations. American Mathematical Society (2010). | MR | Zbl

[23] P. Frauenfelder and C. Schwab, R. A. Todor, Finite elements for elliptic problems with stochastic coefficients. Comput. Methods Appl. Mech. Eng. 194 (2005) 205–228. | MR | Zbl

[24] I. G. Graham, F. Y. Kuo, J. A. Nichols, R. Scheichl, C. Schwab and I. H. Sloan, Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients. Numer. Math. 131 (2015, October) 329–368. | MR

[25] I. G. Graham, F. Y. Kuo, D. Nuyens, R. Scheichl and I. H. Sloan, Circulant embedding with QMC: Analysis for elliptic PDE with lognormal coefficients. Numer. Math. 140 (2018) 479–511. | MR

[26] D. S. Grebenkov and B.-T. Nguyen, Geometrical structure of Laplacian eigenfunctions. SIAM Rev. 55 (2013) 601–667. | MR | Zbl

[27] W. Hackbusch, Elliptic Differential Equations: Theory and Numerical Treatment, 2nd softcover print edition. Springer, Berlin, Heidelberg (2017). | MR | Zbl

[28] H. Harbrecht and J. Li, First order second moment analysis for stochastic interface problems based on low-rank approximation. ESAIM: M2AN 47 (2013) 1533–1552. | MR | Zbl | Numdam

[29] V. H. Hoang and C. Schwab, Sparse tensor Galerkin discretization of parametric and random parabolic PDEs – Analytic regularity and generalized polynomial chaos approximation. SIAM J. Math. Anal. 45 (2013) 3050–3083. | MR | Zbl

[30] R. Kornhuber and E. Youett, Adaptive multilevel Monte Carlo methods for stochastic variational inequalities. SIAM J. Numer. Anal. 56 (2018) 1987–2007. | MR

[31] A. Lang and J. Potthoff, Fast simulation of Gaussian random fields. Monte Carlo Methods App. 17 (2011) 195–214. | MR | Zbl

[32] C. Lang, A. Sharma, A. Doostan and K. Maute, Heaviside enriched extended stochastic FEM for problems with uncertain material interfaces. Comput. Mech. 56 (2015) 753–767. | MR

[33] J. Li, X. Wang and K. Zhang, Multi-level Monte Carlo weak Galerkin method for elliptic equations with stochastic jump coefficients. Appl. Math. Comput. 275 (2016) 181–194. | MR

[34] F. Müller and C. Schwab, Finite elements with mesh refinement for wave equations in polygons. J. Comput. Appl. Math. 283 (2015) 163–181. | MR

[35] S. Nicaise, Polygonal interface problems: Higher regularity results. Commun. Part. Differ. Equ. 15 (1990) 1475–1508. | MR | Zbl

[36] S. Nicaise and A.-M. Sändig, General interface problems – I. Math. Methods Appl. Sci. 17 (1994) 395–429. | MR | Zbl

[37] S. Nicaise and A.-M. Sändig, General interface problems – II. Math. Methods Appl. Sci. 17 (1994) 431–450. | Zbl | MR

[38] F. Nobile and R. Tempone, Analysis and implementation issues for the numerical approximation of parabolic equations with random coefficients. Int. J. Numer. Methods Eng. 80 (2009) 979–1006. | MR | Zbl

[39] F. Nobile, R. Tempone and C. G. Webster, A sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46 (2008) 2309–2345. | MR | Zbl

[40] M. Petzoldt, Regularity results for Laplace interface problems in two dimensions. Z. Anal. Anwend. 20 (2001) 431–455. | MR | Zbl

[41] A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations, 2nd edition. Springer Science & Business Media (1997). | MR | Zbl

[42] C. Schwab, p -and h p -Finite Element Methods: Theory and Applications in Solid and Fluid Mechanics (Numerical Mathematics and Scientific Computation). Oxford University Press, New York (1999). | MR | Zbl

[43] C. Schwab and C. J. Gittelson, Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs. Acta Numer. 20 (2011) 291–467. | MR | Zbl

[44] G. Stefanou and M. Papadrakakis, Assessment of spectral representation and Karhunen-Loève expansion methods for the simulation of Gaussian stochastic fields. Comput. Methods Appl. Mech. Eng. 196 (2007) 2465–2477. | Zbl

[45] A. L. Teckentrup, R. Scheichl, M. B. Giles and E. Ullmann, Further analysis of multilevel Monte Carlo methods for elliptic PDEs with random coefficients. Numer. Math. 125 (2013) 569–600. | MR | Zbl

[46] G. Zhang and M. Gunzburger, Error analysis of a stochastic collocation method for parabolic partial differential equations with random input data. SIAM J. Numer. Anal. 50 (2012) 1922–1940. | MR | Zbl

[47] T. Zhou, Stochastic Galerkin methods for elliptic interface problems with random input. J. Comput. Appl. Math. 236 (2011) 782–792. | MR | Zbl

Cité par Sources :