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NUMERICAL ANALYSIS FOR TIME-DEPENDENT ADVECTION-DIFFUSION
PROBLEMS WITH RANDOM DISCONTINUOUS COEFFICIENTS

ANDREA BARTH! AND ANDREAS STEIN?*

Abstract. As an extension to the well-established stationary elliptic partial differential equation
(PDE) with random continuous coefficients we study a time-dependent advection-diffusion problem,
where the coefficients may have random spatial discontinuities. In a subsurface flow model, the ran-
domness in a parabolic equation may account for insufficient measurements or uncertain material
procurement, while the discontinuities could represent transitions in heterogeneous media. Specifically,
a scenario with coupled advection and diffusion coefficients that are modeled as sums of continuous
random fields and discontinuous jump components are considered. The respective coefficient functions
allow a very flexible modeling, however, they also complicate the analysis and numerical approximation
of the corresponding random parabolic PDE. We show that the model problem is indeed well-posed
under mild assumptions and show measurability of the pathwise solution. For the numerical approxima-
tion we employ a sample-adapted, pathwise discretization scheme based on a finite element approach.
This semi-discrete method accounts for the discontinuities in each sample, but leads to stochastic,
finite-dimensional approximation spaces. We ensure measurability of the semi-discrete solution, which
in turn enables us to derive moments bounds on the mean-squared approximation error. By coupling
this semi-discrete approach with suitable coefficient approximation and a stable time stepping, we ob-
tain a fully discrete algorithm to solve the random parabolic PDE. We provide an overall error bound
for this scheme and illustrate our results with several numerical experiments.
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1. INTRODUCTION

In this paper we are concerned with the well-posedness of a solution to a time-dependent advection-diffusion
equation with discontinuous random coefficients and its numerical discretization. The random coefficient function
is modeled by a continuous part and a discontinuous part, inspired by the unique characterization of the Lévy—
Khinchine formula for Lévy processes. We adopt this idea to spatial domains and use set-valued random variables
to propose coefficients with jumps occurring on lower-dimensional submanifolds. This generalizes the elliptic
setting which has drawn great attention over the last decades. While many publications focus on numerical
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methods for continuous stochastic coefficients (see, e.g., [1,4-7,12,16,17,23,29,33,38,39,43,45,46]), the literature
on stochastic discontinuous coefficients or stochastic interface problems is sparse (see, e.g., [28,32,47]). The
reasons are manifold: Gaussian random fields are well-defined mathematical objects and their properties are
well studied, simulation methods range from spectral approximations to Fourier methods (see, e.g., [25,31,44]).
In contrast, there is no general definition and approximation method for a discontinuous (Lévy) field. Moreover,
standard numerical methods for random PDEs, like Monte Carlo-finite element or polynomial chaos approaches,
work reasonably for continuous random coefficients, but perform poorly for stochastic interface problems.

This article provides a generalization to the “standard model” in uncertainty quantification, i.e. the stationary
problem with continuous diffusion coefficient, and provides a thorough analysis of time-dependent advection-
diffusion equations with discontinuous random coefficients: Based on the elliptic setting in [10], we introduce a
parabolic PDE with advection and diffusion terms given by discontinuous random fields. As our first main result,
we derive precise conditions that ensure existence and measurability of pathwise weak solutions. Furthermore,
we provide moments bounds on the solution in suitable Lebesgue-Bochner spaces. The random coefficients in
our parabolic model problem are in general infinite-dimensional stochastic objects, therefore we also discuss
tractable coefficient approximations and derive the corresponding error bounds.

Having ensured well-posedness of the problem, we further address the question of appropriate space-time
approximations. Standard finite elements for the spatial discretization are are generally not suitable due to the
varying random interfaces in each sample. Hence, we employ a sample-adapted triangulation approach that
aligns the finite element grid to each sample of the advection and diffusion coefficient. This means we obtain
stochastic, finite-dimensional approximation spaces, which is a crucial difference to common numerical methods
in uncertainty quantification, and therefore need special treatment. Our next main contribution is to show the
measurability of this semi-discrete sample-adapted solution and to provide the corresponding mean-squared
error bounds. As our discretization approach relies on random grids, pathwise convergences rates are random
as well, however, we achieve a deterministic control on moments of the error. This paves the way, for instance,
to combine the sample-adapted meshing with Monte Carlo methods for further statistical inference. Finally, we
introduce a stable time-stepping scheme to obtain a fully discrete algorithm and to avoid numerical oscillations
due to the random interfaces. A bound on the overall mean-squared error is provided and our theoretical findings
are verified by numerous numerical experiments.

The paper is structured as follows: In Section 2 we state the parabolic model problem in a very general
setting and derive existence, uniqueness and measurability for pathwise solutions under mild assumptions on
the data. In the following section we define our particular jump-diffusion and jump-advection coefficient and
show that the well-posedness theory from Section 2 applies in this setting. Furthermore, we discuss suitable
approximations of the discontinuous coefficient functions. These approximations are used in Section 4 to develop
a pathwise sample-adapted discretization scheme. This section contains our main results on measurability and
convergence for the semi-discrete approximation. Thereafter, we introduce a temporal approximation as the last
part of a fully tractable algorithm and we close with several one- and two-dimensional numerical experiments.

2. PARABOLIC INITIAL-BOUNDARY VALUE PROBLEMS AND THEIR SOLUTIONS

Let (Q,F,P) be a complete probability space, T := [0,7] a time interval for some 7> 0 and D C R¢, d €
{1,2} be a convex, polygonal domain with piecewise linear boundary. We consider the linear, random initial-
boundary value problem

Opu(w, z,t) + [Au)(w, z,t) = f(w,z,t) in QxDx(0,T],
u(w,z,0) =up(w,z) in QxDx {0}, (2.1)
u(w,z,t) =0 on OQxJIDxT,

where f: Q x D xT — R is a random source function and ug : {2 X D :— R denotes the random initial condition
of the partial differential equation (PDE). Furthermore, A is a second order partial differential operator

[Au](w, z,t) = =V - (a(w, 2) Vu(w, z,t)) + b(w, z) - Vu(w, z,t) (2.2)
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for (w,x,t) € Q x D x T with

— a stochastic jump-diffusion coefficient a : 2 x D — R and
— a stochastic jump-advection coefficient b : Q x D — R?.1

We base the analysis of Problem (2.1) on the standard Sobolev space H*(D) with the norm
1/2

[Vl ey = | D / |D¥v(z)[*dx for keN,

lv|<k

where the D” = 0yt ...0y¢ is the mixed partial weak derivative (in space) with respect to the multi-index
v € N¢. The seminorm corresponding to H*(D) is denoted by

1/2

iy = | 3 [ 100w
lv|=k
The fractional order Sobolev spaces H*(D) for s > 0 are defined by the norm

()l
[Vl s (D) = 10l s () + [0l o101 (D) |v[3.— L) (D) "= // |x— |d+2(s—LsJ dgcdy7

where | - |- 121 (py is the so-called Gagliardo seminorm, see [19], and |-| : R — Z, s — max(k € Z,k < s) is the

floor operator. Further, we define H := L?(D) and denote by C' a generic positive constant which may change

from one line to another. Whenever necessary, the dependence of C on certain parameters is made explicit.
On the domain D, the existence of a bounded, linear operator + : H*(D) — H*~'/2(9D) with

v : H3(D)NC®(D) — H*Y2(D), v+ v =v|sp
and

vl ge-17200m) < Cllvllas (D) (2.3)

for s € (1/2,3/2), v € H*(D) is ensured by the trace theorem, see for example [20], where C' = C(s,D) > 0 in
equation (2.3) depends on the boundary of D. Since we consider homogeneous Dirichlet boundary conditions
on 0D, we may treat v independently of w and define the suitable solution space V as

V= Hi(D) = {ve H(D)| yv =0},

equipped with the H'(D)-norm [[v||y := ||v|| z1(p). Due to the homogeneous Dirichlet boundary conditions, the
Poincaré inequality ||v||g < C|v|g1(py holds with C = C(D) > 0 for all v € V. Hence, || - ||g1(py and | - |g1(p)
are equivalent on V. Furthermore, by Jensen’s inequality

d 2 d
(Z 8xlv(x)|> < 2471 Z(@wlv(m))Q, z €D, (2.4)
=1 =1

and hence || Y0, |8,,0]]|%; < 24~ ol3 (o for any v e V.

1We could extend the above model problem by including time-dependent diffusion and/or advection coefficients. If a and b are
sufficiently smooth with respect to ¢, i.e. continuously differentiable in T, the temporal convergence rates in Section 4.2 are not
affected. The focus of this article, however, is on the numerical analysis of Problem (2.1) with coefficients that involve random
spatial discontinuities, hence we assume for the sake of simplicity that a and b are time-independent.
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We work on the Gelfand triplet V C H C V' = H~!(D), where V'’ denotes the topological dual of any vector
space V. As the coefficients a and b are given by random functions, suitable solutions u to Problem (2.1) are in
general time-dependent V-valued random variables. To investigate the integrability of w with respect to T and
the underlying probability measure P on (£2, F), we need to introduce the space of Bochner-integrable functions.

Definition 2.1. Let (Y, X, 1) be a o-finite and complete measure space, let (X, || - ||x) be a Banach space and
define the norm || - ||L»(y,x) for a strongly measurable X-valued function ¢ : Y — X’ by

(fy le@)Bn(dy))/? for 1< p < +oo,

lellze i) =\ esssup [ ()| 2 for p = +oc.
yey

The corresponding space of Bochner-integrable random variables is given by
LP(Y;X) == {¢:Y — X is strongly measurable and ||¢||z»(y;x) < +00}.
Furthermore, the space of all continuous functions ¢ : Y — X is defined as

C(Y;X):={p:Y — X is continuous and sup ||p(y)||x < +oo}.
yey

We are interested in the two particular cases that
- (Y, %2, p) = (T, B(T), 1), where B(T) is the Borel o-algebra over T and pr is the Lebesgue-measure on B(T),
- (V,2,pn) = (Q,F,P).
The space LP(Q;X) is commonly referred to as the space of Bochner-integrable random variables. For any
¢ € LY(T; X) we denote by 0;¢ € L(T; X) the weak time derivative of ¢ if for all ¢ € C2°(T;R)

T

T
agumamw:—A ()DL,

0

where 9;¢ is the classical (in a strong sense) time derivative of . The set C°(T;R) consists of all functions
¢ € C°(T;R) with compact support in (0, T'). We record the following useful lemma for the calculus in L?(T; H)
(more precisely in Sect. 4.2).

Lemma 2.2 ([22], Chap. 5.9, Thm. 2). Let H = L*(D) and ¢,dyp € L*(T; H). Then, the mapping ¢ : T — H
18 continuous,

ta
olts) = o(t) +/ Dup(t)dt, forall 0<ty <ty <T,
t

1

and it holds for C = C(T) > 0 that

max e < C (Ie1arm + 10 ) -

Remark 2.3. We may as well consider non-homogeneous boundary conditions, that is u(w,z,t) = ¢1(w, z, )
for g1 : @ x 9D x T — R. The corresponding trace operator + is still well defined provided that ¢;(w,-,-) can
be extended almost surely to a function §;(w,-,-) € LY(T; HY(D)) with 9,91 (w,-,-) € L*(T; H-*(D)). Then,
u— g1 € LY(T; V) may be regarded as a solution to the modified problem
Bulu = Go)(w,,6) + (A — G1)](w,2,8) = f(w,2,1) — [AGi)(w,2,8) — D (w,0,8) on QxDxT,
(u—91)(w,x,0) = up(w, z) — g1 (w, z,0) on QxDx{0}, and
(u—a1)(w,z,t) =0 on Qx9DxT.

But this is in fact a version of Problem (2.1) with modified source term and initial value (see also [22], Chap. 6.1).
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We introduce the bilinear form associated to A in order to derive a weak formulation of the initial-boundary

value Problem (2.1). For fixed w € Q and ¢ € T, multiplying equation (2.1) with a test function v € V and
integrating by parts yields the variational equation

/D Ou(w, z, t)v(z)dr + By (u(w, -, t),v) = F, 1 (v). (2.5)

The bilinear form B, : V x V — R is given by
d
B, (u,v) = / a(w, z)Vu(z) - Vo(x) + b(w, z) - Vu(z)v(z)dz = (a(w, ), Z@mlu&;lv) + (b(w,-) - Vu,v),
D 1=1
where (-, -) denotes the L?(D)-scalar product. The source term is transformed into the right hand side functional
F,.: V=R, v~ / flw,z, t)v(x)dz,
D
and the integrals with respect to d;u and f are understood as the duality pairings
/ Oru(w, z, t)v(z)de =, (Qwu(w, -, t),v)v,
D
[ fozti@nds =y (w00}
D

Definition 2.4. For fixed w € Q, the pathwise weak solution to Problem (2.1) is a function u(w,-,-) € L*(T; V)
with dyu(w, -, ) € L3(T; V') such that for t € T and all v € V,

v (Ou(w, -, t),v)v + By (u(w, -, t),v) = F,+(v), wu(w,-,0)=uo(w,-).

The following assumptions allow us to show existence and uniqueness of a pathwise weak solution to equa-
tion (2.1) and guarantee measurability of the solution map u : Q — L?(T; V).

Assumption 2.5. (i) For each x € D, the mappings w — a(w, ) and w — b(w,x) are F — B(R)-measurable.

(i) For all w € Q it holds that a(w,-) € L' (D) and

a_(w) :=essinf a(w,z) >0, ay(w):=esssup a(w,z) < +o0.
zeD €D

(iii) It holds that f € LP(2; L?(T; V")), uo € LP(; H) and 1/a_ € Li(S;R), for some p,q € [1,00], such that

I/p+1/g<1. o _ _
(iv) There are constants by,ba > 0 such that |b(w, z)|lcc < min(bia(w,x),bs) holds for almost all w € Q and
almost all x € D. Here || - || denotes the supremum norm in RY.

Remark 2.6. Ttems (i) and (ii) imply measurability of the random variables a_,ay : @ — R. For instance,
a € L'(D) and ay < +oo imply that a € L™(D) for all n € N. Hence, a(w) = [|a(w, )| (p) may be written
as the point-wise limit of the measurable functions ||a(w, )|z~ (py for n — oo, see e.g. Lemma 13.1 of [3].

Theorem 2.7. For any w € L*(T; V) define the (pathwise) parabolic norm

t 1/2
ollus = <||w(~,t)||%r+ / |w(.,z>|§m)dz> . teT.



1550 A. BARTH AND A. STEIN

Under Assumption 2.5, for anyw € ), there exists a unique pathwise weak solution u(w, -,-) € L?(T;V)NC(T; H)
to Problem (2.1) and u : Q — LQ(T,V), w — u(w,-,-) is strongly measurable. Further, for any r € [1,(1/p+

1/9)7]

1/r
E <SUP |U||:,t> <C (1 + Hl/a—HL‘I(Q;R)) (HUOHLP(Q;H) =+ ||fHLP(Q;L2(’II‘;V’))) < +00, (2.6)

teT

with C = C(b,T,q) > 0. Moreover, if f € LP(Q; L*>(T; H)), then for any r € [1,(1/p+ (1/(2¢)) 7]

1/r
. 1/2
B (suplulf) = €O+ /a1 i) (luollznin + 1 eussceany) <+

Proof. For fixed w € Q, a(w,-) € L*°(D) holds since a(w,-) is integrable with bounded supremum. Thus, the
bilinear form B, : V x V — R in equation (2.5) is continuous and coercive by Assumption 2.5 and existence
and uniqueness of a pathwise weak solution u(w,-,-) € L%(T;V) N C(T; H) to Problem (2.1) follows as for
deterministic parabolic problems, see for instance Chapter 7.1 of [22] or Chapter 11 of [41].

Now define the space X := L*(T; V) x L*(T; V') with norm [|(y1,y2)llx = [lv1llc2(r;vy + lly2ll2(r,vr) and
note that the mapping Q@ — X, w — (u(w,-,-), du(w,-,-)) is well-defined. Let (v;,7 € N) C V be a basis of V
and for fixed t € T and i € N define the functional

T Qx X, (w,w H/ Bu(w(es1),03) — Fopa(v8) + v (Bs0(- 1), v5) vt

By Assumption 2.5, it follows that J; is a Carathéodory map, i.e. measurable in © and continuous in X, and
thus F @ B(X) — B(R)-measurable. The separability of L?(T; V) and L*(T; V") entails separability of X and,
furthermore, B(X) = B(L*(T;V)) ® B(L?(T;V")). To show the measurability of u, we define the correspondence

vi(w) ={w e X| Jj(w,w) =0}, we
By Corollary 18.8 of [3] the graph Gr(p;) := {(w,w) € Q@ x X|w € ¢;(w)} is measurable, i.e. Gr(p;) € FRB(X).
Since this yields
{(w,u(w,-, ), fu(w,-,))|w e Q} = ﬂ Gr(p;) € F@ B(X),
ieN

the mapping w — (u(w,-,-),du(w,-,)) is F — B(X)-measurable (see e.g. [3], Thm. 18.25). As B(X) =
B(L*(T;V)) ® B(L*(T; V")), the marginal mappings u : Q@ — L?(T;V) and dyu : Q@ — L?(T;V’) are strongly
F — B(L*(T;V))-measurable and F — B(L?(T; V'))-measurable, respectively. We note that it is sufficient to test
against a basis of V in order to obtain the measurability of the L?(T;V’)-valued map d;u, since the embeddings
V < H — V' are dense.

To show the estimate (2.6), we fix w € Q, ¢t € T, test against v = u(w,-,t) € V in equation (2.5) and obtain

v (Ou(w, -, ), u(w, -, t))v + By(u(w, -, 1), u(w, 1) = F, (u(w, -, 1)).

As u(w,-,-) € L*(T; V) it holds that

V/<atu(wv'vt)’u(wa'at)>V ” ( t)H%Ia

see i.e. Chapter 5.9 of [22]. Rearranging the terms yields

2dt

=1

1d d
——lu(w, -, )% + ( , Z O, u(w ) = —(b(w,") - Vu(w, -, 1), u(w, -, 1)) + F+(u(w, -, 1))

=:1+41L
The first term is bounded with Young’s inequality, Assumption 2.5 and equation (2.4) via
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21d
1<

d
b, MDY 10w wlw, - )17 + 27 bu [ [b(w, ) 1P u(w, - )
=1

d
( 72 6901“ w, a >+2d 1b1b2||u( [ )HH

=1

By the Poincaré inequality it holds that [|u[[3, = [u[3: py + [[ullfr < (1 + C?)[ul3 py and we estimate IT by

||f(w7 7t HV’

)
< (14+C)i o i o SO
w, at ! w
< (1+C2)||f(a (w;”V i )|u(w7'7 )G{l(D)
d
< (1 +02)W i <a(wv ')7 Z(azzu(wv'vt))2> .
=1

Hence, equation (2.7) implies

d 2
iWWmﬂ%+< SR )gc@wigﬂW+wwmm@)

=1

We integrate over T and use Gronwall’s inequality to obtain

t t d
||u(w, 7””%{ + a*(w)/o ‘u(wa 72)|§{1('D)dz S ||’LL((4), vt)H%{ +/ ( ’ Z 69:1“‘ W,z > dz

=1

| f(w, - )”L?(T;V/))

a—_(w)

< exp(CT) (HUO(% N+
where we emphasize that the last estimate is independent of ¢. If a_(w) < 1 holds for fixed w,
t
sup ”u(w’ ) )Hi,t = sup (Hu(wv K t)”%[ + / |u(w’ ) Z)ﬁ[l(D)dZ)
teT teT 0
uo(w, )3 + I f(w, -, /
< exp(CT) (II o(w, Mz + 1l () RIZACAY

a? (w

On the other hand, if a_(w) > 1, it follows that

sup (e, )2, < exp(CT) (Juoleo, M + 17 ) Eacen)-

With the inequalities \/c1 + c2 < \/c1 ++/¢2 and (¢1 +¢2)" < 277 1(ch + ¢b) for ¢1,co > 0,7 > 1, and by taking
expectations this yields for any r € [1, (1/p+ 1/¢)7!]

% Juolly + 1152 .
E (321? IIuIQt) < CE ( o T 1 <1y + (||U0H§{ + Hf||22(1r;vr)> Lo >1y

< C(1+ |11/ a-|paar)) (luollLr:my + I1f]lLe@sL2cmvy)) »

where we have used Assumption 2.5 and Holder’s inequality for the last estimate.
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For the second part of the claim, given that f € LP(Q; L?(T; H)), we may bound II via

1 1

and proceed as for the first term, using Gronwall’s inequality, to obtain

t
o )+ ) [ 2) s opds < € (oo )+ 1P )

Finally, with Hélder’s inequality it follows for any r € [1, (1/p + 1/(2¢))~!] that

1/r
. 1/2
B (swplull,) < 00+ Ia-l oz (ol + 1l @umm)-

O

To incorporate discontinuities at random submanifolds of D, we introduce the jump-diffusion coefficient
a and jump-advection coefficient b in the subsequent section. The introduced coefficients allow us to derive
well-posedness and regularity results based on Theorem 2.7 for the solution to the parabolic problem with
discontinuous coefficients.

3. RANDOM PARABOLIC PROBLEMS WITH DISCONTINUOUS COEFFICIENTS

To obtain a stochastic jump-diffusion coefficient representing the permeability in a subsurface flow model, we
use the random coefficient a from the elliptic diffusion problem in [11] consisting of a (spatial) Gaussian random
field with additive discontinuities on random submanifolds of D. The specific structure of ¢ may be utilized to
model the hydraulic conductivity within heterogeneous and/or fractured media and is thus considered time-
independent (see also Rem. 2.3). The advection term in this model should then be driven by the same random
field and inherit the same discontinuous structure as the diffusion term. Thus, we consider the coefficient b as an
essentially linear mapping of a. Since the coefficients usually involve infinite series expansions in the Gaussian
field and/or sampling errors in the jump measure, we further describe how to obtain tractable approximations
of a and b. Subsequently, existence and stability results for weak solutions of the unapproximated resp. approx-
imated parabolic problems based on Theorem 2.7 are proved. We conclude this section by showing that the
approximated solution converges to the solution u of the (unapproximated) advection-diffusion problem in a
suitable norm.

3.1. Jump-diffusion coefficients and their approximations

We start by introducing measurable correspondences, a concept that is very useful to define a suitable jump-
diffusion coefficient in the following.

Definition 3.1 ([3], Def. 18.1). Let (20, Fp) be a measurable space, let S be a topological space, denote by
25 the power set of S, and let B(S) be the Borel o-algebra of S. For any set valued mapping/correspondence
P : Qo — 25, the lower inverse of 1 is defined as

P25 5 QS {we QYY(w)N S £ 0}

The correspondence v : Qg — 2 is

— weakly measurable, if for each open subset S C S it holds that 1*(S) € F.
— Borel-measurable, if for each Borel set B C B(S) it holds that ¢ (B) € Fo.
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Definition 3.2. The jump-diffusion coefficient a is defined as
a:QXD%R>Oa (w7m) l—>6(x)+CI>(W(w,x))—|—P(w,x),

where

— @ € CY(D;R>o) is non-negative, continuous and bounded.

— ® € C'(R;Rs) is a continuously differentiable, positive mapping.

W € L%(Q; H) is a zero-mean Gaussian random field. Associated to W is a non-negative, symmetric trace
class operator Q : H — H.

Let 7; : Q — B(D) C 2P, j € N, be a sequence of Borel-measurable correspondences and let (P}, j € N) be
a sequence of non-negative random variables on (€2, F,P). Let the sequence 7 := (7;,j € N) be such that
7 (w) forms P-a.s. a finite partition of D: Let p : B(D) — [0,00) be the Lebesgue-measure on D and define

Ir(w) = {j e N[u(T;(w)) > 0}, 7(w) = #|I7].

Then, 7: Q +— N, it holds P-a.s. that 7;(w) is an open set for i € Z7 (w), T;(w) N 7j(w) = 0 for all i # j and

p-UTw= U ZTw.

jeN 1€L7 (w)

The jump part of a is then defined by

P:QxD—Rso, (wz)— Z Ly7y (7)) Pi(w).
1€L7 (w)

Based on a, the jump-advection coefficient b is given for vector fields 51,52 € L>(D)¢ by
b:QxD—RY  (w,z)— min (a(w,x)gl(x),gg(x)) .

Remark 3.3. By the finite partition assumption on the sequence 7', we have ensured that P(w,z) € R>q for
all (w,z) € Q x D, therefore a :  x D — Ry as above is well-defined. The measurability and integrability
of a and b is shown in Lemma 3.6 below. Therein, we exploit the Borel-measurability of the correspondences
T; : Q — B(D) C 2P and that 7; is B(D)-valued. Note that the latter is not implied by Definition 3.1.

The definition of the jump-advection coefficient immediately implies Assumption 2.5 (iv) since

Ib(w, )] oo < min (Bla(w,x),gg)

holds with suitable constants by,by > 0 for almost all w € © and almost all z € D . The upper bound with
respect to by is due to technical reasons and not restrictive in practical applications, as bs may be arbitrary
large.

The following assumptions guarantee that a and b are actually measurable mappings as in Assumption 2.5
and we may apply Theorem 2.7 also in the jump-diffusion setting.

Assumption 3.4. (i) There exists p > 1 such that f € LP(Q; L*(T; V")) and ug € LP(2; H).

(ii) The eigenfunctions e; of Q are continuously differentiable on D and there exist constants o, 3, Ce,Cy > 0
such that for any i € N

oo
lleill Lo (py < Ce,  Jmax 10z, €ill Lo (py < Cei®  and Zmzﬂ <y < Ho0.

i=1
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(iii) Furthermore, the mapping ® as in Definition 3.2 and its derivative are bounded for w € R by

d
$1exp(dow) = ®(w) 2 drexp(—gaw), [ —P(w)| < ¢ exp(alw]),

where ¢1,...,¢04 > 0 are arbitrary constants.

(iv) The sequence (Pj, j € N) consists of nonnegative and bounded random variables P; € [0, P] for some P > 0.
In addition, for s > 1 such that 1/p+1/s < 1 there exists a sequence of approximations (ﬁj,j eN) c [0, PN
so that the sampling error is bounded, for some € > 0, by

E(|P; — Pj|°) <e, ieN.

Remark 3.5. The exponential bounds on ® and its derivative imply that u € L"(Q; L(T; V)) for any r € [1,p).
That is, the integrability of u with respect to Q2 only depends on the stochastic regularity of f and wg. In fact,
Theorem 2.7 shows that far weaker assumptions on a (resp. ®) are possible to achieve u € L™(Q; L*(T;V)),
at the cost that r then also depends on the integrability of a_. At this point we refer to [11], where the
regularity of an elliptic diffusion problem with a as in Definition 3.2, but less restricted functions ® and P is
investigated. However, Assumption 3.4 includes the important case that ®(WW) is a log-Gaussian random field
and the bounds on ® are merely imposed for a clear and simplified presentation of the results. On a further
note, the assumptions on the eigenpairs ((n;, ¢;),¢ € N) are natural and include the case that @ is a Matérn-type
or Brownian-motion-type covariance function.

In general, the structure of a as in Definition 3.2 does not allow us to draw samples from the exact distribution
of this random function. The Gaussian random field may be approximated by truncated Karhunen-Loeve
expansions: Let ((1;,¢e;),7 € N) denote the sequence of eigenpairs of @), where Q) : H — H is the covariance
operator of the Gaussian field W and the eigenvalues are given in decaying order 77 > 1y > --- > 0. Since @ is
trace class, the Gaussian random field W admits the representation

W= Z Vhni€iZi, (3.1)
i€N
where (Z;,i € N) are independent standard normally distributed random variables. The series above converges
in L2(Q; H) and almost surely (see e.g. [9]). The truncated Karhunen-Lo¢ve expansion Wy of W is given by

N
Wy =Y VmieiZi, (3.2)
=1

where we call N € N the cut-off index of Wy. In addition, it may be possible that the sequence of jumps
(P;,i € N) cannot be sampled exactly but only with an intrinsic bias (see [11], Rem. 3.4). The biased samples
are denoted by (E,i € N) and the error induced by this approximation is represented by the parameter € > 0
(see Assumption 3.4). To approximate P using the biased sequence (ﬁi,i € N) instead of (P;,7 € N) we define

P.:QxD—R, (w,z)— Z ﬂ{?}}(x)é(w)'
1€LT

The approzimated jump-diffusion coefficient ay . is then given by
ane(w,z) :=1a(z) + Wy (w,2)) + Pe(w, z), (3.3)
and the approzimated jump-advection coefficient by . via
by e(w, ) := min (aNﬁ(w, x)gl (x),gg(x)) .

Substituting the approximated jump coefficients into the parabolic model Problem (2.1) yields
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Oun e (w, z,t) + [AN cun ] (w,z,t) = f(w,z,t) in QxDx(0,T],
une(w,x,0) = ug(w,z) in QxDx{0}, (3.4)
une(w,z) =0 on x 0D,
where the approximated second order differential operator Ay . is given by

[An cu](w, z,t) = =V - (ane(w, 2)Vu(w, z,t)) + by o (w, x) - Vu(w, z, ).

The pathwise variational formulation of equation (3.4) is then analogous to equation (2.5): For fixed w € Q with
given f(w,-), find un c(w,-,-) € L*(T; V) with yuy < (w, -, ) € L3(T; V') such that it holds, for ¢ € T and for all
veV

vi(Oun e(w, - 1), v)v + BU]JV’E(uNﬁ(w, L t),v) = F, 4(v). (3.5)

The approximated bilinear form is given for v,w € V' by

BY#(v,w) = / ane(w, z)Vo(z) - Vw(z) + by« (w, z) - Vo(z)w(z)de.
D
Lemma 3.6. Let a and b be as in Definition 3.2, let an and by . given by equation (3.3), and let Assump-
tion 3.4 hold. Then, each pair (a,b) and (ane,bn,c) satisfies Assumption 2.5 (i) and (ii).

Moreover, define the real-valued random variables

a_ :=essinfa(w,z), ane— :=essinfany(w,x), a4 :=esssupa(w,x), an.e+ =esssupan.(w,z).
zeD zeD z€D z€D

Then, 1/a_,1/ane —,a+,an.e+ € LI(QR) for any ¢ € [1,00) and there exists C = C(q, $1, ¢2) > 0, indepen-

dent of N and e, such that

11/a—|lrar),  1/ane~llLa@r),  latllca@omr)y, llane+llra@r) < C < +oo.
Proof. Let x € D be fixed. We first show that w — a(w, z) is F — B(R)-measurable. By Definition 3.2
a(w,z) = a(z) + (W(w,z)) + P(w,z),

where @ is continuous and W a Gaussian random field, hence it suffices to show that P(-,z) :  — [0,00) is a
random variable. For any j € N we consider 1(7,()}(x) : 2+ {0,1}, and obtain by Definition 3.1

fw € Uiz (@) = 1} = {w e Qo € T(w)} = {w € Aa} NT(w) # 0} = Tfi({x}) € .

Repeating this argument for 1(z; () (z) = 0 shows the measurability of 17 (.);(z) for any j € N. Since
T;(w) € B(D), it further holds that

HUT @) = [ e | 1@t

The measurability of 17,y (z) for any x € D now yields the measurability of w +— p({7;(w)}), and therefore
also the measurability of 17,7, ()03 : @ — {0,1}. This in turn proves that P(-,z) is F — B(R)-measurable
for fixed x € D, since the sequence (P;,7 € N) in Definition 3.2 consists of real-valued random variables and
P(w,z) € [0,P] C R for all w € Q by Assumption 3.4 (iv). Hence, a is measurable, the measurability of b
follows immediately. Since @ and P are nonnegative, and ® o W(-,z) : Q — (0,400) for all z € D, we have
that a_ : Q@ — (0,400). On the other hand, @ and P are bounded mappings by Definition 3.2 and therefore

a4 (w) < 4oo for all w € Q.
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To show that a(w,-) € L'(D) for fixed w, note that (7;(w),i € Zr(w)) defines a finite partition of D by
Definition 3.2. Moreover, we have 7;(w) € B(D) for each partition element, hence a is piecewise continuous, and
therefore integrable on 7;(w), i.e. a(w, -) € L'(7;(w)). Thus, a(w, -) € L' (D) follows as the sets (7;(w),i € Z7(w))
are disjoint and form a finite partition of D. We have therefore shown that (a,b) satisfy Assumption 2.5 (i) and
(ii). For fixed parameters N € N and € > 0, the assertion follows for (an.,bn ) analogously. By Remark 2.6,
we also observe that an ., _,ane + : € — R are measurable mappings.

To bound |[|1/a_||qa(a;r), We use that W and Wy are centered, almost surely bounded Gaussian random
fields ([11], Lem. 3.5) on D which implies E := E(sup,cp W(z)) < +00 as well as

2
P (sup W(,z)—E > c) < exp <—62) (3.6)
z€D 20
for all ¢ > 0 and 7 := sup,cp E(W(-,2)?) < tr(Q). Furthermore, by the symmetry of W,
P ([|W ()| (D) > ¢) < 2P <squ(-,x) > c) . (3.7)
rE

With Assumption 3.4 (iii), and since
|l exp(|W )| (D) < exp (|[W||L=(D)) s
we then obtain for arbitrary ¢ € [1, c0)

E(1/al) < ((;gj (W (-, )) _q>

—E (Sup (W (., x))q)

zeD

< (sup exp<q¢2|w<-,x>>)
1 €D

< %E (exp(gbalW || 1)) -
1

By Fubini’s Theorem, integration by parts and equations (3.7), (3.6) this yields
E (exp(qd2||W || 1= (D)) :/ qd2 exp(qd20)P([[W || (p) > c)de
0

< qp2 exp(qpoE) + 2/E q92 exp(qepac) )P <Sup W(-,z) > C) de

x€D
o0 1
< qp2 exp(qpoE) + 2/ q2 exp <q¢zc bk ) de.
E

The last estimate on the right hand side is finite for each ¢ € R which proves the claim for a_. To bound the
expectation of a;, we may proceed in the same way by noting that

1/q . 1/q o
latllLa) < llallzem@) +E ( Sug‘P(W(w))l"> + P < |[al[ () + $1E (sug eXp(qcble(-,x)l)) +P
FAS re

by Assumption 3.4 (iii) and (iv). Analogously, the claim follows for an ¢ _,an . + with the same bounds from
above as for a_,ay respectively, because

N
o2 = = sup E(Wy(x
N €D Z::
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Theorem 3.7. Let Assumption 3.4 hold and N € N and € > 0 be fixred. There exist for any w € Q unique
pathwise weak solutions u(w,-,-) € L*(T;V) to Problem (2.1) and unc(w,-,-) € L*(T;V) to Problem (3.4),
respectively. Moreover, the mappings u,un . : Q — L*(T; V') are strongly measurable and satisfy for anyr € [1,p)
the estimates

1/r 1/r
E <sup ||u||:,t) , E (supnuN,sn:,t) < € (Juoll ot + 1]l o sz -
teT teT

where C = C(r,a,b,T) > 0 is independent of N and ¢.

Proof. To apply Theorem 2.7, we need to verify Assumption 2.5. By Definition 3.2, Remark 3.3 and Lemma 3.6,
we have already covered Assumption 2.5 (i), (ii) and (iv) for a,b and an e, by,. From Lemma 3.6 we further
obtain 1/a_,1/ay. - € LY(Q;R) for any ¢ € [1,00) and that ||1/ane ||re(or) is bounded uniformly with
respect to N and e. For given r € [1,p), we then choose ¢ = (1/r — 1/p)~! < 4o0 and the claim follows by
Assumption 3.4 (i) and Theorem 2.7. O

Having shown the existence and uniqueness of the weak solutions v and uy ., we may bound the difference
between both solutions in the (expected) parabolic norm with respect to the parameters N and e. For this, we
record the following estimate on the approximation error a — ay .

Theorem 3.8 ([11], Thm. 3.12). Under Assumption 3.4, it holds that

E(la = anelli=m)"* < C (2N +1*),
where Zn := ),y mi and C > 0 is independent of N € N and € > 0.
The final result of this section shows uy . — u in L"(Q; L*(T;V)) as N — +o0 and € — 0.

Theorem 3.9. Under Assumption 3.4, for any r € [1,(1/s+1/p)~1), the approzimation error of u is bounded
in the parabolic norm by

1/r
E (sup |lw — UN,5||:¢> <C (5]1\,/2 + 51/s> .
teT

Proof. By Theorem 3.7, pathwise existence of solutions u and uy . to the variational Problems (2.5), (3.5) is
guaranteed, hence for all w € Q,t € Tand v eV

v (Ou(w, 1), v)v + By (u(w, - 1),v) = 1 (Brunc(w, - ), 0)v + BY = (un o (w, -, t),v).
This may be reformulated as the problem to find u — uy . € L?(T; V) such that for all t € T and v € V

vi(O(u(w, - t) —une(w, - 1), v)v + By (u(w, -, t) —une(w,-t),v)
= ((ane —a)(w,-), Vune(w,,t) - Vv) + ((bye — b)(w, ) - Vun e (w, -, 1), v)

= V’<J/€(w’ "t)7U>V7

with initial value (v — un¢)(w,-,0) = 0. Definition 3.2 and Remark 3.3 imply

1£ (@, )z2mvy < A+ b)ll(a = ane)(w, )llz=(p)

7

L2(T;H)

d
Z |8JCLUN7E(W7 K >|

=1
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and by equation (2.4) and Theorem 3.7 we know that for 7 € [1, p)

T 7/2
S 2d/271/2]E </ |U|§{1(D)dt>
0

< 2d/271/2E (”qu6 ”ZT)l/?

< C ([luollze@my + [ fllLo@iz2(mvry)) < +oc.

1/7

d
Z |a$LU’N75|
=1

L7™(;L2(T;H))

We may now choose p € [1,(1/s+ 1/7)71] and obtain by Holder’s inequality and Theorem 3.8

d
E 8xluN,€
=1

for some C' > 0 independent of N and €. The claim now follows with Lemma 3.6 and by applying Theorem 2.7
tou—uye forq=(1/r—1/s—=1/p)~t < (1/r—1/s—1/p)~! < +cc. O

<C (511\,/2 + 51/3>
L™(Q;L2(T;H))

£ (W, Iez@zmvy) < CE(la — aN,eHSLoo(D))l/s

To draw samples of uy ., we need to employ further numerical techniques since uy (w,-,-) is an element
of the infinite-dimensional Hilbert space L?(T; V). Hence, we have to find pathwise approximations of uy . in
finite-dimensional subspaces of L?(T;V) by discretizing the spatial and temporal domain. Next, we construct
suitable approximation spaces of V', combine them with a time stepping method and control for the discretization
€rTor.

4. PATHWISE DISCRETIZATION SCHEMES

In the previous section we demonstrated that v may be approximated by uy . for sufficiently large N € N
resp. small € > 0. Nevertheless, even uy c(w,-,-) will in general not be accessible analytically for fixed w, N
and ¢, thus we need to find pathwise finite-dimensional approximations of uy ¢(w,-,-). In the first part of this
section we explain how a semi-discrete solution may be obtained by approximating V with a sequence of sample-
adapted finite element (FE) spaces. By sample-adaptedness we mean that the FE mesh is aligned a-priori with
the discontinuities of P in each sample, i.e. the grid changes with each w € 2. This is in contrast to adaptive FE
schemes based on a-posteriori error estimates that may require several stages of remeshing in each sample, see
e.g. [18,21,30]. To analyze the discretization error for the pathwise sample-adapted strategy, we assume that
the random partition 7 consists of polygonal elements, which is a particular case in the general setting from
the previous section. In the second part we combine the spatial discretization with a backward time stepping
scheme in T, with the time step chosen accordingly to the sample-dependent FE basis. Finally, we derive the
mean-square error between the unbiased solution u and the fully discrete approximation of uy .

4.1. Sample-adapted spatial discretization

To find approximations of uy . (w,-,t) € V for fixed w € Q and ¢t € T, we use a standard Galerkin approach
based on a sequence V,, = (Vp(w), £ € Ny) of finite-dimensional and sample-dependent subspaces V;(w) C V.
An obvious choice for V; is the space of piecewise linear FE with respect to some triangulation of D. We follow
the same approach as in [11] and utilize path-dependent meshes to match the interfaces generated by the jump-
diffusion and -advection coefficients: Let 7 (w) = (7;(w),i € N) be a given random partition of D, and recall
from Definition 3.2 that Z7 (w) is the (finite) index set of all partition elements with positive measure. We choose
a conforming triangulation Ky(w) = {K1,...,K,,} of D such that for all ¢ € Z7 there are indices Z; C N such
that

Tiw) = J K;, and hy(w):= Kgé?((w)diam(f() <hy for ¢eN. (4.1)
JEZL; i
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Above, diam(K) is the longest side length of the triangle K and (hy, £ € Ny) is a positive sequence of deterministic
refinement thresholds, decreasing monotonically to zero. This guarantees that hy(w) — 0 almost surely, although
the absolute speed of convergence may vary for each w. Given that 7 splits the domain D into a finite number
of piecewise linear polygons (see Assumption 4.1 below), a triangulation Ky satisfying (4.1) for any prescribed
refinement h, > 0 always exists. Consequently, V;(w) is chosen as the space of continuous, piecewise linear
functions with respect to Ky(w), i.e.

Ve(w) == {vew € C°(D)| vewlop =0 and vpulkx € Pi(K), K € Ke(w)} CV. (4.2)

The set P1(K) denotes the space of all linear polynomials on the triangle K, and {v1,... 7vd€(w),w} is the
nodal basis of V;(w) that corresponds to the vertices in Kp(w). As discussed in Section 4 of [11], the adjustment
of Ky to the discontinuities of a and b accelerates convergence of the spatial discretization compared to a fixed,
non-adapted FE approach. For a fixed triangle K € K¢(w) let X, 25 2K € D denote the corner points of K
and let v¥, vE oK € Py (K) be the corresponding linear nodal basis of P; (K ). We define the local interpolation

operator on K by
I(K): C°(K) = Pu(K), v Y o(@f)k,.

The global interpolation operator I, : C°(D) — Vy(w) with respect to Kp(w) is then given by restrictions to the
local operators, that is

[Zov](z) :== [Z(K)v](z), for x € D, where K € K, is such that z € K.

For simplicity, we only consider the nodal interpolation of continuous functions v € C°(D).
The semi-discrete version of (3.5) is to find uy ¢ ¢(w, -, ) € L?(T; Vo(w)) with dyun c ¢(w, -, ) € L3(T; (Vo(w)))
such that for ¢t € T and all v, € Vj(w)

v/ <atuN,E,Z(w7 ) t)7 W,w)V + B(iV7E<uN,E,Z(w) K t)a U@,w) = Ft,w (vf,w)7
un e 0(w,+,0) = Tyug(w, -).
We have used the nodal interpolation Z,ug as approximation of the initial value, which is well-defined if ug(w, -) €

C°(D) holds for any w (see also Assumption 4.1 (i)/Rem. 4.2). The function uy ¢ ¢(w,,t) may be expanded
with respect to the basis {v1,,..., V4, w)w} a8

(4.3)

UJ

UNeo(w, z,t) = Z i(w, t)vj (), (4.4)
where the coefficients ¢; (w, ), . . . s Cdy(w) (w,t) € R depend on (w,t) € 2xT and the respective coefficient column-
vector is defined as c(w,t) := (¢1(w,?),... ,cde(w)(w,t))T. With this, the semi-discrete variational problem in

the finite-dimensional space V(w) is equivalent to solving the system of ordinary differential equations

d

&c(w,t) +A(w)c(w,t) = F(w,t), teT,

for ¢ with stochastic stiffness matrix (A (w));x = BY*(v;w,vk.w) and time-dependent load vector (F(w,t)); =
Fio(vjw) for j,k € {1,...,de(w)}. To ensure well-posedness of equation (4.3) and to derive error bounds of the
numerical approximation of u in a mean-square sense, we need to modify Assumption 3.4 (items (iii) and (iv)
below are unaltered):

Assumption 4.1. (i) There exists p > 2 such that f,0,f € LP(Q;L*(T;H)) and vy € LP(;V) N
LP(Q; HY* (D)) for some arbitrary € > 0. Furthermore, ug and f are stochastically independent of T .
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(ii) The eigenfunctions e; of Q are continuously differentiable on D and there exist constants e, 3,Ce, Cyy > 0
such that 2a < B and for any i € N

o
. < ) < C.5% B <
1 — =
lleill Lo (py < Ce,  max 10z, €ill Lo (py < Cei®  and E ) Cy < Ho0.

i=1

(iii) Furthermore, the mapping ® as in Definition 3.2 and its derivative are bounded for w € R by

d
$1 exp(paw) > P(w) > ¢1 exp(—gpaw), |£<I>(w)\ < ¢z exp(ga|w)),

where ¢1,...,04 > 0 are arbitrary constants.

(iv) The sequence (P;,i € N) consists of nonnegative and bounded random variables P; € [0, P] for some
P > 0. In addition, for s > 2 such that 1/p + 1/s < 1/2 there exists a sequence of approvimations
(]51-,2‘ € N) C [0, P|N so that the sampling error is bounded, for some ¢ > 0, by

E(|P - P|") <e, i€N.

(v) The (non-trivial) partition elements (T;(w),i € Ir(w)) are polygons with piecewise linear boundary and a
finite number of boundary edges for all w € Q and E(7") = E((#|Z7])™) < oo for any n € N.
(vi) Let 2V be the power set of V.. For all £ € Ny, the correspondence Vy : Q — 2V, w +— Vy(w) is weakly
measurable (cf. Def. 3.1) and for all w € Q it holds that Vy(w) # 0.
(vii) Conformity: In dimension d = 2, let K1, Ky € Ko(w) for some fized £ € Ny and w € Q. Then, the
intersection K1 N Ko is either empty, a common edge or a common vertex of Ky(w).
(viii) Shape-regularity: Let pi out and px in denote the radius of the outer respectively inner circle of the triangle
K. Then, there is a constant p > 0 such that
PK,out

esssup sup sup —— < p < +o00.
weQ  LeNy KeKy(w) PK,in

Remark 4.2. We discuss Assumption 4.1 in the following:
— Ttem (ii) implies for all I =1,...,d and z € D

2

n N N
E (|0:Wn(@)]*) =B | > Vl0une;(@)7Z;] | <Ced nii®* < Cy nyi”,
=1 j=1

Jj=1

hence there exist an L?(Q;R)-limit 0, W (-, z) := imy_ o0 Oz, Wn (-, 7). Hence, 2 < 3 entails the mean-
square differentiability (or pathwise Lipschitz-continuity) of the Gaussian field W.

— By the fractional Sobolev inequality ([19], Thm. 6.7), ug(w,-) € H'*(D) for ¢ > 0 implies with d € {1,2}
that ug(w,-) € C°(D) and the nodal interpolation of ug is well-defined. The assumptions on f and d;f are
necessary to control the error of a temporal discretization scheme. The nodal basis functions v;, are solely
determined by 7 (w) and since f, ug are stochastically independent of 7, we may expand the sample-adapted
semi-discrete solution via equation (4.4), i.e. obtain a separation of spatial and temporal variables.

— The condition 1/p 4+ 1/s < 1/2 enables us to derive all errors in a mean-square sense. Furthermore, the
partition into piecewise linear polygons enables us to construct triangulations Ky(w) resp. approximation
spaces Vy(w) as in equation (4.2).

— The weak measurability of the correspondence w — Vp(w) ensures the (strong) measurability of the approx-
imated solution upn ¢ : 2 — L?(T; V), see Proposition 4.3. This assumption is necessary, since pathological
approximation spaces Vy(w) may still be constructed on a nullset of €, even under Assumption 4.1 (v).
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— Conformity and shape-regularity of the FE triangulations are necessary to control the FE discretization
error.

We show measurability of the semi-discrete approximations and record a bound on the interpolation error.

Proposition 4.3. Let Assumption 4.1 hold and let £ € Ny be fized. Then, for any w € € there ezists a
unique sample-adapted solution uy ¢ ¢(w,-,-) € L*(T; V) to the semi-discrete problem (4.3) and the mapping
U, Q— LA(T; V) is strongly measurable.

Proof. For fixed w, existence and uniqueness of uy . ¢(w,-,-) follows with Assumption 4.1 as in Theorem 2.7,
hence the map uy.¢ : 2 — L?(T;V) is well-defined. To show measurability, we use again the space
X = LA(T;V) x L*(T; V') with [[(y1,92)lx = l|v1lle2cr,vy + lly2ll2(r,vr) as in the proof of Theorem 2.7.
Let {v1,w, -+, Vd,(w)w) De a basis of Vy(w) and define the sequence

- Viw if i <di(w)
Viw = . .
’ Vdy (w),w if > de(w).

By Assumption 4.1 (vi), the correspondence w — V;(w) is weakly measurable and has closed, non-empty values,
therefore there exists a sequence (&;,7 € N) of measurable functions &; : @ — V such that & (w) € Vi(w) and
Vi(w) = {&(w),&2(w),. ..} (see [3], Cor. 18.14). Consequently, each v;. : @ — V can be written as the limit of
measurable functions and is therefore F — B(V')-measurable. Now, consider the functional

T
JiN’E OAx X >R, (w,w) — / Biv’g(w(-,t),'ﬁi,w) — Fut(Viw) + 1/ (Opw(-, 1), V5, w) v
0

d[{(u})
+ w(-,t) — Z (w(~,t),ﬂi7w)v,6i7w dt.

=1 v

By Theorem 2.7 and the measurability of v; . we conclude that JiN ** is a Carathéodory mapping. We define the
correspondence

Zi(w) = {w € X| JV*(w, w) = 0}.
and obtain as in the proof of Theorem 2.7 by Corollary 18.8 of [3] that the graph Gr(g;) = {(w,w) € Qx X|w €
@i(w)} is measurable. By construction of .J'*, it then follows that
{(w,unce(w, ), Ounce(w, )| w e Q} = [ Gr(Z:) € F @ B(X),
€N
and the claimed measurability of ux . ¢ follows analogously as in the proof of Theorem 2.7. O

Lemma 4.4. Under Assumption 4.1, let w € Q be fived, and let v € H”(T;) for some ¥ € (1,2] and i € Ir(w).
Then, Zyv € C°(T;) is well-defined on each partition element T; and for m € {0,1} there holds

1/2 1/2
> 1A= Z)olFim =1 Y DA =Z(E) ol
e e ren o (45)
<ch " > Plasry |
1€Z7 (w)

where C' = C(p, 9, m,d) > 0 is a deterministic constant.
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Proof. By the Sobolev embedding theorem it holds that [|v[|coz) < Cl|v||go(z;) and thus Zyv is well-defined
on 7;. Moreover, for m = {0, 1}, we use that V;(w) # 0 and the interpolation estimates from Theorem 4.4.20 of
[13] to see that

1Zev|| rm (1) < Cllvllam (T

for a constant C' = C(p,m,d) > 0, independent of 7; (recall that p is deterministic and controls the shape
regularity of K¢(w)). Together with w = Z,w for any w € V;(w) we then obtain

(1 =Zo)vllgmery < inf o —wllgmz) + 1 Ze(w — )| zmT)
we Ve (w)

<C inf |lv—wlgm)

weVy(w)
1/2
<(C inf v —w||%m .
<e i, (X o=l

Assumption 4.1 guarantees that K € 7; holds by construction of the approximation space Vz(w). The claim now
follows, for instance, by the estimates from Chapter 8.5 of [27], summing over ¢ € Z7 and by the fact that the
constant C' = C(p, ¥, m,d) > 0 is deterministic, i.e., independent of 7;. O

To bound the pathwise FE discretization error, we now fix w € ,t € T and uy (w,-,t) € V and consider
the corresponding pathwise elliptic PDE

=V (ane(w, ) Vune(w, -, t)) = f(w,-,t) —bne(w,) - Vune(w,,t) — Oune(w, -, t) = f(w, 1) (4.6)

on D with homogeneous Dirichlet boundary conditions. Let £ be the set of all interior edges of 7 (w) and for
every e € & let i, i, € Ir(w) with i, # i, be the indices such that e = 7; N 7T, . Accordingly, the outward
normal vectors on either side of e with respect 7;, and 7;; are denoted by 7, and 7{% , respectively. Due to the
discontinuities of ay ¢ (w,-), this yields the transition condition

ane(w, )i, - Vunc(w, -, t) = ane(w, ) Bir - Vuye(w,-,t) on ee€é. (4.7)

Therefore, uy «(w, -, t) may be regarded as weak solution to an elliptic interface problem given by equations (4.6)—
(4.7) satisfying for all v € V

/ an,e(w, z)Vupn e (w, z,t) - Vo(z)de :/ flw, z, t)v(z)dz. (4.8)
D D

Given that f(w,-,t) € H (which is verified almost surely by Lems. 4.8 and 4.9 below), it is known for dimension
d =2, e.g. from [35-37,40], that the solution un (w, -, t) to the elliptic interface problem admits a decomposition
into singular functions with respect to the corners of 7 (w). More precisely,

une(w, 1) =w+ Z Cij(T(j))%‘(T(j), Sﬁ(j))7 (4.9)
JjES

where S denotes the set of singular points in the partition 7 (w) (in our case S is the set of corners in 7 (w)) and
(r(j), <p(j)) are polar coordinates with respect to the singular point j € S. For any i € Zr, it holds w € H?*(7;)
and ¢ & H'™5i(T;), but ¢ € H' ™% =¢(T;) for some ; € (0,1] and any € > 0. Moreover, ¢; € R are coefficients
and x; is a smooth and bounded cutoff function vanishing near the singular point j.

The decomposition in equation (4.9) shows that uy . (w, -, t) & H?(7;), but we may expect piecewise regularity
of unye(w,-,t) € H'E7¢(T;), where £ := minjes ;. The precise values of the exponents x; € (0,1] depend on
the shape of the partition elements 7;, i.e. their angle at the singular points S, as well as on the magnitude of the
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jump heights P;. Furthermore, the results from [35,36] show that the coefficients ¢; and w depend continuously
on the right hand side ﬁ the gradient of ay . on 7; and the inverse of ay. _. A detailed analysis on the
dependencies of k;, ¢; and w may be found in the literature (see [36,37]). For the sake of simplicity we assume
piecewise regularity of uy . in accordance with the decomposition in equation (4.9).

Assumption 4.5. Let f be defined as in equation(4.8). There are deterministic constants r € (0,1] and C > 0,
such that for all N € N;e > 0 and t € T there holds for almost all w € Q0 and for i € I,

[ f(w, - DllL2(z) + lan.e(w, )wre(T)
an e —(w)

uNﬂ:‘(wv '7t)||H1(Ti)'

un,e(W, )l aiee(z) < C

Remark 4.6. Assumption 4.5 enables the ensuing numerical analysis for d = 2, whereas this assumption would
not be necessary in d = 1. It is based on the decomposition in equation (4.9) as well as the estimates for ¢;
and w from [35] in terms of the right hand side fand an . Although it may seem artificial at a first glance,
we recover k close to one in the numerical examples from Section 5 for d = 2. On the other hand, it is actually
possible to obtain lower bounds on k, i.e. to ensure a certain minimum of piecewise regularity almost surely.
This is for instance the case if:

— the jump heights P; and the interior angles of the 7; are bounded from above and below, or
— if an . satisfies almost surely a quasi-monotonicity condition,

see [40] and the references therein. Since d < 2 and upy «(w, -,t) € H**(7;) holds for every polygonal subdomain
T;, it follows that uy c(w,-,t) € H(D), where ¥ = min(1 + k,3/2 — €) for any € > 0 (see [40], Lem. 3.1). This
in turn yields that uy (w,-,t) € C°(D) by the fractional Sobolev inequality. Hence, the nodal interpolation
Zoun «(w, -, t) is well-defined.

We are now ready to state our main result on the spatial discretization error:

Theorem 4.7. Let Assumptions 4.1 and 4.5 hold and let un . be the sample-adapted FE approzimation of
un,e as in equation (4.3), where hy < 1. Then, there is a C > 0, independent of N,e and hy such that

1/2
2 —K
B (Sup ||UN’E T UNet *,t> < Ch@ .
teT

For the proof of Theorem 4.7 we record several technical lemmas as preparation.

Lemma 4.8. Let © € R? be an open, bounded domain and denote by W*>°(0) the Sobolev space defined by
the (semi-)norm

[vllwr@y ==Y ID"vlr=e); [vlwrxie) = Y ID"v|r=@), kEN,
i<k 1=k

for any measurable mapping v : © — R. Under Assumption 4.1, for any q € [1,00)

< C < +oo,
Li(R)

[P

where C = C(q) > 0 is independent of N and €.

Proof. As ap . is almost surely continuously differentiable on each partition element 7;, i € Z7, by Assump-
tion 4.1, we have

d

llan e(w, ~)||W1,oc(7i) <ane+(w)+ l:HllE.l.).(d ||8ml6|\Loo(D) + de(I)(WN(w’ ) 0s, Wi (w, )

Le>=(D)

with ||0,,@|| L (py < 400 for all I = 1,...,d. Moreover, Lemma 3.6 states that |lanc 4| 5sor) < 400 for any
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q € [1,00) and the norm is bounded uniformly with respect to N and e. Thus, we only need to estimate the last
term on the right hand side. We use Holder’s inequality and Assumption 4.1 to obtain for any ¢ > 1

d

dz ®(Wn)

102, W || L24(0; 1.5 (D))

d
x L24(Q;L> (D))

< ‘

La(9;15(D))
1/(2
< 63E (exp(246al[Wivl | =(0))) /¥ 1100, W[l 20 (012 (2.
The random field Wy is centered Gaussian with sup,cp E(Wn (2)?) < sup,cp E(W(2)?) < tr(Q) and we

proceed as in Lemma 3.6 to conclude that

B (exp(2q04][ Wyllpw0))) < | 2004 exp(2a020)B([W [ ) > e)de < +o0.
0

To estimate [0z, W || £24(q; 1 (D)), We note that, for x € D, 9, Wi (z) is also centered Gaussian with variance
N
> =1 1;(0z,ej(x))?. For any N € N

N N

Sug@cl Wi ()| = sup | Y /0 ¢;(2) Z;| <> /1351 Z]

xre xre . X
Jj=1 J=1

by Assumption 4.1 (ii), hence J,, Wi is almost surely bounded on D. The symmetric distribution of 0, W (z)
and Theorem 2.1.1 of [2] then imply E(sup,cp 0z, Wi (z)) > 0,

E (||8T1WNHL°°(’D)) < 2E <Sup aerN(I)) =: 2EN,Z < 400, and
z€D
[ 2 _E 2
P (sup 0, Wi () > c) < exp (—(CNl)> < exp (—(CNZ)) , ¢>0, (4.10)
z€D ; o

analogously to Lemma 3.6. The maximal variances in equation (4.10) are given by

Txi = sup E((9y, Wi (2 an O €5( =Ce Zmy <Ce Y mij? < +oo.

xzeD j=1

Without loss of generality, we assume g € N to obtain E(]|0,, WNHLoo(D ) = E(sup,ep (02, Wn (2))??). We now

have to make sure that E(sup,cp (0, Wi (2))??) is bounded uniformly in / and N. Similar to Lemma 3.6, Fubini’s
Theorem and equation (4.10) yield

E <sup(8ZlWN(as))2q) . /0 Tp (sup(@mlWN(x))ml > c> de

z€D xeD
o 1/29) — By )2
< / exp <(C~2Nl)> de (4.11)
0 20
1/q
< / exp ( ‘C|~2 ) de,
R 20
and the last integral is finite for any ¢ € [1,00) and independent of N and . (]

Lemma 4.9. Under Assumption 4.1, for any r € [1,p) it holds that

< C (Jluollze vy + 1 fllLe(oiL2(mmy))
L™ (4R)

10sun |l Lr ;L2 () +

sup ”uN,s('a K t)”V
teT

as well as
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< C (Juoll e mi+emy) + 1 f e @sr2cr ) -
L™ (R)

0sun c.ell Lr(s2(m; ) +

sup ||UN,57€(', ) t)HV
teT
Proof. We use the first part of the proof from Chapter 7.1 and Theorem 5 of [22] to obtain the pathwise estimate
10N e (w, -, ‘)”%2(11‘;1{) + sup/ an,e(w,z,t)Vun e(w, x,t) - Vun ¢ (w, z,t)dx
teT Jp
< / an.e(w,z,t)Vuy o (w,x,0) - Vuy o (w, z,0)dx
D

T
+/ 1o, (w, 2, 8) - Vune(w, - 0)][7dt + | f (@, )| F2 )
0
2 .
< ane s+ (@) luo (@, MY + 027 Hulw, - )l + 1@, )12 (m)-

In the last step, we have used that ||by c(w,z)|lco < b2 (see Rem. 3.3) as well as equation (2.4). On the other
hand, we have the lower bound

|Orun e (w, -, ~)H2L2(T;H) + squ/ an,e(w,z)Vun e (w,z,t) - Vun (w, z,t)dx
teT Jp

> ”atuN,s(wa ) ')||2L2(11‘;H) + aN,E,—(w) Su'%l? |uN7€(wv K t)ﬁ‘-ll(D)'
te

Since the norms |- |g1(py and || - ||g1(py = || - [|[v are equivalent by the Poincaré inequality, we treat ay . — once
more in the fashion of Theorem 2.7 to arrive at the estimate

01 i ey sup [ o)
teT JD
< O+ 1an e~ (@) (an,e @) uow, M + lulw, Y + 1@, Mz -
The claim now follows with 1/an . —,an e+ € LI(2;R) for arbitrary large ¢ € [1,00), Holder’s inequality and
Theorem 2.7. The proof for the estimate on uy ¢ may be carried out analogously with the initial condition

UNe(+,+,0) = Zyup and by observing that with Lemma 4.4

1 Zeuol Lo (;v) < | Zevo — uollLr (v + uollLe vy < ClluollLe a1+ (py)-

Lemma 4.10. Under Assumptions 4.1 and 4.5, for any r € [2,p) it holds that

E </OT > luwe

1€ T

r/2 1/r
I%IlJrN(’Z’i)dt) < +00.

Proof. Assumptions 4.1 and 4.5 yield for fixed w and ¢

ACE SO e (@, DY Xiez, @) lane @, )y (7,

an e —(w)?

Z HUN,E(wv'vt)H%{l*"(Ti) =
iGIT(w)

IFe B+ eleo, (@) e flaneo, ) sy

<
=C an e —(w)?
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Now, we integrate with respect to T and €, and use Holder’s inequality to obtain for r € [2, p)
1/r

r/2

T

E (/ Z ||uN,s§11+~(Ti)dt> < C(Hl/aN,s,—HLQ(Q;L%T;H)||f||Lr1(Q;L2(T;H))
0

i€l T
+ 11/ an.e,~ N a2 rm) I 7l 20 ()

X

max [lax e w7 el @z )

L4a(R)

<C (||f||m @r2(r;i) + lunellnm (Q;L?(T;V))) :

In the derivation, we have used the Holder exponents r; € (r,p) and ¢ := (1/r — 1/r1)™! < 4o00. The last
estimate holds due to Lemmas 3.6 and 4.8 and Assumption 4.1 (i). By definition

f(wv 7t) = f(wv 7t) - bN,E(wv ) : VUN,E(wv 7t> - atuN,E(wv ) t)v
hence Theorem 3.7, Lemmas 4.8 and 4.9 yield
T 1/2
E (/ Z uN,s”?an(Ti)dt) < O (luollzrsvy + I fll Lo @iz (r:my)) < +00. (4.12)
0

€T T

We are now ready to prove our main result:

Proof of Theorem 4.7. We define the error 8, := uy . — un,¢ and observe that for fixed w € Q,t € T equa-
tions (4.3) and (3.5) yield

" <8tel(w; ) t)v Uf,w>V + Bujyﬁ(ef(wv X t)a 'Ue’w) =0
9@(&1, ) 0) = (UO - IZUO)(‘”? ')7

for all vg,, € Vi(w). We then test against vy, = Zpun,e(w, -, t) — un e e(w, -, t) and integrate over [0,¢] to obtain

t d
eI+ [ <aN,€<w7~>7 >0 O -,z>>2> dz =5 60w, 0) 3

=1

t

+ / o (000, 2), (1= Toune(w, - 2))yde
0
t

+ / BY< (04w, ), (1 - To)une (w, - 2)) dz
0

t
- / (bN,a(wa ) : va@(wv '7Z)a 9@((“}7 ,Z)) dz
0
1
= §||9@(w,-,0)||§, + 1+ 114 III. (4.13)

Lemma 4.9 implies that 9;0¢(w, -,-) € L?(T; H) and we use the Cauchy—Schwarz inequality to bound I:

t t
I:/ (3t9z(w,-72)7(1—Ie)UN,e(w,-,Z))dzS/ 10:0e(w, -, 2) (1 = Ze)un e (w, -, 2))l[ mdz.
0 0
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We then use the Cauchy—Schwarz inequality and equation (2.4) to bound the second term by

II= /o (ane(w, "), VOe(w,-,2) - V(1 = Zp)un . (w, -, 2))dz

+ / (bN,e(wv ) . Vﬁg(w, ) Z)v (1 - IZ)UN,E(wa ) Z))dz
0

1/2

. d 1/2 d
< [) an, s (Z azlef 2) ) <Z(aﬁﬂz (1 - IZ)UN,E(wv *y Z))2> dz
=1

=1

t J 1/2
+/ 242712 by o (w, ) ||so (Z (O, 00(w 2> A1 =To)une(w, - 2)| | d.
0 =1

Young’s inequality further yields
d

‘1
Hs/— ane(w,), Y (0
0

=1

+/0t1<aNe ), > (0

=1

d
1
<2< RPICIUIC >>dz+0aws+ /||1—zz>uNs< )z,

Similarly, we bound the last term by

o (Oe(w, -, 2)) ) +an e+ (W)|(1 = Zo)un (W, 2) 3 (p)dz
.’I)l 0[

12
2) ) + 29 B an ey (@)I|(1 = To)une (@, - 2) 3 d2

d

1 t
mj< [ <aNE UpICACIE )>dz+2d 5 [ e

We now plug in the estimates for I — IIT in equation (4.13) and proceed in the fashion of Theorem 2.7
Gronwalls inequality to arrive at

Sup 1617 < C(1+1/ane —(w ))(IIGe(w, SO+ 10:0e(w, - Iz rsmm |1 = Ze)un e (@, )l 2 (msmy

tan e @I = Tune (@, )3 )-

1567

with

By Lemma 4.9 it holds that 8,0, € L"(2; L?(T; H) for any r € (2, p) with p as in Assumption 4.1 (i). Taking

expectations, using Hélder’s inequality and 1/an e —, ane+ € LI(€;R) for all ¢ > 1 then yields

B(oup 9012, < C (160, Ollr ) + 11 = T e+ g oy

+ 101 = Tun @, )l @zaemvy )

By Assumption 4.1 (i) ug € LP(2; H**¢(D)) for some € > 0, which yields with Lemma 4.4

—1+€
10e(w, -, 0)l| Loy = (1 = Ze)uol| Loy < Chy .

Furthermore, Lemmas 4.4 and 4.10 yield
1/2r

r/2
(n+1)/2 Ryt
(L = To)u .« (w, ')HLT(Q Loy < Chy </ E [ el Froen T)dt> <Chy
i€l

as well as
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1/2r

/2
(1 = Zoyun e (@, )| (@izz(rvy) < ChyE </ > ||uNs|H1+~(T)dt> < Chy.

i€l
The claim now follows since 0 < k, he < 1. O

Remark 4.11. To ensure that the convergence of order h, in Theorem 4.7 is not affected by the Gaussian field
W, Assumption 4.1 (ii) cannot be relaxed. For instance, given that 2« > (3, it follows from Proposition 3.4 of

[14] that a is piecewise Holder-continuous with exponent ¢ < 3/2a and we may only expect a rate of order
Ezmn(g K), see Section 3 of [15], Section 5 of [45] and Chapter 10.1 of [27]. In fact, we discuss an example with
0 = 1/2 — € in Section 5 and show that we only achieve a convergence rate of approximately E/Q
sample-adapted FE.

, even for

4.2. Temporal discretization

In the remainder of this section, we introduce a stable temporal discretization for the semi-discrete Prob-
lem (4.3) and derive the corresponding mean-square error. To this end, we fix w € Q and let un e ¢(w,,-)
denote the sample-adapted semi-discrete approximation of uy c(w, -, -) from equation (4.3). For a fully discrete
formulation of Problem (4.3), we consider a time grid 0 =ty < t; < --- < t, = T in T for some n € N. The
temporal derivative at t; is approximated by the backward difference

UN e o(W, 1) —une (W, ti-1)

8tuN,8,e(w7'7ti)% n t 5 Z:].,,TL
i bi—1

This yields the fully discrete problem to find (uN cow ), i=0,...,n) C Vy(w) such that for all i =1,...,n
and vy, € Vi(w)
1 i i—1 i
T (e @) — U, ve) + BY (), p(,),000) = Fiiw(ve)
7 i—1 (414)
Uy o0, ) = Truo(w, ).

For convenience, we assume an equidistant temporal grid with fixed time step At :=t; —t;_1 > 0. The fully
discrete solution is now given by

u(z) (w, ) gc Yvu; =1 n
NE@ @] J“" A At

where the coefficient vector ¢;(w) := (¢;1(w), ..., ciq,(w))? solves the linear system of equations
(M(w) + AtA(w))ci(w) = AtF(w,t;) + M(w)ci—1(w)

in every discrete point ¢;. The mass matrix consists of the entries (M(w)),x := (Vj,w, Uk ), the stiffness matrix
and load vector are given by (A(w))jx = B (v} w, vkw) and (F(w,t;)); = Fi, w(vjw) for j,k € {1,...,do(w)},
respectively, as in the semi-discrete case. The initial vector cq consists of the basis coefficients of Z,ug € Vp with
respect t0 {14, ..+, V4, (w)w)- To extend the fully discrete solution (u%)’ayl(w, ),4=10,...,n) to T, we define
the linear interpolation

i i t—ti— i— .
ﬂN,s,E(wv 'vt) = (UN)E [(w ) - Ugv elt?(w )) % +ug\/752(w7 ')7 te [tiflatiL t=1,...,n,

and are, therefore, able to estimate the resulting error with respect to the parabolic norm.
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Theorem 4.12. Let Assumption 4.1 hold, let (ug\i,)e 08 =0,... ,n) be the fully discrete sample-adapted approz-

imation of un e as in equation (4.14) and let Un . ¢ be the linear interpolation in T. Then,

1/2
E (Sup ||UN,€,€ - uN,a,EHi,f) < CAt.
T

te

Proof. We start by investigating the temporal regularity of un . . For fixed w € Q and 0 <t,_y < t; < T note
that w;(w, -, t) = uneo(w,,t) — un,ee(w,-,t;—1) solves the variational problem

V/<atwi(wv '7t)7vl,w>v + Bi;v,s(wi(wv '7t)7vf,w) = V/<f(wa at) - f(w7 '7ti71)7vf,w>v

fort € [t;—1,t;] and vy, € Vi (w) with initial condition w(w, -, t;—1) = 0. Therefore, in the fashion of Theorem 2.7,
we obtain the pathwise parabolic estimate
t

t i
sup IIwi(w7~7t)||§1+/ Iwi(w,-,z)Iél(p)szC(1+1/azv,a7_(w))/ 1f(w, - 2) = flw, - ti1)l[7dz

te[ti—1,ts) ti—1 ti—1
2
ti z
:C(l—l—l/aN,E’,(w))/ O f(w,-,2)dz|| dz
ti—1 ti—1 H
=C(1+1/aye—(w))
ti t; 2
x/ / 1 (D)0 (@, D)dZ| dz
ti—1 ti—1 H

<C(l+1/an.—(w))

t; ti
. / (2 —t 1)z / 10uf (@, )13 dz

ti—1 ti—1

At?
=C(1+ 1/GN,57—(UJ))T||8tf(w7 Mgy (415)

For the first identity we have used Lemma 2.2, the second estimate follows with Hdélder’s inequality. Now let

i]\f’&g be the linear interpolation of the semi-discrete solution ux ¢ at to,...,t, and consider the splitting
1/2 1/2 1/2
B (sup e —nedle) B (supluxer—Tnedls) 4 (sup e ~mvedl ) =14
teT teT teT

By equation (4.15) it follows that

n t;
o max sup (o230 [ w0l e
i=17ti-1

sup HUN,E,E - ﬂN,e,é .
T i=loonyelt; )

te

At? 5
<C@+ 1/aN,s,f(W))T||3tf(W, S Mze(mm)-

By Assumption 4.1, Holder’s inequality and Lemma 3.6 with ¢ = (1/2 — 1/p)~!
I < CAL(1+ ||1/an.e,~ || La;r)|0: f || Lo ;12 (1)) < CAL.

Now let 00 (w, ) := unco(w, - t;) — u%{e’z(w, -) denote the pathwise time discretization error at t;. For any
t € [ti—1,t:], we observe that (Un e — Un,er)(-,-,t) is a convex combination of 6; and 6;_1, and it holds that

1L < E( max (|09 + At Y 10970 p)) "2 (4.16)

Jj=1

Hence, it is sufficient to control the errors at each ¢;. Combining equations (4.14) and (4.3) yields fori =1,...,n
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(0D (w,-) = 0D (w, ), v ) v +/ BN=(09(w,-), vy, )dt
ti—1
t;
= / Bijv’t.(uN,e,f(w; 7t2) - U/N,E,Z(w7 ',t),U(,w) + V/<f(w7 at) - f(wa 7t ) Ve w)th
ti—1

= [ Fetonavdi

ti—1

and initial condition uy ¢ ¢(w,-,0) — ug\(,))e ,(w,-) = 0. We now test against vy, = 0 (w, ), sum with respect to

i and use the discrete Gronwall inequality to obtain (as in Thm. 2.7) the discrete estimate

_max (09 (w, )3 + A3 109w, )i ) < O+ 1 fane Z 175, Mty

=1
Cl+1/ane-(w ))

n t;
x <Z/ ‘uN,s('a'at)*UN,E('a'atj)ﬁ'-Il(’D)dt
j=1"7ti—1
+ Z Hf(wa 'at) - f(wa at])”ifdt) .
j=1
Proceeding as for w; in equation (4.15) to bound each term in both sums, this implies

max (|69 (w, )| + At Y 109w, )3y < C(L+ 1/ane,—(w)an e+ (@) A0, f (@, - G2y

i=1,...,n =

We use Assumption 4.1, Holder’s inequality and Lemma 3.6 to obtain

1/2
E | max |\9 D2 + Atz 169131 ) < CA|0ef|| o (eur2(moary) < CAL,
j=1
and the claim finally follows by equation (4.16). O

To conclude this section, we record a bound on the overall approximation error, which is an immediate
consequence of Theorems 3.9, 4.7 and 4.12.

Corollary 4.13. Let Assumptions 4.1 and 4.5 hold and let Uy . ¢ be the linear interpolation of the fully discrete
approximation of (uN o 1=0,...,n). Then,

1/2
E (sup [|w — uN,a,zlli,t) <C (”1/2 +e¥ 4+ hy + At)
teT

5. NUMERICAL EXPERIMENTS

5.1. Experimental setting and error balancing
In all of our numerical experiments we measure the root mean-square error

RMSE = E (|[u(,, T) — Ty, T)3) .
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For each given FE discretization parameter hy, we align the error contributions of N,e and At such that
511\,/2 ~ ¢l/% ~ At ~ hy. Hence, the dominant source of error is the spatial discretization and Corollary 4.13
yields RMSE < C’E’;. This allows us to measure the value of x in Assumption 4.5 by linear regression. While the
choices of At and ¢ are usually straightforward for given hy, we refer to Remark 5.3 of [11], where we describe
how to achieve 511\,/2 ~ hy for common examples of covariance operators Q. To emphasize the advantage of
the sample-adapted FE algorithm introduced in Section 4, we also repeat all experiments with a standard FE
approach and compare the resulting errors. For the non-adapted FE algorithm, we use for a given triangulation
diameter hy the same approximation parameters At, N and ¢ as for the corresponding sample-adapted method.
This ensures that the weaker performance of this non-adapted method is due to the mismatch between FE
triangulation and the discontinuities of a and b. We approximate the entries of the stiffness matrix for both FE
approaches by the midpoint rule on each interval (in 1D) or triangle (in 2D). If the triangulation is aligned to
the discontinuities in @ and b, this adds an additional non-dominant term of order h, to the error estimate in
Corollary 4.13, see for instance Proposition 3.13 of [15]. Thus, the bias stemming from the midpoint rule does
not dominate the overall order of convergence in the sample-adapted algorithm. In the other case, we cannot
quantify the quadrature error due to the discontinuities on certain triangles but suggest an error of order ﬁé/z
based on our experimental observations.

5.2. Numerical examples in 1D

For the first scenario we consider the advection-diffusion problem (2.1) on D = (0,1), with T' = 1, up(x) =
sin(7x)/10 and source term f = 1. The continuous part of the jump-diffusion coefficient a is given by @ = 0 and
®(w) = exp(w), where W is a Gaussian field characterized by the Matérn covariance operator

1—v v
Qu =, [Quel) = [ o2 (\@'m . y) K, (ﬁu'x - y') p(z)d for peH,
» I(v) ) )

with smoothness parameter v > 0, variance o2 > 0 and correlation length § > 0. Above, I' denotes the Gamma
function and K, is the modified Bessel function of the second kind with v degrees of freedom. It is known that
W is mean square differentiable if v > 1 and, moreover, the paths of W are almost surely in C*):¢(D;R) with
0 <v—|v] for any v > 1/2, see Section 2.2 of [24]. The spectral basis of Qs may be efficiently approximated by
Nystrom’s method, see for instance [44]. In our experiments, we use parameters v = 3/2, 02 = 1 and § = 0.05.

For each experiment in one dimension, the number of (non-empty) partition elements is given by 7 = P + 2,
where P is Poisson-distributed with intensity parameter 5. On average, this splits the domain in 7 disjoint
intervals and the diffusion coefficient has almost surely at least one discontinuity. Given 7, the position of each
jump is sampled uniformly on D. More precisely, let (Z;,i € N) be an i.i.d. sequence of U(D)-random variables
that are independent of 7. We take the first 7 — 1 points of this sequence, order them increasingly and denote
the ordered subset by ¢ :=0 < 21 < -+ < ;-1 < x, := 1. Hence, we obtain the (Borel-measurable) sequence
of correspondences

Z(w) — (xi—l(w)vxi(w))7 Z < T(w) , ieN,
0, i>7(w)
that generates the random partition 7 = {(0,z1), (1, z2), ..., (z-—1,1)} for each realization of 7. The condi-

tional distribution of a; (with respect to r=P +2 > 2)isfori=1,...,7 — 1 given by
(r=1)!
(r—)l(z—1)!

This can be utilized to derive further statistics, such as the average interval width of 7 given by

P(z; <clr) = 1 —e)t, ceD=(0,1).

o0

o 5Fe=5 1
E(E(z1|7)) = E x de) =E(1/7) =) g 01603
k=0 ’
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with corresponding variance E(1/(7 + 1)) — E(1/7)? ~ 0.1102. This also shows that increasing the Poisson
parameter in P resp. 7 would yield a longer average computational time, as more and smaller intervals would
be sampled. The order of spatial convergence of the sample-adapted FE scheme on the other hand remains
unaffected of the distribution of 7. We use the jump-advection coefficient given by

b(w,x) := 2sin(2rz)a(w,x), weN, z€D.

Note that we did not impose an upper deterministic bound by on b. To obtain pathwise approximations of
the samples uy (w,-, ), we use non-adapted and sample-adapted piecewise linear elements and compare both
approaches. The FE discretization parameter is given by hy = 27¢/4 and we consider the range £ = 1,...,6. We
approximate the reference solution u for each sample using sample-adapted FE and set tycf 1= Ung,cq,8(-, - 1),
where we choose Atg ~ 511\,/82 ~ sé/z ~ 2710 The RMSE is estimated by averaging 100 samples of ||uyc; —
Uneso(s, - T)||3 for £ = 1,...,6. To subtract sample-adapted\non-adapted approximations from the reference
solution wu,.r, we use a fixed grid with 2'° + 1 equally spaced points in D, thus the error stemming from

interpolation\prolongation may be neglected. Given that RMSE = Cﬁ;, it holds that
log(RMSE) =~ klog(hg) + log(C)

and we estimate the convergence rate x by a linear regression of the log-RMSE on the log-refinement sizes log(hy).
As we consider 1D-problems in this subsection, we expect convergence rates close to one for the sample-adapted
method whenever Assumption 4.1 holds.

In our first numerical example, the jump heights P; follow a generalized inverse Gaussian (GIG) distribution
with density

22
faic(z) = %xk_l exp (—é(z/m: + Xl‘_l)) , x>0,

and parameters y, 1 > 0, A € R see [8]. Unbiased sampling from this distribution may be rather expensive, hence
we generate approximations B, of P, by a Fourier inversion technique which guarantees that E(|]31 —-PH)<e
for any desired € > 0. This allows us to adjust the sampling bias ¢ > 0 with h; (and the corresponding At
and Zy) for any ¢ € Ny. Details on the Fourier inversion algorithm, the sampling of GIG distributions and
the corresponding L?(2;R)-error may be found in [10]. The GIG parameters are set as ¢ = 0.25,x = 9 and
A = —1, the resulting density and a sample of the coefficients are given in Figure 1. As expected, we see in
Figure 1 that the sample-adapted algorithm converges with rate x = 0.85. Thus, the sampling error of the GIG
jump heights does not dominate the remaining error contributions. Compared to adapted FE, the non-adapted
method converges at a significantly lower rate of 0.57. In Remark 4.11, we stated that the condition 2a < (3
on the decay of the eigenvalues of () entails mean square differentiability of W and thus a convergence rate of
order k in the sample-adapted method. We suggested that this rate will deteriorate if the paths of W are only
Holder continuous with exponent ¢ < k < 1. To illustrate this, we repeat the first experiment with a changed
covariance operator. We now consider the Brownian motion covariance operator

Qsm: H — H, [Qpuy](y) = /Dmin(xayﬁp(x)dx for p€H,

with eigenbasis given by 7; = (2v/2/((2i + 1)7))? and e;(z) = sin((2i 4+ 1)7z/2) for i € Ny. The paths of W
generated with Qpy are Holder-continuous with o = 1/2 — € for any € > 0 because 8 = 1 — € and o = 1.
A sample of the coefficients is given in Figure 2. The sample-adapted RMSE is smaller than the non-adapted
curve and decreases slightly faster, but both errors now decay at a lower rate of roughly 1/2 due to the lack of
(piecewise) spatial regularity of a and b.
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FIGURE 1. Top left: Jump-diffusion/advection coefficient and adapted/non-adapted FE basis,
top right: FE solution corresponding to the sample on the left and the given sample-adapted
FE basis, bottom left: GIG density function and parameters, bottom right: estimated RMSE ws.
inverse spatial refinement.

5.3. Numerical examples in 2D

In two spatial dimensions, we work on D = (0,1)? with 7' = 1, initial data ug(z1,z2) = 155 sin(7z1) sin(7z2),

source term f = 1 and assume that a = 0. The Gaussian part of a is determined by the Karhunen—Loeve
expansion

W(z) = Z mei(x)Zi, xeD, Z; "= N(0,1),
ieN
with spectral basis given by n; := o2 exp(—72i20%) and e;(x) := sin(mizy)sin(mixs) for i € N. Again, the

parameters §, 02 > 0 denote the correlation length and total variance of W, respectively. It can be shown that
these eigenpairs solve the integral equation

1 —|lz — 13 ,
2 2
- (y)dy = ne;(z), eN,
o /D47rt exp( 557 e;(y)dy = mie;(x), 1
with e; = 0 on 9D, see [26]. This random field vanishes at the boundary and has a very similar regularity
properties to a Gaussian field with squared exponential covariance operator. It, further, has the advantage, that
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FI1GURE 2. Second numerical example in 1D with Brownian motion covariance operator and uni-
formly distributed jumps. Left: Jump-diffusion/advection coefficient and adapted /non-adapted
FE basis, right: estimated RMSE wvs. inverse spatial refinement size.

all expressions are available in closed form and we forgo the numerical approximation of the eigenbasis. The
eigenvalues decay exponentially fast with respect to 7, hence Assumption 4.1 is fulfilled and we use the parameters
02 = 0.25 and § = 0.02 for all experiments in this section. As before, we consider a log-Gaussian random field,
meaning ®(w) = exp(w). To illustrate the flexibility of a jump-diffusion coefficient a as in Definition 3.2, we
vary the random partitioning of D for each example and give a detailed description below. We set the spatial

refinement to hy = hy = %24 and consider the cases £ = 1,...,5. To estimate the RMSE, we sample similar
to the one-dimensional case the reference solution ures = Un, e, 7(-, -, T) with Aty ~ 511\’/72 ~ 5;/2 ~ %2’7

and average again 100 independent samples of ||uycf — Une o+, T)||%. For interpolation/prolongation we use
a reference grid with (2% + 1) x (2% 4+ 1) equally spaced points in D. The convergence rate, i.e. the exponent &
from Assumption 4.5, in the sample-adapted method is estimated by linear regression as for the one-dimensional
examples. We further use in each scenario the (unbounded) jump-advection coefficient

b(w,x,y) = bsin(rz) sin(ny)a(w, x, y) (1) , we, (z,y) eD.

In our first 2D example, we aim to imitate the structure of a heterogeneous medium. For this, we divide the
domain by two horizontal and vertical lines. We assume that the horizontal resp. vertical lines do not intersect
each other and thus obtain 7 = 9 nonempty partition elements. The four intersection points of the lines in D are
independent and uniformly distributed in (0.2,0.8)% and thus define a partition of the D into 9 quadrangles. We
assign i.i.d. jump heights P; ~ U(0,10) to each partition element 7;. Figure 3 shows a sample of the advection-
and diffusion coefficient for the heterogeneous medium together with the associated (adapted) FE approximation
of u. As before, the sample-adapted method is advantageous and the regression suggests that Assumption 4.5
holds with x = 0.86. If we use non-adapted FE, we may still recover a convergence rate of 0.66, which is actually
slightly better than the expected rate of 0.5.

We now consider an example with lower expected regularity and pure jump field, i.e. @ and ® are set to
zero. Therefore, we need to consider strictly positive jump heights P; to ensure well-posedness of the problem.
We sample one U([0.4, 0.6]%)-distributed center point z. € D and split the domain by a vertical and horizontal
line through z.. This yields a partition of D into four squares 73 — 74. We then sample a random variable
Py ~ U([107%,1072]) and assign the value of P; to the lower left and the upper right partition element. The
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FIGURE 3. First numerical example in 2D (heterogeneous medium). Top left: sample of the
jump-diffusion coefficient and sample-adapted triangulation, top right: sample of the jump-
advection coefficient with adapted triangulation, bottom left: FE solution at T corresponding
to the samples and triangulations on the top, bottom right: estimated RMSE vs. inverse spatial
refinement El_l.

remaining elements are equipped with inverse value P» = P; ! see Figure 4 for a sample of the coefficients.
From deterministic regularity theory, it is known that for given P; the solution to this problem has only H!'**-
regularity around z., where k = O(P), see e.g. [40]. Consequently, we see deteriorated convergence rates
compared to the first example. The non-adapted method now performs poorly with an error decay of a rate
less than 0.5, whereas the sample-adapted method still recovers a rate of 0.7. A possible explanation for this
behavior is that the sample-adapted algorithm generates a mesh with respect to the singularity at x.. Optimal
meshes for this problem refine in the vicinity of x. and then coarsen on the interior of the partition elements,
for instance graded meshes or bisection meshes as used in [34] and the references therein.

To conclude, we suggest that a more effective refinement in two spatial dimensions may be achieved by h-

finite element methods (see [42]), i.e. by refining the sample-adapted mesh in the reentrant corners. A thorough
analysis of this approach for general random geometries is subject to further research.
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