Numerical homogenization of fractal interface problems
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 4, pp. 1451-1481

We consider the numerical homogenization of a class of fractal elliptic interface problems inspired by related mechanical contact problems from the geosciences. A particular feature is that the solution space depends on the actual fractal geometry. Our main results concern the construction of projection operators with suitable stability and approximation properties. The existence of such projections then allows for the application of existing concepts from localized orthogonal decomposition (LOD) and successive subspace correction to construct first multiscale discretizations and iterative algebraic solvers with scale-independent convergence behavior for this class of problems.

DOI : 10.1051/m2an/2022046
Classification : 65N12, 65N15, 65F08, 65F10
Keywords: Fractal interface problems, multiscale finite elements, subspace decomposition, Clément-type projection
@article{M2AN_2022__56_4_1451_0,
     author = {Kornhuber, Ralf and Podlesny, Joscha and Yserentant, Harry},
     title = {Numerical homogenization of fractal interface problems},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1451--1481},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {4},
     doi = {10.1051/m2an/2022046},
     mrnumber = {4451302},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2022046/}
}
TY  - JOUR
AU  - Kornhuber, Ralf
AU  - Podlesny, Joscha
AU  - Yserentant, Harry
TI  - Numerical homogenization of fractal interface problems
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2022
SP  - 1451
EP  - 1481
VL  - 56
IS  - 4
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2022046/
DO  - 10.1051/m2an/2022046
LA  - en
ID  - M2AN_2022__56_4_1451_0
ER  - 
%0 Journal Article
%A Kornhuber, Ralf
%A Podlesny, Joscha
%A Yserentant, Harry
%T Numerical homogenization of fractal interface problems
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2022
%P 1451-1481
%V 56
%N 4
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2022046/
%R 10.1051/m2an/2022046
%G en
%F M2AN_2022__56_4_1451_0
Kornhuber, Ralf; Podlesny, Joscha; Yserentant, Harry. Numerical homogenization of fractal interface problems. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 4, pp. 1451-1481. doi: 10.1051/m2an/2022046

[1] A. Abdulle, E. Weinan, B. Engquist and E. Vanden-Eijnden, The heterogeneous multiscale method. Acta Numer. 21 (2012) 1–87. | MR | Zbl

[2] G. Allaire, Homogenization and two-scale convergence. SIAM J. Math. Anal. 23 (1992) 1482–1518. | MR | Zbl

[3] G. Allaire and M. Briane, Multiscale convergence and reiterated homogenisation. Proc. R. Soc. Edinburgh Sect. A Math. 126 (1996) 297–342. | MR | Zbl

[4] L. Baffico, C. Grandmont, Y. Maday and A. Osses, Homogenization of elastic media with gaseous inclusions. Multiscale Model. Simul. 7 (2008) 432–465. | MR | Zbl

[5] R. E. Bank, A. H. Sherman and A. Weiser, Some refinement algorithms and data structures for regular local mesh refinement. Sci. Comput. App. Math. Comput. Phys. Sci. 1 (1983) 3–17. | MR

[6] J. Bey, Simplicial grid refinement: on Freudenthal’s algorithm and the optimal number of congruence classes. Numer. Math. 85 (2000) 1–29. | MR | Zbl

[7] S. C. Brenner, Two-level additive Schwarz preconditioners for nonconforming finite elements. Contemp. Math. 180 (1994) 9. | MR | Zbl

[8] C. Carstensen, Clément interpolation and its role in adaptive finite element error control. In: Partial Differential Equations and Functional Analysis. Springer (2006) 27–43. | MR | Zbl

[9] P. Cazeaux, C. Grandmont and Y. Maday, Homogenization of a model for the propagation of sound in the lungs. Multiscale Model. Simul. 13 (2015) 43–71. | MR

[10] D. Cioranescu, A. Damlamian and J. Orlik, Homogenization via unfolding in periodic elasticity with contact on closed and open cracks. Asymptotic Anal. 82 (2013) 201–232. | MR | Zbl

[11] P. Clément, Approximation by finite element functions using local regularization. Revue française d’automatique, informatique, recherche opérationnelle. Analyse numérique 9 (1975) 77–84. | MR | Zbl | Numdam

[12] P. Donato and S. Monsurrò, Homogenization of two heat conductors with an interfacial contact resistance. Anal. App. 2 (2004) 247–273. | MR | Zbl

[13] Y. Efendiev and T. Y. Hou, Multiscale Finite Element Methods: Theory and Applications. Vol. 4. Springer Science & Business Media (2009). | MR | Zbl

[14] A. Ern and J.-L. Guermond, Finite element quasi-interpolation and best approximation. ESAIM: M2AN 51 (2017) 1367–1385. | MR | Zbl | Numdam

[15] L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions. CRC Press (2015). | MR | Zbl

[16] X. Gao and K. Wang, Strength of stick-slip and creeping subduction megathrusts from heat flow observations. Science 345 (2014) 1038–1041.

[17] D. S. Grebenkov, M. Filoche and B. Sapoval, Mathematical basis for a general theory of Laplacian transport towards irregular interfaces. Phys. Rev. E 73 (2006) 021103. | MR

[18] I. Gruais and D. Poliševski, Heat transfer models for two-component media with interfacial jump. Applicable Anal. 96 (2017) 247–260. | MR

[19] W. Hackbusch and S. A. Sauter, Composite finite elements for the approximation of pdes on domains with complicated micro-structures. Numer. Math. 75 (1997) 447–472. | MR | Zbl

[20] M. Heida, Stochastic homogenization of heat transfer in polycrystals with nonlinear contact conductivities. Applicable Anal. 91 (2012) 1243–1264. | MR | Zbl

[21] M. Heida, R. Kornhuber and J. Podlesny, Fractal homogenization of multiscale interface problems. Multiscale Model. Simul. 18 (2020) 294–314. | MR

[22] T. Y. Hou and X.-H. Wu, A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134 (1997) 169–189. | MR | Zbl

[23] T. J. R. Hughes, G. R. Feijóo, L. Mazzei and J. B. Quincy, The variational multiscale method a paradigm for computational mechanics. Comput. Methods Appl. Mech. Eng. 166 (1998) 3–24. | MR | Zbl

[24] H. K. Hummel, Homogenization of Periodic and Random Multidimensional Microstructures. Ph.D. thesis, Technische Universität Bergakademie Freiberg (1999).

[25] V. V. Jikov, S. M. Kozlov and O. A. Oleĭnik, Homogenization of Differential Operators and Integral Functionals. Springer-Verlag, Berlin (1994). | MR | Zbl

[26] R. Kornhuber and H. Yserentant, Multilevel methods for elliptic problems on domains not resolved by the coarse grid. Contemp. Math. 180 (1994) 49–49. | MR | Zbl

[27] R. Kornhuber and H. Yserentant, Numerical homogenization of elliptic multiscale problems by subspace decomposition. Multiscale Model. Simul. 14 (2016) 1017–1036. | MR

[28] R. Kornhuber, D. Peterseim and H. Yserentant, An analysis of a class of variational multiscale methods based on subspace decomposition. Math. Comput. 87 (2018) 2765–2774. | MR

[29] M. R. Lancia, A transmission problem with a fractal interface. Zeitschrift für Analysis und ihre Anwendungen 21 (2002) 113–133. | MR | Zbl

[30] A. Målqvist and D. Peterseim, Localization of elliptic multiscale problems. Math. Comput. 83 (2014) 2583–2603. | MR | Zbl

[31] U. Mosco and M. A. Vivaldi, Layered fractal fibers and potentials. Journal de Mathématiques Pures et Appliquées 103 (2015) 1198–1227. | MR

[32] H. Nagahama and K. Yoshii, Scaling laws of fragmentation. In: Fractals and Dynamic Systems in Geoscience. Springer (1994) 25–36.

[33] O. Oncken, D. Boutelier, G. Dresen and K. Schemmann, Strain accumulation controls failure of a plate boundary zone: linking deformation of the central andes and lithosphere mechanics. Geochem. Geophys. Geosyst. 13 (2012) Q12007.

[34] P. Oswald, On a BPX-preconditioner for P1 elements. Computing 51 (1993) 125–133. | MR | Zbl

[35] D. Peterseim, Variational multiscale stabilization and the exponential decay of fine-scale correctors. In: Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations. Springer (2016) 343–369. | MR

[36] E. Pipping, R. Kornhuber, M. Rosenau and O. Oncken, On the efficient and reliable numerical solution of rate-and-state friction problems. Geophys. J. Int. 204 (2016) 1858–1866.

[37] J. Podlesny, Multiscale modelling and simulation of deformation accumulation in fault networks. Ph.D. thesis, Freie Universität Berlin (2022) | MR

[38] T. Preusser, M. Rumpf, S. Sauter and L. O. Schwen, 3D composite finite elements for elliptic boundary value problems with discontinuous coefficients. SIAM J. Sci. Comput. 33 (2011) 2115–2143. | MR | Zbl

[39] J. B. Rundle, D. L. Turcotte, R. Shcherbakov, W. Klein and C. Sammis, Statistical physics approach to understanding the multiscale dynamics of earthquake fault systems. Rev. Geophys. 41 (2003). DOI: . | DOI

[40] C. G. Sammis, R. H. Osborne, J. L. Anderson, M. Banerdt and P. White, Self-similar cataclasis in the formation of fault gouge. Pure Appl. Geophys. 124 (1986) 53–78.

[41] L. N. Slobodecki, Generalized Sobolev spaces and their application to boundary problems for partial differential equations. Leningrad. Gos. Ped. Inst. Ucen. Zap 197 (1958) 54–112. | MR | Zbl

[42] H. Triebel, Theory of Function Spaces. Birkhäuser Basel (1983). | MR | Zbl

[43] D. L. Turcotte, Crustal deformation and fractals, a review. In: Fractals and Dynamic Systems in Geoscience, edited by J. H. Kruhl. Springer (1994) 7–23.

[44] D. L. Turcotte, Fractals and Chaos in Geology and Geophysics. Cambridge University Press (1997). | MR

[45] R. Verfürth, Error estimates for some quasi-interpolation operators. ESAIM: M2AN 33 (1999) 695–713. | MR | Zbl | Numdam

[46] E. Weinan and B. Engquist, The heterognous multiscale methods. Commun. Math. Sci. 1 (2003) 87–132. | MR | Zbl

[47] J. Xu, Iterative methods by space decomposition and subspace correction. SIAM Rev. 34 (1992) 581–613. | MR | Zbl

[48] J. Xu and Y. Zhu, Uniform convergent multigrid methods for elliptic problems with strongly discontinuous coefficients. Math. Models Methods Appl. Sci. 18 (2008) 77–105. | MR | Zbl

[49] H. Yserentant, Old and new convergence proofs for multigrid methods. Acta Numer. 2 (1993) 285–326. | MR | Zbl

[50] V. V. Zhikov and A. L. Pyatnitski, Homogenization of random singular structures and random measures. Izvestiya Rossi skaya Akademiya Nauk. Seriya Matematicheskaya 70 (2006) 23–74. | MR | Zbl

Cité par Sources :