@article{M2AN_1999__33_4_695_0,
author = {Verf\"urth, R\"udiger},
title = {Error estimates for some quasi-interpolation operators},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {695--713},
year = {1999},
publisher = {EDP Sciences},
volume = {33},
number = {4},
mrnumber = {1726480},
zbl = {0938.65125},
language = {en},
url = {https://www.numdam.org/item/M2AN_1999__33_4_695_0/}
}
TY - JOUR AU - Verfürth, Rüdiger TI - Error estimates for some quasi-interpolation operators JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1999 SP - 695 EP - 713 VL - 33 IS - 4 PB - EDP Sciences UR - https://www.numdam.org/item/M2AN_1999__33_4_695_0/ LA - en ID - M2AN_1999__33_4_695_0 ER -
Verfürth, Rüdiger. Error estimates for some quasi-interpolation operators. ESAIM: Modélisation mathématique et analyse numérique, Tome 33 (1999) no. 4, pp. 695-713. https://www.numdam.org/item/M2AN_1999__33_4_695_0/
[1] Handbook of Mathematical Functions, and Eds., Dover Publ., New York (1965).
[2] , Sobolev Spaces. Academic Press, NewYork (1975). | Zbl | MR
[3], A posteriori Fehlerabschätzungen für Lösungen gestörter Operatorgleichungen. Habilitationsschrift, Universität Erlangen-Nürnberg (1994).
[4] and , Bounds in the Neumann problem for second order uniformly elliptic operators. Pacific J. Math.12 (1962) 823-833. | Zbl | MR
[5] and , Constants in Clément-interpolation error and residual based a posteriori error estimates in finite element methods. Report 97-11, Universität Kiel (1997). | Zbl
[6] , The Finite Element Method for Elliptic Problems. North Holland (1978). | Zbl | MR
[7] , Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9 (1975) 77-84. | Zbl | MR | Numdam | EuDML
[8] , On polynomial approximation in Sobolev spaces. SIAM J. Numer. Anal. 20 (1983) 985-988. | Zbl | MR
[9] and , An optimal Poincaré-inequality for convex domains. Arch. Rational Mech. Anal. 5 (1960) 286-292. | Zbl | MR
[10] and , Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp. 54 (1990) 483-493. | Zbl | MR
[11] , A Review of a posteriori Error Estimation and adaptive Mesh-Refinement Techniques. Teubner-Wiley, Stuttgart (1996). | Zbl






