Bloch waves in high contrast electromagnetic crystals
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 5, pp. 1483-1519

Analytic representation formulas and power series are developed describing the band structure inside non-magnetic periodic photonic three-dimensional crystals made from high dielectric contrast inclusions. Central to this approach is the identification and utilization of a resonance spectrum for quasiperiodic source-free modes. These modes are used to represent solution operators associated with electromagnetic and acoustic waves inside periodic high contrast media. A convergent power series for the Bloch wave spectrum is recovered from the representation formulas. Explicit conditions on the contrast are found that provide lower bounds on the convergence radius. These conditions are sufficient for the separation of spectral branches of the dispersion relation for any fixed quasi-momentum.

DOI : 10.1051/m2an/2022045
Classification : 35J15, 78A40, 78A45
Keywords: Bloch waves, band structure, high contrast, periodic medium
@article{M2AN_2022__56_5_1483_0,
     author = {Lipton, Robert and Viator, Robert Jr. and Bola\~nos, Silvia Jim\'enez and Adili, Abiti},
     title = {Bloch waves in high contrast electromagnetic crystals},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1483--1519},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {5},
     doi = {10.1051/m2an/2022045},
     mrnumber = {4454165},
     zbl = {1500.35118},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2022045/}
}
TY  - JOUR
AU  - Lipton, Robert
AU  - Viator, Robert Jr.
AU  - Bolaños, Silvia Jiménez
AU  - Adili, Abiti
TI  - Bloch waves in high contrast electromagnetic crystals
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2022
SP  - 1483
EP  - 1519
VL  - 56
IS  - 5
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2022045/
DO  - 10.1051/m2an/2022045
LA  - en
ID  - M2AN_2022__56_5_1483_0
ER  - 
%0 Journal Article
%A Lipton, Robert
%A Viator, Robert Jr.
%A Bolaños, Silvia Jiménez
%A Adili, Abiti
%T Bloch waves in high contrast electromagnetic crystals
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2022
%P 1483-1519
%V 56
%N 5
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2022045/
%R 10.1051/m2an/2022045
%G en
%F M2AN_2022__56_5_1483_0
Lipton, Robert; Viator, Robert Jr.; Bolaños, Silvia Jiménez; Adili, Abiti. Bloch waves in high contrast electromagnetic crystals. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 5, pp. 1483-1519. doi: 10.1051/m2an/2022045

[1] H. Ammari, H. Kang and K. Kim, Polarization tensors and effective properties of anisotropic composite materials. J. Differ. Equ. 215 (2005) 401–428. | MR | Zbl

[2] H. Ammari, H. Kang, S. Soussi and H. Zribi, Layer potential techniques in spectral analysis. part 2: Sensitivity analysis of spectral properties of high contrast band-gap materials. Multiscale Model. Simul. 5 (2006) 646–663. | MR | Zbl

[3] H. Ammari, H. Kang and H. Lee, Layer Potential Techniques in Spectral Analysis, American Mathematical Society, 201 Charles Street, Providence, RI (2009). | MR | Zbl

[4] B. C. Aslan, W. W. Hager and S. Moskow, A generalized eigenproblem for the laplacian which arises in lightning. J. Math. Anal. Appl. 341 (2008) 1028–1041. | MR | Zbl

[5] D. J. Bergman, The dielectric constant of a composite material - a problem in classical physics. Phys. Rep. 43 (1978) 377–407. | MR

[6] D. J. Bergman, The dielectric constant of a simple cubic array of identical spheres. J. Phys. C. 12 (1979) 4947–4960.

[7] G. Bouchitté, C. Bourel and D. Felbacq, Homogenization near resonances and artificial magnetism in three dimensional dielectric metamaterials. Arch. Ration. Mech. Anal. 225 (2017) 1233–1277. | MR | Zbl

[8] O. P. Bruno, The effective conductivity of strongly heterogeneous composites. Proc. R. Soc. Lond. A 433 (1991) 353–381. | MR

[9] P. Y. Chen, D. J. Bergman and Y. Sivan, Generalizing normal mode expansion of electromagnetic green’s tensor to open systems. Phys. Rev. Appl. 11 (2019).

[10] A. Figotin and P. Kuchment, Band-gap structure of the spectrum of periodic maxwell operators. J. Stat. Phys. 74 (1994) 447–455. | MR | Zbl | DOI

[11] A. Figotin and P. Kuchment, Band-gap structure of spectra of periodic dielectric and acoustic media. 1. scalar model. SIAM J. Appl. Math. 56 (1996) 68–88. | MR | Zbl | DOI

[12] A. Figotin, P. Kuchment, Spectral properties of classical waves in high-contrast periodic media. SIAM J. Appl. Math. 58 (1998) 683–702. | MR | Zbl | DOI

[13] R. Hempel and K. Lienau, Spectral properties of periodic media in the large coupling limit. Commun. Partial Differ. Equ. 25 (2000) 1445–1470. | MR | Zbl | DOI

[14] J. D. Jackson, Classical Electrodynamics. John Wiley & Sons, NY (1962). | Zbl

[15] J. D. Joannopoulos, S. G. Johnson, J. N. Winn and R. D. Meade, Photonic Crystals: Molding the Flow of Light. Princeton University Press, 2nd edition edition (2008). | Zbl

[16] S. G. Johnson and J. D. Joannopoulos, Photonic Crystals, The road from Theory to Practice. Kluwer Acad. Publ. (2002).

[17] H. Kang, Layer potential approaches to interface problems. In Inverse Problems and Imaging: Panoramas et synthèses 44. Société Mathématique de France (2013). | MR | Zbl

[18] T. Kato, On the convergence of the perturbation method, 1. Prog. Theor. Phys. 4 (1949) 514–523. | MR | DOI

[19] T. Kato, On the convergence of the perturbation method, 2. Prog. Theor. Phys. 5 (1950) 95–101. | DOI

[20] T. Kato, Perturbation Theory for Linear Operators. Springer, Berlin Heidelberg, Germany (1995). | Zbl | DOI

[21] D. Khavinson, M. Putinar and H. Shapiro, Poincaré’s variational problem in potential theory. Arch. Ration. Mech. Anal. 185 (2007) 143–184. | MR | Zbl | DOI

[22] P. Kuchment, The mathematics of photonic crystals. SIAM: Math. Model. Optical Sci. Front. Appl. Math. 22 (2001) 207–272. | MR | Zbl

[23] P. Kuchment, On some spectral problems of mathematical physics. Contemporary Mathematics (2004). | MR | Zbl | DOI

[24] R. Lipton and R. Viator Jr., Bloch waves in crystals and periodic high contrast media. ESAIM: M2AN 51 (2017) 889–918. | MR | Zbl | Numdam | DOI

[25] R. Lipton and R. Viator Jr., Creating band gaps in periodic media. Multiscale Model. Simul. 15 (2017) 1612–1650. | MR | Zbl | DOI

[26] I. Mayergoyz, D. Fredkin and Z. Zhang, Electrostatic (plasmon) resonances in nanoparticles. Phys. Rev. B 72 (2005). | DOI

[27] R. C. Mcphedran and G. W. Milton, Bounds and exact theories for transport properties of inhomogeneous media. Appl. Phys. A 26 (1981) 207–220. | DOI

[28] G. W. Milton, The Theory of Composites. Cambridge University Press, Cambridge (2002). | MR | Zbl | DOI

[29] D. Mitrea, M. Mitrea and J. Pipher, Vector potential theory on nonsmooth domains in 𝐑 3 and applications to electromagnetic scattering. J. Fourier Anal. Appl. 3 (1996) 131–192. | MR | Zbl | DOI

[30] K. Sakoda, Optical Properties of Photonic Crystals. Springer Verlag (2001). | DOI

[31] R. E. Slusher and B. J. Eggleton (Editors), Nonlinear Photonic Crystals. Springer Verlag (2003). | DOI

[32] B. Sz.-Nagy, Perturbations des transformations autoadjoints dans léspace de hilbert. Comment. Math. Helv. 19 (1946) 347–366. | MR | Zbl | DOI

Cité par Sources :