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BLOCH WAVES IN HIGH CONTRAST ELECTROMAGNETIC CRYSTALS

Robert Lipton1 , Robert Viator Jr.2,*, Silvia Jiménez Bolaños3 and
Abiti Adili4

Abstract. Analytic representation formulas and power series are developed describing the band struc-
ture inside non-magnetic periodic photonic three-dimensional crystals made from high dielectric con-
trast inclusions. Central to this approach is the identification and utilization of a resonance spectrum
for quasiperiodic source-free modes. These modes are used to represent solution operators associated
with electromagnetic and acoustic waves inside periodic high contrast media. A convergent power series
for the Bloch wave spectrum is recovered from the representation formulas. Explicit conditions on the
contrast are found that provide lower bounds on the convergence radius. These conditions are sufficient
for the separation of spectral branches of the dispersion relation for any fixed quasi-momentum.
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1. Introduction

We are interested in photonic crystals, or photonic band-gap materials, and their use in controlling the
propagation of light. A photonic crystal is an artificially created optical material, which can be considered as
the optical analog of a semiconductor, since it behaves with respect to photon propagation in a similar fashion
as the semiconductor behaves with respect to electron propagation. Developments in optical materials provide
benefits to a number of fields, including spectroscopy and high-speed computing, for example. Several books
and surveys have been written about the subject; see, for instance, [15,16,22,23,30,31].

A photonic crystal is a periodic lattice of inclusions surrounded by a connected phase with the property that
the contrast 𝑘 between the dielectric properties of the inclusions and the connected phase can be quite large.
Understanding the propagation of electromagnetic waves in photonic crystals is crucial since it might allow
tailoring materials to obtain desired properties. The Maxwell system is given by:⎧⎨⎩∇×E = − 1

𝑐
𝜕B
𝜕𝑡 , ∇ ·B = 0

∇×H = 1
𝑐

𝜕D
𝜕𝑡 , ∇ ·D = 0,

(1.1)
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where 𝑐 is the speed of light in free space, the vector-valued functions E and H are the macroscopic electric and
magnetic fields, and D and B are the displacement and magnetic induction fields, respectively [14]. To complete
the Maxwell system the constitutive relations describing the dependence of D and B on E and H are supplied.
We apply the linear constitutive relations, given by:

D = 𝜖E, B = 𝜇H,

where 𝜖 is the dielectric constant and 𝜇 is the magnetic permeability. In this treatment, it is assumed that the
media is isotropic, the material is non-magnetic (i.e., 𝜇 = 1), and the dielectric constant 𝜖(𝑥) is periodic.

We consider the case of monochromatic waves E(𝑥, 𝑡) = 𝑒𝑖𝜔𝑡E(𝑥), H(𝑥, 𝑡) = 𝑒𝑖𝜔𝑡H(𝑥), where 𝜔 is the time
frequency, and the system (1.1) becomes:⎧⎨⎩∇×E = − 𝑖𝜔

𝑐 H, ∇ ·H = 0

∇×H = 𝑖𝜔
𝑐 𝜖(𝑥)E, ∇ · 𝜖E = 0

,

which, after eliminating the electric field E, reduces to:

∇× 1
𝜖(𝑥)

∇×H = 𝜉H, ∇ ·H = 0, where 𝜉 = (𝜔/𝑐)2. (1.2)

In a two-dimensional periodic medium (where 𝜖(𝑥) is periodic with respect to 𝑥 and 𝑦 and homogeneous with
respect to 𝑧, for example), problem (1.2) reduces to scalar equations −∆𝐸 = 𝜆𝜖(𝑥)𝐸 and:

−∇ · 1
𝜖(𝑥)

∇𝐻 = 𝜉𝐻, where 𝜉 = (𝜔/𝑐)2. (1.3)

One of the main goals of the photonic crystals theory is to choose 𝜖(𝑥) > 0 such that the spectrum of the
corresponding problem, scalar (1.3) or vectorial (1.2), has a gap. Existence of a gap delivers a frequency interval
(band) over which electromagnetic waves cannot propagate in the material. A complete band gap is a range of
frequencies for which no Bloch wave of any wavelength or direction can propagate through the crystal. Band
gaps have many interesting and useful applications ranging from efficient photovoltaic cells to power electronics
and optical computers, see [15,16].

Most of the state-of-the-art developments [2, 3, 7, 10–13] have been restricted to the asymptotic theory of
band gaps at infinite contrast. For the scalar case (1.3), the authors exploited structural resonances associated
with the Neumann-Poincaré operator to develop new techniques for complex operator valued functions, which
delivered explicit formulas for band gaps at finite contrast. This provides mathematically rigorous and explicit
formulas for the size of band gaps and pass bands, given in terms of the contrast, shape and configuration of
scatterers, and lattice parameters, see [24,25].

In this paper, we lay the foundation for the analytical methods to obtain the corresponding results to the ones
obtained in [24] for the fully three-dimensional electromagnetic photonic crystals lattices, via the vector wave
equation (1.2). In particular, we establish an analytic representation for the periodic and quasiperiodic spectra
of (1.2) in terms of the contrast between the dielectric constants of the two material components, together with
a radius of convergence described in terms of the crystal geometry by way of the associated Neumann-Poincaré
spectrum.

We consider a Bloch wave h(𝑥), with Bloch eigenvalue 𝜉 = (𝜔/𝑐)2, propagating through a three-dimensional
photonic crystal, characterized by the periodic relative dielectric constant 𝑎−1(𝑥) = 𝜖(𝑥) = 𝜖(𝑥 + 𝑝), 𝑝 ∈ Z3,
with unit cell 𝑌 = (0, 1]3, defined by:

𝜖(𝑥) =

{︃
1 inside the inclusion 𝐷

𝜖 = 1/𝑘 in the host material 𝐻 := 𝑌 ∖𝐷.
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Figure 1. Period cell.

The magnetic field h(𝑥) inside “non-magnetic media” solves the vector Helmholtz equation:

∇× (𝑎(𝑥)∇× h(𝑥)) = 𝜉h(𝑥), 𝑥 ∈ R3, (1.4)

together with the 𝛼-quasiperiodicity condition h(𝑥 + 𝑝) = h(𝑥)𝑒𝑖𝛼·p. Here, 𝛼 lies in the first Brillouin zone of
the reciprocal lattice given by 𝑌 * = (−𝜋, 𝜋]3. Equation (1.4) describes time harmonic wave propagation for the
magnetic field in non-magnetic media, i.e., for heterogeneous media with relative magnetic permeability 𝜇 = 1
everywhere.

We examine Bloch wave propagation through high contrast crystals made from periodic configurations of two
dielectric materials. The inclusion 𝐷 contained within the interior of the period cell 𝑌 and surrounded by the
second “host” material, 𝐻 := 𝑌 ∖𝐷, see Figure 1.

The coefficient 𝑎(𝑥) is then specified on the unit cell by:

𝑎(𝑥) = 𝑘𝜒𝐻(𝑥) + 𝜒𝐷(𝑥),

where 𝜒𝐻 and 𝜒𝐷 are the indicator functions for the sets 𝐻 and 𝐷, and are extended by periodicity to R3.
In this paper, we consider periodic crystals made from finite collections of separated inclusions, each with 𝐶1,𝛾

boundary, where 𝛾 > 0.
For each 𝛼 ∈ 𝑌 ⋆, the Bloch eigenvalues 𝜉 are of finite multiplicity and denoted by 𝜆𝑗(𝑘, 𝛼), 𝑗 ∈ N. We develop

power series expansions for each branch of the dispersion relation:

𝜆𝑗(𝑘, 𝛼) = 𝜉, 𝑗 ∈ N (1.5)

that are valid for 𝑘 in a neighborhood of infinity.
To proceed, we complexify the problem and consider 𝑘 ∈ C. Now 𝑎(𝑥) takes on complex values inside 𝐻

and the operator −∇ × (𝑘𝜒𝐻 + 𝜒𝐷)∇× is no longer uniformly elliptic. Our approach develops an explicit
representation formula for −∇ × (𝑘𝜒𝐻 + 𝜒𝐷)∇× that holds for complex values of 𝑘. We identify the subset
𝑧 = 1/𝑘 ∈ Ω0 of C where this operator is invertible. The explicit formula shows that the solution operator
(−∇ × (𝑘𝜒𝐻 + 𝜒𝐷)∇×)−1 may be regarded more generally as a meromorphic operator valued function of 𝑧,
for 𝑧 ∈ Ω0 = C ∖ 𝑆, see Section 4 and Lemma 4.1. Here, the set 𝑆 is discrete and consists of poles lying on
the negative real axis with only one accumulation point at 𝑧 = −1. For the problem treated here, we expand
about 𝑧 = 0, and the distance between 𝑧 = 0 and the set 𝑆 is used to bound the radius of convergence for the
power series. The spectral representation for −∇ × (𝑘𝜒𝐻 + 𝜒𝐷)∇× follows from the existence of a complete
orthonormal set of 𝛼-quasiperiodic functions associated with the 𝛼-quasiperiodic resonances of the crystal, i.e.,
𝛼-quasiperiodic functions v and real eigenvalues 𝜆𝑖(𝛼), 𝑖 ∈ N, for which:

−∇× (𝜒𝐷)∇× v = −𝜆𝑖(𝛼)∆v.
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The collection of these eigenvalues, for 𝛼 ∈ 𝑌 *, comprises the structural spectrum of the crystal. The structural
spectrum encodes the geometry of the crystal and inclusions independently of dielectric properties. These reso-
nances are shown to be connected to the spectra of Neumann-Poincaré operators associated with 𝛼-quasiperiodic
double layer potentials. The formal definition of the structural spectrum given in terms of the Neumann-Poincaré
eigenvalues, for 𝛼 ∈ 𝑌 *, is provided in Definition 2.11.

For 𝛼 = 0, these eigenvalues are the well known electrostatic resonances identified in [5, 6, 27], and [28].
Other electrostatic resonances for a vectorial Helmholtz equation are introduced and explored in [9]. Both
Neumann-Poincaré operators and the associated electrostatic resonances have been the focus of theoretical
investigations [17, 21] and applied in analysis of plasmonic excitations for suspensions of noble metal particles
[26] and electrostatic breakdown [4]. The explicit spectral representation for the operator −∇× (𝑘𝜒𝐻 +𝜒𝐷)∇×
is crucial for elucidating the interaction between the contrast 𝑘 and the quasiperiodic resonances of the crystal,
see Theorem 2.12.

The spectral representation is applied to analytically continue the band structure 𝜆𝑗(𝑘, 𝛼) = 𝜉, 𝑗 ∈ N, 𝛼 ∈ 𝑌 ⋆

for 𝑘 ∈ R to C, see Theorem 3.1. On setting 𝑧 = 1/𝑘, the spectral representation for the inverse operator written
as 𝐴𝛼(𝑧) = (−∇ × (𝑘𝜒𝐻 + 𝜒𝐷)∇×)−1 shows it to be a meromorphic operator valued function of 𝑧 = 1/𝑘,
see Section 4 and Lemma 4.1. Application of the contour integral formula for spectral projections [18, 19, 32]
delivers an analytic representation formula for the band structure, see Section 4. We apply perturbation theory
in Section 4, together with a calculation provided in Section 10, to find an explicit formula for the radii of
convergence for the power series 𝜆𝑗(𝑘, 𝛼) about 1/𝑘 = 0. The formula shows that the radius of convergence
and the separation between different branches of the dispersion relation for any fixed 𝛼 ∈ 𝑌 * are determined
by: 1) the distance of the origin to the nearest pole 𝑧* of (−∇ × (𝑘𝜒𝐻 + 𝜒𝐷)∇×)−1, and 2) the separation
between distinct eigenvalues in the 𝑧 = 1/𝑘 → 0 limit, see Theorem 7.1 and Theorem 7.2. These theorems
provide conditions on the contrast guaranteeing the separation of the 𝑗-th and 𝑗 + 1-th eigenvalue groups that
depend explicitly upon 𝑧*, 𝑗 ∈ N and 𝛼 ∈ 𝑌 ⋆. Error estimates for series truncated after 𝑁 terms follow directly
from the formulation.

When 𝑧 = 0 the limit spectral problem is identified with a Magnetic eigenvalue problem, for each 𝛼 ∈ 𝑌 *,
see Sections 5 and 6. When 𝛼 = 0, this is the spectra that is responsible for the magnetic activity generated by
“non-magnetic inclusions inside a period cell”, seen in the class of metamaterials identified in [7].

For clarity we place the current work in context of the earlier related work [2] and [3]. The insights of [2] and
[3] make elegant use of the generalized Rouché theorem to construct the complete asymptotic expansions of the
Bloch eigenvalues as the contrast goes to ∞. These were applied to two dimensional electromagnetic problems
in [2] and [3] and, as noted there, this technique in principle can also be applied to three dimensional crystals
as well. In this paper, as outlined above, we proceed differently, using the structural spectrum of the crystal to
get an explicit formula for each Bloch eigenvalue given by power series with the circle of convergence containing
the point at infinity. The formula for the convergence radius is also explicit and given by the geometry through
the structural spectra and magnetic spectra associated with the geometry of the inclusions inside the period cell.
This is done here for three dimensional photonic crystals.

The paper is organized as follows: In the next section, we introduce the Hilbert space formulation of the
problem and the variational formulation of the quasi-static resonance problem. The completeness of the eigen-
functions associated with the quasi-static spectrum is established and a spectral representation for the operator
−∇× (𝑘𝜒𝐻 +𝜒𝐷)∇× is obtained. These results are collected and used to continue the frequency band structure
into the complex plane, see Theorem 3.1 of Section 3. Spectral perturbation theory [20] is applied to recover
the power series expansion for Bloch spectra in Section 4. The leading order spectral theory is developed for
quasiperiodic 𝛼 ̸= 0 and periodic 𝛼 = 0 problems in Sections 5 and 6, respectively. The main theorems on
radius of convergence and separation of spectra, given by Theorems 7.1 and 7.2, are presented in Section 7. A
large class of geometries for which an 𝛼-independent lower bound on the quasi-static resonances is introduced
in Section 8. Explicit formulas for each term of the power series expansion is recovered and expressed in terms
of layer potentials in Section 9. The explicit formulas for the convergence radii are derived in Section 10 as well
as hands-on proofs of Theorems 7.1, 7.2 and the explicit error estimates for 𝑁 -th order truncations.
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2. Hilbert space setting, quasiperiodic resonances and representation
formulas

The space of all 𝛼-quasiperiodic complex vector valued functions belonging to 𝐿2
loc(R3,C3) is denoted by

𝐿2
#(𝛼, 𝑌,C3) and the 𝐿2-inner product is defined by:

(u,v) =
∫︁

𝑌

u · v d𝑥. (2.1)

For h ∈ 𝐿2
#(𝛼, 𝑌,C3), its Helmholtz decomposition is given by:

h = ∇ℎpot +∇× hcurl, (2.2)

where ℎpot is an 𝛼-quasiperiodic scalar field belonging to 𝐻1
loc(R3,C) and hcurl ∈ 𝐿2

#(𝛼, 𝑌,C3), with ∇×hcurl ∈
𝐿2

#(𝛼, 𝑌,C3). The subspaces of gradients and curls are orthogonal with respect to the 𝐿2-inner product (2.1).
The Helmholtz decomposition (2.2) is shown in Appendix A.

For 𝛼 ̸= 0, the eigenfunctions h of (1.4) belong to the space 𝐽#(𝛼, 𝑌,C3) ⊂ 𝐿2
#(𝛼, 𝑌,C3) given by:

𝐽#(𝛼, 𝑌,C3) = {h ∈ 𝐻1
loc(R3,C3) : h is 𝛼-quasiperiodic on 𝑌 , div h = 0 in 𝑌 }. (2.3)

A simple calculation, found in Appendix B, shows that, for h ∈ 𝐽#(𝛼, 𝑌,C3), we have ∇ℎpot = 0 in (2.2).
Hence, h = ∇× hcurl for h ∈ 𝐽#(𝛼, 𝑌,C3). Another straightforward calculation, given in Appendix D, delivers
the following result:

Theorem 2.1. For u ∈ 𝐽#(𝛼, 𝑌,C3), the null space of ∇×u, for 𝛼 ̸= 0, is {0} and the bilinear form given by:

⟨u,v⟩ =
∫︁

𝑌

∇× u · ∇ × v d𝑥 (2.4)

is an inner product on 𝐽#(𝛼, 𝑌,C3), with norm defined by ‖u‖2 = ⟨u,u⟩. The space 𝐽#(𝛼, 𝑌,C3) is a Hilbert
space under the inner product (2.4), with 𝐽#(𝛼, 𝑌,C3) ⊂𝑊 1

#(𝛼, 𝑌,C3) and:∫︁
𝑌

∇× u · ∇ × v d𝑥 =
∫︁

𝑌

∇u : ∇v d𝑥 (2.5)

for u, v ∈ 𝐽#(𝛼, 𝑌,C3), where “ :” represents the Frobenius inner product (see Appendix C). Moreover, the null
space corresponding to the operator on the left hand side of (1.4) with domain 𝐽#(𝛼, 𝑌,C3) is identically zero.

For 𝛼 = 0, one has that 𝐿2
#(0, 𝑌,C3) is the space of periodic 𝐿2- vector fields on 𝑌 . For this case, h ∈

𝐿2
#(0, 𝑌,C3) has the Helmholtz decomposition into 𝐿2- orthogonal components given by:

h = ∇ℎpot +∇× hcurl + c, (2.6)

where ℎpot is a periodic scalar field belonging to 𝐻1
loc(R3,C), hcurl ∈ 𝐿2

#(0, 𝑌,C3), with ∇×hcurl ∈ 𝐿2
#(0, 𝑌,C3),

and c is a constant vector in C3, see Appendix A. For 𝛼 = 0, the eigenfunctions h for (1.4) belong to the space:

{h ∈ 𝐻1
loc(R3,C3) : h periodic on 𝑌 , ∇ · h = 0 in 𝑌 }.

A simple calculation, given in Appendix B, shows that ∇ℎpot = 0 and h = ∇ × hcurl + 𝑐. We introduce the
space 𝐽#(0, 𝑌,C3) ⊂ 𝐿2

#(0, 𝑌,C3) given by:

𝐽#(0, 𝑌,C3) = {h ∈ 𝐻1
loc(R3,C3) : h is periodic, ∇ · h = 0 in 𝑌, and

∫︁
𝑌

h d𝑥 = 0}. (2.7)



1488 R. LIPTON ET AL.

Theorem 2.2. For u ∈ 𝐽#(0, 𝑌,C3), the null space of ∇× u is {0} and the bilinear form:

⟨u,v⟩ =
∫︁

𝑌

∇× u · ∇ × v d𝑥, (2.8)

is an inner product on 𝐽#(0, 𝑌,C3), with norm defined by ‖u‖2 = ⟨u,u⟩. The space 𝐽#(0, 𝑌,C3) ⊂𝑊 1
#(0, 𝑌,C3)

with inner product (2.8) is a Hilbert space and:∫︁
𝑌

∇× u · ∇ × v d𝑥 =
∫︁

𝑌

∇u : ∇v d𝑥

for u, v ∈ 𝐽#(0, 𝑌,C3). Moreover, the null space corresponding to the operator on the left hand side of (1.4),
for h ∈ 𝐽#(0, 𝑌,C3), is {0}.

This theorem follows from a calculation given in Appendix D. From now on, we will refer to 𝐽#(𝛼, 𝑌,C3) for
all 𝛼 ∈ 𝑌 *, with the special choice of 𝐽#(𝛼, 𝑌,C3) for 𝛼 = 0 defined as in (2.7).

The weak form of equation (1.4) is given by:

𝜖−1

∫︁
𝐻

(∇× h) · (∇×w) d𝑥+
∫︁

𝐷

(∇× h) · (∇×w) d𝑥 = 𝜉

∫︁
𝑌

h ·w d𝑥, (2.9)

for all w ∈ 𝐽#(𝛼, 𝑌,C3). We set 𝑘 = 𝜖−1, and the left hand side of (2.9) is given by the sesquilinear form
𝐵𝑘 : 𝐽#(𝛼, 𝑌,C3)× 𝐽#(𝛼, 𝑌,C3) → C, defined as:

𝐵𝑘(u,w) := 𝑘

∫︁
𝐻

(∇× u) · (∇×w) d𝑥+
∫︁

𝐷

(∇× u) · (∇×w) d𝑥. (2.10)

The linear operator 𝑇𝛼
𝑘 , associated with the sesquilinear form 𝐵𝑘, is defined by:

⟨𝑇𝛼
𝑘 u,w⟩ := 𝐵𝑘(u,w), (2.11)

for all u and w in 𝐽#(𝛼, 𝑌,C3). So we can pose the weak form of our Bloch eigenvalue problem given by (2.9)
as

⟨𝑇𝛼
𝑘 h,w⟩ = 𝜉

∫︁
𝑌

h ·w d𝑥, (2.12)

for all w in 𝐽#(𝛼, 𝑌,C3)
Our goal is to rewrite (1.4) in terms of a spectral representation formula for the differential operator ∇ ×

(𝑎(𝑥)∇× ·). We will do this by developing the spectral representation of 𝑇𝛼
𝑘 , appearing in (2.12), which we show

is directly linked to the following eigenvalue problem:

𝜆⟨u,w⟩ = 𝜆

∫︁
𝑌

(∇× u) · (∇×w) d𝑥 =
∫︁

𝐷

(∇× u) · (∇×w) d𝑥, (2.13)

for all u,w ∈ 𝐽#(𝛼, 𝑌,C3); which will be shown to possess countably many real eigenvalues 𝜆𝑛, with corre-
sponding eigenfunctions 𝜓𝑛 ∈ 𝐽#(𝛼, 𝑌,C3), that satisfy:

𝜆𝑛

∫︁
𝑌

(∇× 𝜓𝑛) · (∇×w) d𝑥 =
∫︁

𝐷

(∇× 𝜓𝑛) · (∇×w) d𝑥, ∀w ∈ 𝐽#(𝛼, 𝑌,C3).

The eigenspaces associated with different eigenvalues are easily seen to be orthogonal in the inner product (2.4).
We apply these eigenfunctions to introduce a different decomposition of 𝐽#(𝛼, 𝑌,C3) that is orthogonal in the
inner product (2.4). We introduce the three subspaces denoted by 𝑊𝛼

1 , 𝑊𝛼
2 , 𝑊𝛼

3 that are mutually orthogonal
with respect to the inner product (2.4) and defined as:

𝑊𝛼
1 =

{︀
u ∈ 𝐽#(𝛼, 𝑌,C3), ∇× u = 0 in 𝐷

}︀
, (2.14)
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𝑊𝛼
2 =

{︀
u ∈ 𝐽#(𝛼, 𝑌,C3), ∇× u = 0 in 𝐻

}︀
, (2.15)

and 𝑊𝛼
3 ⊂ 𝐽#(𝛼, 𝑌,C3) is the subspace perpendicular to the direct sum (𝑊𝛼

1 ⊕𝑊𝛼
2 ).

The decomposition of 𝐽#(𝛼, 𝑌,C3) is recorded in the following lemma.

Lemma 2.3. The space 𝐽#(𝛼, 𝑌,C3) can be decomposed into orthogonal invariant subspaces spanned by eigen-
functions of the eigenvalues of problem (2.13) and:

𝐽#(𝛼, 𝑌,C3) = 𝑊𝛼
1 ⊕𝑊𝛼

2 ⊕𝑊𝛼
3 .

It follows from the definitions of 𝑊𝛼
1 and 𝑊𝛼

2 that they are subspaces of the eigenspaces of (2.13) associated
with the eigenvalues 0 and 1, respectively. From (2.13), we easily deduce that the eigenvalues 𝜆 belong to [0, 1].
To proceed, we must provide the explicit characterization of functions in 𝑊𝛼

3 in terms of eigenspaces. To do
this, we introduce the appropriate differential operators defined on the surface of the dielectric inclusion 𝜕𝐷.
We begin by defining the surface differential operators for smooth functions. The surface divergence 𝐷𝑖𝑣𝑆 for
smooth complex-valued tangential vector fields v is defined over the surface 𝜕𝐷 by:

𝐷𝑖𝑣𝑆v :=
∑︁
𝑗,𝑖

𝑛𝑖(𝑛𝑖𝜕𝑗 − 𝑛𝑗𝜕𝑖)𝑣𝑗 ,

where 𝑛𝑖, 𝑖 = 1, 2, 3, are the components of the unit outward normal vector n to the surface. The operator:

n · ∇ × v := (𝑛2𝜕3 − 𝑛3𝜕2, 𝑛3𝜕1 − 𝑛1𝜕3, 𝑛1𝜕2 − 𝑛2𝜕1) · v

is only composed of tangential derivatives and can be viewed as an operator defined on 𝜕𝐷. For every vector
field v in 𝐿2(𝜕𝐷)3, we have the relation between 𝐷𝑖𝑣𝑆 and n · ∇× given by:

𝐷𝑖𝑣𝑆(n× v) = −n · ∇ × v,

see [29]. Also, see [29], for a scalar function 𝑓 ∈𝑊 𝑠,2(𝜕𝐷) and a vector function g ∈𝑊 1−𝑠,2(𝜕𝐷)3, for 0 ≤ 𝑠 ≤ 1,
we have the identity: ∫︁

𝜕𝐷

g · n×∇𝑓 𝑑𝑠 = −
∫︁

𝜕𝐷

𝑓(n · ∇ × g) 𝑑𝑠. (2.16)

To complete the set up, we introduce the spaces:

𝐿2
𝑡 (𝜕𝐷)3 =

{︀
𝜌 ∈ 𝐿2(𝜕𝐷)3

⃒⃒
n · 𝜌 = 0 on 𝜕𝐷

}︀
,

𝐿2
𝑡,0(𝜕𝐷)3 =

{︀
𝜌 ∈ 𝐿2

𝑡 (𝜕𝐷)3
⃒⃒
𝐷𝑖𝑣𝑆𝜌 = 0 on 𝜕𝐷

}︀
,

𝐿2
0(𝜕𝐷) =

{︀
𝜌 ∈ 𝐿2(𝜕𝐷)

⃒⃒
(𝜌, 1)𝜕𝐷 = 0

}︀
,

𝐻
−1/2
0 (𝜕𝐷) =

{︁
𝜌 ∈ 𝐻−1/2(𝜕𝐷)

⃒⃒⃒
(𝜌, 1)𝜕𝐷 = 0

}︁
,

where (𝜌, 1)𝜕𝐷 :=
∫︁

𝜕𝐷

𝜌 𝑑𝑠.

In order to relate 𝑊𝛼
3 to the invariant subspaces of the eigenvalue problem (2.13), we will introduce a

representation of 𝑊𝛼
3 given by single layer potentials parameterized by densities on 𝜕𝐷. This is done in the

next section.
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2.1. Mapping properties of the single layer potential operator

We start by introducing the 𝛼-quasiperiodic Green’s function:

𝐺𝛼(𝑥, 𝑦) = −
∑︁
n∈Z3

𝑒𝑖(2𝜋n+𝛼)·(𝑥−𝑦)

|𝛼+ 2𝜋n|2
𝐼3×3, for 𝛼 ̸= 0, (2.17)

and the periodic Green’s function:

𝐺0(𝑥, 𝑦) = −
∑︁

n∈Z3∖{0}

𝑒𝑖(2𝜋n)·(𝑥−𝑦)

|2𝜋n|2
𝐼3×3, for 𝛼 = 0, (2.18)

where | · | is the usual norm of a vector in R3. For 𝛼 ∈ 𝑌 * and 𝜌 ∈ 𝐿2
𝑡,0(𝜕𝐷)3, we define the 𝛼-quasiperiodic

single layer potential as:

𝑆𝛼(𝜌)(𝑥) =
∫︁

𝜕𝐷

𝐺𝛼(𝑥, 𝑦)𝜌(𝑦)𝑑𝑠𝑦, 𝑥 ̸∈ 𝜕𝐷. (2.19)

The single layer potential operator satisfies the continuity condition at 𝑥 ∈ 𝜕𝐷:

𝑆𝛼(𝜌)
⃒⃒+
𝜕𝐷

= 𝑆𝛼(𝜌)
⃒⃒−
𝜕𝐷
, (2.20)

−∆𝑆𝛼(𝜌) = 0 for 𝑥 ∈ 𝐻 ∪𝐷, (2.21)

and 𝑆𝛼(𝜌) ∈𝑊#(𝛼, 𝑌,C3) with 𝑆𝛼(𝜌)
⃒⃒
𝜕𝐷

in 𝑊 1/2,2(𝜕𝐷)3. Let Γ−(𝑥) be a truncated circular cone in the interior
of 𝐷 with vertex 𝑥 and let Γ+(𝑥) be a truncated circular cone in the interior of 𝐻 with vertex 𝑥. Now consider
these cones with common vertex p on 𝜕𝐷. The boundary trace of a function 𝑓 at p, 𝑓(p)

⃒⃒±
𝜕𝐷

, is given by:

lim
𝑥→p

𝑥∈Γ+(p)

𝑓(𝑥) = 𝑓(p)
⃒⃒+
𝜕𝐷

, lim
𝑥→p

𝑥∈Γ−(p)

𝑓(𝑥) = 𝑓(p)
⃒⃒−
𝜕𝐷

.

We introduce the magnetic dipole operator 𝑀𝛼 : 𝐿2
𝑡,0(𝜕𝐷)3 → 𝐿2

𝑡,0(𝜕𝐷)3 given by:

𝑀𝛼(𝜌) = n×
(︂

p.v.
∫︁

𝜕𝐷

∇𝑥 × (𝐺𝛼(𝑥, 𝑦) 𝜌(𝑦)) 𝑑𝑠𝑦

)︂
, 𝑥 ∈ 𝜕𝐷 and 𝛼 ∈ 𝑌 *. (2.22)

We have the following jump conditions for 𝑥 ∈ 𝜕𝐷:

n×∇𝑥 × 𝑆𝛼(𝜌)
⃒⃒±
𝜕𝐷

= ±1
2
𝜌 +𝑀𝛼(𝜌). (2.23)

For scalar densities 𝜌 ∈ 𝐿2(𝜕𝐷), we recall the jump conditions for 𝑥 ∈ 𝜕𝐷:

n · ∇𝑥𝑆
𝛼(𝜌)

⃒⃒±
𝜕𝐷

= ∓1
2
𝜌+ (𝐾−𝛼)*(𝜌),

where the NeumannPoincaré operator (𝐾−𝛼)* is defined by:

(𝐾−𝛼)*(𝜌) = p.v.
∫︁

𝜕𝐷

𝜕𝐺𝛼(𝑥, 𝑦)
𝜕n(𝑥)

𝜌(𝑦) 𝑑𝑠𝑦.

Applying Lemma 4.2 of [29] we obtain:

div𝑆𝛼(𝜌)(𝑥) =
∫︁

𝜕𝐷

𝐺𝛼(𝑥, 𝑦)(Div𝛼
𝑆𝜌(𝑦))𝑑𝑠𝑦,
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and:
div𝑆𝛼(𝜌)(𝑥) = 0, (2.24)

since 𝜌 in 𝐿2
𝑡,0(𝜕𝐷)3. We may extend Lemma 4.4 of [29] to the periodic and 𝛼-quasiperiodic cases, see Ap-

pendix E, to deliver a commutation relation between the surface divergence, the magnetic dipole and the
NeumannPoincaré operator given by:

𝐷𝑖𝑣𝑆𝑀
𝛼(𝜌) = (𝐾−𝛼)*(𝐷𝑖𝑣𝑆𝜌), (2.25)

where equality holds as elements of 𝑊−1(𝜕𝐷). It is noted, for future reference, that:

𝑛 · ∇ × 𝑆𝛼(𝜌) : 𝐿2
𝑡,0(𝜕𝐷)3 → 𝐿2

0(𝜕𝐷), (2.26)

is an isomorphism, see [29].
The following two lemmas are crucial for the parametrization of 𝑊𝛼

3 by single layer potentials.

Lemma 2.4. Let the single layer potential operator 𝑆𝛼 be defined as in (2.19). For every 𝜌 ∈ 𝐿2
𝑡,0(𝜕𝐷)3, we

have that 𝑆𝛼(𝜌) ∈𝑊𝛼
3 .

Proof. First, recall that [𝑆𝛼(𝜌)]|±𝜕𝐷 = 0 from (2.20), div𝑆𝛼(𝜌) = 0 in 𝑌 from (2.24), and from (2.21) it follows
that:

∇×∇× 𝑆𝛼(𝜌) = ∇(∇ · 𝑆𝛼(𝜌))−∆𝑆𝛼(𝜌) = −∆𝑆𝛼(𝜌) = 0, for 𝑥 ∈ 𝐻 ∪𝐷. (2.27)

Choosing a smooth 𝑤2 in 𝑊𝛼
2 , we get:∫︁
𝑌

∇× 𝑆𝛼(𝜌) · ∇ ×𝑤2 d𝑥 =
∫︁

𝐷

∇× 𝑆𝛼(𝜌) · ∇ ×𝑤2 d𝑥. (2.28)

Since 𝑤2 ∈ 𝑊𝛼
2 , we have that ∇×𝑤2 = 0 in 𝐻 and, since 𝐻 is connected, we have 𝑤2 = ∇𝜑 in 𝐻, for some

scalar potential 𝜑, with 𝑤2|−𝜕𝐷 = 𝑤2|+𝜕𝐷 = ∇𝜑|+𝜕𝐷. Integration by parts in (2.28), the application of (2.27), and
the fact that 𝑤2|−𝜕𝐷 = ∇𝜑|+𝜕𝐷 give:∫︁

𝐷

∇× 𝑆𝛼(𝜌) · ∇ ×w2 d𝑥 =
∫︁

𝐷

∇×∇× 𝑆𝛼(𝜌) ·w2 d𝑥−
∫︁

𝜕𝐷−
n×∇× 𝑆𝛼(𝜌) ·w2 𝑑𝑠𝑥

= −
∫︁

𝜕𝐷−
n×∇× 𝑆𝛼(𝜌) · ∇𝜑𝑑𝑠𝑥 (2.29)

and, from (2.23), we see that:∫︁
𝜕𝐷−

𝑛×∇× 𝑆𝛼(𝜌) · ∇𝜑𝑑𝑠𝑥 =
∫︁

𝜕𝐷−

(︂
−1

2
𝜌 +𝑀𝛼(𝜌)

)︂
· ∇𝜑𝑑𝑠𝑥

=
∫︁

𝜕𝐷−

(︂
1
2
𝐷𝑖𝑣𝑆𝜌−𝐷𝑖𝑣𝑆𝑀

𝛼(𝜌)
)︂
𝜑𝑑𝑠𝑥. (2.30)

Since 𝜌 ∈ 𝐿2
𝑡,0(𝜕𝐷)3, from (2.25) we obtain:

𝐷𝑖𝑣𝑆𝑀
𝛼(𝜌) = (𝐾−𝛼)*(𝐷𝑖𝑣𝛼

𝑆(𝜌) = 0. (2.31)

It now follows immediately, from (2.28), (2.29), (2.30) and (2.31), that:∫︁
𝑌

∇× 𝑆𝛼(𝜌) · ∇ ×𝑤2 d𝑥 = 0, (2.32)

for a dense set of test fields 𝑤2 in 𝑊𝛼
2 , and we conclude that 𝑆𝛼(𝜌) ⊥ 𝑊𝛼

2 . Identical arguments can be made
for 𝑤1 ∈𝑊𝛼

1 , to find that: ∫︁
𝑌

∇× 𝑆𝛼(𝜌) · ∇ ×𝑤1 d𝑥 = 0,

and the lemma follows. �
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Define the Sobolev space:

𝑉
− 1

2
𝑡 (𝜕𝐷)3 :=

{︁
(n×∇)𝑓 : 𝑓 ∈𝑊 1/2,2(𝜕𝐷)

}︁
,

with the norm ‖𝐴‖
𝑉
− 1

2
𝑡 (𝜕𝐷)3

given by:

‖𝐴‖
𝑉
− 1

2
𝑡 (𝜕𝐷)3

= inf
{︁
‖𝜎 + 𝑓‖𝑊 1/2,2(𝜕𝐷) : 𝜎 ∈ C, 𝑓 ∈𝑊 1

2 ,2(𝜕𝐷), (n×∇)𝑓 = 𝐴
}︁
.

Moreover, from [29], we have:

𝐿2
𝑡,0(𝜕𝐷)3 = 𝑉 0

𝑡 (𝜕𝐷)3 =
{︀

(n×∇)𝑓 : 𝑓 ∈𝑊 1,2(𝜕𝐷)
}︀
,

with:

n×∇ : 𝑊 1,2(𝜕𝐷) ∖ C → 𝐿2
𝑡,0(𝜕𝐷)3, (2.33)

n×∇ : 𝑊 1/2,2(𝜕𝐷) ∖ C → 𝑉
− 1

2
𝑡 (𝜕𝐷)3, (2.34)

isomorphisms, and:

𝐿2
𝑡,0(𝜕𝐷)3 ⊂ 𝑉

− 1
2

𝑡 (𝜕𝐷)3 ⊂𝑊−1/2,2(𝜕𝐷)3.

We now present the mapping property of the single layer potential operator necessary for characterizing the
spectrum of the sesquilinear operator 𝑇𝛼 = 𝑆𝛼𝑀𝛼(𝑆𝛼)−1.

Theorem 2.5. The single layer potential operator can be extended as a bounded linear map from 𝑉
− 1

2
𝑡 (𝜕𝐷)3

to 𝑊𝛼
3 .

Proof. To prove this theorem, we first show the following lemma.

Lemma 2.6. The space of tangential vector fields 𝐿2
𝑡,0(𝜕𝐷)3 is a dense subspace of 𝑉

− 1
2

𝑡 (𝜕𝐷)3.

Proof. Note that, from (2.34), for 𝑔 ∈ 𝑉
− 1

2
𝑡 (𝜕𝐷)3 we can write 𝑔 = n×∇𝑓 , for some 𝑓 ∈𝑊 1/2,2(𝜕𝐷)∖C. From

the density of 𝑊 1,2(𝜕𝐷) in 𝑊 1/2,2(𝜕𝐷), there exists a sequence {𝑓𝑗}∞𝑗=1 ∈ 𝑊
1,2(𝜕𝐷)2 ∖ C ⊂ 𝑊 1/2,2(𝜕𝐷) ∖ C

converging to 𝑓 in 𝑊 1/2,2(𝜕𝐷) ∖ C. From (2.33), there are associated functions 𝑔𝑗 in 𝐿2
𝑡,0(𝜕𝐷)3 such that

𝑔𝑗 = 𝑛 × ∇𝑓𝑗 . By the continuity of the map n × ∇ : 𝑊 1/2,2(𝜕𝐷) → 𝑉
− 1

2
𝑡 (𝜕𝐷)3, we have the existence of a

positive constant 𝐶 such that:

‖𝑔 − 𝑔𝑗‖
𝑉
− 1

2
𝑡 (𝜕𝐷)

= ‖n×∇𝑓 − n×∇𝑓𝑗‖
𝑉
− 1

2
𝑡 (𝜕𝐷)

≤ 𝐶‖𝑓 − 𝑓𝑗‖𝑊 1/2,2(𝜕𝐷)∖C ,

and it follows that 𝐿2
𝑡,0(𝜕𝐷)3 is dense in 𝑉

− 1
2

𝑡 (𝜕𝐷)3. �

With Lemma 2.6 in hand, we prove Theorem 2.5. Given 𝜌 ∈ 𝐿2
𝑡,0(𝜕𝐷)3 and 𝑆𝛼(𝜌) ∈𝑊𝛼

3 , we have:

‖𝑆𝛼(𝜌)‖2 =
∫︁

𝐻

∇× 𝑆𝛼(𝜌) · ∇ × 𝑆𝛼(𝜌) 𝑑x +
∫︁

𝐷

∇× 𝑆𝛼(𝜌) · ∇ × 𝑆𝛼(𝜌) 𝑑x

=
∫︁

𝜕𝐷

[n×∇× 𝑆𝛼(𝜌)]−+ · 𝑆𝛼(𝜌) 𝑑𝑠x

= −
∫︁

𝜕𝐷

𝜌 · 𝑆𝛼(𝜌) 𝑑𝑠x.

(2.35)



BLOCH WAVES IN HIGH CONTRAST ELECTROMAGNETIC CRYSTALS 1493

Writing 𝜌 = n×∇𝑓 , for 𝑓 ∈𝑊 1,2(𝜕𝐷) ∖ C, and using (2.16) in (2.35), we get:

−
∫︁

𝜕𝐷

𝜌 · 𝑆𝛼(𝜌) 𝑑𝑠x = −
∫︁

𝜕𝐷

n×∇𝑓 · 𝑆𝛼(𝜌) 𝑑𝑠x =
∫︁

𝜕𝐷

𝑓 n · ∇ × 𝑆𝛼(𝜌) 𝑑𝑠x.

From (2.26), n ·∇×𝑆𝛼(𝜌) ∈ 𝐿2
0(𝜕𝐷), so it also belongs to 𝑊− 1

2 ,2
0 (𝜕𝐷) = (𝑊

1
2 ,2(𝜕𝐷)∖C)′, where the notation

“ ′” is used to indicate the dual space. From (2.35) and the last equation above, for 𝑓 ∈𝑊 1,2(𝜕𝐷) ∖C, we have:

‖𝑆𝛼(𝜌)‖2 =
∫︁

𝜕𝐷

𝑓 n · ∇ × 𝑆𝛼(𝜌) 𝑑𝑠x ≤ inf
𝜎∈C

‖𝑓 + 𝜎‖
𝑊

1
2 ,2(𝜕𝐷)

‖n · ∇ × 𝑆𝛼(𝜌)‖
𝑊
− 1

2 ,2
0 (𝜕𝐷)

,

where inf𝜎∈C ‖𝑓+𝜎‖
𝑊

1
2 ,2(𝜕𝐷)

is the norm for 𝑊 1,2(𝜕𝐷)∖C. Since the map n·∇×𝑆𝛼 : 𝑉
− 1

2
𝑡 (𝜕𝐷)3 →𝑊

− 1
2 ,2

0 (𝜕𝐷)

is bounded (see [29]), we have that ‖n·∇×𝑆𝛼(𝜌)‖
𝑊− 1

2 ,2(𝜕𝐷)
≤ 𝐶‖𝜌‖

𝑉
− 1

2
𝑡 (𝜕𝐷)3

and also inf𝜎∈C ‖𝑓+𝜎‖
𝑊

1
2 ,2(𝜕𝐷)

=

‖𝜌‖
𝑉 −

1
2 (𝜕𝐷)3

, so it follows that:

‖𝑆𝛼(𝜌)‖2 ≤ 𝐶 inf
𝜎∈C

‖𝑓 + 𝜎‖
𝑊

1
2 ,2(𝜕𝐷)

‖𝜌‖
𝑉
− 1

2
𝑡 (𝜕𝐷)3

≤ 𝐶‖𝜌‖2
𝑉
− 1

2
𝑡 (𝜕𝐷)3

and, therefore:
‖𝑆𝛼(𝜌)‖ ≤ 𝐶‖𝜌‖

𝑉
− 1

2
𝑡 (𝜕𝐷)3

. (2.36)

The inequality (2.36) implies that 𝑆𝛼(𝜌) is a bounded operator mapping into 𝑊𝛼
3 for the densely defined

subspace 𝐿2
𝑡,0(𝜕𝐷)3 of 𝑉

− 1
2

𝑡 (𝜕𝐷)3. Then, we extend the densely defined map 𝑆𝛼 to 𝑉
1
2

𝑡 (𝜕𝐷)3, using the BLT

theorem, to deduce that its extension 𝑆𝛼 : 𝑉
− 1

2
𝑡 (𝜕𝐷)3 →𝑊𝛼

3 is bounded. �

Theorem 2.7. The single layer potential operator 𝑆𝛼 : 𝑉
− 1

2
𝑡 (𝜕𝐷)3 →𝑊𝛼

3 is a bijection.

Proof. We first show that 𝑆𝛼 is one-to-one. For a given 𝜌 ∈ 𝑉
− 1

2
𝑡 (𝜕𝐷)3, we have u = 𝑆𝛼(𝜌) ∈𝑊𝛼

3 . Furthermore:

𝜌 = n×∇× u
⃒⃒
𝜕𝐷+ − n×∇× u

⃒⃒
𝜕𝐷−

+ n×∇× u
⃒⃒
𝜕𝑌
− n×∇× u

⃒⃒
𝜕𝑌

= n×∇× u
⃒⃒
𝜕𝐻

− n×∇× u
⃒⃒
𝜕𝐷−

− n×∇× u
⃒⃒
𝜕𝑌
.

Given a bounded Lipschitz domain Ω ∈ R3, if f ∈ 𝐿2(Ω)3 and ∇× f ∈ 𝐿2(Ω)3, then n× f ∈𝑊− 1
2 ,2(𝜕Ω)3. As a

consequence, there is a 𝐶 > 0, depending only on 𝜕Ω, such that:

‖n× f‖
𝑊− 1

2 ,2(𝜕Ω)3
≤ 𝐶(‖f‖𝐿2(Ω)3 + ‖∇ × f‖𝐿2(Ω)3).

Set f = ∇× u and, since ∇×∇× u = 0 in 𝐻 ∪𝐷, 𝜌 ∈ 𝑉
− 1

2
𝑡 (𝜕𝐷)3 ⊂𝑊− 1

2 ,2(𝜕𝐷)3, one has:

‖𝜌‖
𝑊− 1

2 ,2(𝜕𝐷)3

= ‖n×∇× u
⃒⃒
𝜕𝐷+ − n×∇× u

⃒⃒
𝜕𝐷−

‖
𝑊− 1

2 ,2(𝜕𝐷)3

≤ ‖n×∇× u‖
𝑊− 1

2 ,2(𝜕𝐻)3
+ ‖n×∇× u‖

𝑊− 1
2 ,2(𝜕𝐷)3

+ ‖n×∇× u‖
𝑊− 1

2 ,2(𝜕(𝑌 ))3

≤ 𝐶(‖∇ × u‖𝐿2(𝐻)3 + ‖∇ × u‖𝐿2(𝐷)3 + ‖∇ × u‖𝐿2(𝑌 )3)
≤ 𝐶‖u‖ = 𝐶‖𝑆𝛼(𝜌)‖.

Now, for 𝜌1,𝜌2 ∈ 𝑉
− 1

2
𝑡 (𝜕𝐷)3 ⊂𝑊− 1

2 ,2(𝜕𝐷)3, we obtain:

0 ≤ ‖𝜌1 − 𝜌2‖𝑊− 1
2 ,2(𝜕𝐷)3

≤ 𝐶2‖𝑆𝛼(𝜌1)− 𝑆𝛼(𝜌2)‖,
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to conclude that 𝑆𝛼 : 𝑉
− 1

2
𝑡 (𝜕𝐷)3 →𝑊𝛼

3 is one-to-one.
To show the surjectivity of 𝑆𝛼, assume that u ∈𝑊𝛼

3 is given. From the definition of 𝑊𝛼
3 and integration by

parts, we have:
∇ · u = 0, ∇×∇× u = 0, on 𝐻 ∪𝐷.

Writing w = ∇ × u, we see that ∇ × w = 0 in 𝐻 ∪ 𝐷 so w = ∇𝑞1, for 𝑞1 ∈ 𝑊 1,2(𝐻), and w = ∇𝑞2, for
𝑞2 ∈ 𝑊 1,2(𝐷). Let Γ−(𝑥) be a truncated circular cone in the interior of 𝐷 with vertex 𝑥 and let Γ+(𝑥) be a
truncated circular cone in the interior of 𝐻 with vertex 𝑥. Now consider these cones with common vertex p on
𝜕𝐷. Taking the cross product of w = ∇× u with the normal to the surface 𝜕𝐷 given by n(p), we get:

lim
𝑥→p

𝑥∈Γ+(p)

n(p)×∇× u(𝑥) = n(p)×∇𝑞1(p), lim
𝑥→p

𝑥∈Γ−(p)

n(p)×∇× u(𝑥) = n(p)×∇𝑞2(p).

From (2.34), we have that n×∇ : 𝑊
1
2 ,2(𝜕𝐷)/C → 𝑉

− 1
2

𝑡 (𝜕𝐷)3 is an isomorphism, and we choose:

𝜌u = n×∇𝑞1
⃒⃒
𝜕𝐷+ − n×∇𝑞2

⃒⃒
𝜕𝐷−

∈ 𝑉 − 1
2 (𝜕𝐷)3.

Setting v = 𝑆𝛼(𝜌u) gives:

∇×∇× v = 0 in 𝐷 ∪𝐻, ∇ · v = 0 in 𝑌, [n×∇× v]+− = 𝜌u, (2.37)

and: ∫︁
𝜕𝑌

n×∇× (v − u) · (v − u) 𝑑𝑠 = 0, for v,u ∈𝑊𝛼
3 . (2.38)

Using integration by parts and applying (2.37) and (2.38), we discover:

‖v − u‖ = 0.

For 𝛼 ̸= 0, this implies v = u and, for 𝛼 = 0, we have u− v = c, where c is a constant vector. But, for 𝛼 = 0,

we have 0 =
∫︁

𝑌

w d𝑥 =
∫︁

𝑌

u d𝑥, to conclude c = 0 and v = u. This shows that 𝑆𝛼 is surjective. �

From Theorem 2.7, we see that the inverse map (𝑆𝛼)−1 : 𝑊𝛼
3 → 𝑉

1
2

𝑡 (𝜕𝐷)3 exists. Finally, we apply the open
mapping theorem to derive the following theorem.

Theorem 2.8. The inverse (𝑆𝛼)−1 : 𝑊𝛼
3 → 𝑉

1
2

𝑡 (𝜕𝐷)3 is bounded.

2.2. Compactness of magnetic dipole operator

In this section, we show that the magnetic dipole operator 𝑀𝛼 is compact.

Theorem 2.9. The operator 𝑀𝛼 : 𝑉
− 1

2
𝑡 (𝜕𝐷)3 → 𝑉

− 1
2

𝑡 (𝜕𝐷)3 is compact and satisfies:

𝜎(𝑀𝛼; 𝑉
− 1

2
𝑡 (𝜕𝐷)3) = 𝜎((𝐾−𝛼)*; 𝐻− 1

2
0 (𝜕𝐷)), (2.39)

where (𝐾−𝛼)* is the scalar valued NeumannPoincaré operator defined on 𝐻
− 1

2
0 (𝜕𝐷) and where

𝜎(𝑀𝛼; 𝑉
− 1

2
𝑡 (𝜕𝐷)3) and 𝜎((𝐾−𝛼)*; 𝐻− 1

2
0 (𝜕𝐷)) are the spectra of 𝑀𝛼 and (𝐾−𝛼)*, respectively.

Proof. We first establish that the magnetic dipole operator 𝑀𝛼 is a bounded map of 𝑉
− 1

2
𝑡 (𝜕𝐷)3. To do this,

we start with the following Plemelj-like identity, that can be derived as in [29]:

(𝐾−𝛼)*(n · ∇ × 𝑆𝛼) = n · ∇ × 𝑆𝛼𝑀𝛼, for 𝜌 ∈ 𝐿2
𝑡,0(𝜕𝐷)3, (2.40)
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The scalar valued Neumann-Poincaré operator is bounded and compact on 𝐻
− 1

2
0 (𝜕𝐷), see [21]. The map n ·

∇ × 𝑆𝛼 : 𝑉
− 1

2
𝑡 (𝜕𝐷)3 → 𝐻

− 1
2

0 (𝜕𝐷) can be shown to be an isomorphism, as in [29]. The boundedness of (𝐾−𝛼)*

and the boundedness of the operator n · ∇ × 𝑆𝛼 imply that:

‖(𝐾−𝛼)*(n · ∇ × 𝑆𝛼(𝜌))‖
𝐻
− 1

2
0 (𝜕𝐷)

≤ 𝐶‖n · ∇ × 𝑆𝛼(𝜌)‖
𝐻
− 1

2
0 (𝜕𝐷)

≤ 𝐶‖𝜌‖
𝑉
− 1

2
𝑡 (𝜕𝐷)3

. (2.41)

On the other hand, the boundedness of n · ∇ × 𝑆𝛼 also implies the following:

‖𝑀𝛼(𝜌)‖
𝑉
− 1

2
𝑡 (𝜕𝐷)3

≤ 𝐶‖n · ∇ × 𝑆𝛼𝑀𝛼(𝜌)‖
𝐻
− 1

2
0 (𝜕𝐷)

. (2.42)

In view of (2.40), (2.41), and (2.42), we have:

‖𝑀𝛼(𝜌)‖
𝑉
− 1

2
𝑡 (𝜕𝐷)3

≤ 𝐶‖𝜌‖
𝑉
− 1

2
𝑡 (𝜕𝐷)3

,

and we conclude that 𝑀𝛼(𝜌) is bounded, for 𝜌 ∈ 𝐿2
𝑡,0(𝜕𝐷)3 ⊂ 𝑉

− 1
2

𝑡 (𝜕𝐷)3. Since 𝐿2
𝑡,0(𝜕𝐷)3 is dense in

𝑉
− 1

2
𝑡 (𝜕𝐷)3, we can extend 𝑀𝛼 as a bounded linear map of 𝑉

− 1
2

𝑡 (𝜕𝐷)3.

Next, observe that n · ∇ × 𝑆𝛼 : 𝑉
− 1

2
𝑡 (𝜕𝐷)3 → 𝐻

− 1
2

0 (𝜕𝐷) is an isomorphism, so for a bounded sequence

{𝜌𝑛} ∈ 𝑉
− 1

2
𝑡 (𝜕𝐷)3, we have:

‖n · ∇ × 𝑆𝛼(𝜌𝑛)‖
𝐻
− 1

2
0 (𝜕𝐷)

≤ 𝐶‖𝜌𝑛‖
𝑉
− 1

2
𝑡 (𝜕𝐷)3

,

which shows that {n · ∇ × 𝑆𝛼(𝜌𝑛)}∞𝑛=1 ∈ 𝐻
− 1

2
0 (𝜕𝐷) is bounded. By the compactness of (𝐾−𝛼)*, we have that

the subsequence
{︀

(𝐾−𝛼)*(n · ∇ × 𝑆𝛼(𝜌𝑛𝑘
))
}︀∞

𝑘=1
∈ 𝐻− 1

2
0 (𝜕𝐷) is Cauchy, which in turn, by (2.40), implies that{︀

n · ∇ × 𝑆𝛼(𝑀𝛼(𝜌𝑛𝑘
))
}︀∞

𝑘=1
∈ 𝐻

− 1
2

0 (𝜕𝐷) is also Cauchy. Because n · ∇ × 𝑆𝛼 : 𝑉
− 1

2
𝑡 (𝜕𝐷)3 → 𝐻

− 1
2

0 (𝜕𝐷) is an
isomorphism and (𝐾𝛼)* is a continuous map, we have for {𝜌𝑛𝑘

}∞𝑘=1:

‖𝑀𝛼(𝜌𝑛𝑘
)−𝑀𝛼(𝜌𝑛𝑙

)‖
𝑉
− 1

2
𝑡 (𝜕𝐷)3

≤ 𝐶‖n · ∇ × 𝑆𝛼(𝑀𝛼(𝜌𝑛𝑘
))− n · ∇ × 𝑆𝛼(𝑀𝛼(𝜌𝑛𝑙

))‖
𝐻
− 1

2
0 (𝜕𝐷)

,

and we conclude that the sequence
{︀
𝑀𝛼(𝜌𝑛𝑘

)
}︀∞

𝑛=1
∈ 𝑉

− 1
2

𝑡 (𝜕𝐷)3 is Cauchy, and thus, 𝑀𝛼 is a compact operator

on 𝑉
− 1

2
𝑡 (𝜕𝐷)3. Finally, the identity (2.39) is the direct consequence of (2.40), and the isomorphic map n·∇×𝑆𝛼 :

𝑉
− 1

2
𝑡 (𝜕𝐷)3 → 𝐻

− 1
2

0 (𝜕𝐷). �

It is noted that the spectrum of (𝐾−𝛼)* lies in [−1/2, 1/2] (see e.g., [21]) and, by the previous theorem, we see
that:

𝜎(𝑀𝛼; 𝑉
− 1

2
𝑡 (𝜕𝐷)3) ⊂ [−1/2, 1/2]. (2.43)

2.3. Spectral property of the operator 𝑇𝛼 = 𝑆𝛼𝑀𝛼(𝑆𝛼)−1

Theorem 2.10. The operator 𝑇𝛼 = 𝑆𝛼𝑀𝛼(𝑆𝛼)−1 : 𝑊𝛼
3 →𝑊𝛼

3 is Hermitian, compact, and satisfies:

𝜎 (𝑇𝛼; 𝑊𝛼
3 ) = 𝜎(𝑀𝛼; 𝑉

− 1
2

𝑡 (𝜕𝐷)3). (2.44)

Proof. First, we show that 𝑇𝛼 : 𝑊𝛼
3 →𝑊𝛼

3 is Hermitian. For u, w ∈𝑊𝛼
3 , we have:

⟨𝑇𝛼u,w⟩ =
∫︁

𝑌

(∇× 𝑆𝛼𝑀𝛼(𝑆𝛼)−1u) · (∇×w) d𝑥

=
∫︁

𝐻

(∇× 𝑆𝛼𝑀𝛼(𝑆𝛼)−1u) · (∇×w) d𝑥+
∫︁

𝐷

(∇× 𝑆𝛼𝑀𝛼(𝑆𝛼)−1u) · (∇×w) d𝑥.
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Using integration by parts and since ∇×∇× 𝑆𝛼𝑀𝛼(𝑆𝛼)−1u) = 0 in 𝐻 ∪𝐷, we see that:∫︁
𝑌

(∇× 𝑆𝛼𝑀𝛼(𝑆𝛼)−1u) · (∇×w) d𝑥 =
∫︁

𝜕𝐷

[︀
n×∇× 𝑆𝛼𝑀𝛼(𝑆𝛼)−1u

]︀+
− ·w 𝑑𝑠x.

Then, using the jump condition (2.23), we obtain ⟨𝑇𝛼u,w⟩ =
∫︀

𝜕𝐷
𝑀𝛼(𝑆𝛼)−1u ·w 𝑑𝑠x. We can write u = 𝑆𝛼𝛽,

for some 𝛽 ∈ 𝑉
− 1

2
𝑡 (𝜕𝐷)3, to get:

⟨𝑇𝛼u,w⟩ =
∫︁

𝜕𝐷

𝑀𝛼𝛽 ·w 𝑑𝑠𝑥

=
1
2

∫︁
𝜕𝐷

[n×∇× 𝑆𝛼𝛽
⃒⃒
+
− n×∇× 𝑆𝛼𝛽

⃒⃒
−] ·w 𝑑𝑠𝑥.

Integration by parts gives:

1
2

∫︁
𝜕𝐷

[n×∇× 𝑆𝛼𝛽
⃒⃒
+
− n×∇× 𝑆𝛼𝛽

⃒⃒
−] ·w 𝑑𝑠𝑥

=
1
2

∫︁
𝐻

(∇× 𝑆𝛼𝛽) · (∇×w) d𝑥− 1
2

∫︁
𝐷

(∇× 𝑆𝛼𝛽) · (∇×w) d𝑥.

Therefore:

⟨𝑇𝛼u,w⟩ =
1
2

∫︁
𝐻

(∇× u) · (∇×w) d𝑥− 1
2

∫︁
𝐷

(∇× u) · (∇×w) d𝑥, (2.45)

and 𝑇𝛼 is seen to be Hermitian.
Now, the identity given by (2.44) is established. Consider the eigenvalue eigenvector pair (𝜇,𝜌) ∈

𝜎
(︁
𝑀𝛼; 𝑉

− 1
2

𝑡 (𝜕𝐷)3
)︁
× 𝑉

− 1
2

𝑡 (𝜕𝐷)3 of 𝑀𝛼𝜌 = 𝜇𝜌. There exists u ∈ 𝑊𝛼
3 such that u = 𝑆𝛼𝜌, and 𝜌 = (𝑆𝛼)−1u.

Therefore, we have 𝑀𝛼(𝑆𝛼)−1u = 𝜇𝑆−1u. This implies that:

𝑆𝛼𝑀𝛼(𝑆𝛼)−1u = 𝜇𝑆𝛼(𝑆𝛼)−1u ⇒ 𝑇𝛼u = 𝜇u,

which shows that 𝜎
(︁
𝑀𝛼; 𝑉

− 1
2

𝑡 (𝜕𝐷)3
)︁
⊂ 𝜎 (𝑇𝛼; 𝑊𝛼

3 ).

On the other hand, if we have 𝑇𝛼u = 𝜇u, then 𝑆𝛼𝑀𝛼(𝑆𝛼)−1u = 𝜇u; therefore, multiplying both sides by
(𝑆𝛼)−1 gives 𝑀𝛼(𝑆𝛼)−1u = 𝜇(𝑆𝛼)−1u, and we obtain:

𝜎 (𝑇𝛼; 𝑊𝛼
3 ) ⊂ 𝜎(𝑀𝛼; 𝑉

− 1
2

𝑡 (𝜕𝐷)3).

Finally, the compactness of 𝑇𝛼 = 𝑆𝛼𝑀𝛼(𝑆𝛼)−1 easily follows from the compactness of 𝑀𝛼. �

It now follows from (2.45) that the eigenvalue problem 𝑇𝛼𝑢 = 𝜇𝑢 is equivalent to (2.13), so the eigenfunctions
form a complete orthonormal system that span 𝑊𝛼

3 .
It is clear from Theorems 2.9 and 2.10 that:

𝜎 (𝑇𝛼; 𝑊𝛼
3 ) = 𝜎((𝐾−𝛼)*; 𝐻− 1

2
0 (𝜕𝐷)),

and we denote dependence on 𝛼 explicitly and write 𝜇𝑖(𝛼), 𝑖 ∈ N, 𝛼 ∈ 𝑌 * and make the following definition.

Definition 2.11. The structural spectra for the crystal is given by ∪𝛼∈𝑌 *{𝜇𝑖(𝛼)}𝑖∈N, where the pairs 𝜇𝑖(𝛼),
𝑢𝑖 ∈𝑊𝛼

2 satisfy:
𝑇𝛼𝑢𝑖 = 𝜇𝑖(𝛼)𝑢𝑖.
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2.4. Spectral representation theorem

We present a spectral representation of the differential operator appearing in (1.4). With this in mind, by
Theorem 2.10 and (2.43), the invariant subspace associated with each eigenvalue 𝜇𝑛(𝛼) of 𝑇𝛼 is denoted by
𝐸𝑛 = {𝑢 ∈ 𝑊𝛼

3 : 𝑇𝛼𝑢 = 𝜇𝑛(𝛼)𝑢} and the orthogonal projection onto this subspace is denoted by 𝑃𝛼
𝜇𝑛

; here,
orthogonality is with respect to the ⟨·, ·⟩ inner product. We write the projections onto 𝑊𝛼

1 and 𝑊𝛼
2 as 𝑃𝛼

1

and 𝑃𝛼
2 , respectively. The differential operator appearing in (1.4) can be factored into the form given by the

following theorem.

Theorem 2.12. The vector Laplacian in a photonic crystal admits the representation:

∇× (𝑎(𝑥)∇× u(𝑥)) = −∆𝛼𝑇
𝛼
𝑘 u(𝑥),

where ∆𝛼 is the 𝛼-quasiperiodic Laplace operator defined on 𝑌 and 𝑇𝛼
𝑘 is the linear transform associated with

the bilinear form 𝐵𝑘 defined for u(𝑥) ∈ 𝐽#(𝛼, 𝑌,C3), see (2.10). The linear operator 𝑇𝛼
𝑘 (2.11) has the spectral

representation, which separates the effect of the contrast 𝑘 from the underlying geometry of the photonic crystal,
given by:

𝑇𝛼
𝑘 u = 𝑘 𝑃𝛼

1 u + 𝑃𝛼
2 u +

∑︁
−1
2 <𝜇𝑛(𝛼)< 1

2

[︂
𝑘

(︂
1
2

+ 𝜇𝑛(𝛼)
)︂

+
(︂

1
2
− 𝜇𝑛(𝛼)

)︂]︂
𝑃𝛼

𝜇𝑛
u,

where {𝜇𝑛(𝛼)} = 𝜎 (𝑇𝛼; 𝑊𝛼
3 ), with 𝑊𝛼

3 ⊂ 𝐽#(𝛼, 𝑌,C3). If 𝑘 ∈ C ∖ 𝑍, where:

𝑍 =
{︂
𝜇𝑛(𝛼)− 1/2
𝜇𝑛(𝛼) + 1/2

}︂
−1/2≤𝜇𝑛(𝛼)≤1/2

, (2.46)

then 𝑇𝛼
𝑘 has an inverse and, for 𝑧 = 𝑘−1, it is given by:

(𝑇𝛼
𝑘 )−1u = 𝑧 𝑃𝛼

1 u + 𝑃𝛼
2 u +

∑︁
−1
2 <𝜇𝑛(𝛼)< 1

2

𝑧

[︂(︂
1
2

+ 𝜇𝑛(𝛼)
)︂

+ 𝑧

(︂
1
2
− 𝜇𝑛(𝛼)

)︂]︂−1

𝑃𝛼
𝜇𝑛

u. (2.47)

Proof. Let u ∈ 𝐽#(𝛼, 𝑌,C3). Note that:

⟨u,v⟩ = ⟨
∞∑︁

𝑖=1

𝑃𝛼
𝜇𝑖

u,v⟩ = ⟨𝑃𝛼
1 u + 𝑃𝛼

2 u +
∑︁

− 1
2 <𝜇𝑛(𝛼)< 1

2

𝑃𝛼
𝜇𝑛

u,v⟩, (2.48)

for all v ∈ 𝐽#(𝛼, 𝑌,C3), from where:

⟨𝑇𝛼u,v⟩ = ⟨
∞∑︁

𝑖=1

𝜇𝑖(𝛼)𝑃𝛼
𝜇𝑖

u,v⟩, ∀v ∈ 𝐽#(𝛼, 𝑌,C3).

Also, by (2.14), (2.15) and (2.45), for all v ∈ 𝐽#(𝛼, 𝑌,C3), we have:

⟨𝑇𝛼u1,v⟩ =
1
2
⟨u1,v⟩, ∀u1 ∈𝑊𝛼

1 ,

⟨𝑇𝛼u2,v⟩ = −1
2
⟨u2,v⟩, ∀u2 ∈𝑊𝛼

2 .

By (2.48), for u,v ∈ 𝐽#(𝛼, 𝑌,C3), we have:

𝐵𝑘(𝑃𝛼
𝜇𝑛

u,v) = 𝑘

∫︁
𝐻

(∇× 𝑃𝛼
𝜇𝑛

u) · (∇× v) d𝑥+
∫︁

𝐷

(∇× 𝑃𝛼
𝜇𝑛

u) · (∇× v) d𝑥. (2.49)
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On the other hand, by (2.45), we know that:

⟨𝑇𝛼 𝑃𝛼
𝜇𝑛

u,v⟩ =
1
2

∫︁
𝐻

(∇× 𝑃𝛼
𝜇𝑛

u) · (∇× v) d𝑥− 1
2

∫︁
𝐷

(∇× 𝑃𝛼
𝜇𝑛

u) · (∇× v) d𝑥

= 𝜇𝑛(𝛼)
∫︁

𝐻

(∇× 𝑃𝛼
𝜇𝑛

u) · (∇× v) d𝑥+ 𝜇𝑛(𝛼)
∫︁

𝐷

(∇× 𝑃𝛼
𝜇𝑛

u) · (∇× v) d𝑥,

which implies that: ∫︁
𝐻

(∇× 𝑃𝛼
𝜇𝑛

u) · (∇× v) d𝑥 =
1
2 + 𝜇𝑛(𝛼)
1
2 − 𝜇𝑛(𝛼)

∫︁
𝐷

(∇× 𝑃𝛼
𝜇𝑛

u) · ∇ × v) d𝑥. (2.50)

We also have: ∫︁
𝐷

(∇× 𝑃𝛼
𝜇𝑛

u) · (∇× v) d𝑥 =
(︂

1
2
− 𝜇𝑛(𝛼)

)︂∫︁
𝑌

(∇× 𝑃𝛼
𝜇𝑛

u) · (∇× v) d𝑥, (2.51)

from where (2.50) becomes:∫︁
𝐻

(∇× 𝑃𝛼
𝜇𝑛

u) · (∇× v) d𝑥 =
(︂

1
2

+ 𝜇𝑛(𝛼)
)︂∫︁

𝑌

(∇× 𝑃𝛼
𝜇𝑛

u) · (∇× v) d𝑥. (2.52)

Substituting (2.51) and (2.52) into (2.49), we get:

𝐵𝑘(𝑃𝛼
𝜇𝑛

u,v) =
[︂
𝑘

(︂
1
2

+ 𝜇𝑛(𝛼)
)︂

+
(︂

1
2
− 𝜇𝑛(𝛼)

)︂]︂∫︁
𝑌

(∇× 𝑃𝛼
𝜇𝑛

u) · (∇× v) d𝑥. (2.53)

Noting that:

𝐵𝑘(𝑃𝛼
1 u,v) = 𝑘

∫︁
𝐻

(∇× 𝑃𝛼
1 u) · (∇× v) d𝑥, (2.54)

𝐵𝑘(𝑃𝛼
2 u,v) =

∫︁
𝐷

(∇× 𝑃𝛼
2 u) · (∇× v) d𝑥 , (2.55)

one concludes that:

𝐵𝑘(u,v) = ⟨𝑇𝛼
𝑘 u,v⟩ = ⟨𝑘𝑃𝛼

1 u + 𝑃𝛼
2 u +

∑︁
−1/2<𝜇𝑛(𝛼)<1/2

[︂
𝑘

(︂
1
2

+ 𝜇𝑛(𝛼)
)︂

+
(︂

1
2
− 𝜇𝑛(𝛼)

)︂]︂
𝑃𝛼

𝜇𝑛
u, v⟩,

and Theorem 2.12 easily follows since −∆𝛼 is the operator related to the bilinear form ⟨u,v⟩. �

3. Band structure for complex coupling constant

We recall that 𝑎(𝑥) = (𝜖(𝑥))−1 and the operator representation is applied to write the Bloch eigenvalue
problem as:

∇× ((𝜖(𝑥))−1∇× h) = −∆𝛼 𝑇
𝛼
𝑘 h = 𝜉h. (3.1)

We characterize the Bloch spectra by analyzing the operator:

𝐵𝛼(𝑘) := (𝑇𝛼
𝑘 )−1(−∆𝛼)−1, (3.2)

where the operator (−∆𝛼)−1 : 𝐿2
#(𝛼, 𝑌,C3) → 𝐽#(𝛼, 𝑌,C3), defined for all 𝛼 ∈ 𝑌 *, is given by:

(−∆𝛼)−1u(𝑥) = −
∫︁

𝑌

𝐺𝛼(𝑥, 𝑦)u(𝑦) 𝑑𝑦. (3.3)
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Let us suppose 𝛼 ̸= 0. The operator 𝐵𝛼(𝑘) : 𝐿2
#(𝛼, 𝑌,C3) −→ 𝐽#(𝛼, 𝑌,C3) is easily seen to be bounded

for 𝑘 /∈ 𝑍 (2.46), see Theorem 10.5. Since 𝐻1
#(𝛼, 𝑌,C3) (and hence 𝐽#(𝛼, 𝑌,C3)) embeds compactly into

𝐿2
#(𝛼, 𝑌,C3), we find that 𝐵𝛼(𝑘) is a bounded compact linear operator on 𝐿2

#(𝛼, 𝑌,C3) (see Thm. 10.6) and,
therefore, it has a discrete spectrum {𝛾𝑖(𝑘, 𝛼)}𝑖∈N, with a possible accumulation point at 0. The corresponding
eigenspaces are finite-dimensional and the eigenfunctions p𝑖 ∈ 𝐿2

#(𝛼, 𝑌,C3) satisfy:

𝐵𝛼(𝑘)p𝑖(𝑥) = 𝛾𝑖(𝑘, 𝛼) p𝑖(𝑥), for 𝑥 ∈ 𝑌 , (3.4)

and also belong to 𝐽#(𝛼, 𝑌,C3). Observe that, for 𝛾𝑖 ̸= 0, (3.4) holds if and only if (3.1) holds with 𝜉 =
𝜆𝑖(𝑘, 𝛼) = 𝛾−1

𝑖 (𝑘, 𝛼), and −∆𝛼𝑇
𝛼
𝑘 p𝑖 = 𝜆𝑖(𝑘, 𝛼)p𝑖. Collecting results, we have the following theorem.

Theorem 3.1. The Bloch eigenvalue problem (1.4) for the operator −∇× (𝑘𝜒𝐻 +𝜒𝐷)∇×, associated with the
sesquilinear form (2.10), can be extended for values of the coupling constant 𝑘 off the positive real axis into
C ∖ 𝑍 (𝑍 given by (2.46)), i.e., for each 𝛼 ∈ 𝑌 ⋆, the Bloch eigenvalues are of finite multiplicity and denoted by
𝜆𝑗(𝑘, 𝛼) = 𝛾−1

𝑗 (𝑘, 𝛼), 𝑗 ∈ N, and the band structure (1.5):

𝜆𝑗(𝑘, 𝛼) = 𝜉, 𝑗 ∈ N

extends to complex coupling constants 𝑘 ∈ C ∖ 𝑍.

4. Power series representation of Bloch eigenvalues for high contrast
periodic media

In what follows, we set 𝛾 = 𝜆−1(𝑘, 𝛼) and analyze the spectral problem:

𝐵𝛼(𝑘)u = 𝛾(𝑘, 𝛼)u. (4.1)

Henceforth, we will analyze the high contrast limit by developing a power series in 𝑧 = 1/𝑘, about 𝑧 = 0, for
the spectrum of the family of operators (3.2) associated with (4.1):

𝐵𝛼(𝑘) = (𝑇𝛼
𝑘 )−1(−∆𝛼)−1

= (𝑧𝑃𝛼
1 + 𝑃𝛼

2 + 𝑧
∑︀

−1/2<𝜇𝑖(𝛼)<1/2

[(1/2 + 𝜇𝑖(𝛼)) + 𝑧(1/2− 𝜇𝑖(𝛼))]−1𝑃𝛼
𝜇𝑖

)(−∆𝛼)−1

=: 𝐴𝛼(𝑧).

Here, we define the operator 𝐴𝛼(𝑧) such that 𝐴𝛼(1/𝑘) = 𝐵𝛼(𝑘), and the associated eigenvalues 𝛽(1/𝑘, 𝛼) =
𝛾(𝑘, 𝛼). Then, the spectral problem becomes 𝐴𝛼(𝑧)u = 𝛽(𝑧, 𝛼)u, for u ∈ 𝐿2

#(𝛼, 𝑌,C3).
It is easily seen, from the above representation, that 𝐴𝛼(𝑧) is self-adjoint for 𝑘 ∈ R and is a family of bounded

operators taking 𝐿2
#(𝛼, 𝑌,C3) into itself. Also, we have the following lemma.

Lemma 4.1. 𝐴𝛼(𝑧) is holomorphic on Ω0 := C ∖ 𝒮, where 𝒮 = ∪𝑖∈N𝑧𝑖(𝛼) is the collection of points 𝑧𝑖(𝛼) =
(𝜇𝑖(𝛼) + 1/2)/(𝜇𝑖(𝛼) − 1/2) on the negative real axis associated with the eigenvalues {𝜇𝑖(𝛼)}𝑖∈N. The set 𝒮
consists of poles of 𝐴𝛼(𝑧) with only one accumulation point at 𝑧 = −1.

The upper bound 𝑧*(𝛼) on 𝒮 for fixed 𝛼 ∈ 𝑌 * is written:

max
𝑖
{𝑧𝑖(𝛼)} = 𝑧*(𝛼) < 0. (4.2)

In Section 8, we develop explicit lower bounds on the structural spectrum, i.e.:

−1/2 < 𝜇− ≤ 𝜇𝑖(𝛼) ∈ ∪𝛼∈𝑌 *{𝜇𝑖(𝛼)}𝑖∈N
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that holds for a generic class of inclusion domains 𝐷. The corresponding upper bound 𝑧+ is written:

max{𝑧*(𝛼);𝛼 ∈ 𝑌 *} =
𝜇− + 1/2
𝜇− − 1/2

= 𝑧+ < 0, (4.3)

and 𝑧*(𝛼) ≤ 𝑧+. This upper bound 𝑧+, which is realized for a large class of crystal geometries, guarantees that
the nearest pole of 𝐴𝛼(𝑧) to 𝑧 = 0 is bounded away from the origin by a fixed distance. This enables 𝐴𝛼(𝑧) to
be realized as an analytic family of operators in a neighborhood about 𝑧 = 0. For example, see the “buffered”
geometries in Section 8.

Let 𝛽𝛼
0 ∈ 𝜎(𝐴𝛼(0)) with spectral projection 𝑃 (0), and let Γ be a closed contour in C enclosing 𝛽𝛼

0 , but no
other 𝛽 ∈ 𝜎(𝐴𝛼(0)). The spectral projection associated with 𝛽𝛼(𝑧) ∈ 𝜎(𝐴𝛼(𝑧)), for 𝛽𝛼(𝑧) ∈ int(Γ), is denoted
by 𝑃 (𝑧). We write ℳ(𝑧) = 𝑃 (𝑧)𝐿2

#(𝛼, 𝑌,C3) and suppose, for the moment, that Γ lies in the resolvent of
𝐴𝛼(𝑧) and dim(ℳ(0)) = dim(ℳ(𝑧)) = 𝑚, realizing that Theorems 7.1 and 7.2 provide explicit conditions
for when this holds true. Now define 𝛽𝛼(𝑧) := 1

𝑚 tr(𝐴𝛼(𝑧)𝑃 (𝑧)), the weighted mean of the eigenvalue group
{𝛽𝛼

1 (𝑧), . . . , 𝛽𝛼
𝑚(𝑧)} corresponding to 𝛽𝛼

1 (0) = . . . = 𝛽𝛼
𝑚(0) = 𝛽𝛼

0 . We write the weighted mean as:

𝛽𝛼(𝑧) = 𝛽𝛼
0 +

1
𝑚

tr[(𝐴𝛼(𝑧)− 𝛽𝛼
0 )𝑃 (𝑧)].

Since 𝐴𝛼(𝑧) is analytic in a neighborhood of the origin, we write:

𝐴𝛼(𝑧) = 𝐴𝛼(0) +
∞∑︁

𝑛=1

𝑧𝑛𝐴𝛼
𝑛.

The explicit form of the sequence {𝐴𝛼
𝑛}𝑛∈N is given in Section 7. Define the resolvent of 𝐴𝛼(𝑧) by:

𝑅(𝜁, 𝑧) = (𝐴𝛼(𝑧)− 𝜁)−1;

and expanding successively in Neumann series and power series, we have the identity:

𝑅(𝜁, 𝑧) = 𝑅(𝜁, 0)[𝐼 + (𝐴𝛼(𝑧)−𝐴𝛼(0))𝑅(𝜁, 0)]−1

= 𝑅(𝜁, 0) +
∞∑︁

𝑝=1

[−(𝐴𝛼(𝑧)−𝐴𝛼(0))𝑅(𝜁, 0)]𝑝 (4.4)

= 𝑅(𝜁, 0) +
∞∑︁

𝑛=1

𝑧𝑛𝑅𝑛(𝜁),

where:
𝑅𝑛(𝜁) =

∑︁
𝑘1+...𝑘𝑝=𝑛,𝑘𝑗≥1

(−1)𝑝𝑅(𝜁, 0)𝐴𝛼
𝑘1
𝑅(𝜁, 0)𝐴𝛼

𝑘2
. . . 𝑅(𝜁, 0)𝐴𝛼

𝑘𝑝
, for 𝑛 ≥ 1.

Application of the contour integral formula for spectral projections [18,19,32], delivers the expansion for the
spectral projection:

𝑃 (𝑧) = − 1
2𝜋𝑖

∮︁
Γ

𝑅(𝜁, 𝑧)𝑑𝜁 = 𝑃 (0) +
∞∑︁

𝑛=1

𝑧𝑛𝑃𝑛, (4.5)

where 𝑃𝑛 = − 1
2𝜋𝑖

∮︀
Γ
𝑅𝑛(𝜁)𝑑𝜁. Now, we develop the series for the weighted mean of the eigenvalue group. Start

with:

(𝐴𝛼(𝑧)− 𝛽𝛼
0 )𝑅(𝜁, 𝑧) = 𝐼 + (𝜁 − 𝛽𝛼

0 )𝑅(𝜁, 𝑧),

and we have:
(𝐴𝛼(𝑧)− 𝛽𝛼

0 )𝑃 (𝑧) = − 1
2𝜋𝑖

∮︁
Γ

(𝜁 − 𝛽𝛼
0 )𝑅(𝜁, 𝑧)𝑑𝜁,
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so:
𝛽(𝑧)− 𝛽𝛼

0 = − 1
2𝑚𝜋𝑖

tr
∮︁

Γ

(𝜁 − 𝛽𝛼
0 )𝑅(𝜁, 𝑧)𝑑𝜁. (4.6)

Equation (4.6) delivers an analytic representation formula for a Bloch eigenvalue or, more generally, the eigen-
value group when 𝛽𝛼

0 is not a simple eigenvalue. Substituting the third line of (4.4) into (4.6) yields:

𝛽𝛼(𝑧) = 𝛽𝛼
0 +

∞∑︁
𝑛=1

𝑧𝑛𝛽𝛼
𝑛 , (4.7)

where:

𝛽𝛼
𝑛 = − 1

2𝑚𝜋𝑖
tr

∑︁
𝑘1+···+𝑘𝑝=𝑛

(−1)𝑝

𝑝

∮︁
Γ

𝐴𝛼
𝑘1
𝑅(𝜁, 0)𝐴𝛼

𝑘2
. . . 𝑅(𝜁, 0)𝐴𝛼

𝑘𝑝
𝑅(𝜁, 0)𝑑𝜁; 𝑛 ≥ 1. (4.8)

5. Spectrum in the high contrast limit, 𝛼 ̸= 0

We investigate the spectrum of the limiting operator 𝐴𝛼(0), for 𝛼 ̸= 0. Using the representation:

𝐴𝛼(𝑧) = (𝑧𝑃𝛼
1 + 𝑃𝛼

2 + 𝑧
∑︁

− 1
2 <𝜇𝑖(𝛼)< 1

2

[(1/2 + 𝜇𝑖(𝛼)) + 𝑧(1/2− 𝜇𝑖(𝛼))]−1𝑃𝛼
𝜇𝑖

)(−∆𝛼)−1,

we see that 𝐴𝛼(0) = 𝑃𝛼
2 (−∆𝛼)−1; and, from Theorem 10.6, we get that 𝑃𝛼

2 (−∆𝛼)−1 is a bounded compact
operator and has a discrete spectrum. Denote the spectrum of 𝐴𝛼(0) by 𝜎(𝐴𝛼(0)). Since 𝐴𝛼(0) is clearly self-
adjoint and compact, it follows that 𝜎(𝐴𝛼(0)) ⊂ R is discrete, with only one possible cluster point at zero. Next,
we show that it is strictly positive as well.

We now consider the eigenvalue problem:

𝑃𝛼
2 (−∆𝛼)−1u = 𝛽u, (5.1)

with 𝛽 ∈ 𝜎(𝐴𝛼(0)) and eigenfunction u ∈ 𝐿2
#(𝛼, 𝑌,C3). This eigenvalue problem is equivalent to finding 𝛽 and

u ∈𝑊𝛼
2 which solve the Magnetic spectral problem:

(u,v)𝐿2(𝑌,C3) = 𝛽⟨u,v⟩, for all v ∈ 𝐽#(𝛼, 𝑌,C3). (5.2)

This limit spectra is related to the internal resonance spectra of each period of the structure. For two dimensional
problems, it reduces to the Dirichlet spectrum of the inclusion. As shown in the next section, when 𝛼 ̸= 0 the
spectra is responsible for the magnetic activity seen in metamaterials [7]. Indeed, to see the equivalence, note
that we have 𝑃𝛼

2 (−∆𝛼)−1 : 𝐿2
#(𝛼, 𝑌,C3) →𝑊𝛼

2 and, for v ∈ 𝐽#(𝛼, 𝑌,C3), it holds:

⟨𝑃𝛼
2 (−∆𝛼)−1u,v⟩ = 𝛽⟨u,v⟩ = 𝛽⟨𝑃𝛼

2 u,v⟩;

hence:
⟨(−∆𝛼)−1u, 𝑃𝛼

2 v⟩ = 𝛽⟨u, 𝑃𝛼
2 v⟩. (5.3)

Since ⟨(−∆𝛼)−1u,v⟩ =
∫︀

𝑌
u · v d𝑥 = (u,v)𝐿2(𝑌,C3), for any u ∈ 𝐿2

#(𝛼, 𝑌,C3) and v ∈ 𝐽#(𝛼, 𝑌,C3), equa-
tion (5.3) becomes:

(u, 𝑃𝛼
2 v)𝐿2(𝑌,C3) = 𝛽⟨u, 𝑃𝛼

2 v⟩,

and the equivalence follows by noticing that 𝑃𝛼
2 is the projection of 𝐽#(𝛼, 𝑌,C3) onto 𝑊𝛼

2 .
Rewriting (5.2) as: ∫︁

𝐷

∇× u · ∇ × v d𝑥 = 𝛽−1

∫︁
𝑌

u · v d𝑥,
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we define the sesquilinear form 𝑏0(·, ·) : 𝑊𝛼
2 ×𝑊𝛼

2 → C by:

𝑏0(u,v) :=
∫︁

𝐷

∇× u · ∇ × v d𝑥.

Clearly 𝑏0 is bounded and we wish to show that the spectrum is positive. To this end we introduce the following
lemma.

Lemma 5.1. For all u ∈𝑊𝛼
2 , there exists 𝐶 > 0 such that:

𝑏0(u,u) ≥ 𝐶

∫︁
𝑌

|u|2 d𝑥. (5.4)

Proof. Suppose (5.4) does not hold. Note that, for each 𝑛 = 1, 2, . . ., there exists u𝑛 ∈𝑊𝛼
2 , for which:

𝑛

∫︁
𝐷

∇u𝑛 : ∇u𝑛 d𝑥 = 𝑛

∫︁
𝐷

∇× u𝑛 · ∇ × u𝑛 d𝑥 <

∫︁
𝑌

|u𝑛|2 d𝑥.

Then, on normalizing u𝑛 with respect to the 𝐿2-norm, there exists a sequence {v𝑛} ⊂𝑊𝛼
2 , with ‖v𝑛‖𝐿2(𝑌,C3) = 1

and ∇v𝑛 → 0 strongly in 𝐿2
#(𝛼, 𝑌,C3). After possibly passing to a subsequence, we apply standard arguments

to conclude that v𝑛 → v strongly in 𝐽#(𝛼, 𝑌,C3), such that v is constant in 𝑌 and ‖v‖𝐿2(𝑌,C3) = 1. But the
only constant function in 𝐽#(𝛼, 𝑌,C3), for 𝛼 ̸= 0, is the zero function; which leads to a contradiction. �

In light of Lemma 5.1, we conclude that the problem (5.1) has a positive, decreasing sequence of eigenvalues,
with a possible cluster point only at zero.

6. Spectrum in the high contrast limit: periodic case, 𝛼 = 0

We describe the spectrum of the limiting operator 𝐴0(0), which is written as 𝐴0(0) = 𝑃 0
2 (−∆0)−1, where

𝑃 0
2 is the projection onto 𝑊 0

2 . It is shown that the limit spectra for 𝛼 = 0 is related to the internal resonance
spectra of each period of the structure, which are responsible for the magnetic activity seen in metamaterials
outlined in [7]. Here, the operator (−∆0)−1 is compact and self-adjoint on 𝐿2

#(0, 𝑌,C3), and given by (3.3) for
𝛼 = 0. Denote the spectrum of 𝐴0(0) by 𝜎(𝐴0(0)). In this case we see, as in the case 𝛼 ̸= 0 of the previous
section, that 𝜎(𝐴0(0)) ⊂ R+ is discrete, with only one possible cluster point at zero.

As in [7], one can define:

Definition 6.1. The geometric average is a path integral with components defined by:

(
∮︁

u) · e𝑖 :=
∫︁

Γ𝑖

u · e𝑖 𝑑ℓ,

where Γ𝑖 is any curve in 𝐻 connecting two opposite points on the faces of 𝜕𝑌 orthogonal to e𝑖 and 𝑑ℓ is an
element of arc-length.

The goal is to precisely identify 𝜎(𝐴0(0)) ⊂ R+. With that in mind, we introduce the spaces:

𝐹 (𝑌 ) =
{︀
u ∈ 𝐻1

𝑙𝑜𝑐(R3,C3) : u periodic on 𝑌 , ∇ · u = 0 in𝑌, ∇× u = 0 in 𝐻
}︀

𝜒𝑑𝑖𝑣
0 =

{︂
u ∈ 𝐹 (𝑌 ) :

∮︁
u = 0

}︂
.

A characterization of the space 𝑊 0
2 is given by the following lemma.
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Lemma 6.2. Let 𝜒𝑌 be the characteristic function of 𝑌 . We have:

𝑊 0
2 = 𝑊̃2 =

{︂
u = ũ−

(︂∫︁
𝑌

ũ d𝑥
)︂
𝜒𝑌 : ũ ∈ 𝜒𝑑𝑖𝑣

0

}︂
. (6.1)

Proof. Consider the space 𝐹 (𝑌 ). The curl-free condition in 𝐻, together with the 𝑌 -periodicity condition, implies
that u = ∇𝜙+c in 𝐻, where 𝜙 ∈𝑊 1,2

# (𝐻) and
∮︀

u = c ∈ C3. From this, we can conclude that 𝜒𝑑𝑖𝑣
0 ⊕C3 = 𝐹 (𝑌 )

and that:

𝑊 0
2 =

{︂
𝐹 (𝑌 ) :

∫︁
𝑌

u d𝑥 = 0
}︂

=
{︂
u ∈ 𝜒𝑑𝑖𝑣

0 ⊕ C3 :
∫︁

𝑌

u d𝑥 = 0
}︂
.

To see that 𝑊 0
2 = 𝑊̃2, we introduce the orthonormal system {u𝑗}𝑗∈N in 𝐿2

#(0, 𝑌,C3) that is dense in 𝜒𝑑𝑖𝑣
0 with

respect to the 𝑊 1,2(𝑌,C3)-norm, and is given by the eigenvectors of (6.2), see Theorem 6.3 below. Then:

𝐹 (𝑌 ) =
{︁
u ∈ span {uj}j∈N ⊕ span

{︀
e1, e2, e3

}︀}︁
,

and an element u of 𝐹 (𝑌 ) is written:

u =
∞∑︁

𝑗=1

𝑐𝑗u𝑗 + 𝑎1e1 + 𝑎2e2 + 𝑎3e3.

From this, we see that the condition
∫︀

𝑌
u d𝑥 = 0 is equivalent to:

𝑎𝑘 = −e𝑘 ·
∞∑︁

𝑗=1

∫︁
𝑌

𝑐𝑗u𝑗 d𝑥, for 𝑘 = 1, 2, 3.

We define:

ũ =
∞∑︁

𝑗=1

𝑐𝑗u𝑗 ∈ 𝜒𝑑𝑖𝑣
0 ,

to discover u = ũ−
∫︀

𝑌
ũ d𝑥, so 𝑊 0

2 = 𝑊̃2 and the lemma follows. �

Next, we identify all the eigenfunctions and eigenvalues of the following auxiliary eigenvalue problem. Find
all eigen-pairs (u, 𝛽) in 𝜒𝑑𝑖𝑣

0 × R+ which solve the Magnetic spectral problem:

(u,v)𝐿2(𝑌,C3) = 𝛽⟨u,v⟩, for all v ∈ 𝜒𝑑𝑖𝑣
0 . (6.2)

Following the results in [7], we get the following theorem.

Theorem 6.3. The eigenvalues 𝛽 of (6.2) are positive and form a sequence {𝛽𝑛}∞𝑛=1 converging to 0. The
eigenvectors of (6.2) deliver a orthonormal system in 𝐿2

#(0, 𝑌,C3) that is dense in 𝜒𝑑𝑖𝑣
0 with respect to the

𝑊 1,2(𝑌,C3)-norm.

We now provide a precise characterization of the spectrum 𝜎(𝐴0(0)) of the limit operator 𝐴0(0). In prepa-
ration, we consider the countably dense in 𝐿2

#(0, 𝑌,C3), subset of 𝜒𝑑𝑖𝑣
0 , orthonormal family of eigenfunctions

{u𝑛}∞𝑛=1 associated with the eigenvalues 𝛽𝑛 ↘ 0 of (6.2). Here, orthonormality is considered with respect to
the 𝐿2(𝑌,C3)-inner product.

We have that 𝜎(𝐴0(0)) consists of all 𝜈−1 such that there exists a pair u and 𝜈, with u ∈ 𝑊 0
2 and 𝜈 > 0,

such that:
⟨u,v⟩𝐷 = 𝜈 (u,v)𝐿2(𝑌,C3), for all v ∈𝑊 0

2 , (6.3)
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where ⟨u,v⟩𝐷 =
∫︀

𝐷
∇× u · ∇× v d𝑥. By (6.1), u = ũ−

∫︀
𝑌

ũ d𝑥, with ũ ∈ 𝜒𝑑𝑖𝑣
0 . Hence, there exists a sequence

{𝑐𝑛}∞𝑛=1 ⊂ C such that:

ũ =
∞∑︁

𝑛=1

𝑐𝑛u𝑛, and u =
∞∑︁

𝑛=1

𝑐𝑛u𝑛 + c. (6.4)

where c = −
∫︀

𝑌
ũ d𝑥.

First, suppose u ∈ 𝜒𝑑𝑖𝑣
0 and c = −

∫︀
𝑌

u d𝑥 = 0. By (6.3), for v = ṽ −
∫︀

𝑌
ṽ d𝑥, with ṽ ∈ 𝜒𝑑𝑖𝑣

0 , we obtain:

⟨u, ṽ⟩𝐷 = 𝜈 (u, ṽ −
∫︁

𝑌

ṽ d𝑥)𝐿2(𝑌,C3) = 𝜈 (u, ṽ)𝐿2(𝑌,C3),

since:

(u,
∫︁

𝑌

ṽ d𝑥)𝐿2(𝑌,C3) =
∫︁

𝑌

u ·
∫︁

𝑌

ṽ d𝑥 𝑑𝑦 = 0.

So u solves ⟨u, ṽ⟩𝐷 = 𝜈 (u, ṽ)𝐿2(𝑌,C3), for all ṽ ∈ 𝜒𝑑𝑖𝑣
0 , and is, therefore, an eigenfunction of (6.3) belonging

𝜒𝑑𝑖𝑣
0 with

∫︀
𝑌

u d𝑥 = 0. So all eigenvalues 𝜈 are eigenvalues
{︁
𝛽−1

𝑛
′
}︁∞

𝑛=1
⊂
{︀
𝛽−1

𝑛

}︀∞
𝑛=1

corresponding to mean zero

eigenfunctions. To summarize, a component of the spectrum 𝜎(𝐴0(0)) of the limit operator 𝐴0(0) is given by{︁
𝛽−1

𝑛
′
}︁∞

𝑛=1
.

Next we identify the remaining component of 𝜎(𝐴0(0)). Now, suppose that c = −
∫︁

𝑌

ũ d𝑥 ̸= 0, and that u

is an eigenfunction of (6.3) with eigenvalue 𝜈. We normalize so that |c| = 1. We have u = ũ−
∫︀

𝑌
ũ d𝑥 and for

all v = ṽ −
∫︀

𝑌
ṽ d𝑥, we get:

⟨ũ, ṽ⟩𝐷 = 𝜈 (u, ṽ)𝐿2(𝑌,C3), for all ṽ ∈ 𝜒𝑑𝑖𝑣
0 . (6.5)

Using (6.4) in (6.5), we have:

⟨
∞∑︁

𝑛=1

𝑐𝑛u𝑛, ṽ⟩𝐷 = 𝜈 (
∞∑︁

𝑛=1

𝑐𝑛u𝑛 + c, ṽ)𝐿2(𝑌,C3), for all ṽ ∈ 𝜒𝑑𝑖𝑣
0 . (6.6)

Now, pick ṽ = u𝑚, 𝑚 ∈ N+, in (6.6), to get:

𝑐𝑚𝛽
−1
𝑚 = 𝜈𝑐𝑚 + 𝜈 (c,u𝑚)𝐿2(𝑌,C3)

=⇒ 𝑐𝑚𝛽
−1
𝑚 = 𝜈𝑐𝑚 + 𝜈 c ·

∫︁
𝑌

u𝑚 d𝑥

=⇒ 𝑐𝑚 =
𝜈 c ·

∫︀
𝑌

u𝑚 d𝑥
(𝛽−1

𝑚 − 𝜈)
.

Then (6.4) becomes:

ũ =
∞∑︁

𝑛=1

𝜈 c ·
∫︀

𝑌
u𝑛 d𝑥

(𝛽−1
𝑛 − 𝜈)

u𝑛(x), and u =
∞∑︁

𝑛=1

𝜈 c ·
∫︀

𝑌
u𝑛 d𝑥

(𝛽−1
𝑛 − 𝜈)

u𝑛(x) + c.

Since we require
∫︀

𝑌
u d𝑥 = 0, we obtain:

c = −𝜈
∞∑︁

𝑛=1

∫︀
𝑌

u𝑛 d𝑥⊗
∫︀

𝑌
u𝑛 d𝑥

(𝛽−1
𝑛 − 𝜈)

c. (6.7)

We introduce the effective magnetic permeability tensor :

𝜇(𝜈) =

(︃
𝐼3×3 + 𝜈

∞∑︁
𝑛=1

∫︀
𝑌

u𝑛 d𝑥⊗
∫︀

𝑌
u𝑛 d𝑥

(𝛽−1
𝑛 − 𝜈)

)︃
,
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Figure 2. Schematic of Γ𝑗 , 𝑑, Σ′(0), and Σ′′(0).

and (6.7) gives the homogeneous system for the vector c in C3 given by:

𝜇(𝜈)c = 0. (6.8)

The effective permeability tensor agrees with the one given by the high contrast homogenization of Maxwell’s
equations in [7]. We form the spectral function given by:

𝑆(𝜈) = det[𝜇(𝜈)], (6.9)

and, clearly, we have a nontrivial solution of (6.8) when 𝑆(𝜈) = 0. The roots of the spectral function form a
countable non-decreasing sequence of positive numbers {𝜈𝑛}∞𝑛=1 tending to infinity. We set 𝛽𝑛 = 𝜈−1

𝑛 and the
complete characterization of 𝜎(𝐴0(0)) given by:

Theorem 6.4.
𝜎(𝐴0(0)) = {𝛽

′

𝑛}∞𝑛=1 ∪ {𝛽𝑛}∞𝑛=1.

When the inclusion shape is invariant under the cubic group of rotations, the effective permeability tensor is
a multiple of the identity, i.e., 𝜇(𝜈) = 𝐼3×3𝜆(𝜈), where 𝜆(𝜈) is a scalar function of 𝜈. Here, det {𝜇(𝜈)} = 𝜆3(𝜈),
so 𝜈𝑗 are the roots of the equation 𝜆(𝜈) = 0. For any constant vector v in R3 we have:

𝜆(𝜈) =
𝜇(𝜈)v · v
|v|2

= 1− 𝜈
∑︁
𝑛∈N

𝑎2
𝑛

𝜈 − 𝛽*𝑛
, (6.10)

where 𝑎2
𝑛 = |

∫︀
𝐷

u𝑛 d𝑥 · v|2/|v|2 > 0 and 𝛽*𝑛 are only associated with nonzero mean eigenfunctions. For 𝛽*𝑛−1 <
𝜈 < 𝛽*𝑛, calculation shows −∞ < 𝜆(𝜈) < ∞, with 𝜆′(𝜈) > 0. From this, we conclude 𝛽*𝑛 < 𝜈𝑗 < 𝛽*𝑛+1 and we
have the interlacing 𝜈𝑛−1 < 𝛽*𝑛 < 𝜈𝑛.

7. Radius of convergence and separation of spectra

Fix an inclusion geometry specified by the domain 𝐷. Suppose first 𝛼 ∈ 𝑌 ⋆ and 𝛼 ̸= 0. Take Γ𝑗 to be a closed
contour in C containing an eigenvalue 𝛽𝛼

𝑗 (0) ∈ 𝜎(𝐴𝛼(0)), but no other element of 𝜎(𝐴𝛼(0)), i.e, for 𝛼 ̸= 0 ∈ 𝑌 *
fixed, 𝛽𝛼

𝑗 (0) is separated from other components of the spectrum, see Figure 2. Define 𝑑 to be the distance
between Γ𝑗 and 𝜎(𝐴𝛼(0)), i.e.:

𝑑 = dist(Γ𝑗 , 𝜎(𝐴𝛼(0)) = inf
𝜁∈Γ𝑗

{dist(𝜁, 𝜎(𝐴𝛼(0))}. (7.1)

The component of the spectrum of 𝐴𝛼(0) inside Γ𝑗 is precisely 𝛽𝛼
𝑗 (0), and we denote this by Σ′(0). The part of

the spectrum of 𝐴𝛼(0) in the domain exterior to Γ𝑗 is denoted by Σ′′(0), and Σ′′(0) = 𝜎(𝐴𝛼(0)) ∖ 𝛽𝛼
𝑗 (0). The

invariant subspace of 𝐴𝛼(0) associated with Σ′(0) is denoted by ℳ′(0) with ℳ′(0) = 𝑃 (0)𝐿2
#(𝛼, 𝑌,C3).

Suppose the lowest 𝛼-quasiperiodic resonance eigenvalue for the domain 𝐷 lies inside −1/2 < 𝜇−(𝛼) < 0. It
is noted that, in the sequel, a large and generic class of domains are identified for which −1/2 < 𝜇−(𝛼). The
corresponding upper bound on the set 𝑧 ∈ 𝒮, for which 𝐴𝛼(𝑧) is not invertible, is given by:

𝑧*(𝛼) =
𝜇−(𝛼) + 1/2
𝜇−(𝛼)− 1/2

< 0, (7.2)
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see (4.2). Now set:

𝑟* =
|𝛼|2𝑑|𝑧*(𝛼)|

1
1/2−𝜇−(𝛼) + |𝛼|2𝑑

. (7.3)

Theorem 7.1. Separation of spectra and radius of convergence for 𝛼 ∈ 𝑌 ⋆, 𝛼 ̸= 0.
The following properties hold for inclusions with domains 𝐷 that satisfy (7.2):

1. If |𝑧| < 𝑟*, then Γ𝑗 lies in the resolvent of both 𝐴𝛼(0) and 𝐴𝛼(𝑧) and, thus, separates the spectrum of 𝐴𝛼(𝑧)
into two parts given by the component of spectrum of 𝐴𝛼(𝑧) inside Γ𝑗, denoted by Σ′(𝑧), and the component
exterior to Γ𝑗, denoted by Σ′′(𝑧). The invariant subspace of 𝐴𝛼(𝑧) associated with Σ′(𝑧) is denoted by ℳ′(𝑧),
with ℳ′(𝑧) = 𝑃 (𝑧)𝐿2

#(𝛼, 𝑌,C3).
2. The projection 𝑃 (𝑧) is holomorphic for |𝑧| < 𝑟* and 𝑃 (𝑧) is given by:

𝑃 (𝑧) =
−1
2𝜋𝑖

∮︁
Γ𝑗

𝑅(𝜁, 𝑧) 𝑑𝜁.

3. The spaces ℳ′(𝑧) and ℳ′(0) are isomorphic for |𝑧| < 𝑟*.
4. The power series (4.7) converges uniformly for 𝑧 ∈ C inside any disk centered at the origin contained within
|𝑧| < 𝑟*.

Suppose now 𝛼 = 0. For this case, take Γ𝑗 to be the closed contour in C containing an eigenvalue 𝛽0
𝑗 (0) ∈

𝜎(𝐴0(0)), but no other element of 𝜎(𝐴0(0)), i.e., Γ𝑗 separates 𝛽𝛼
𝑗 (0) from other components of the spectrum,

and define:
𝑑 = inf

𝜁∈Γ𝑗

{dist(𝜁, 𝜎(A0(0)))}.

Suppose that the lowest 𝛼-quasiperiodic resonance eigenvalue for the domain 𝐷 lies inside −1/2 < 𝜇−(0) < 0
and the corresponding upper bound on 𝒮 is given by:

𝑧*(0) =
𝜇−(0) + 1/2
𝜇−(0)− 1/2

< 0. (7.4)

Set:

𝑟* =
4𝜋2𝑑|𝑧*(0)|

1
1/2−𝜇−(0) + 4𝜋2𝑑

. (7.5)

Theorem 7.2. Separation of spectra and radius of convergence for 𝛼 = 0.
The following properties hold for inclusions with domains 𝐷 that satisfy (7.4):

1. If |𝑧| < 𝑟*, then Γ𝑗 lies in the resolvent of both 𝐴0(0) and 𝐴0(𝑧) and, thus, separates the spectrum of 𝐴0(𝑧)
into two parts given by the component of spectrum of 𝐴0(𝑧) inside Γ𝑗, denoted by Σ′(𝑧), and the component
exterior to Γ𝑗, denoted by Σ′′(𝑧). The invariant subspace of 𝐴0(𝑧) associated with Σ′(𝑧) is denoted by ℳ′(𝑧),
with ℳ′(𝑧) = 𝑃 (𝑧)𝐿2

#(𝛼, 𝑌,C3).
2. The projection 𝑃 (𝑧) is holomorphic for |𝑧| < 𝑟* and 𝑃 (𝑧) is given by:

𝑃 (𝑧) =
−1
2𝜋𝑖

∮︁
Γ𝑗

𝑅(𝜁, 𝑧) 𝑑𝜁.

3. The spaces ℳ′(𝑧) and ℳ′(0) are isomorphic for |𝑧| < 𝑟*.
4. The power series (4.7) converges uniformly for 𝑧 ∈ C inside any disk centered at the origin contained within
|𝑧| < 𝑟*.

Next, we provide an explicit representation of the integral operators appearing in the series expansion for the
eigenvalue group.
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Theorem 7.3. Representation of integral operators in the series expansion for eigenvalues
Let 𝑃𝛼

3 be the projection onto the orthogonal complement of 𝑊𝛼
1 ⊕𝑊𝛼

2 , and let 𝐼 denote the identity on 𝐿2(𝜕𝐷)3,
then the explicit representation for the operators 𝐴𝛼

𝑛 in the expansion (4.7), (4.8) is given by:

𝐴𝛼
1 = [𝑆𝛼(𝑀𝛼 +

1
2
𝐼)−1(𝑆𝛼)−1𝑃𝛼

3 + 𝑃𝛼
1 ](−∆𝛼)−1 and

𝐴𝛼
𝑛 = 𝑆𝛼(𝑀𝛼 +

1
2
𝐼)−1(𝑆𝛼)−1[𝑆𝛼(𝑀𝛼 − 1

2
𝐼)(𝑀𝛼 +

1
2
𝐼)−1(𝑆𝛼)−1]𝑛−1𝑃𝛼

3 (−∆𝛼)−1.

We have a corollary to Theorems 7.1 and 7.2 regarding the error incurred when only finitely many terms of
the series (4.7) are calculated.

Theorem 7.4. Error estimates for the eigenvalue expansion.

1. Let 𝛼 ̸= 0, and suppose 𝐷, 𝑧*(𝛼), and 𝑟* are as in Theorem 7.1. Then, the following error estimate for the
series (4.7) holds for |𝑧| < 𝑟*: ⃒⃒⃒⃒

⃒𝛽𝛼(𝑧)−
𝑝∑︁

𝑛=0

𝑧𝑛𝛽𝛼
𝑛

⃒⃒⃒⃒
⃒ ≤ 𝑑|𝑧|𝑝+1

(𝑟*)𝑝(𝑟* − |𝑧|)
.

2. Let 𝛼 = 0, and suppose 𝐷, 𝑧*(0), and 𝑟* are as in Theorem 7.2. Then, the following error estimate for the
series (4.7) holds for |𝑧| < 𝑟*: ⃒⃒⃒⃒

⃒𝛽0(𝑧)−
𝑝∑︁

𝑛=0

𝑧𝑛𝛽0
𝑛

⃒⃒⃒⃒
⃒ ≤ 𝑑|𝑧|𝑝+1

(𝑟*)𝑝(𝑟* − |𝑧|)
.

We summarize results in the following theorem.

Theorem 7.5. The Bloch eigenvalue problem (1.4) is defined for the coupling constant 𝑘 extended into the
complex plane and the operator −∇× (𝑘𝜒𝐻 + 𝜒𝐷)∇× with domain 𝐽#(𝛼, 𝑌,C3) is holomorphic for 𝑘 ∈ C ∖ 𝑍.
The associated Bloch spectra is given by the eigenvalues 𝜆𝑗(𝑘, 𝛼) = (𝛽𝛼

𝑗 (1/𝑘))−1, for 𝑗 ∈ N. For 𝛼 ∈ 𝑌 ⋆ fixed,
the eigenvalues are of finite multiplicity. Moreover for each 𝑗 and 𝛼 ∈ 𝑌 ⋆, the eigenvalue group is analytic
within any neighborhood of infinity contained within the disk |𝑘| > (𝑟*)−1 where 𝑟* is given by (7.3) for 𝛼 ̸= 0
and by (7.5) for 𝛼 = 0.

The proofs of Theorems 7.1, 7.2 and 7.4 are given in Section 10. The proof of Theorem 7.3 is given in Section 9.

8. Radius of convergence and separation of spectra for periodic scatterers
of general shape

In this section, we identify an explicit condition on the inclusion geometry that guarantees a lower bound 𝜇−

on the structural spectrum.
Let 𝐷 be a simply connected set, compactly contained in 𝑌 , with 𝐶1,𝛾 boundary, 𝛾 > 0. Recall that, by

Theorem 2.9, we have that the eigenvalues of the magnetic dipole operator are precisely those of the Neumann-
Poincaré operator, that is:

𝜎(𝑀𝛼; 𝑉
− 1

2
𝑡 (𝜕𝐷)3) = 𝜎((𝐾−𝛼)*; 𝐻− 1

2
0 (𝜕𝐷)).

Moreover, a criteria for an 𝛼-independent lower bound for 𝜎
(︁

(𝐾−𝛼)*; 𝐻− 1
2

0 (𝜕𝐷)
)︁

was already established in
[24], in a theorem which we restate below.

Theorem 8.1. Let 𝜇− be the infimum of the structural spectrum. Suppose there is a constant 𝜃 > 0 such that,
for all 𝑢 ∈ 𝐻1

𝛼(𝑌 ) that are harmonic in 𝐷 and 𝑌 ∖𝐷, we have:

‖∇𝑢‖2𝐿2(𝑌 ∖𝐷) ≥ 𝜃‖∇𝑢‖2𝐿2(𝐷). (8.1)

Let 𝜌 = min{ 1
2 ,

𝜃
2}. Then 𝜇− + 1

2 > 𝜌.
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Clearly, the parameter 𝜃 is a geometric descriptor for 𝐷. The class of inclusions for which Theorem (8.1)
holds, for a fixed positive value of 𝜃, is denoted by 𝑃𝜃, and we have the following corollary.

Corollary 8.2. For every inclusion domain 𝐷 belonging to 𝑃𝜃, Theorems 7.2 through 7.5 hold with 𝑧*(𝛼)
replaced with 𝑧+ given by:

𝑧+ =
𝜇− + 1/2
𝜇− − 1/2

< 0,

where 𝜇− = min{ 1
2 ,

𝜃
2} −

1
2 .

In [24], the authors also introduce a wide class of inclusion shapes with 𝜃 > 0 that satisfy (8.1). Consider
a “buffered” inclusion geometry, which consists of an inclusion domain 𝐷 surrounded by a buffer layer 𝑅, see
Figure 3. In the “buffer” 𝑅 ∖𝐷, we have 𝑎(𝑥) = 1, that is, the buffer is a region of positive volume surrounding
𝐷 that does not intersect with the boundary 𝜕𝑌 of the unit cell 𝑌 . Denote the Dirichlet-to-Neumann map on
the boundary of the inclusion by 𝐷𝑁 : 𝐻1/2(𝜕𝐷) → 𝐻−1/2(𝜕𝐷), denote its norm by ‖𝐷𝑁‖, and denote the
Poincaré constant for the buffer layer by 𝐶𝑅; we have the following theorem, also from [24].

Theorem 8.3. The buffered inclusion geometry satisfies (8.1) with:

𝜃−1 ≥
√︁

1 + 𝐶2
𝑅 ‖𝐷𝑁‖

provided this maximum is finite.

We now take 𝐷𝑖 = 𝐵𝑎(𝑥𝑖), a sphere with center 𝑥𝑖 and radius 𝑎, and observe that 𝐷′𝑖 = 𝐵𝑏(𝑥𝑖) ⊃ 𝐷𝑖 if 𝑎 < 𝑏.
Following Appendix A.3 of [8], we see that 𝜃−1 will satisfy:

𝜃−1 = max
𝑙≥1

𝐶𝑙(𝑎, 𝑏),

where:

𝐶𝑙(𝑎, 𝑏) =
𝑙𝑏2𝑙+1 + (𝑙 + 1)𝑎2𝑙+1

(𝑙 + 1)(𝑏2𝑙+1 − 𝑎2𝑙+1)
.

Adding and subtracting 𝑏2𝑙+1 in the numerator yields:

𝐶𝑙(𝑎, 𝑏) =
𝑏2𝑙+1 + 𝑎2𝑙+1

𝑏2𝑙+1 − 𝑎2𝑙+1
− 𝑏2𝑙+1

(𝑙 + 1)(𝑏2𝑙+1 − 𝑎2𝑙+1)

≤ 𝑏2𝑙+1 + 𝑎2𝑙+1

𝑏2𝑙+1 − 𝑎2𝑙+1
=: 𝐶*𝑙 (𝑎, 𝑏).

Note that 𝐶*𝑙 (𝑎, 𝑏) is decreasing in 𝑙:

𝑑

𝑑𝑙
𝐶*𝑙 (𝑎, 𝑏) =

2(𝑎𝑏)2𝑙+1(ln(𝑎)− ln(𝑏))
(𝑏2𝑙+1 − 𝑎2𝑙+1)2

< 0,

for all 𝑙 ≥ 1. So:

𝜃−1 ≤ max
𝑙≥1

𝐶*𝑙 (𝑎, 𝑏) =
𝑏3 + 𝑎3

𝑏3 − 𝑎3
.

Thus:

‖∇𝑢‖𝐿2(𝑌 ∖𝐷) ≥
𝑏3 − 𝑎3

𝑏3 + 𝑎3
‖∇𝑢‖𝐿2(𝐷).

Observe that this bound is not sharp.
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Figure 3. Buffered inclusion.

9. Layer potential representation of operators in power series

In this section, we obtain explicit formulas for the operators 𝐴𝛼
𝑛 appearing in the power series (4.8). It is

shown that 𝐴𝛼
𝑛, 𝑛 ̸= 0, can be expressed in terms of integral operators associated with layer potentials, and we

establish Theorem 7.3.
Recall that 𝐴𝛼(𝑧)−𝐴𝛼(0) is given by:(︀

𝑧 𝑃𝛼
1 +

∑︁
− 1

2 <𝜇𝑖(𝛼)< 1
2

𝑧 [(1/2 + 𝜇𝑖(𝛼)) + 𝑧(1/2− 𝜇𝑖(𝛼))]−1
𝑃𝛼

𝜇𝑖

)︀
(−∆−1

𝛼 ).

Factoring (1/2 + 𝜇𝑖(𝛼))−1 and expanding in power series the term:

[(1/2 + 𝜇𝑖(𝛼)) + 𝑧(1/2− 𝜇𝑖(𝛼))]−1 = (1/2 + 𝜇𝑖(𝛼))−1
∞∑︁

𝑛=0

𝑧𝑛

(︂
𝜇𝑖(𝛼)− 1/2
𝜇𝑖(𝛼) + 1/2

)︂𝑛

,

we obtain:

𝐴𝛼(𝑧)−𝐴𝛼(0) = (𝑧𝑃𝛼
1 +

∞∑︁
𝑛=1

𝑧𝑛
∑︁

− 1
2 <𝜇𝑖(𝛼)< 1

2

(𝜇𝑖(𝛼) + 1/2)−1

(︂
𝜇𝑖(𝛼)− 1/2
𝜇𝑖(𝛼) + 1/2

)︂𝑛−1

𝑃𝛼
𝜇𝑖
𝑃𝛼

3 )(−∆−1
𝛼 ).

It follows that:

𝐴𝛼
1 = (𝑃𝛼

1 +
∑︁

− 1
2 <𝜇𝑖(𝛼)< 1

2

(1/2 + 𝜇𝑖(𝛼))−1𝑃𝛼
𝜇𝑖
𝑃𝛼

3 )(−∆−1
𝛼 ) (9.1)

𝐴𝛼
𝑛 =

(︁ ∑︁
− 1

2 <𝜇𝑖(𝛼)< 1
2

(𝜇𝑖(𝛼) + 1/2)−1

(︂
𝜇𝑖(𝛼)− 1/2
𝜇𝑖(𝛼) + 1/2

)︂𝑛−1

𝑃𝛼
𝜇𝑖
𝑃𝛼

3

)︁
(−∆−1

𝛼 ). (9.2)

We also that we have the resolution of the identity given by:

𝐼 = 𝐼𝐽#(𝛼,𝑌,C3) = 𝑃𝛼
1 + 𝑃𝛼

2 + 𝑃𝛼
3 ,

with 𝑃𝛼
3 =

∑︀
− 1

2 <𝜇𝑖(𝛼)< 1
2

𝑃𝛼
𝜇𝑖

, and the spectral representation:

⟨𝑇𝛼u,v⟩ = ⟨(𝑆𝛼𝑀𝛼(𝑆𝛼)−1)𝑃𝛼
3 u +

1
2
𝑃𝛼

1 u− 1
2
𝑃𝛼

2 u,v⟩

= ⟨
∑︁

− 1
2 <𝜇𝑖(𝛼)< 1

2

𝜇𝑖(𝛼)𝑃𝛼
𝜇𝑖

u +
1
2
𝑃𝛼

1 u− 1
2
𝑃𝛼

2 u,v⟩.
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Adding 1
2𝐼 to both sides of the above equation, we obtain:

⟨(𝑇𝛼 +
1
2
𝐼)u,v⟩ = ⟨(

∑︁
− 1

2 <𝜇𝑖(𝛼)< 1
2

(𝜇𝑖(𝛼) +
1
2

)𝑃𝛼
𝜇𝑖

+ 𝑃𝛼
1 )u,v⟩

= ⟨((𝑆𝛼𝑀𝛼(𝑆𝛼)−1 +
1
2
𝑃𝛼

3 )𝑃𝛼
3 + 𝑃𝛼

1 )u,v⟩ (9.3)

= ⟨((𝑆𝛼(𝑀𝛼 +
1
2
𝐼)(𝑆𝛼)−1)𝑃𝛼

3 + 𝑃𝛼
1 )u,v⟩,

where 𝐼 is the identity on 𝐻−1/2(𝜕𝐷)3. Now, from (9.3), we see that:∑︁
− 1

2 <𝜇𝑖(𝛼)< 1
2

(
1
2

+ 𝜇𝑖(𝛼))−1𝑃𝛼
𝜇𝑖
𝑃𝛼

3 = (𝑆𝛼(𝑀𝛼 +
1
2
𝐼)−1(𝑆𝛼)−1)𝑃𝛼

3 . (9.4)

Combining (9.1) and (9.4), we obtain:

𝐴𝛼
1 = [𝑆𝛼(𝑀𝛼 +

1
2
𝐼)−1(𝑆𝛼)−1𝑃𝛼

3 + 𝑃𝛼
1 ](−∆𝛼)−1.

We now turn to the higher-order terms. By the mutual orthogonality of the projections 𝑃𝛼
𝜇𝑖

, for 𝑛 > 1, we
have that:∑︁
− 1

2 <𝜇𝑖(𝛼)< 1
2

(𝜇𝑖(𝛼) + 1/2)−1

(︂
𝜇𝑖(𝛼)− 1/2
𝜇𝑖(𝛼) + 1/2

)︂𝑛−1

𝑃𝛼
𝜇𝑖

(9.5)

=
(︁ ∑︁
− 1

2 <𝜇𝑖(𝛼)< 1
2

(1/2 + 𝜇𝑖(𝛼))−1𝑃𝛼
𝜇𝑖

)︁(︁ ∑︁
− 1

2 <𝜇𝑖(𝛼)< 1
2

(𝜇𝑖(𝛼)− 1/2)𝑃𝛼
𝜇𝑖

)︁𝑛−1(︁ ∑︁
− 1

2 <𝜇𝑖(𝛼)< 1
2

(𝜇𝑖(𝛼) + 1/2)𝑃𝛼
𝜇𝑖

)︁1−𝑛

.

As above, we have that:∑︁
− 1

2 <𝜇𝑖(𝛼)< 1
2

(1/2 + 𝜇𝑖(𝛼))−1𝑃𝛼
𝜇𝑖
𝑃𝛼

3 = 𝑆𝛼(𝑀𝛼 +
1
2
𝐼)−1(𝑆𝛼)−1𝑃𝛼

3 ,

∑︁
− 1

2 <𝜇𝑖(𝛼)< 1
2

(1/2 + 𝜇𝑖(𝛼))𝑃𝛼
𝜇𝑖
𝑃𝛼

3 = 𝑆𝛼(𝑀𝛼 +
1
2
𝐼)(𝑆𝛼)−1𝑃𝛼

3 , (9.6)

∑︁
− 1

2 <𝜇𝑖(𝛼)< 1
2

(𝜇𝑖(𝛼)− 1/2)𝑃𝛼
𝜇𝑖
𝑃𝛼

3 = 𝑆𝛼(𝑀𝛼 − 1
2
𝐼)(𝑆𝛼)−1𝑃𝛼

3 .

Combining (9.6), (9.5), and (9.2), we obtain the layer-potential representation for 𝐴𝛼
𝑛, concluding the proof

of Theorem 7.3:

𝐴𝛼
𝑛 = 𝑆𝛼(𝑀𝛼 +

1
2
𝐼)−1(𝑆𝛼)−1[𝑆𝛼(𝑀𝛼 − 1

2
𝐼)(𝑀𝛼 +

1
2
𝐼)−1(𝑆𝛼)−1]𝑛−1𝑃𝛼

3 (−∆𝛼)−1.

10. Derivation of the convergence radius and separation of spectra

In this section, we present the proof of Theorem 7.1 and the proof of Theorem 7.2. To begin, we suppose
𝛼 ̸= 0 and recall that the Neumann series (4.4), and consequently (4.5) and (4.7), converge provided that:

‖(𝐴𝛼(𝑧)−𝐴𝛼(0))𝑅(𝜁, 0)‖ℒ[𝐿2
#(𝛼,𝑌,C3);𝐿2

#(𝛼,𝑌,C3)] < 1. (10.1)
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With this in mind, we will compute an explicit upper bound 𝐵(𝛼, 𝑧) and identify a neighborhood of the origin
on the complex plane for which:

‖(𝐴𝛼(𝑧)−𝐴𝛼(0))𝑅(𝜁, 0)‖ℒ[𝐿2
#(𝛼,𝑌,C3);𝐿2

#(𝛼,𝑌,C3)] < 𝐵(𝛼, 𝑧) < 1,

holds for 𝜁 ∈ Γ𝑗 . The inequality 𝐵(𝛼, 𝑧) < 1 will be used first to derive a lower bound on the radius of
convergence of the power series expansion of the eigenvalue group about 𝑧 = 0. Then, it will be used to provide
a lower bound on the neighborhood of 𝑧 = 0 where properties 1 through 3 of Theorem 7.1 hold.

We have the basic estimate given by:

‖(𝐴𝛼(𝑧)−𝐴𝛼(0))𝑅(𝜁, 0)‖ℒ[𝐿2
#(𝛼,𝑌,C3);𝐿2

#(𝛼,𝑌,C3)] (10.2)

≤ ‖(𝐴𝛼(𝑧)−𝐴𝛼(0))‖ℒ[𝐿2
#(𝛼,𝑌,C3);𝐿2

#(𝛼,𝑌,C3)]‖𝑅(𝜁, 0)‖ℒ[𝐿2
#(𝛼,𝑌,C3);𝐿2

#(𝛼,𝑌,C3)].

Here 𝜁 ∈ Γ𝑗 , as defined in Theorem 7.1, and elementary arguments deliver the estimate:

‖𝑅(𝜁, 0)‖ℒ[𝐿2
#(𝛼,𝑌,C3);𝐿2

#(𝛼,𝑌,C3)] ≤ 𝑑−1, (10.3)

where 𝑑 is given by (7.1). Next, we estimate ‖(𝐴𝛼(𝑧)−𝐴𝛼(0))‖ℒ[𝐿2
#(𝛼,𝑌,C3);𝐿2

#(𝛼,𝑌,C3)].
Denote the energy seminorm of u by:

‖u‖ = ‖∇ × u‖𝐿2(𝑌,C3).

To proceed, we introduce the following Poincaré estimate:

Lemma 10.1. Poincaré estimate for functions u belonging to 𝐽#(𝛼, 𝑌,C3), for 𝛼 ̸= 0:

‖u‖𝐿2(𝑌,C3) ≤ |𝛼|−1‖u‖. (10.4)

Proof. First, we obtain that:

(−∆−1
𝛼 u,u)𝐿2(𝑌,C3) =

∫︁
𝑌

∫︁
𝑌

−𝐺𝛼(𝑥, 𝑦)u(𝑦) 𝑑𝑦 · u(𝑥) d𝑥

=
∑︁
𝑛∈Z3

⃒⃒∫︀
𝑌
𝑒−𝑖(2𝜋 𝑛+𝛼)·𝑦u(𝑦) 𝑑𝑦

⃒⃒2
|2𝜋 𝑛+ 𝛼|2

. (10.5)

Observe that, for 𝛼 ∈ 𝑌 *, the following holds:

|𝛼|2 ≤ ||2𝜋𝑛| − |𝛼||2 ≤ |2𝜋𝑛+ 𝛼|2 ,

and using this in (10.5), we have:

(−∆−1
𝛼 u,u)𝐿2(𝑌,C3) ≤

∑︁
𝑛∈Z3

⃒⃒∫︀
𝑌
𝑒−𝑖(2𝜋 𝑛+𝛼)·𝑦u(𝑦) 𝑑𝑦

⃒⃒2
|𝛼|2

. (10.6)

Now, write u(𝑦) = ũ(𝑦)𝑒𝑖𝛼·𝑦 and observe that:∫︁
𝑌

𝑒−𝑖(2𝜋 𝑛+𝛼)·𝑦u(𝑦) 𝑑𝑦 =
∫︁

𝑌

𝑒−𝑖(2𝜋 𝑛)·𝑦ũ(𝑦) 𝑑𝑦 = ˆ̃u(𝑛),
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where ˆ̃u is the Fourier transform of ũ, so we can rewrite (10.6) as:

(−∆−1
𝛼 u,u)𝐿2(𝑌,C3) ≤

1
|𝛼|2

∫︁
𝑌

|ũ(𝑦)|2 𝑑𝑦 = |𝛼|−2‖u‖2𝐿2(𝑌,C3). (10.7)

Also, we have the Cauchy inequality:∫︁
𝑌

|u(𝑦)|2 𝑑𝑦 =
∫︁

𝑌

∇(−∆−1
𝛼 u(𝑦)) : ∇u(𝑦) 𝑑𝑦

≤
(︁∫︁

𝑌

⃒⃒
∇× (−∆−1

𝛼 u(𝑦))
⃒⃒2
𝑑𝑦
)︁1/2(︁∫︁

𝑌

|∇ × u(𝑦)|2 𝑑𝑦
)︁1/2

. (10.8)

Applying (10.7), we get:(︁∫︁
𝑌

⃒⃒
∇× (−∆−1

𝛼 u(𝑦))
⃒⃒2
𝑑𝑦
)︁1/2

=
(︁∫︁

𝑌

∇(−∆−1
𝛼 u(𝑦)) : ∇(−∆−1

𝛼 u(𝑦)) 𝑑𝑦
)︁1/2

≤ |𝛼|−1‖u‖𝐿2(𝑌,C3) (10.9)

and the Poincaré inequality follows from (10.8) and (10.9). �

For any u ∈ 𝐿2
#(𝛼, 𝑌,C3), we apply (10.4) to find:

‖ (𝐴𝛼(𝑧)−𝐴𝛼(0)) u‖𝐿2(𝑌,C3) ≤ |𝛼|−1‖∇ × (𝐴𝛼(𝑧)−𝐴𝛼(0)) u‖𝐿2(𝑌,C3)

≤ |𝛼|−1‖
(︀
(𝑇𝛼

𝑘 )−1 − 𝑃𝛼
2

)︀
‖ℒ[𝐽#(𝛼,𝑌,C3);𝐽#(𝛼,𝑌,C3)]‖ −∆−1

𝛼 u‖ (10.10)

Applying (10.9) and (10.10) delivers the upper bound:

‖𝐴𝛼(𝑧)−𝐴𝛼(0)‖ℒ[𝐿2
#(𝛼,𝑌,C3);𝐿2

#(𝛼,𝑌,C3)] ≤ |𝛼|
−2‖

(︀
(𝑇𝛼

𝑘 )−1 − 𝑃𝛼
2

)︀
‖ℒ[𝐽#(𝛼,𝑌,C3);𝐽#(𝛼,𝑌,C3)].

The next step is to obtain an upper bound on ‖
(︀
(𝑇𝛼

𝑘 )−1 − 𝑃𝛼
2

)︀
‖ℒ[𝐽#(𝛼,𝑌,C3);𝐽#(𝛼,𝑌,C3)]. By (2.47), for all

u ∈ 𝐽#(𝛼, 𝑌,C3), we have:(︁ ∫︀
𝑌

⃒⃒
∇×

(︀
(𝑇𝛼

𝑘 )−1 − 𝑃𝛼
2

)︀
u
⃒⃒2
𝑑𝑦
)︁1/2

‖u‖

=

(︃∫︀
𝑌
|∇ × (𝑧 𝑃𝛼

1 u +
∑︀
− 1

2 <𝜇𝑖(𝛼)< 1
2
𝑧 [(1/2 + 𝜇𝑖(𝛼)) + 𝑧(1/2− 𝜇𝑖(𝛼))]−1

𝑃𝛼
𝜇𝑖

u)|2 𝑑𝑦
‖u‖2

)︃1/2

= |𝑧|
(︁
𝑤𝑜 +

∑︁
− 1

2 <𝜇𝑖(𝛼)< 1
2

|(1/2 + 𝜇𝑖(𝛼)) + 𝑧(1/2− 𝜇𝑖(𝛼))|−2
𝑤𝑖

)︁1/2

,

where 𝑤𝑜 = ‖𝑃𝛼
1 u‖2/‖u‖2, 𝑤𝑖 = ‖𝑃𝛼

𝜇𝑖
u‖2/‖u‖2, and 𝑤𝑜 +

∑︀
𝑤𝑖 = 𝑐 ≤ 1, 𝑐 > 0. Hence, maximizing the right

hand side is equivalent to calculating:

max
𝑤0+

∑︀
𝑤𝑖=𝑐≤1

{𝑤0 +
∑︁

− 1
2 <𝜇𝑖(𝛼)< 1

2

𝑤𝑖|(1/2 + 𝜇𝑖(𝛼)) + 𝑧(1/2− 𝜇𝑖(𝛼))|−2}1/2

= sup{1, |(1/2 + 𝜇𝑖(𝛼)) + 𝑧(1/2− 𝜇𝑖(𝛼))|−2}1/2.

Thus, we maximize the function:

𝑓(𝑥) =
⃒⃒⃒⃒
1
2

+ 𝑥+ 𝑧

(︂
1
2
− 𝑥

)︂⃒⃒⃒⃒−2



BLOCH WAVES IN HIGH CONTRAST ELECTROMAGNETIC CRYSTALS 1513

over 𝑥 ∈ [𝜇−(𝛼), 𝜇+(𝛼)], for 𝑧 in a neighborhood about the origin. Let 𝑅𝑒(𝑧) = 𝑢, 𝐼𝑚(𝑧) = 𝑣, and we write:

𝑓(𝑥) =
⃒⃒⃒⃒
1
2

+ 𝑥+ (𝑢+ 𝑖𝑣)
(︂

1
2
− 𝑥

)︂⃒⃒⃒⃒−2

≤
(︂

1
2

+ 𝑥+ 𝑢

(︂
1
2
− 𝑥

)︂)︂−2

=: 𝑔(𝑅𝑒(𝑧), 𝑥)

to get the bound:

‖((𝑇𝛼
𝑘 )−1 − 𝑃𝛼

2 )‖ℒ[𝐽#(𝛼,𝑌,C3);𝐽#(𝛼,𝑌,C3)] ≤ |𝑧| sup
{︁

1, sup
𝑥∈ [𝜇−(𝛼),𝜇+(𝛼)]

𝑔(𝑢, 𝑥)
}︁1/2

. (10.11)

We now examine the poles of 𝑔(𝑢, 𝑥) and the sign of its partial derivative 𝜕𝑥𝑔(𝑢, 𝑥) when |𝑢| < 1. If 𝑅𝑒(𝑧) = 𝑢
is fixed, then 𝑔(𝑢, 𝑥) = ((1

2 + 𝑥) + 𝑢( 1
2 − 𝑥))−2 has a pole when ( 1

2 + 𝑥) + 𝑢( 1
2 − 𝑥) = 0. For 𝑢 fixed, this occurs

when 𝑥 = 𝑥̂, given by:

𝑥̂ = 𝑥̂(𝑢) =
1
2

(︂
1 + 𝑢

𝑢− 1

)︂
.

On the other hand, if 𝑥 is fixed, 𝑔 has a pole at:

𝑢 =
𝑥+ 1/2
𝑥− 1/2

.

The sign of 𝜕𝑥𝑔 is determined by the formula:

𝜕𝑥𝑔(𝑢, 𝑥) =
−2(1− 𝑢)[︀

1
2 + 𝑥+ 𝑢

(︀
1
2 − 𝑥

)︀]︀3 =
−2(1− 𝑢)2𝑥− (1− 𝑢2)[︀

1
2 + 𝑥+ 𝑢

(︀
1
2 − 𝑥

)︀]︀4 . (10.12)

Observe that the denominator on the right hand side of (10.12) is positive. A calculation shows that 𝜕𝑥𝑔 < 0
for 𝑥 > 𝑥̂, i.e. 𝑔 is decreasing on (𝑥̂,∞). Similarly, we have 𝜕𝑥𝑔 > 0 for 𝑥 < 𝑥̂ and 𝑔 is increasing on (−∞, 𝑥̂).

Now, we identify all 𝑢 = 𝑅𝑒(𝑧) for which 𝑥̂ = 𝑥̂(𝑢) satisfies 𝑥̂ < 𝜇−(𝛼) < 0.
Indeed, for such 𝑢, the function 𝑔(𝑢, 𝑥) will be decreasing on [𝜇−(𝛼), 𝜇+(𝛼)], so that, for all 𝑥 ∈ [𝜇−(𝛼), 𝜇̄],

we have 𝑔(𝑢, 𝜇−(𝛼)) ≥ 𝑔(𝑢, 𝑥), yielding an upper bound for (10.11).

Lemma 10.2. The set 𝑈 of 𝑢 ∈ R for which − 1
2 < 𝑥̂(𝑢) < 𝜇−(𝛼) < 0 is given by 𝑈 := [𝑧*, 1], where:

−1 ≤ 𝑧* :=
𝜇−(𝛼) + 1

2

𝜇−(𝛼)− 1
2

< 0.

Proof. Note first that 𝜇−(𝛼) = inf𝑖∈N{𝜇𝑖} ≤ 0 follows from the fact that zero is an accumulation point for the
sequence {𝜇𝑖}𝑖∈N, so it follows that:

𝜇−(𝛼) ≤ −𝜇−(𝛼) =⇒ 1/2 + 𝜇−(𝛼) ≤ (−1)(𝜇−(𝛼)− 1/2) =⇒ 𝑧* ≥ −1.

Observe that 𝑥̂ = 𝑥̂(𝑢) =
𝑢+ 1

2(𝑢− 1)
, we invert and write 𝑢 =

𝑥̂+ 1/2
𝑥̂− 1/2

.

We now show that 𝑧* ≤ 𝑢 ≤ 1, for 𝑥̂ ≤ 𝜇−(𝛼). Set ℎ(𝑥̂) =
𝑥̂+ 1/2
𝑥̂− 1/2

, then ℎ′(𝑥̂) =
−1

(𝑥̂− 1
2 )2

< 0,

and so, ℎ is decreasing on (−∞, 1
2 ). Since 𝜇−(𝛼) < 1

2 , ℎ attains a minimum over (−∞, 𝜇−(𝛼)] at 𝑥 = 𝜇−(𝛼).
Thus 𝑥̂(𝑢) ≤ 𝜇−(𝛼) implies:

1
2

(︂
𝑢+ 1
𝑢− 1

)︂
≤ 𝜇−(𝛼) =⇒ 𝑧* =

𝜇−(𝛼) + 1/2
𝜇−(𝛼)− 1/2

≤ 𝑢 ≤ 1

as desired. �
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Combining Lemma 10.2 with the inequality (10.11), noting that −|𝑧| ≤ 𝑅𝑒(𝑧) ≤ |𝑧|, and on rearranging terms,
we obtain the following corollary.

Corollary 10.3. For |𝑧| < |𝑧*|, the following holds:

‖(𝐴𝛼(𝑧)−𝐴𝛼(0))‖ℒ[𝐿2
#(𝛼,𝑌,C3);𝐿2

#(𝛼,𝑌,C3)] ≤ |𝛼|−2|𝑧|(−|𝑧| − 𝑧*)−1
(︁1

2
− 𝜇−(𝛼)

)︁−1

.

Proof. Observe that:

‖𝐴𝛼(𝑧)−𝐴𝛼(0)‖ℒ[𝐿2
#(𝛼,𝑌,C3);𝐿2

#(𝛼,𝑌,C3)] ≤ |𝛼|
−2‖

(︀
(𝑇𝛼

𝑘 )−1 − 𝑃𝛼
2

)︀
‖ℒ[𝐽#(𝛼,𝑌,C3;𝐽#(𝛼,𝑌,C3]

≤ |𝛼|−2|𝑧| sup
{︁

1, sup
𝑥∈ [𝜇−(𝛼),𝜇+(𝛼)]

𝑔(Re(𝑧), 𝑥)
}︁1/2

≤ |𝛼|−2|𝑧| (−|𝑧| − 𝑧*)−1
(︁1

2
− 𝜇−(𝛼)

)︁−1

.

�

From Corollary 10.3, (10.2) and (10.3), it follows that:

‖(𝐴𝛼(𝑧)−𝐴𝛼(0))𝑅(𝜁, 0)‖ℒ[𝐿2
#(𝛼,𝑌,C3);𝐿2

#(𝛼,𝑌,C3)]

≤ |𝛼|−2|𝑧|(−|𝑧| − 𝑧*)−1
(︁1

2
− 𝜇−(𝛼)

)︁−1

𝑑−1 =: 𝐵(𝛼, 𝑧).

A straightforward calculation shows that 𝐵(𝛼, 𝑧) < 1, for:

|𝑧| < 𝑟* :=
|𝛼|2𝑑|𝑧*(𝛼)|

1
1
2−𝜇−(𝛼)

+ |𝛼|2𝑑
,

and property 4 of Theorem 7.1 is established, since 𝑟* < |𝑧*|.
Now we establish properties 1 through 3 of Theorem 7.1. Inspection of (4.4) shows that, if (10.1) holds

and if 𝜁 ∈ C belongs to the resolvent of 𝐴𝛼(0), then it also belongs to the resolvent of 𝐴𝛼(𝑧). Since (10.1)
holds for 𝜁 ∈ Γ𝑗 and |𝑧| < 𝑟*, property 1 of Theorem 7.1 follows. Formula (4.5) shows that 𝑃 (𝑧) is analytic
in a neighborhood of 𝑧 = 0, determined by the condition that (10.1) holds for 𝜁 ∈ Γ𝑗 . The set |𝑧| < 𝑟* lies
inside this neighborhood and property 2 of Theorem 7.1 is proved. The isomorphism expressed in property 3 of
Theorem 7.1 follows directly from Lemma 4.10 of [20] (Chap. I, Sect. 4), which is also valid in a Banach space.

To prove Theorem 7.2, we need the following Poincaré inequality for 𝐽#(0, 𝑌,C3).

Lemma 10.4. The following inequality holds:

‖v‖𝐿2
#(0,𝑌,C3) ≤

1
2𝜋
‖v‖. (10.13)

This inequality is established proceeding as in the proof of Lemma 10.1, with (2.18). Using (10.13) in place
of (10.4), we argue, as in the proof of Theorem 7.1, to show that:

‖(𝐴0(𝑧)−𝐴0(0))𝑅(𝜁, 0)‖ℒ[(𝐿2
#(0,𝑌,C3);𝐿2

#(0,𝑌,C3)] < 1

holds provided |𝑧| < 𝑟*, where 𝑟* is given by (7.5). This establishes Theorem 7.2.
The error estimates presented in Theorem 7.4 are easily recovered from the arguments in [20] (Chap. II,

Sect. 3); for completeness, we restate them here. We begin with the following application of Cauchy inequalities
to the coefficients 𝛽𝛼

𝑛 of (4.7), from [20] (Chap. II, Sect. 3, pg 88):

|𝛽𝛼
𝑛 | ≤ 𝑑(𝑟*)−𝑛.
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It follows immediately that, for |𝑧| < 𝑟*, we have:⃒⃒⃒⃒
⃒𝛽𝛼(𝑧)−

𝑝∑︁
𝑛=0

𝑧𝑛𝛽𝛼
𝑛

⃒⃒⃒⃒
⃒ ≤

∞∑︁
𝑛=𝑝+1

|𝑧|𝑛|𝛽𝛼
𝑛 | ≤

𝑑|𝑧|𝑝+1

(𝑟*)𝑝(𝑟* − |𝑧|)
,

completing the proof.
For completeness, we establish the boundedness and compactness of the operator 𝐵𝛼(𝑘) in (3.2).

Theorem 10.5. The operator 𝐵𝛼(𝑘) : 𝐿2
#(𝛼, 𝑌,C3) −→ 𝐽#(𝛼, 𝑌,C3) is bounded for 𝑘 ̸∈ 𝑍.

Proof. For 𝛼 ̸= 0 and for v ∈ 𝐿2
#(𝛼, 𝑌,C3), we have:

‖𝐵𝛼(𝑘)v‖ = ‖(𝑇𝛼
𝑘 )−1(−∆𝛼)−1v‖

≤ ‖(𝑇𝛼
𝑘 )−1‖ℒ[𝐽#(𝛼,𝑌,C3);𝐽#(𝛼,𝑌,C3)]‖ −∆−1

𝛼 v‖
≤ |𝛼|−1‖((𝑇𝛼

𝑘 )−1‖ℒ[𝐽#(𝛼,𝑌,C3);𝐽#(𝛼,𝑌,C3)]‖v‖𝐿2(𝑌,C3),

where the last inequality follows from (10.9). The upper estimate on ‖((𝑇𝛼
𝑘 )−1‖ℒ[𝐽#(𝛼,𝑌,C3);𝐽#(𝛼,𝑌,C3)] is obtained

from:
‖(𝑇𝛼

𝑘 )−1v‖
‖v‖

≤
{︁
|𝑧|𝑤̂ + 𝑤̃ + |

∞∑︁
𝑖=1

𝑤𝑖|(1/2 + 𝜇𝑖) + 𝑧(1/2− 𝜇𝑖)|−2
}︁1/2

,

where 𝑤̂ = ‖𝑃𝛼
1 v‖2/‖v‖2, 𝑤̃ = ‖𝑃𝛼

2 v‖2/‖v‖2, and 𝑤𝑖 = ‖𝑃𝛼
𝜇𝑖

v‖2/‖v‖2. Since 𝑤̂ + 𝑤̃ +
∑︀∞

𝑖=1 𝑤𝑖 = 𝑐 ≤ 1, one
recovers the upper bound:

‖(𝑇𝛼
𝑘 )−1v‖
‖v‖

≤ 𝑀̄,

where:
𝑀̄ = max

{︁
1, |𝑧|, sup

𝑖

{︀
|(1/2 + 𝜇𝑖) + 𝑧(1/2− 𝜇𝑖)|−1

}︀}︁
.

A similar argument can be carried out for 𝛼 = 0. �

Theorem 10.6. For 𝑘 ̸∈ 𝑍, 𝐵𝛼(𝑘) : 𝐿2
#(𝛼, 𝑌,C3) −→ 𝐿2

#(𝛼, 𝑌,C3) is a bounded compact operator mapping
𝐿2

#(𝛼, 𝑌,C3) into itself.

Proof. The Poincaré inequalities (10.4) and (10.13), together with Theorem 10.5, show that 𝐵𝛼(𝑘) :
𝐿2

#(𝛼, 𝑌,C3) −→ 𝐿2
#(𝛼, 𝑌,C3) is a bounded linear operator mapping 𝐿2

#(𝛼, 𝑌,C3) into itself. The compact
embedding of 𝐽#(𝛼, 𝑌,C3) into 𝐿2

#(𝛼, 𝑌,C3) shows the operator is compact on 𝐿2
#(𝛼, 𝑌,C3). �

11. Conclusions

In this paper, analytic representation formulas and power series describing the band structure inside non-
magnetic periodic photonic crystals, made from high dielectric contrast inclusions, are developed. The spectral
representation for the operator −∇ × (𝑘𝜒𝐻 + 𝜒𝐷)∇× is derived, as well as a power series representation of
Bloch eigenfunctions. The radius of convergence for the power series, together with explicit formulas for each
of its terms, in terms of layer potentials, is obtained. The spectrum in the high contrast limit is completely
characterized for the 𝛼-quasiperiodic and periodic (𝛼 = 0) cases. Explicit conditions on the contrast are found
that provide lower bounds on the convergence radius. These conditions are sufficient for the separation of
spectral branches of the dispersion relation for any fixed quasi-momentum. From a mathematical perspective, it
is pointed out that the non-magnetic nature of the crystal permits us to explore the solutions to equation (1.4)
in a divergence-free Sobolev space of vector-valued functions, see (2.3), (2.7). For magnetic crystals with 𝜇 =
𝜇(𝑥) ̸= 1, the proper solution space must include fields h for which ∇ · (𝜇h) = 0. This presents a challenge for
future research.
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Appendix A. Helmholtz decomposition for periodic and quasiperiodic vector
fields.

Here, we show how to obtain the Helmholtz decomposition (2.2). First, consider 𝛼 ∈ 𝑌 *, 𝛼 ̸= 0. For h(𝑥) ∈
𝐿2

#(𝛼, 𝑌,C3), we have h(𝑥) = hper(𝑥, 𝛼)𝑒2𝜋𝑖𝛼·𝑥, where:

hper(𝑥, 𝛼) =
∑︁
𝑘∈Z3

ĥper(𝑘, 𝛼)𝑒2𝜋𝑖 𝑘·𝑥.

In other words:
h(𝑥) =

∑︁
𝑘∈Z3

ĥper(𝑘, 𝛼)𝑒2𝜋𝑖(𝑘+𝛼)·𝑥.

Now, define the following:

ℎ̂pot(𝑘, 𝛼) = − 𝑖

2𝜋
(𝑘 + 𝛼) · ĥper(𝑘, 𝛼)

|𝑘 + 𝛼|2
,

ĥcurl(𝑘, 𝛼) =
𝑖

2𝜋
(𝑘 + 𝛼)× ĥper(𝑘, 𝛼)

|𝑘 + 𝛼|2
.

By the vector triple product formula, we observe that:

2𝜋𝑖(𝛼+ 𝑘) ℎ̂pot(𝑘, 𝛼) + 2𝜋𝑖(𝛼+ 𝑘)× ĥcurl(𝑘, 𝛼)

=
(𝛼+ 𝑘)

[︁
(𝛼+ 𝑘) · ĥper(𝑘, 𝛼)

]︁
|𝑘 + 𝛼|2

−

[︃
(𝛼+ 𝑘)[(𝛼+ 𝑘) · ĥper(𝑘, 𝛼)]

|𝑘 + 𝛼|2
− ĥper(𝑘, 𝛼)[(𝛼+ 𝑘) · (𝛼+ 𝑘)]

|𝑘 + 𝛼|2

]︃
= ĥper(𝑘, 𝛼).

It follows that h(𝑥) = ∇ℎpot(𝑥) +∇× hcurl(𝑥), where:

ℎpot(𝑥) =
∑︁
𝑘∈Z3

ℎ̂pot(𝑘, 𝛼)𝑒2𝜋𝑖(𝑘+𝛼)·𝑥,

hcurl(𝑥) =
∑︁
𝑘∈Z3

ĥcurl(𝑘, 𝛼)𝑒2𝜋𝑖(𝑘+𝛼)·𝑥.

This is the Helmholtz decomposition for 𝛼-quasiperiodic fields, for 𝛼 ∈ 𝑌 *, 𝛼 ̸= 0.
When 𝛼 = 0, we have h(𝑥) =

∑︁
𝑘∈Z3

ĥ(𝑘)𝑒2𝜋𝑖𝑘·𝑥, or equivalently:

h(𝑥) = ĥ(0) +
∑︁
𝑘∈Z3

𝑘 ̸=0

ĥ(𝑘)𝑒2𝜋𝑖 𝑘·𝑥,

with ĥ(0) =
∫︁

𝑌

h(𝑥). Then, the Helmholtz decomposition for h ∈ 𝐿2
#(0, 𝑌,C3) is given by:

h(𝑥) = ∇ℎpot(𝑥) +∇× hcurl(𝑥) + c, c ∈ C3,

where:

ℎpot(𝑥) =
∑︁
𝑘∈Z3

𝑘 ̸=0

− 𝑖

2𝜋
𝑘

|𝑘|2
· ĥ(𝑘)𝑒2𝜋𝑖𝑘·𝑥,

hpot(𝑥) =
∑︁
𝑘∈Z3

𝑘 ̸=0

𝑖

2𝜋
𝑘

|𝑘|2
× ĥ(𝑘)𝑒2𝜋𝑖𝑘·𝑥.
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Appendix B. For h ∈ 𝐽#(𝛼, 𝑌, C3), ∇ℎ𝑝𝑜𝑡 = 0 in (2.2):

If 𝛼 ̸= 0, from Appendix A, we have h(𝑥) = ∇ℎpot(𝑥) +∇× hcurl(𝑥). Taking divergence on both sides, and
since h ∈ 𝐽#(𝛼, 𝑌,C3), we obtain that ∆ℎpot = 0 in 𝑌 and, since ℎpot is 𝛼-quasiperiodic, we have:∫︁

𝑌

|∇ℎpot|2 =
∫︁

𝜕𝑌

ℎpot𝜕nℎpot = 0.

A similar argument works for to the case 𝛼 = 0.

Appendix C. Necessary lemmas

Lemma C.1. For u and v in 𝐽#(𝛼, 𝑌,C3), we have:∫︁
𝑌

∇× u · ∇ × v d𝑥 =
∫︁

𝑌

∇u : ∇v d𝑥.

Proof. Let us write:

u(𝑦) =
∑︁
𝑘∈Z3

𝑒2𝜋 𝑖(𝑘+𝛼)·𝑦ûk and v(𝑦) =
∑︁
𝑘∈Z3

𝑒2𝜋 𝑖(𝑘+𝛼)·𝑦v̂k.

Then: ∫︁
𝑌

∇× u · ∇ × v d𝑥 =
∫︁

𝑌

∑︁
𝑘∈Z3

2𝜋 𝑖 𝑒2𝜋 𝑖(𝑘+𝛼)·𝑦(𝑘 + 𝛼)× ûk ·
∑︁

𝑚∈Z3

2𝜋 𝑖 𝑒2𝜋 𝑖(𝑚+𝛼)·𝑦(𝑚+ 𝛼)× v̂k d𝑥

= 4𝜋|𝑌 |
∑︁
𝑘∈Z3

(𝑘 + 𝛼)× ûk · (𝑘 + 𝛼)× v̂k

= 4𝜋|𝑌 |
∑︁
𝑘∈Z3

(︁
|𝑘 + 𝛼|2 ûk · v̂k − (𝑘 + 𝛼) · ûk(𝑘 + 𝛼) · v̂k

)︁
=
∫︁

𝑌

∇u : ∇v d𝑥−
∫︁

𝑌

(∇ · u)(∇ · v) d𝑥 =
∫︁

𝑌

∇u : ∇v d𝑥.

�

Lemma C.2. (See [7], Lem. 4.7 for proof.) Let u ∈ 𝐿2
#(𝑌,C3) such that curl u ∈ 𝐿2

#(𝑌,C3) and div u ∈ 𝐿2
#(𝑌 ).

Then u ∈𝑊 1,2
# (𝑌,C3) and: ∫︁

𝑌

|∇u|2 dx =
∫︁

𝑌

|curl u|2 dx +
∫︁

𝑌

|div u|2 dx.

Lemma C.3. Let u ∈ 𝐿2
#(𝛼, 𝑌,C3) such that curl u ∈ 𝐿2

#(𝛼, 𝑌,C3) and div u ∈ 𝐿2
#(𝛼, 𝑌 ). Then u ∈

𝑊 1,2
# (𝛼, 𝑌,C3) and: ∫︁

𝑌

|∇u|2 dx =
∫︁

𝑌

|curl u|2 dx +
∫︁

𝑌

|div u|2 dx. (C.1)

Proof. Let us write:
u(𝑦) =

∑︁
𝑘∈Z3

𝑒2𝜋 𝑖(𝑘+𝛼)·𝑦ck.

We then have that:

curl u =
∑︁
𝑘∈Z3

2𝜋 𝑖 𝑒2𝜋 𝑖(𝑘+𝛼)·𝑦(𝑘 + 𝛼)× ck,

div u =
∑︁
𝑘∈Z3

2𝜋 𝑖 𝑒2𝜋 𝑖(𝑘+𝛼)·𝑦(𝑘 + 𝛼) · ck.
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Since
⃒⃒
(𝑘 + 𝛼)× ck

⃒⃒2 +
⃒⃒
(𝑘 + 𝛼) · ck

⃒⃒2 = |𝑘 + 𝛼|2
⃒⃒
ck
⃒⃒2, we infer that

∑︀
𝑘∈Z3 |𝑘 + 𝛼|2

⃒⃒
ck
⃒⃒2

< ∞, thus u ∈
𝑊 1,2

# (𝛼, 𝑌 )
3
. Moreover, (C.1) follows. �

Appendix D. For u ∈ 𝐽#(𝛼, 𝑌, C3), the null space of ∇× u is {0}:
Let u ∈ 𝐽#(𝛼, 𝑌,C3) such that ∇× u = 0. Then, from Lemma C.1, we have:∫︁

𝑌

|∇u|2 =
∫︁

𝑌

|curl u|2 = 0.

Then u must be a constant in 𝑌 . If 𝛼 ̸= 0, since u is 𝛼-quasiperiodic, we conclude it must be zero. If 𝛼 = 0,
since

∫︀
𝑌

u 𝑑x = 0, then we can also conclude that u = 0.

Appendix E. Periodic and 𝛼-quasiperiodic Green’s functions and their
relation to the free space Green’s function

Consider 𝐺0 and 𝐺𝛼, defined in (2.18) and (2.17), respectively, and the free-space Green’s function given by:

Γ(𝑥, 𝑦) = − 1
4𝜋|𝑥− 𝑦|

·

Observe that, in the unit cell 𝑌 , we have:

∆(Γ(𝑥, 𝑦)−𝐺0(𝑥, 𝑦)) = 𝛿(𝑥− 𝑦)− (𝛿(𝑥− 𝑦)− 1) = 1

and, from the regularity of the elliptic problem, we have that 𝑅0(𝑥) = Γ(𝑥, 𝑦) − 𝐺0(𝑥, 𝑦) is smooth in 𝑌 , see
[1]. A similar argument works for 𝐺𝛼, 𝛼 ̸= 0. In that case:

∆𝐺𝛼(𝑥, 𝑦) =
∑︁
𝑛∈Z3

𝛿(𝑥− 𝑦 − 𝑛)𝑒𝑖𝛼·𝑛 in R3,

which implies that, in the unit cell 𝑌 , we have:

∆(Γ(𝑥, 𝑦)−𝐺𝛼(𝑥, 𝑦)) = 0,

from where 𝑅𝛼(𝑥) = Γ(𝑥, 𝑦)−𝐺𝛼(𝑥, 𝑦) is smooth in 𝑌 . The generalization of Lemma 4.4 of [29] to the periodic
and 𝛼-quasiperiodic cases follows from the above.
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