Driving bifurcating parametrized nonlinear PDEs by optimal control strategies: application to Navier–Stokes equations with model order reduction
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 4, pp. 1361-1400

This work deals with optimal control problems as a strategy to drive bifurcating solution of nonlinear parametrized partial differential equations towards a desired branch. Indeed, for these governing equations, multiple solution configurations can arise from the same parametric instance. We thus aim at describing how optimal control allows to change the solution profile and the stability of state solution branches. First of all, a general framework for nonlinear optimal control problem is presented in order to reconstruct each branch of optimal solutions, discussing in detail the stability properties of the obtained controlled solutions. Then, we apply the proposed framework to several optimal control problems governed by bifurcating Navier–Stokes equations in a sudden-expansion channel, describing the qualitative and quantitative effect of the control over a pitchfork bifurcation, and commenting in detail the stability eigenvalue analysis of the controlled state. Finally, we propose reduced order modeling as a tool to efficiently and reliably solve parametric stability analysis of such optimal control systems, which can be challenging to perform with standard discretization techniques such as Finite Element Method.

DOI : 10.1051/m2an/2022044
Classification : 35Q35, 49J20, 65P30
Keywords: Parametrized nonlinear PDEs, optimal control problems, bifurcation analysis, Navier–Stokes equations, model order reduction
@article{M2AN_2022__56_4_1361_0,
     author = {Pichi, Federico and Strazzullo, Maria and Ballarin, Francesco and Rozza, Gianluigi},
     title = {Driving bifurcating parametrized nonlinear {PDEs} by optimal control strategies: application to {Navier{\textendash}Stokes} equations with model order reduction},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1361--1400},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {4},
     doi = {10.1051/m2an/2022044},
     mrnumber = {4444527},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2022044/}
}
TY  - JOUR
AU  - Pichi, Federico
AU  - Strazzullo, Maria
AU  - Ballarin, Francesco
AU  - Rozza, Gianluigi
TI  - Driving bifurcating parametrized nonlinear PDEs by optimal control strategies: application to Navier–Stokes equations with model order reduction
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2022
SP  - 1361
EP  - 1400
VL  - 56
IS  - 4
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2022044/
DO  - 10.1051/m2an/2022044
LA  - en
ID  - M2AN_2022__56_4_1361_0
ER  - 
%0 Journal Article
%A Pichi, Federico
%A Strazzullo, Maria
%A Ballarin, Francesco
%A Rozza, Gianluigi
%T Driving bifurcating parametrized nonlinear PDEs by optimal control strategies: application to Navier–Stokes equations with model order reduction
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2022
%P 1361-1400
%V 56
%N 4
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2022044/
%R 10.1051/m2an/2022044
%G en
%F M2AN_2022__56_4_1361_0
Pichi, Federico; Strazzullo, Maria; Ballarin, Francesco; Rozza, Gianluigi. Driving bifurcating parametrized nonlinear PDEs by optimal control strategies: application to Navier–Stokes equations with model order reduction. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 4, pp. 1361-1400. doi: 10.1051/m2an/2022044

[1] E. Allgower and K. Georg, Introduction to Numerical Continuation Methods. Society for Industrial and Applied Mathematics (2003). | MR | Zbl

[2] A. Ambrosetti and G. Prodi, A Primer of Nonlinear Analysis. Cambridge University Press, Cambridge (1993). | MR

[3] E. Bader, M. Kärcher, M. A. Grepl and K. Veroy-Grepl, A certified reduced basis approach for parametrized linear-quadratic optimal control problems with control constraints. IFAC-PapersOnLine 48 (2015) 719–720.

[4] E. Bader, M. Kärcher, M. A. Grepl and K. Veroy, Certified reduced basis methods for parametrized distributed elliptic optimal control problems with control constraints. SIAM J. Sci. Comput. 38 (2016) A3921–A3946. | MR

[5] F. Ballarin, A. Manzoni, A. Quarteroni and G. Rozza, Supremizer stabilization of POD–Galerkin approximation of parametrized steady incompressible Navier-Stokes equations. Int. J. Numer. Methods Eng. 102 (2015) 1136–1161. | MR

[6] M. Barrault, Y. Maday, N. C. Nguyen and A. T. Patera, An Empirical Interpolation Method: application to efficient reduced-basis discretization of partial differential equations. C. R. Math. 339 (2004) 667–672. | MR | Zbl

[7] L. Bauer and E. L. Reiss, Nonlinear buckling of rectangular plates. J. Soc. Ind. Appl. Math. 13 (1965) 603–626.

[8] M. Benzi and V. Simoncini, On the eigenvalues of a class of saddle point matrices. Numer. Math. 103 (2006) 173–196. | MR | Zbl

[9] M. Benzi and A. J. Wathen, Some Preconditioning Techniques for Saddle Point Problems. Springer Berlin Heidelberg, Berlin, Heidelberg (2008) 195–211. | MR | Zbl

[10] M. Benzi, G. H. Golub and J. Liesen, Numerical solution of saddle point problems. Acta Numer. 14 (2005) 1–137. | MR | Zbl

[11] M. S. Berger, On Von Kármán’s equations and the buckling of a thin elastic plate, I the clamped plate. Commun. Pure App. Math. 20 (1967) 687–719. | MR | Zbl

[12] P. B. Bochev and M. D. Gunzburger, Least-Squares Finite Element Methods. Vol. 166. Springer-Verlag, New York (2009). | MR | Zbl

[13] J. Bramble, J. Pasciak and A. Vassilev, Uzawa type algorithms for nonsymmetric saddle point problems. Math. Comput. 69 (2000) 667–689. | MR | Zbl

[14] J. Burkardt, M. Gunzburger and H. Lee, POD and CVT-based reduced-order modeling of Navier-Stokes flows. Comput. Methods Appl. Mech. Eng. 196 (2006) 337–355. | MR | Zbl

[15] G. Caloz and J. Rappaz, Numerical analysis for nonlinear and bifurcation problems. Handb. Numer. Anal. 5 (1997) 487–637. | MR

[16] D. Chapelle, A. Gariah, P. Moireau and J. Sainte-Marie, A Galerkin strategy with proper orthogonal decomposition for parameter-dependent problems: Analysis, assessments and applications to parameter estimation. ESAIM: M2AN 47 (2013) 1821–1843. | MR | Zbl | Numdam

[17] E. Charalampidis, P. Kevrekidis and P. Farrell, Computing stationary solutions of the two-dimensional Gross-Pitaevskii equation with deflated continuation. Commun. Nonlinear Sci. Numer. Simul. 54 (2018) 482–499. | MR

[18] P. Ciarlet, Linear and Nonlinear Functional Analysis with Applications. Other Titles in Applied Mathematics. Society for Industrial and Applied Mathematics (2013). | MR | Zbl

[19] L. Dedè, Reduced basis method and a posteriori error estimation for parametrized linear-quadratic optimal control problems. SIAM J. Sci. Comput. 32 (2010) 997–1019. | MR | Zbl

[20] A. Fursikov, M. Gunzburger and L. Hou, Boundary value problems and optimal boundary control for the Navier-Stokes system: the two-dimensional case. SIAM J. Control Optim. 36 (1998) 852–894. | MR | Zbl

[21] A. L. Gerner and K. Veroy, Certified reduced basis methods for parametrized saddle point problems. SIAM J. Sci. Comput. 34 (2012) A2812–A2836. | MR | Zbl

[22] M. Gunzburger, Adjoint equation-based methods for control problems in incompressible, viscous flows. Flow Turbul. Combust. 65 (2000) 249–272. | MR | Zbl

[23] M. D. Gunzburger, Perspectives in Flow Control and Optimization. Vol. 5. SIAM, Philadelphia (2003). | MR | Zbl

[24] M. Hess, A. Alla, A. Quaini, G. Rozza and M. Gunzburger, A localized reduced-order modeling approach for PDEs with bifurcating solutions. Comput. Methods Appl. Mech. Eng. 351 (2019) 379–403. | MR

[25] M. Hess, A. Quaini and G. Rozza, Reduced basis model order reduction for Navier-Stokes equations in domains with walls of varying curvature. Int. J. Comput. Fluid Dyn. 34 (2020) 119–126. | MR

[26] J. S. Hesthaven, G. Rozza and B. Stamm, Certified Reduced Basis Methods for Parametrized Partial Differential Equations. Springer Briefs in Mathematics. Springer, Milano (2015). | MR

[27] M. Hinze, R. Pinnau, M. Ulbrich and S. Ulbrich, Optimization with PDE Constraints. Vol. 23. Springer Science & Business Media, Antwerp (2008). | MR | Zbl

[28] M. Kärcher and M. A. Grepl, A certified reduced basis method for parametrized elliptic optimal control problems. ESAIM: COCV 20 (2014) 416–441. | MR | Zbl | Numdam

[29] M. Kärcher, Z. Tokoutsi, M. A. Grepl and K. Veroy, Certified reduced basis methods for parametrized elliptic optimal control problems with distributed controls. J. Sci. Comput. 75 (2018) 276–307. | MR

[30] P. Kevrekidis, D. Frantzeskakis and R. Carretero-González, The Defocusing Nonlinear Schrödinger Equation. Society for Industrial and Applied Mathematics, Philadelphia, PA (2015). | MR

[31] M. Khamlich, F. Pichi and G. Rozza, Model order reduction for bifurcating phenomena in fluid-structure interaction problems. Preprint (2021). | arXiv | MR

[32] H. Kielhöfer, Bifurcation Theory: An Introduction with Applications to PDEs. Applied Mathematical Sciences. Springer, New York (2006). | MR | Zbl

[33] Y. Kuznetsov, Elements of Applied Bifurcation Theory. Applied Mathematical Sciences. Springer, New York (2004). | MR | Zbl

[34] G. Leugering, P. Benner, S. Engell, A. Griewank, H. Harbrecht, M. Hinze, R. Rannacher and S. Ulbrich, Trends in PDE Constrained Optimization. Springer, New York (2014). | MR | Zbl

[35] J.-L. Lions, Optimal Control of System Governed by Partial Differential Equations. Vol. 170. Springer-Verlagr, Berlin and Heidelberg (1971). | MR | Zbl

[36] A. Logg, K. Mardal and G. Wells, Automated Solution of Differential Equations by the Finite Element Method. Springer-Verlag, Berlin (2012). | MR | Zbl

[37] S. Middelkamp, P. Kevrekidis, D. Frantzeskakis, R. Carretero-González and P. Schmelcher, Emergence and stability of vortex clusters in Bose-Einstein condensates: a bifurcation approach near the linear limit. Phys. D: Nonlinear Phenom. 240 (2011) 1449–1459.

[38] H. K. Moffatt, Viscous and resistive eddies near a sharp corner. J. Fluid Mech. 18 (1964) 1–18. | Zbl

[39] F. Negri, G. Rozza, A. Manzoni and A. Quarteroni, Reduced basis method for parametrized elliptic optimal control problems. SIAM J. Sci. Comput. 35 (2013) A2316–A2340. | MR | Zbl

[40] F. Negri, A. Manzoni and G. Rozza, Reduced basis approximation of parametrized optimal flow control problems for the Stokes equations. Comput. Math. App. 69 (2015) 319–336. | MR

[41] F. Pichi and G. Rozza, Reduced basis approaches for parametrized bifurcation problems held by non-linear Von Kármán equations. J. Sci. Comput. 81 (2019) 112–135. | MR | DOI

[42] F. Pichi, A. Quaini and G. Rozza, A reduced order modeling technique to study bifurcating phenomena: application to the Gross-Pitaevskii equation. SIAM J. Sci. Comput. 42 (2020) B1115–B1135. | MR | DOI

[43] F. Pichi, F. Ballarin, G. Rozza and J. S. Hesthaven, An artificial neural network approach to bifurcating phenomena in computational fluid dynamics. Preprint (2021). | arXiv | MR

[44] M. Pintore, F. Pichi, M. Hess, G. Rozza and C. Canuto, Efficient computation of bifurcation diagrams with a deflated approach to reduced basis spectral element method. Adv. Comput. Math. 47 (2021) 1–39. | MR | DOI

[45] G. Pitton and G. Rozza, On the application of reduced basis methods to bifurcation problems in incompressible fluid dynamics. J. Sci. Comput. 73 (2017) 157–177. | MR | DOI

[46] G. Pitton, A. Quaini and G. Rozza, Computational reduction strategies for the detection of steady bifurcations in incompressible fluid-dynamics: applications to Coanda effect in cardiology. J. Comput. Phys. 344 (2017) 534–557. | MR | DOI

[47] A. Quaini, R. Glowinski and S. Čanić, Symmetry breaking and preliminary results about a Hopf bifurcation for incompressible viscous flow in an expansion channel. Int. J. Comput. Fluid Dyn. 30 (2016) 7–19. | MR | DOI

[48] A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations. Vol. 23. Springer Science & Business Media, Berlin and Heidelberg (2008). | Zbl

[49] A. Quarteroni, G. Rozza and A. Quaini, Reduced basis methods for optimal control of advection-diffusion problems. In: Advances in Numerical Mathematics. CMCS-CONF-2006-003. RAS and University of Houston (2007) 193–216.

[50] RBniCS – reduced order modelling in FEniCS. https://www.rbnicsproject.org/ (2015).

[51] G. Rozza and K. Veroy, On the stability of the reduced basis method for Stokes equations in parametrized domains. Comput. Methods Appl. Mech. Eng. 196 (2007) 1244–1260. | MR | Zbl | DOI

[52] R. Seydel, Practical Bifurcation and Stability Analysis. Interdisciplinary Applied Mathematics. Springer, New York (2009). | MR | Zbl

[53] M. Stoll and A. Wathen, All-at-once solution of time-dependent Stokes control. J. Comput. Phys. 232 (2013) 498–515. | MR | DOI

[54] M. Strazzullo, F. Ballarin, R. Mosetti and G. Rozza, Model reduction for parametrized optimal control problems in environmental marine sciences and engineering. SIAM J. Sci. Comput. 40 (2018) B1055–B1079. | MR | Zbl | DOI

[55] M. Strazzullo, F. Ballarin and G. Rozza, POD-Galerkin model order reduction for parametrized nonlinear time dependent optimal flow control: an application to Shallow Water Equations. J. Numer. Math. 30 (2021) 63–84. | MR | Zbl | DOI

[56] M. Strazzullo, Z. Zainib, F. Ballarin and G. Rozza, Reduced order methods for parametrized nonlinear and time dependent optimal flow control problems: towards applications in biomedical and environmental sciences. In: Numerical Mathematics and Advanced Applications ENUMATH 2019 (2021). | MR | Zbl | DOI

[57] D. J. Tritton, Physical Fluid Dynamics. Springer Science & Business Media (2012).

[58] F. Tröltzsch, Optimal Control of Partial Differential Equations. Graduate Studies in mathematics. Vol. 112. American Mathimatical Society, Verlag, Wiesbad (2010). | MR | Zbl

[59] T. Von Kármán, Festigkeitsprobleme im Maschinenbau. Encyclopädie der Mathematischen Wissenschaften. Vol. 4 (1910).

[60] Z. Zainib, F. Ballarin, S. Fremes, P. Triverio, L. Jiménez-Juan and G. Rozza, Reduced order methods for parametric optimal flow control in coronary bypass grafts, toward patient-specific data assimilation. Int. J. Numer. Methods Biomed. Eng. 37 (2021) e3367. | MR | DOI

Cité par Sources :

**Both authors contributed equally to this work.