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DRIVING BIFURCATING PARAMETRIZED NONLINEAR PDEs BY OPTIMAL
CONTROL STRATEGIES: APPLICATION TO NAVIER–STOKES EQUATIONS

WITH MODEL ORDER REDUCTION

Federico Pichi1,2,**, Maria Strazzullo1,**, Francesco Ballarin3

and Gianluigi Rozza1,*

Abstract. This work deals with optimal control problems as a strategy to drive bifurcating solution
of nonlinear parametrized partial differential equations towards a desired branch. Indeed, for these
governing equations, multiple solution configurations can arise from the same parametric instance. We
thus aim at describing how optimal control allows to change the solution profile and the stability of state
solution branches. First of all, a general framework for nonlinear optimal control problem is presented
in order to reconstruct each branch of optimal solutions, discussing in detail the stability properties of
the obtained controlled solutions. Then, we apply the proposed framework to several optimal control
problems governed by bifurcating Navier–Stokes equations in a sudden-expansion channel, describing
the qualitative and quantitative effect of the control over a pitchfork bifurcation, and commenting
in detail the stability eigenvalue analysis of the controlled state. Finally, we propose reduced order
modeling as a tool to efficiently and reliably solve parametric stability analysis of such optimal control
systems, which can be challenging to perform with standard discretization techniques such as Finite
Element Method.
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1. Introduction

Nonlinear parametrized partial differential equations (PDE(𝜇)s) play a fundamental role in several fields,
ranging from Continuum Mechanics to Quantum Mechanics, passing through Fluid Dynamics. When compared
to linear PDE(𝜇)s with smooth parametric dependence, the most striking difference is that in the linear case
a stable solution evolves in a continuous (and thus, unique) manner when the parameter changes slightly. In
contrast, in the nonlinear case the solution for a given parameter 𝜇 of a given PDE(𝜇) may not be unique. Indeed,
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the model can suddenly change its behavior, together with the stability properties of its solutions. Models with
such a feature are called bifurcation problems [2, 15, 52]. Examples of models which are characterized by the
non-uniqueness of the solution are the Von Kármán plate model for buckling [7,11,41,59], the Gross-Pitaevskii
equation for Bose-Einstein condensates [17,30,37,42] and Navier–Stokes equations in a channel [44,46,47].

The critical point at which the system loses its original features is called bifurcation point, and it is usually
denoted by 𝜇*. Many different bifurcating configurations can emerge from these points, and an intuitive way
to visualize them is through a plot of a scalar output of the solution against the parameter value for which
the solution has been computed, e.g., the so called bifurcation diagram. As an example, a branch of solutions
can give rise at 𝜇* to two further symmetric branches of solutions which coexist with the pre-existing one, and
switch their stability properties with it. When such situation occurs, the model is said to undergo a pitchfork
bifurcation phenomenon [52]. In particular, we are interested in an application in Fluid Dynamics, where we
consider sudden-expansion channel flows, which are motivated by many practical scenarios. Flow profiles are
described by Navier–Stokes equations, parametrized by the viscosity value 𝜇. Here we consider a simplified
version for a model of a cardiac disease, called mitral valve regurgitation, that may cause either a symmetric
regurgitant jet or a wall-hugging, non-symmetric regurgitant jet. The latter phenomenon, which can be clinically
detected through echocardiography, is called the Coanda effect [57], and expresses the tendency of a fluid jet
to be attracted to a nearby surface. This represents an issue from the medical point of view, because the wall-
hugging jet might lead to inaccurate echocardiography measurements. It is therefore of the utmost practical
interest to try to drive the system towards the branch of symmetric solutions, which are more favorable for the
measurement process.

Towards this goal, parametrized optimal control problems (OCP(𝜇)s) governed by PDE(𝜇)s might be
employed. Indeed, OCP(𝜇)s can be interpreted as an input-output system which achieves an observable config-
uration [12,23, 27, 35, 58]. They have been exploited in several applications in different scientific fields, see e.g.,
[34] for an overview. The main goal of this work is to use OCP(𝜇)s to drive bifurcating state profiles towards a
different desired state, which might possibly belong to another state solution branch.

In such OCP(𝜇)s, a parametric study of the state solution is necessary in order to understand the behavior
of the system. The complexity of this task can be tackled using a combination of existing methodologies,
which allow the complete reconstruction of the aforementioned bifurcation diagram. However, the discretization
through standard techniques can lead to a possibly huge system to be solved for many values of the parameters.
In this work we exploit Galerkin Finite Element (FE) approach, which can be challenging when several instances
of parametrized problem have to be studied, most of all because the optimal control setting requires additional
equations to be solved on top of the original PDE(𝜇)s. For this reason we also propose Reduced Order Modeling
(ROM) as a tool to overcome this issue, see [26] as an introductory reference. Namely, we build a low-dimensional
space from FE high-fidelity optimal solutions and we perform a Galerkin projection in a reduced space, usually
much smaller than the considered high-fidelity one. The main ingredients are the reduced space construction
exploiting Proper Orthogonal Decomposition (POD) algorithm [5,14,16] and then, using a Galerkin projection,
solving a reduced problem in the lower dimensional reduced space, for every parameter instance.

The main novelty of this work is the formulation, numerical simulation and subsequent model reduction
of OCP(𝜇)s governed by bifurcating parametrized Navier–Stokes equations, together with the analysis of the
properties of their eigenvalues. We develop several test cases corresponding to different control actions in order to
understand and validate our findings. At the best of our knowledge, a thorough description of the mathematical
analysis and widespread exploitation of OCP(𝜇)s for bifurcating nonlinear PDE(𝜇)s have not been extensively
addressed in literature. This work could then pave the way towards application of OCP(𝜇)s as a tool to drive
the behavior of complex bifurcation problems to a desired branch of solutions.

The work is outlined as follows: in Section 2 we describe the structure of OCP(𝜇)s for general nonlinear
bifurcating systems both at the continuous and discretized level, exploiting a branch-wise approach through
a FE approximation. Furthermore, we introduce the basic notions of stability analysis and its connection to
eigenvalue problems for the uncontrolled and the controlled systems. In Section 3 we introduce the uncontrolled
sudden-expansion channel problem, while in Section 4 we build several OCP(𝜇)s assigning different roles to the
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control variable. There we also perform a global eigenvalue analysis in order to understand the main features of
the achieved optimal solutions. We present two different boundary control problems and two distributed ones,
which give very different solution configurations. The ROM strategy is described in Section 5: the presented
approach is tested for all the numerical simulations performed at the FE level. Conclusions follow in Section 6.

2. Nonlinear parametrized optimal control problems and bifurcating systems

In this section, we introduce a generic nonlinear OCP(𝜇)s. We will focus on the minimization of quadratic cost
functional under nonlinear PDE(𝜇) constraint for Hilbert spaces, following the Lagrangian approach [23, 27].
In Sections 2.1 and 2.2 we provide existence results and optimality conditions for nonlinear OCP(𝜇)s in their
continuous and discretized version, respectively. Then, Section 2.3 will describe the spectral properties of the
optimization system at hand.

2.1. Problem formulation

Optimal control is a mathematical tool which aims at modifying the natural behavior of a system. Let us
suppose to have a state PDE(𝜇)

𝐺(𝑦; 𝜇) = 𝑓, (2.1)

with state variable 𝑦 := 𝑦(𝜇) ∈ Y, i.e., 𝐺 : Y × 𝒫 → Y* where Y is a Hilbert space, 𝑓 ∈ Y* is a forcing term,
𝒫 ⊂ R𝑃 is a parameter space of dimension 𝑃 ≥ 1, while 𝐺(𝑦; 𝜇) = 𝐸nℓ(𝑦; 𝜇) + 𝐸ℓ(𝑦; 𝜇) is the state operator,
with 𝐸ℓ ∈ ℒ(Y,Y*) and 𝐸nℓ representing the linear and nonlinear contributions, respectively. Here, we call
ℒ(·, ·) the space of linear continuous functions between two spaces. We now want 𝑦 to be the most similar to
a known solution profile 𝑦d := 𝑦d(𝜇) ∈ Yobs ⊇ Y. To this end, a new variable is introduced in the equation,
the control variable 𝑢 := 𝑢(𝜇) ∈ U, with U another possibly different Hilbert space. Let us define the controlled
equation ℰ : Y× U× 𝒫 → Y* as

ℰ(𝑦, 𝑢; 𝜇) := 𝐺(𝑦; 𝜇)− 𝐶(𝑢)− 𝑓 = 0,

where 𝐶 ∈ ℒ(U,Y*) is the control operator describing the action of the variable 𝑢 on the system1. In other
words, we are trying to change the behavior of the state PDE(𝜇) through 𝐶(𝑢). The OCP(𝜇) reads: given a
𝜇 ∈ 𝒫, find the pair (𝑦, 𝑢) ∈ Y× U which solves

min
𝑦∈Y,𝑢∈U

𝐽(𝑦, 𝑢; 𝑦d) subject to ℰ(𝑦, 𝑢; 𝜇) = 0, (2.2)

where 𝐽 : Y× U× Yobs → R is the objective functional defined by

𝐽(𝑦, 𝑢; 𝑦d) :=
1
2
‖𝑦 − 𝑦d‖2Yobs

+
𝛼

2
‖𝑢‖2U, (2.3)

and 𝛼 ∈ (0, 1] is a penalization parameter. The role of 𝛼 is of great interest: indeed, a large value of 𝛼 translates
in a poor capability of the system to be controlled, while 𝛼 ≪ 1 allows the functional to be minimized with
larger values of the variable 𝑢. Problem (2.2) admits a solution if Section 1.5.2 of [27]:

(i) U is convex, bounded and closed;
(ii) Y is convex and closed;
(iii) for every 𝜇 ∈ 𝒫, the controlled system ℰ(𝑦, 𝑢; 𝜇) = 0 has a bounded solution map 𝑢 ∈ U ↦→ 𝑦(𝑢) ∈ Y;
(iv) for a given 𝜇 ∈ 𝒫, the map (𝑦, 𝑢,𝜇) ∈ Y× U× 𝒫 → ℰ(𝑦, 𝑢; 𝜇) ∈ Y* is weakly continuous with respect to

(w.r.t.) the first two arguments;
(v) for a given 𝑦d ∈ Yobs, the objective functional 𝐽(𝑦, 𝑢; 𝑦d) is weakly lower semicontinuous w.r.t. 𝑦 and 𝑢.

1Parametrized control operators are also possible, with a straightforward extension of the methodology presented herein.
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We now discuss the Lagrangian structure and the necessary first order optimality conditions. First of all, let
𝑧 := 𝑧(𝜇) ∈ Y** = Y be an arbitrary variable called adjoint variable. Let us call 𝑋 = (𝑦, 𝑢, 𝑧) ∈ X := Y×U×Y
and let us build the Lagrangian functional L : X× Yobs × 𝒫 → R as

L (𝑋; 𝑦d,𝜇) := 𝐽(𝑦, 𝑢; 𝑦d) + ⟨𝑧, ℰ(𝑦, 𝑢; 𝜇)⟩YY* , (2.4)

where ⟨·, ·⟩YY* is the duality pairing of Y and Y*. The introduction of the adjoint variable allows to treat problem
(2.2) in an unconstrained fashion finding the stationary point of (2.4). We remark that we consider 𝑧 in the
same space of the state variable for a proper definition of the discretized problem: we will clarify the reason
in Section 2.2. Moreover, the variable 𝑋 will inherit the parameter dependence by definition, i.e., 𝑋 := 𝑋(𝜇).
Furthermore, let us assume that the following hold:

(vi) U is nonempty;
(vii) 𝐽 : Y× U× Yobs → R and ℰ : Y× U× 𝒫 → Y* are continuously Fréchet differentiable w.r.t. 𝑦 and 𝑢;
(viii) given 𝜇 ∈ 𝒫, the controlled system ℰ(𝑦, 𝑢; 𝜇) = 0 has a unique solution 𝑦 = 𝑦(𝑢) ∈ Y for all 𝑢 ∈ U;

(ix) given 𝜇 ∈ 𝒫, 𝐷𝑦ℰ(𝑦, 𝑢; 𝜇) ∈ ℒ(Y,Y*) has a bounded inverse for all control variables 𝑢.

The Fréchet derivative w.r.t. a variable ⋆ will be indicated as 𝐷⋆, as already done in (ix). Assuming (𝑦, 𝑢) ∈
Y×U to be a solution to (2.2) for a given 𝜇 ∈ 𝒫, thanks to hypotheses (vi)–(ix), there exists an adjoint variable
𝑧 ∈ Y such that the following variational system is satisfied [27]:⎧⎪⎨⎪⎩

𝐷𝑦L (𝑋; 𝑦d,𝜇)[𝜔] = 0 ∀𝜔 ∈ Y,
𝐷𝑢L (𝑋; 𝑦d,𝜇)[𝜅] = 0 ∀𝜅 ∈ U,
𝐷𝑧L (𝑋; 𝑦d,𝜇)[𝜁] = 0 ∀𝜁 ∈ Y,

or, in strong form,

⎧⎪⎨⎪⎩
𝑦 +𝐷𝑦ℰ(𝑦, 𝑢; 𝜇)*(𝑧) = 𝑦d,

𝛼𝑢− 𝐶*(𝑧) = 0,
ℰ(𝑦, 𝑢; 𝜇) = 0,

(2.5)

where 𝐷𝑦ℰ(𝑦, 𝑢; 𝜇)* ∈ ℒ(Y,Y*) is the adjoint operator of the Fréchet linearization of ℰ(𝑦, 𝑢; 𝜇) w.r.t. the state
variable, while 𝐶* ∈ ℒ(Y,U*) is the adjoint of the control operator. We will refer to problem (2.5) as optimality
system, in weak or strong form, respectively. Moreover, writing the latter in compact form, it reads: given 𝜇 ∈ 𝒫,
find 𝑋 ∈ X such that

𝒢(𝑋; 𝜇) = ℱ , (2.6)

with

𝒢(𝑋; 𝜇) :=

⎡⎣𝑦 +𝐷𝑦ℰ(𝑦, 𝑢; 𝜇)*(𝑧)
𝛼𝑢− 𝐶*(𝑧)

𝐺(𝑦,𝜇)− 𝐶(𝑢)

⎤⎦ and ℱ :=

⎡⎣𝑦d0
𝑓

⎤⎦.
In the nonlinear case, even considering only the state equation, the solution for a given parameter 𝜇 may not

be unique. Therefore, the local well-posedness of the problem (2.6), which strongly relies on its local invertibility
assumptions (viii) and (ix), can fail due to the singularity of the state equation. Therefore, we can talk about
solution branches, i.e., multiple solution behaviors for a given value of the parameter. We denote by 𝑘 the
number of branches, and by 𝒳𝑖, 𝑖 = 1, . . . , 𝑘 the set of each solution on the 𝑖-th branch. We further call solution
ensemble the set of all the solution branches 𝒳𝑖:

𝒳 :=
𝑘⋃︁

𝑖=1

{𝑋(𝜇) ∈ 𝒳𝑖 | 𝜇 ∈ 𝒫}. (2.7)

In the next section, we will discuss the FE approximation of a solution for a fixed value of the parameter to the
nonlinear OCP(𝜇), restricting ourselves to the well-posed setting.

2.2. The FE approximation

We are interested in the numerical approximation of the solution ensemble (2.7) of the nonlinear OCP(𝜇)
in (2.6), defined over an open and bounded regular domain Ω ⊂ R𝑑. Our aim is to discretize the problem at
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hand, in order to investigate its qualitative changes w.r.t. the values of the parameter. We remark that, even
considering a single branch, the fulfillment of the well-posedness conditions can fail at some critical point 𝜇*.
Hence, in the following, we assume 𝜇 ̸= 𝜇* and 𝑋(𝜇) ∈ 𝒳𝑖 for some 𝑖 ∈ {1, . . . , 𝑘}, thus we call 𝒳𝑖 a non-singular
branch. Furthermore, we assume the nonlinearity to be at most quadratic in the state variable, guided by the
numerical results we are going to present in the following sections. However, the structure and the methodology
do not change when dealing with nonlinearities of higher order.

To approximate the system in (2.6), first of all we define the triangulation 𝒯 𝒩𝒯 of Ω, where 𝐾 is an element of
𝒯 𝒩𝒯 and 𝒩𝒯 is the number of cells. Then, let us consider the discrete spaces Y𝒩𝑦 = Y∩K𝑟𝑦

and U𝒩𝑢 = U∩K𝑟𝑢
,

where K𝑟 =
{︀
𝑣 ∈ 𝐶0

(︀
Ω

)︀
: 𝑣|𝐾 ∈ P𝑟, ∀𝐾 ∈ 𝒯 𝒩𝒯

}︀
, and P𝑟 is the space of all the polynomials of degree at most

equal to 𝑟. Let us consider the FE function space X𝒩 = Y𝒩𝑦 × U𝒩𝑢 × Y𝒩𝑦 ⊂ X, of dimension 𝒩 = 2𝒩𝑦 +𝒩𝑢.
The FE approximation of the parametrized problem (2.6) reads: given 𝜇 ∈ 𝒫, find 𝑋𝒩 := 𝑋𝒩 (𝜇) ∈ X𝒩 such
that

𝒢
(︀
𝑋𝒩 ; 𝜇

)︀
= ℱ . (2.8)

We now want to make the algebraic structure of the system (2.8) explicit. After the FE discretization, we can
define y, u and z as the column vectors which entries are given by the FE coefficients of the state, control and
adjoint variables in their approximated spaces, respectively. In the same fashion, we call yd the column vector
of the FE coefficients representing the desired state profile. Let us focus on the structure of the optimality
problem. At the FE level, applying our controlled state to the FE basis, we can derive the matrices Enℓ +Eℓ−C
and the forcing term vector f. Moreover, we define the mass matrices M𝑦 and M𝑢 for state/adjoint variables and
control, respectively. We still need to understand the algebraic structure of 𝐷𝑦ℰ(𝑦, 𝑢; 𝜇). The Fréchet derivative
of the controlled state equation w.r.t. the state 𝑦 will be E′nℓ[y] + Eℓ. In other words, the linear state structure
is preserved, the nonlinear operator is linearized in E′nℓ[y] and the control contribution disappears. Then, the
global matrix formulation of the optimization system (2.8) is

G(X;𝜇)⏞  ⏟  ⎡⎢⎣ M𝑦 0 E′nℓ[y]𝑇 + E𝑇
ℓ

0 𝛼M𝑢 −C𝑇

Enℓ + Eℓ −C 0

⎤⎥⎦
⎡⎢⎣y

u

z

⎤⎥⎦
⏟ ⏞ 

X

=

F⏞  ⏟  ⎡⎢⎣M𝑦yd

0
f

⎤⎥⎦, (2.9)

which in compact form reads:
R(X; 𝜇) := G(X; 𝜇)− F = 0, (2.10)

where R(X; 𝜇) represents the global residual of the optimality system. To solve system (2.10), we rely on Newton’s
method and we solve

X𝑗+1 = X𝑗 + Jac
(︀
X𝑗 ; 𝜇

)︀−1(︀
F− G

(︀
X𝑗 ; 𝜇

)︀)︀
, 𝑗 ∈ N, (2.11)

until a residual based convergence criterion is satisfied. Since the matrix E′nℓ[y]𝑇 still depends on y, the Jacobian
matrix will be of the following nature:

Jac
(︀
X𝑗 ; 𝜇

)︀
=

⎡⎢⎢⎣M𝑦 + Dy

(︁
E′nℓ

[︀
y𝑗

]︀𝑇
)︁[︀

z𝑗
]︀

0 E′nℓ

[︀
y𝑗

]︀𝑇 + E𝑇
ℓ

0 𝛼M𝑢 −C𝑇

E′nℓ

[︀
y𝑗

]︀
+ Eℓ −C 0

⎤⎥⎥⎦, (2.12)

where the matrix Dy

(︁
E′nℓ

[︀
y𝑗

]︀𝑇
)︁[︀

z𝑗
]︀

does not depend anymore on the state, but only on the 𝑗-th value of the
adjoint variable. Now, one can write

Jac(X𝑗 ; 𝜇) =

[︃
A B𝑇

B 0

]︃
, (2.13)
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where

A =

[︃
M𝑦 + Dy

(︁
E′nℓ

[︀
y𝑗

]︀𝑇
)︁[︀

z𝑗
]︀

0
0 𝛼M𝑢

]︃
and B =

[︀
E′nℓ

[︀
y𝑗

]︀
+ Eℓ −C

]︀
. (2.14)

We remark that, in the considered numerical settings, A is symmetric and, thus, we will always refer to (2.13)
as a saddle point structure. To guarantee the solvability of the system we consider A an invertible matrix.
Furthermore, we need the following Brezzi inf-sup condition to be verified:

𝛽𝒩Br(𝜇) := inf
0 ̸=z

sup
0 ̸=x

z𝑇 Bx

‖x‖Y×U‖z‖Y
≥ 𝛽𝒩Br > 0, (2.15)

where x = [y𝑇 , u𝑇 ]𝑇 . The assumption 𝑧 ∈ Y, will guarantee the fulfillment of the inf-sup stability condition in
the FE approximation [39, 40]. For general nonlinear problems, A may possibly be different from A𝑇 , however
the well-posedness results can be extended, and the interested reader may refer to [10,13].

In the next section, we will describe the branch-wise procedure implemented to reconstruct the bifurcation
diagram.

2.3. Bifurcation and stability analysis

For nonlinear PDE(𝜇)s, the assumptions (vii)–(ix) ensure the applicability of the well-known Implicit Func-
tion theorem [2, 18]. Indeed, under those assumptions, one expects that when the parameter changes slightly,
a stable solution evolves continuously in a unique manner. When such conditions fail to be fulfilled, the model
may undergo bifurcation phenomena. In particular, we consider the case in which the state equation has a
singularity at some parameter value 𝜇*, and for the sake of clarity, we will assume 𝑓 = 0 (or, equivalently,
include the forcing term 𝑓 in the expression of 𝐺). Indeed, from the mathematical perspective, we can give a
precise definition of such points [2].

Definition 2.1. A parameter value 𝜇* ∈ 𝒫 is a bifurcation point for (2.1) from the solution 𝑦* := 𝑦(𝜇*), if
there exists a sequence (𝑦𝑛,𝜇𝑛) ∈ Y×𝒫, with 𝑦𝑛 ̸= 𝑦*, such that (i) 𝐺(𝑦𝑛; 𝜇𝑛) = 0, and (ii) (𝑦𝑛,𝜇𝑛) → (𝑦*,𝜇*).

Thus, the bifurcation phenomena is a paradigm for non-uniqueness in nonlinear analysis, and a necessary
condition is the failure of the Implicit Function Theorem.

Proposition 2.2. A necessary condition for 𝜇* to be a bifurcation point for 𝐺 is that the partial derivative
𝐷𝑦𝐺(𝑦*; 𝜇*) is not invertible.

Moreover, given the existence of many possible configurations for the system, a natural question is to under-
stand which one inherits the stability of the unique solution, when it exists. To perform a stability analysis, one
of the most common and widely-studied method is the spectral analysis of the problem, which consists in the
investigation of the eigenvalues of the system. This technique, which has its roots in the ordinary differential
equation (ODEs) theory [32,33,52], allows to understand the stability property of a solution to (2.1) by means
of the sign of the spectrum of the model operator. In particular, for a general nonlinear uncontrolled problem,
one linearizes the equation around the solution under investigation, 𝑦 = 𝑦(𝜇̂), and then solves the eigenvalue
problem given by

𝐷𝑦𝐺(𝑦; 𝜇̂)𝑦𝑒 = 𝜌𝜇̂𝑦𝑒, (2.16)

where the pair (𝜌𝜇̂, 𝑦𝑒) represents respectively the eigenvalues and the eigenvector of 𝐷𝑦𝐺 at 𝑦 for each 𝜇̂ fixed.
This analysis provides us information about the physical stability of the problem. Indeed, the stability analysis

is strongly bound to the investigation of the solution features after a small perturbation. If the perturbation is
small enough and the dynamics of the system remains in a neighborhood of the solution, then it will be called
a stable solution. Thus, it is fundamental to observe that, in connection with ODEs stability theory, a positive
eigenvalue gives an exponentially divergent behavior, while a negative one produces only small oscillations
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around the solution. Therefore, it is clear that in order to have a stable solution, all eigenvalues must have
negative real parts.

Dealing with the controlled problem (2.6) makes the analysis more involved. Indeed, the adjoint variable does
not have physical meaning, making a straightforward application of the considerations above not applicable.
Due to the high indefiniteness of the saddle point matrix (2.13), a standard sign-analysis is no longer possible,
see [8–10] as references on the topic. Nevertheless, we can consider the eigenvalue problem for the system of the
optimality conditions, in order to investigate a posteriori the spectral property of (2.6), as:

𝐷𝑋𝒢
(︁
𝑋̂; 𝜇̂

)︁
𝑋𝑒 = 𝜎𝜇̂𝑋𝑒, (2.17)

where 𝑋̂ = 𝑋(𝜇̂) is the solution of which we are investigating the stability property and (𝜎𝜇̂, 𝑋𝑒) is the eigenpair
formed by the 𝜇̂-dependent eigenvalues 𝜎𝜇̂ and eigenvectors 𝑋𝑒. We will refer to (2.16) as the state eigenvalue
problem and to (2.17) as the global eigenvalue problem.

As we said, the main issue with bifurcating system is the lack of the invertibility for the Fréchet derivative
of the operator 𝒢 due to Proposition 2.2. The latter, being equivalent to the injectivity and surjectivity of 𝒢,
can be rewritten in terms of the continuous Babuška inf-sup stability : there exists an inf-sup constant 𝛽Ba > 0
such that

𝛽Ba(𝜇) = inf
𝑋∈X

sup
𝑌 ∈X

⟨
𝐷𝑋𝒢

[︁
𝑋̂

]︁
(𝑋; 𝜇), 𝑌

⟩
XX*

‖𝑋‖X‖𝑌 ‖X
≥ 𝛽Ba ∀𝜇 ∈ 𝒫, (2.18)

inf
𝑌 ∈X

sup
𝑋∈X

⟨
𝐷𝑋𝒢

[︁
𝑋̂

]︁
(𝑋; 𝜇), 𝑌

⟩
XX*

‖𝑋‖X‖𝑌 ‖X
> 0 ∀𝜇 ∈ 𝒫. (2.19)

It is clear that the inclusion property X𝒩 ⊂ X is only a necessary but not sufficient condition for (2.18) and
(2.19) to hold at the discrete level. Hence, an additional assumption has to be required for the discrete Babuška
inf-sup stability of 𝒢: there exists a constant 𝛽𝒩Ba > 0 such that

𝛽𝒩Ba(𝜇) = inf
X ̸=0

sup
Y ̸=0

Y𝑇 Jac X

‖X‖X𝒩 ‖Y‖X𝒩
≥ 𝛽𝒩Ba ∀𝜇 ∈ 𝒫. (2.20)

We remark that the continuous condition on the surjectivity (2.19) is no longer needed for the discrete inf-sup
stability (2.20). In fact, while the assumption (2.20) corresponds to the non singularity of the matrix Jac, a
discrete counterpart of the assumption (2.19) would require its surjectivity, or equivalently the injectivity of the
transpose matrix Jac𝑇 , which being square would be the same as requiring (2.20). We also highlight that both
continuous and discrete inf-sup conditions are satisfied as long as 𝜇 ̸= 𝜇*.

We can finally present the branch-wise procedure we developed in order to deal with the numerical compu-
tation of multiple branches of solutions. Such an approach requires the combination of different methodologies
for the approximation of the bifurcation diagram and the analysis of its stability properties. In order to keep
the presentation simple, we consider that the first component 𝜇 of the parameter 𝜇 ∈ 𝒫 ⊂ R𝑃 is the one
responsible for the bifurcation behavior of the model, and in order to follow a single branch we consider that
all the 𝑃 − 1 remaining parameters (thus the global physical/geometrical configuration) are unchanged on the
branch. Even though in this work we will only deal with bifurcation phenomena with co-dimension one, the
following methodology can be adapted to the multi-parameter and/or co-dimension > 1 case, see e.g., [43], by
carefully choosing the technique to follow the branching behavior.

Algorithm 1 summarizes how to reconstruct each branch 𝒳𝑖 of solutions. More precisely, we combine,
respectively:

– Newton’s method, as the nonlinear solver,
– Galerkin FE method, as the discretization phase,
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– simple continuation method, as the bifurcation path tracer,
– generalized eigenvalue problems, as the stability detectors.

At the very beginning, one has to chose the branch to approximate, and the most preferable way to “guide”
the nonlinear solver to the desired configuration is through the initial guess. Thus, in order to reconstruct a
branch we consider the discrete version of the parameter space 𝒫𝐾 = [𝜇1, . . . ,𝜇𝐾 ] ⊂ 𝒫 of cardinality 𝐾. We can
take 𝒫𝐾 as an ordered set, with the natural ordering induced by the first parameter component. Such ordering
serves to assign the solution obtained for a given parameter 𝜇𝑗−1 as the initial guess for the nonlinear solver
at next iteration for 𝜇𝑗 . This allows us to follow the bifurcation behavior of the model. We choose the simplest
variant of the continuation methods [1], where the parametric set is fixed a priori, since it works well with
pitchfork like bifurcation [41,42]. A more involved methodology have to be implemented when dealing with e.g.,
turning points or secondary bifurcations.

The next step is the actual discretization of the problem by means of the Newton–Kantorovich method [18]
combined with the Galerkin FE method. The initial guess for the former is set to the solution for the previous
parameter value, while the latter projects the problem into a finite dimensional space, obtaining a linear system
that we repeatedly solve until a convergence criterion is satisfied (here we chose a threshold tolerance 𝜖 for
the norm of the global residual (2.10) at the 𝑖-th iteration of the Newton’s method). In Algorithm 1, we call
Jacy(ŷ, 𝜇̂) the Jacobian matrix referred to the state equation (2.1) and with V and Vy the scalar product matrices
of the global optimization variable and of the state variable, respectively. Finally, having computed a solution X𝑗

of the problem (2.6) for the parameter 𝜇𝑗 , we can investigate its stability properties solving the two generalized
eigenproblems, to recover the physical stability and the spectral properties, respectively for the state and global
eigenvalue problems.

Remark 2.3. Moreover, we highlight that the choice of the initial guess is fundamental, but it is not always
sufficient to recover the full bifurcation diagram. In such cases, different techniques were proposed, e.g., manip-
ulating the set 𝒫𝐾 through predictor-corrector continuation methods, which involves pseudo-arclength strategy
and homotopy [1, 52]. Finally, when it is difficult to choose a proper guess, one can rely on:
– the discretized version of analytic expressions, resembling the main properties of the sought solution [42];
– a deflation method, which requires only one initial guess, and discovers the full diagram preventing the

convergence to already discovered solutions, helping the solver to find new branches [17,44];
– the eigenvectors of the global eigenvalue problem, that have been used in [41] to obtain the direction of the

bifurcation branch in a neighborhood of the bifurcation points.

Algorithm 1. A pseudo-code for the reconstruction of a branch.
1: X0 = Xguess ◁ Initial guess

2: for 𝜇𝑗 ∈ 𝒫𝐾 do ◁ Continuation loop

3: X
(0)
𝑗 = X𝑗−1 ◁ Continuation guess

4: while
⃦⃦
⃦R
(︁
X

(𝑖)
𝑗 ;𝜇𝑗

)︁⃦⃦
⃦ > 𝜖 do ◁ Newton’s method

5: Jac
(︁
X

(𝑖)
𝑗 ;𝜇𝑗

)︁
𝛿X = R

(︁
X

(𝑖)
𝑗 ;𝜇𝑗

)︁
◁ Galerkin FE method

6: X
(𝑖+1)
𝑗 = X

(𝑖)
𝑗 − 𝛿X

7: end while

8: Jacy

(︀
yj;𝜇j

)︀
ye = 𝜌𝜇j

Vyye ◁ State eigenproblem

9: Jac
(︀
Xj;𝜇j

)︀
Xe = 𝜎𝜇j

VXe ◁ Global eigenproblem

10: end for
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Figure 1. Uncontrolled system: domain Ω which represents a straight channel with a narrow inlet.

3. Bifurcations for Navier–Stokes equations: the Coanda effect

In this section, we analyze a bifurcating phenomenon deriving from Navier–Stokes equations in a sudden-
expansion channel flow problem. Indeed, consider the channel geometry depicted in Figure 1. A fluid charac-
terized by a high viscosity presents a jet which is symmetric w.r.t. the horizontal axis. Furthermore, a pair of
vortices, called Moffatt eddies [38], form downstream of the expansion. Lowering the viscosity, the inertial effects
of the fluid become more important and the two symmetric recirculation regions break the symmetry. Indeed,
as the length of the recirculation zones increases, one can observe a non-uniform decrease of the pressure along
the vertical axis. Thus, when we reach the aforementioned critical value, one recirculation zone expands whereas
the other shrinks, giving rise to an asymmetric jet. This phenomenon is called the Coanda effect and has been
extensively studied in literature within different contexts [24,31,43,44,46,47,57].

From the mathematical point of view, this translates to a PDE(𝜇) which, decreasing the viscosity 𝜇 below
a certain critical value 𝜇*, admits the existence of more solutions for the same value of 𝜇 ∈ 𝒫. During the
study of the solution for different viscosity values, we expect the system to show two qualitatively different
configurations:

– a physically unstable configuration with a symmetric jet flow, the symmetric solution,
– a physically stable configuration with a wall-hugging jet, the asymmetric solution.

These solutions, depicted in Figure 3, coexist for parameter values below the critical one 𝜇* and belong to
different branches that intersect in the bifurcation point, forming the so-called pitchfork bifurcation.

In the next sections, we introduce the mathematical formulation of Navier–Stokes equations describing the
flow in a channel. This will serve us to highlight the bifurcated behavior of the system and its stability properties
and it will be fundamental to understand how different controls affect the original system.

3.1. Navier–Stokes problem as the state equation

Here we consider a simplified setting with a two-dimensional planar straight channel with a narrow inlet and
a sudden expansion, depicted in Figure 1, which represents a simplification of the left atrium and the mitral
valve, respectively. We define Γin = {0}× [2.5, 5] and Γout = {50}× [0, 7.5], where inflow and outflow boundary
conditions are imposed, respectively. We indicate with Γwall, the boundaries representing the walls, in this case
Γwall = ΓD ∪ Γ0, where ΓD = {{10} × [0, 2.5]} ∪ {{10} × [5, 7.5]} and Γ0 = 𝜕Ω ∖ {Γin ∪ ΓD ∪ Γout}.

The steady and incompressible Navier–Stokes equations for a viscous flow in Ω read as:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−𝜇∆𝑣 + 𝑣 · ∇𝑣 +∇𝑝 = 0 in Ω,
∇ · 𝑣 = 0 in Ω,
𝑣 = 𝑣in on Γin,

𝑣 = 0 on Γwall,

−𝑝𝑛+ (𝜇∇𝑣)𝑛 = 0 on Γout,

(3.1)
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where 𝑣 = (𝑣𝑥1 , 𝑣𝑥2) is the velocity of the fluid, 𝑝 is its pressure normalized over a constant density and 𝜇
represents the kinematic viscosity. We supplement the system (3.1) with proper boundary conditions: a stress
free boundary condition on the velocity at the outlet, Γout with outer normal 𝑛, a no-slip (homogeneous)
Dirichlet boundary condition on Γwall and a non-homogeneous Dirichlet boundary conditions 𝑣in at the inlet
Γin given by 𝑣in(𝑥2) = [20(5− 𝑥2)(𝑥2 − 2.5), 0]𝑇 .

For later convenience, we introduce the dimensionless Reynolds number, which represents the ratio between
inertial and viscous forces, and is given by Re = 𝑈ℎ/𝜇, where 𝑈 and ℎ are characteristic velocity (i.e., maximum
inlet velocity, 𝑈 = 31.25) and characteristic length of the domain (i.e., length of the inlet section, ℎ = 2.5),
respectively. In the following we will consider 𝜇 as the parameter.

Fixed the domain Ω, the flow regime varies as we consider different values for the viscosity 𝜇 in 𝒫 ⊂ R.
As we said in the introduction to this section, this model exhibits a bifurcating behavior. Indeed we have
the existence and uniqueness of the solution only above a certain critical value for the viscosity, that for this
test case corresponds to 𝜇* ≈ 0.96. Such value has been found in different works and numerical contexts for
this benchmark [31, 43, 44]. It can be obtained either “a posteriori” by looking at the behaviour of the flow
while varying the viscosity, or “a priori” by investigating the change of sign of the leading eigenvalue w.r.t. the
parameter. To investigate the loss of uniqueness in a neighborhood of this pitchfork bifurcation, we set the
parameter space as 𝒫 = [0.5, 2.0], such that the first critical point 𝜇* is included. These values for the viscosity
correspond to Re in the interval [39.0, 156.0].

Let V =
(︀
𝐻1(Ω)

)︀2, Vin = {𝑣 ∈ V | 𝑣 = 𝑣in on Γin, 𝑣 = 0 on Γwall}, V0 = {𝑣 ∈ V | 𝑣 = 0 on Γin ∪ Γwall}
be the function spaces for velocity. Furthermore, let Q = 𝐿2(Ω) be the function space for pressure. The weak
formulation of (3.1) reads as: given 𝜇 ∈ 𝒫, find 𝑣 ∈ Vin and 𝑝 ∈ Q such that⎧⎪⎪⎨⎪⎪⎩

𝜇

∫︁
Ω

∇𝑣 · ∇𝜓 dΩ +
∫︁

Ω

(𝑣 · ∇𝑣)𝜓 dΩ−
∫︁

Ω

𝑝∇ · 𝜓 dΩ = 0 ∀𝜓 ∈ V0,∫︁
Ω

𝜋∇ · 𝑣 dΩ = 0 ∀𝜋 ∈ Q.
(3.2)

We can rewrite the formulation of (3.2) in an equivalent way as: given 𝜇 ∈ 𝒫, find 𝑣 ∈ Vin and 𝑝 ∈ Q such that{︃
𝑎(𝑣, 𝜓;𝜇) + 𝑠(𝑣, 𝑣, 𝜓) + 𝑏(𝜓, 𝑝) = 0 ∀𝜓 ∈ V0,

𝑏(𝑣, 𝜋) = 0 ∀𝜋 ∈ Q,
(3.3)

having introduced the following bilinear and trilinear forms for all 𝑣, 𝑣, 𝜓 ∈ V and 𝑝 ∈ Q,

𝑎(𝑣, 𝜓;𝜇) = 𝜇

∫︁
Ω

∇𝑣 · ∇𝜓 dΩ, 𝑏(𝑣, 𝑝) = −
∫︁

Ω

(∇ · 𝑣)𝑝 dΩ, 𝑠(𝑣, 𝑣, 𝜓) =
∫︁

Ω

(𝑣 · ∇𝑣)𝜓 dΩ. (3.4)

3.2. Numerical approximation of the problem

We can now discuss the numerical approximation of the Navier–Stokes equation, that will be the state
equation of the control problem in the next sections. We consider a mesh on the domain Ω with 𝒩𝒯 = 2785
cells and 𝒩𝑦 = 24 301 degrees of freedom associated to a Taylor-Hood P2-P1 discretization of V×Q. This choice
is motivated by the well-known stability results of the Taylor-Hood Finite Element pair [48].

In order to plot the bifurcation diagram, we choose an output value that results in a symmetry indicator
of the approximated solution. This function is given by the value of the vertical component of the velocity in
a point of the channel, i.e., 𝑣𝑥2 evaluated for (𝑥1, 𝑥2) = (14, 4), or the nearest node to that value since the
mesh is unstructured. We remark that this output provides a merely graphical intuition about the symmetry
breaking, and can be chosen to be efficiently computed by means of the analysis in Section 5. In Figure 2 we
plot the bifurcation diagram with all the solution branches found for the system (3.3) in the viscosity range
chosen. The numerical approximation clearly shows that a supercritical pitchfork bifurcation occurs around the
critical viscosity value 𝜇* ≈ 0.96. It is evident that we have a unique solution for all 𝜇 > 𝜇*, thus when the
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Figure 2. Uncontrolled Navier–Stokes system: bifurcation diagram.

Figure 3. Uncontrolled Navier–Stokes system: representative solutions for 𝜇 = 0.5, velocity
and pressure fields, lower and middle branch, top and bottom, respectively.

fluid behaves like a Stokes one, while we find three qualitatively different solutions increasing the Reynolds
number. The bifurcation point 𝜇* is also the one responsible for the change in stability properties of the model.
Indeed, the unique symmetric solution remains stable until it encounters the critical value 𝜇*, where it becomes
unstable. Moreover, this feature is inherited by the bifurcating solutions, which evolve as a physically stable
branch.

Some representative solutions for the lower and middle branch are presented in Figure 3. Velocity and pressure
fields belonging to different branches, for the same viscosity value 𝜇 = 0.5, present qualitatively dissimilar
behavior. Indeed, the pressure for the lower branch decreases near the bottom-left corner of the expansion,
causing the velocity to deflect, hugging the lower wall. Finally, thanks to the no-slip boundary condition the
flux goes back to mid line, ending with a non-axis-symmetric outflow.

The stability analysis is performed through the eigenvalue analysis depicted in Section 2.3, where Algorithm 1
has been applied exclusively to the state equation (2.1). In particular, we analyzed the behavior of the first
𝑁eig = 100 eigenvalues of (2.16), by means of the Krylov–Schur algorithm, varying the viscosity of the fluid.
Such eigenvalues are plotted in Figure 4 for the stable lower branch (left panel) and unstable middle branch
(right panel). Note that since the Navier–Stokes operator is not symmetric, we have the presence of both real
and complex eigenvalues. Here we are just interested in pitchfork bifurcation, thus in the zoom we follow the
behavior of the biggest real eigenvalue and its sign. When investigating the stability of the lower branch, all the
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Figure 4. Uncontrolled Navier–Stokes system: eigenvalues of the state eigenproblem in the
complex plane: stable and unstable solutions, left and right panels respectively.

eigenvalues of the Navier–Stokes system, linearized around this stable solution, have negative real part. From
the consideration of Section 2.3, we can assert the stability of the wall-hugging branch. Indeed, the zoom in
the left plot of Figure 4 shows no crossing of negative-real part eigenvalues. On the contrary, the close up in
the right plot, which corresponds to the symmetric flow, shows the sign change of the biggest eigenvalue, thus
characterizing a physically unstable solution.

4. Steering bifurcating governing equations towards desired branches by
means of optimal control

In this section, we focus on several OCP(𝜇)s governed by Navier–Stokes equations (3.1) in the geometrical
configuration of a contraction-expansion channel. We aim at understanding how different control problems
can affect the solution behavior discussed in Section 3 for the uncontrolled case, especially when bifurcation
phenomena are taken into account. This leads us to analyze the controlled systems, trying to reach state profiles
which are different from the expected uncontrolled solution. Our goal is to investigate and better understand
the role that optimal control plays as an attractor towards a desired configuration.

We thus follow the general procedure described in Section 2.1, and discuss the specific case of optimal control
for the Coanda effect. Nonetheless, the procedure adopted here is general and can be used in wide variety of
applications.

For all the applications, we will simulate the physical phenomenon over the domain Ω shown in Figure 1.
Moreover, for the OCPs structure, we will require the velocity solution 𝑣 ∈ V to be the most similar to a desired
profile 𝑣d ∈ Vobs := (𝐿2(Γobs))2. The observation domain Γobs = {47} × [0, 7.5] is a line near the end of the
channel. This structure allows the control to change the solution at the outflow following a prescribed convenient
configuration. During the rest of this work, we will employ two velocity solution profiles, which are showed in
Figure 5: we will denote them as the symmetric desired profile (or target) for Figure 5a and the asymmetric
desired profile (or target) for Figure 5b. The first is the result of a Stokes system over Ω for 𝜇 = 1 with the
same boundary conditions of the Navier–Stokes uncontrolled equations (3.1). On the contrary, the latter is the
physically stable solution of (3.1) for 𝜇 = 0.49. While the former choice aims at controlling the system towards
a globally symmetric configuration with a weaker outgoing flux, the latter is set to achieve the opposite goal.

The purpose of steering the bifurcating behavior is summarized in the minimization of the functional

𝐽NS(𝑣, 𝑢; 𝑣d) =
1
2
‖𝑣 − 𝑣d‖2Vobs

+
𝛼

2
‖𝑢‖2U, (4.1)
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Figure 5. Desired velocity profiles: (a) symmetric profile obtained as Stokes solution for 𝜇 = 1;
(b) asymmetric profile given by the physically stable Navier–Stokes solution for 𝜇 = 0.49.

where U := (𝐿2(Ω𝑢))2 with Ω𝑢 ⊂ Ω: indeed, the control action can be performed even over a portion of the
boundary 𝜕Ω. We will refer to Ω𝑢 as the control domain. Within this study we will analyze how the choice of
Ω𝑢, combined with different values of the penalization parameter 𝛼, affects the solution behavior of the system,
compared to the uncontrolled Navier–Stokes state equation.

We remark that hypothesis (i)–(ix) are verified in this specific OCP(𝜇) setting, see e.g., [27]. Then, after a
general introduction in Section 4.1, we will provide the analysis of different optimal control systems, as follows.

Section 4.2. A weak control is built by controlling a Neumann boundary and the optimality system slightly
affects the usual bifurcating nature of the uncontrolled Navier–Stokes equations.

Section 4.3. A strong control effect can be observed over the classical bifurcating behavior of the uncontrolled
solution by acting on the forcing term.

Section 4.4. The penalization parameter 𝛼 is analyzed while acting at the end of the inlet channel, and we
discuss how changing 𝛼 results in different orders of magnitude for the optimal control.

Section 4.5. We show how imposing different boundary flux conditions completely changes the known behavior
of the starting system.

Finally, in Section 4.6, remarks and comparisons on the spectral analysis of the four test cases are presented.

4.1. OCP(𝜇)s governed by Navier–Stokes equations

We recast OCP(𝜇)s constrained to Navier–Stokes equations in the algebraic formulation presented in
Section 2.1.

The steady and incompressible controlled Navier–Stokes equations in a given domain Ω are:{︃
−𝜇∆𝑣 + 𝑣 · ∇𝑣 +∇𝑝 = 𝐶(𝑢) in Ω,
∇ · 𝑣 = 0 in Ω,

(4.2)

accompanied by some boundary conditions. The control operator 𝐶 : U → V* can represent an external forcing
term or a boundary term. If 𝐶 is defined in the whole domain we will say that the control is distributed, while
if it is defined in a portion of the internal domain, we will deal with localized control. Furthermore, we will refer
to Neumann control and Dirichlet control, if the control acts as Neumann or Dirichlet boundary conditions,
respectively.

The weak formulation of (4.2) reads: given 𝜇 ∈ 𝒫, find 𝑣 ∈ V, 𝑝 ∈ Q and 𝑢 ∈ U such that{︃
𝑎(𝑣, 𝜓;𝜇) + 𝑠(𝑣, 𝑣, 𝜓) + 𝑏(𝜓, 𝑝) = 𝑐(𝑢, 𝜓) ∀𝜓 ∈ V,
𝑏(𝑣, 𝜋) = 0 ∀𝜋 ∈ Q,

(4.3)

where 𝑎(·, ·;𝜇), 𝑏(·, ·) and 𝑠(·, ·, ·) have been already defined in (3.4) while 𝑐 : U × Y → R is a bilinear form
associated to the operator 𝐶. First of all, to derive the optimality conditions, we need the adjoint variables
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𝑤 ∈ V and 𝑞 ∈ Q for velocity and pressure, respectively. Let 𝑋 = ((𝑣, 𝑝), 𝑢, (𝑤, 𝑞)) ∈ X := Y × U × Y be an
optimal solution, where Y := V×Q. The Lagrangian functional for this specific problem is

LNS(𝑋; 𝑣d,𝜇) = 𝐽NS(𝑣, 𝑢; 𝑣d) + 𝜇

∫︁
Ω

∇𝑣 · ∇𝑤 dΩ +
∫︁

Ω

(𝑣 · ∇𝑣)𝑤 dΩ

−
∫︁

Ω

𝑝∇ · 𝑤 dΩ +
∫︁

Ω

𝑞∇ · 𝑣 dΩ− 𝑐(𝑢,𝑤).
(4.4)

The optimality system built through Fréchet differentiation is given by:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐷𝑣LNS(𝑋; 𝑣d,𝜇)[𝜙] = 0 ∀𝜙 ∈ V,

𝐷𝑝LNS(𝑋; 𝑣d,𝜇)[𝜉] = 0 ∀ 𝜉 ∈ Q,

𝐷𝑢LNS(𝑋; 𝑣d,𝜇)[𝜏 ] = 0 ∀ 𝜏 ∈ U,

𝐷𝑤LNS(𝑋; 𝑣d,𝜇)[𝜓] = 0 ∀𝜓 ∈ V,

𝐷𝑞LNS(𝑋; 𝑣d,𝜇)[𝜋] = 0 ∀𝜋 ∈ Q,

(4.5)

where the first two equations form the adjoint system, the last two form the state system (4.3), while differen-
tiating w.r.t. the variable 𝑢 leads to the optimality equation. In particular, the adjoint system combined with
the optimality equation has the following form:⎧⎪⎨⎪⎩

𝑚(𝑣, 𝜙) + 𝑎(𝑤,𝜙;𝜇) + 𝑠(𝜙, 𝑣, 𝑤) + 𝑠(𝑣, 𝜙,𝑤) + 𝑏(𝜙, 𝑞) = 𝑚(𝑣d, 𝜙) ∀𝜙 ∈ V,
𝑏(𝑤, 𝜉) = 0 ∀ 𝜉 ∈ Q,
𝛼𝑟(𝑢, 𝜏) = 𝑐(𝜏, 𝑤) ∀ 𝜏 ∈ U,

(4.6)

where 𝑚 : V × V → R and 𝑟 : U × U → R terms come from the Fréchet derivative of (4.1) w.r.t. the velocity
and control, respectively. They represent the 𝐿2 scalar product in Γobs and Ω𝑢, respectively. Furthermore, we
remark that 𝑠(𝜙, 𝑣, 𝑤) + 𝑠(𝑣, 𝜙,𝑤) is the linearization around 𝑣 of the trilinear form 𝑠(𝑣, 𝑣, 𝜙), by definition.
Therefore, the strong formulation for (4.6) reads:⎧⎪⎨⎪⎩

𝑣IΩobs − 𝜇∆𝑤 − 𝑣 · ∇𝑤 + (∇𝑣)𝑇𝑤 +∇𝑞 = 𝑣dIΩobs in Ω,
∇ · 𝑤 = 0 in Ω,
𝛼𝑢IΩ𝑢

= 𝐶*𝑤 in Ω,
(4.7)

where IΩ𝑢 and IΩobs are the indicator functions of the control and observation domains, respectively. The detailed
derivation of the optimality system is addressed in several works, see e.g., [20, 22, 27]. The global optimization
problem reads: given 𝜇 ∈ 𝒫, find 𝑋 = ((𝑣, 𝑝), 𝑢, (𝑤, 𝑞)) ∈ X such that (4.2) and (4.7) are verified.

We remark that, if we call 𝑦 := (𝑣, 𝑝) and 𝑧 := (𝑤, 𝑞), we recover the global algebraic formulation presented
in Section 2.1 and the saddle point structure is preserved. Indeed, let us suppose that we apply the Taylor-Hood
approximation P2–P1 for state 𝑦 and adjoint variable 𝑧. Furthermore, we discretize the space U with FE using
P2 polynomials. Recalling the notation of Section 2.2, we define the quantities

y =
[︂
v

p

]︂
, z =

[︂
w

q

]︂
, M𝑦 =

[︂
M𝑣 0
0 0

]︂
, and C =

[︂
C𝑣

0

]︂
, (4.8)

where v, p,w, q are the column vectors of FE coefficients for state and adjoint, velocities and pressures respec-
tively, while M𝑣 is the mass velocity matrix and C𝑣 derives by the bilinear form 𝑐(·, ·). Furthermore, the linearized
state equation structure can be now expressed as

E′nℓ

[︀
y𝑗

]︀
+ Eℓ =

[︃
S
[︀
v𝑗

]︀
0

0 0

]︃
+

[︃
K D𝑇

D 0

]︃
=

[︃
K + S

[︀
v𝑗

]︀
D𝑇

D 0

]︃
, (4.9)
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where K is the stiffness matrix associated to the bilinear form 𝑎(·, ·;𝜇), D is the continuity equation matrix
coming from 𝑏(·, ·) and S

[︀
v𝑗

]︀
is the algebraic formulation of 𝑠(𝑣, ·, ·)+𝑠(·, 𝑣, ·) evaluated at the FE velocity basis

functions. It remains to understand the specific structure of Dy

(︁
E′nℓ[y]𝑇

)︁[︀
z𝑗

]︀
defined in (2.12). To this end, we

define 𝑠ad(𝑣, 𝑤, 𝜙) as the adjoint operator of the linearized trilinear form 𝑠(𝑣, 𝑣, ·) around the state velocity 𝑣.
Applying 𝑠ad(𝑣, ·, ·) to the basis functions of V𝒩𝑣 will result in S

[︀
v𝑗

]︀𝑇 . In the Jacobian matrix evaluation, a
linearization of 𝑠ad(𝑤, 𝑣, 𝜙) is performed not only in 𝑤, but also w.r.t. the variable 𝑣. This process will lead to

Dy𝑗

(︁
E′nℓ

[︀
y𝑗

]︀𝑇
)︁[︀

z𝑗
]︀

=

[︃
Dv

(︁
S
[︀
v𝑗

]︀𝑇
)︁(︀[︀

w𝑗
]︀)︀

0
0 0

]︃
, (4.10)

where Dv

(︁
S
[︀
v𝑗

]︀𝑇
)︁(︀[︀

w𝑗
]︀)︀

is given by the form 𝑠ad(𝑤, ·, ·) applied to the FE velocity basis. Then, the Jacobian
reads

JacNS

(︀
X𝑗 ; 𝜇

)︀
=

⎡⎢⎢⎢⎢⎢⎢⎣
M𝑣 + Dv

(︁
S
[︀
v𝑗

]︀𝑇
)︁[︀

w𝑗
]︀

0 0 K𝑇 + S
[︀
v𝑗

]︀𝑇
D𝑇

0 0 0 D 0

0 0 𝛼M𝑢 −C𝑇
𝑣 0

K + S
[︀
v𝑗

]︀
D𝑇 −C𝑣 0 0

D 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ =

[︃
A B𝑇

B 0

]︃
(4.11)

where X is the FE coefficient vector of the optimal solution and

A =

⎡⎢⎣M𝑣 + Dv

(︁
S
[︀
v𝑗

]︀𝑇
)︁(︀[︀

w𝑗
]︀)︀

0 0
0 0 0
0 0 𝛼M𝑢

⎤⎥⎦ and B =

[︃
K + S

[︀
v𝑗

]︀
D𝑇 −C𝑣

D 0 0

]︃
. (4.12)

As already specified in Section 2.2, we assume that for 𝜇 ̸= 𝜇* the saddle point (4.11) is well-posed. Moreover,
we highlight that we are dealing with a nested saddle point structure: indeed, for the state equation (4.9) we
require that, for a given 𝜇 ̸= 𝜇* and fixed v𝑗 , the matrix K+S

[︀
v𝑗

]︀
is invertible and that Brezzi inf-sup condition

holds, i.e.,

𝛽𝒩Br,NS := inf
p ̸=0

sup
v ̸=0

p𝑇 Dv

‖v‖V‖p‖Q
≥ 𝛽

𝒩
Br,NS > 0. (4.13)

This is indeed the case for the Taylor-Hood discretization introduced in Section 3.
In the next subsections we analyze how the controlled problem behaves, comparing its properties with the

ones of the uncontrolled system presented in Section 3. We will use the word natural optimal branch to describe
the branch that is obtained by running Algorithm 1 with a trivial initial guess. This branch may consist of
either symmetric or asymmetric configurations, depending on the test case. Further branches may exist, but are
much harder to compute in practice and require very tailored initial guesses that can be provided by running
Algorithm 1 in a neighborhood of 𝜇*, and will be named non-natural optimal branches2. We interpret the
concept of natural optimality as a numerical stability property of the optimal control system. Indeed, as already
specified in Section 2.1, for OCP(𝜇)s it makes no sense to talk about the physical stability of the global optimal
solution. In fact, the system is “artificially” built by adding non-physical adjoint variables, with the aim of
changing the system behavior.

2For the sake of exposition, each branch is extended to 𝜇 > 𝜇* with the unique solution.
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4.2. Neumann control: weak steering

The first test case we present is a Neumann control over the boundary Γout, where homogeneous Dirichlet
conditions are applied to Γwall := Γ0 ∪ ΓD. More specifically, in this case, the optimality conditions read: given
𝜇 ∈ 𝒫 find 𝑋 ∈ X such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑣IΓobs − 𝜇∆𝑤 − 𝑣 · ∇𝑤 + (∇𝑣)𝑇𝑤 +∇𝑞 = 𝑣dIΓobs in Ω,

∇ · 𝑤 = 0 in Ω,

𝑤 = 0 on Γin ∪ Γwall,

−𝑞𝑛+ (𝜇∇𝑤)𝑛 = 0 on Γout,

𝛼𝑢IΓout = 𝑤IΓout in Ω,

−𝜇∆𝑣 + 𝑣 · ∇𝑣 +∇𝑝 = 0 in Ω,

∇ · 𝑣 = 0 in Ω,

𝑣 = 𝑣in on Γin,

𝑣 = 0 on Γwall,

−𝑝𝑛+ (𝜇∇𝑣)𝑛 = 𝑢 on Γout.

(4.14)

The desired velocity 𝑣d will always be of the symmetric type for this specific example. In other words, we are
studying which is the best choice for Neumann boundary condition, to reach the exiting symmetric profile shown
in Figure 5a. We study the behavior of the controlled solution varying 𝛼 = 1, 0.1, 0.001, 0.0001, where the greater
is the value of 𝛼 the lower is the strength of the control. In Figure 6 we show some representative solutions
for 𝛼 = 0.01 and 𝜇 = 0.5, for state velocity and pressure variables. In this case, the natural optimal branch
is composed by asymmetric solutions (Fig. 6, top), while there is a further non-natural optimal branch made
up by symmetric solutions (Fig. 6, bottom). Results obtained following the natural optimal and non-natural
optimal branches are shown in Figures 7 and 8, respectively. Therefore, we conclude that the Neumann control
affects weakly the system, as it is not able to steer the system towards the desired symmetric configuration after
bifurcation has occurred, thus not changing drastically the features already observed for the uncontrolled state
equations (see Fig. 2).

The left plot of Figure 7 depicts the velocity profile magnitude over Γobs for the highest value of the Reynolds
number when following the natural optimal branch. Even though the obtained velocity (marked by an orange
line) is indeed different from the desired profile (denoted by a blue line), especially for what concerns peak
values, we observe that the Neumann control straightens the flux near the end of the channel (compare the
orange line to the green line, which represents the uncontrolled asymmetric profile), even when high Reynolds
numbers are considered. The resulting profile is similar to the uncontrolled symmetric velocity (red line), even
though full symmetry is not achieved. The action of the control variable is shown in the right plot of Figure 7
when changing the parameter 𝜇 following the natural optimal branch: the control is stronger for 𝜇 < 𝜇* (i.e.,
when the wall-hugging phenomenon occurs and straightening in necessary), while it remains low in magnitude
for 𝜇 > 𝜇*.

Similarly, the left plot of Figure 8 shows the velocity profile magnitude over Γobs for the highest value of
the Reynolds number when following the non-natural optimal branch. In this case, the controlled symmetric
profile (orange line) coincides with the uncontrolled symmetric profile (red line). Furthermore, the right plot
of Figure 8 shows that the control variable around the critical 𝜇* (e.g., 𝜇 = 1 and 𝜇 = 0.95) is asymmetric to
counteract the stable wall-hugging physically driven behavior of the uncontrolled system. We further remark
that, compared to the natural optimal branch, the control variable of the non-natural optimal branch is much
lower in magnitude.

Table 1 shows the value of the cost functional (4.1) for several values of 𝜇 (rows) and 𝛼 (columns), following
either the natural optimal or non-natural optimal branches. The first column also shows the value of the
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Figure 6. Neumann Control : optimal solutions with 𝛼 = 0.01 and 𝜇 = 0.5, belonging to
the natural optimal (panels (a) and (b) for state velocity and pressure, respectively) and the
non-natural optimal (panels (c) and (d)) branches.

Figure 7. Neumann Control : Left : comparison of velocity profiles in the controlled and
uncontrolled cases for 𝛼 = 0.01, 𝜇 = 0.5 on Γobs w.r.t. the desired profile when following
the natural optimal branch. Right : representation of control variable evolution for 𝛼 = 0.01,
𝜇 = 2, 1, 0.95, 0.5 over Γout when following the natural optimal branch.

uncontrolled functional, i.e., (4.1) evaluated for the uncontrolled velocity 𝑣 of the equation (3.1) and zero
control. The main observation is that decreasing the value of 𝛼 results in lower cost functional values, since a
lower value of 𝛼 allows stronger control to take place and drive the velocity to the desired configuration. In all
cases, the non-natural branch presents lower values of the functional compared to the natural branch; this has to
be expected, as the cost functional measures deviation from a symmetric target, and the non-natural branch is
clearly closer to the target being made of symmetric solution (compare e.g., for 𝜇 = 0.05 and 𝛼 = 0.001 the left
panels of Figs. 7 and 8). However, the natural branch is the one for which the control procedure is influencing the
most the cost functional values: for instance, for 𝜇 = 0.05 and 𝛼 = 0.001, the cost functional is decreased by 6%
on the non-natural branch and by 55% on the natural one w.r.t. the corresponding uncontrolled configuration.
Again, this has to be expected from the previous discussion of Figures 7 and 8, which shows larger impact of
the control procedure to straighten the solution on the natural branch. Finally, large values of 𝜇 have negligible
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Figure 8. Neumann Control : Left : comparison of velocity profiles in the controlled and uncon-
trolled cases for 𝛼 = 0.01, 𝜇 = 0.5 on Γobs w.r.t. the desired profile when following the non-
natural optimal branch. The lines marked by “Controlled Symmetric Velocity” and “Uncon-
trolled Symmetric Velocity” overlap. Right : representation of control variable evolution for
𝛼 = 0.01, 𝜇 = 2, 1, 0.95, 0.5 over Γout when following the non-natural optimal branch.

Table 1. Neumann Control : comparison of the functional value w.r.t. stable and unstable
uncontrolled solutions. (Nat.) Natural optimal branch. (n-Nat.) Non-natural optimal branch.

Stable Unstable Nat. n-Nat. Nat. n-Nat. Nat. n-Nat. Nat. n-Nat.
𝜇

Uncontrolled 𝛼 = 1 𝛼 = 0.1 𝛼 = 0.01 𝛼 = 0.001

2 5.14e–9 5.14e–9 5.13e–9 5.13e–9 5.13e–9 5.13e–9 5.13e–9 5.13e–9 5.07e–9 5.07e–9
1.5 4.38e–6 4.38e–6 4.38e–6 4.38e–6 4.38e–6 4.38e–6 4.37e–6 4.37e–6 4.28e–6 4.28e–6
1 4.10e–3 4.10e–3 4.10e–3 4.10e–3 4.10e–3 4.10e–3 4.08e–3 4.10e–3 3.92e–3 3.92e–3
0.9 3.33e–2 1.63e–2 3.33e–2 1.63e–2 3.30e–2 1.63e–2 3.15e–2 1.63e–2 2.93e–2 1.55e–2
0.8 2.08e–1 6.52e–2 2.07e–1 6.52e–2 2.04e–1 6.51e–2 1.88e–1 6.51e–2 1.70e–1 6.15e–2
0.7 1.01e+0 2.59e–1 1.01e+0 2.59e–1 9.80e–1 2.59e–1 8.63e–1 2.59e–1 7.67e–1 2.43e–1
0.6 4.48e+0 1.70e+0 4.44e+0 1.02e+0 4.15e+0 1.02e+0 3.33e+0 1.02e+0 2.91e+0 9.57e–1
0.5 1.88e+1 3.92e+0 1.83e+1 3.92e+0 1.50e+1 3.92e+0 9.61e+0 3.92e+0 8.54e+0 3.68e+0

cost functionals, as the target velocity almost coincides with the uncontrolled velocity. From such an analysis
we deduce that, when bifurcating phenomena occur, a configuration can perform better than another one, and
finding all the solution branches can be of great importance to understand the solution that best recover the
desired profile.

Concerning the stability of the solution, we performed the eigenvalues analysis described in Algorithm 1. We
can derive several insights from the Figure 9, which represents the global eigenvalue problem for the natural
branch, against the parameter 𝜇 such that ℜ(𝜎𝜇) = [−0.01, 0.01].

We plot the first 𝑁eig = 100 eigenvalues of the linearized system (2.17) around the global optimal solution,
using a Krylov–Schur algorithm. From the plot, we observe two eigenvalues (highlighted with blue markers)
approaching ℜ(𝜎𝜇) = 0: we will refer to this behavior as shears phenomenon. Moreover, the number of positive
eigenvalues grows inversely with the value of the penalization parameter, and the negative eigenvalues are
lowering except for the negative shear eigenvalue. Furthermore, the positive real eigenvalues accumulate in the
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Figure 9. Neumann Control : spectral analysis with 𝛼 = 1, 0.1, 0.01, 0.001.

value of 𝛼: this is very clear in subplots 9c and 9d. From the plot, a single eigenvalue (denoted by red markers)
approaching zero is visible.

One of the conclusions we can obtain from the global eigenvalue analysis is how the concentration of negative
eigenvalues is affected by the greater action of the control variable obtained by decreasing 𝛼: for a fixed range
of ℜ(𝜎𝜇), decreasing 𝛼 (i.e., a more controlled system) results in larger number of positive eigenvalues in
ℜ(𝜎𝜇). Unfortunately, we cannot derive information about the physical stability of the global solution from the
performed global eigenvalue analysis, since similar eigenvalue structures are observed for both the natural and
non-natural branches (only the former being shown here for the sake of brevity). Therefore, our considerations
throughout the work are limited to the numerical stability represented by natural optimality, as discussed above.
Thus, we conclude that the Neumann control is not able to fully steer uncontrolled solutions towards the desired
symmetric configuration. However, this will be achieved in the next section, where a stronger control action will
be presented.

4.3. Distributed control: strong steering

This section deals with a distributed control in Ω𝑢 ≡ Ω, thus the control variable 𝑢 acts as an external forcing
term on the whole domain. Here we consider again Γwall = Γ0 ∪ ΓD. Given 𝜇 ∈ 𝒫, the optimal solution 𝑋 ∈ X
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Figure 10. Distributed Control : optimal control profiles for 𝛼 = 0.01. Left: 𝜇 = 2 in (a) and
(c); right: 𝜇 = 0.5 in (b) and (d). Top: symmetric target in (a) and (b); bottom: asymmetric
target in (c) and (d).

satisfies the following system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑣IΓobs − 𝜇∆𝑤 − 𝑣 · ∇𝑤 + (∇𝑣)𝑇𝑤 +∇𝑞 = 𝑣dIΓobs in Ω,

∇ · 𝑤 = 0 in Ω,

𝑤 = 0 on Γin ∪ Γwall,

−𝑞𝑛+ (𝜇∇𝑤)𝑛 = 0 on Γout,

𝛼𝑢 = 𝑤 in Ω,

−𝜇∆𝑣 + 𝑣 · ∇𝑣 +∇𝑝 = 𝑢 in Ω,

∇ · 𝑣 = 0 in Ω,

𝑣 = 𝑣in on Γwall,

𝑣 = 0 on Γ0,

−𝑝𝑛+ (𝜇∇𝑣)𝑛 = 0 on Γout.

(4.15)

First of all, we underline that in distributed OCP(𝜇)s the action of the control is usually stronger and it affects
deeply the original system.

To show this, we will steer the system towards either symmetric or asymmetric desired profiles 𝑣d:

– Symmetric target : the aim of this setting is to steer the solution of (4.15) to a symmetric profile. We plot
two representative control solutions in Figures 10a and 10b, obtained for 𝜇 = 2 and 𝜇 = 0.5 when following
the natural optimal branch, which is composed of symmetric solutions. The stronger action of the control
allows the controlled velocity profile to be more diffusive compared to the uncontrolled symmetric profile,
as represented in the left plot of Figure 11, corresponding to the observed slice of the velocity solution
for 𝜇 = 0.5: in this case the controlled velocity (orange line) and the symmetric target (blue line) almost
coincide. The right plot of Figure 11 shows that a slightly asymmetric control is required only near the
critical value 𝜇* (also compare to Figs. 10a and 10b for the cases 𝜇 = 2 and 𝜇 = 0.5). Furthermore, the
control action is clearly higher when the Re value increases. Indeed, for 𝜇 = 2 the control exclusively acts in
the proximity of Γobs with a maximum magnitude of 1.8·10−4, while for 𝜇 = 0.5 it reaches a value of 1.6 of
magnitude.
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Figure 11. Distributed Control : Left : comparison of velocity profiles in the controlled and
uncontrolled cases for 𝛼 = 0.01, 𝜇 = 0.5 on Γobs w.r.t. the symmetric desired profile when
following the natural optimal branch. Right : representation of control variable evolution for
𝛼 = 0.01, 𝜇 = 2, 1, 0.95, 0.5 for 𝑥1 = 45 when following the natural optimal branch.

Figure 12. Distributed Control : Left : comparison of velocity profiles in the controlled and
uncontrolled cases for 𝛼 = 0.01, 𝜇 = 2. on Γobs w.r.t. the asymmetric desired profile when
following the natural optimal branch. Right : representation of control variable evolution for
𝛼 = 0.01, 𝜇 = 2, 1, 0.95, 0.5 for 𝑥1 = 45 when following the natural optimal branch.

A further non-natural optimal branch exists, and is made of symmetric solutions, but is hardly reachable
by numerical continuation methods unless tailored guesses are provided restarting Algorithm 1 in a small
neighborhood of 𝜇*.

– Asymmetric target : in this case, we desire to recover the asymmetric target for all 𝜇 ∈ 𝒫. We plot two
representative control solutions in Figures 10c and 10d, obtained for 𝜇 = 2 and 𝜇 = 0.5 when following
the natural optimal branch, which is made of asymmetric solutions. The action of the control is also visible
in the left plot of Figure 12, obtained for 𝜇 = 2: indeed, we see how the flux over Γobs is pushed towards
the domain wall (orange line), in contrast to the symmetric profile of the uncontrolled velocity (green line).
Namely, also in this case, the distributed control is able to drive the solution towards the desired state. In
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Table 2. Distributed Control : comparison of the functional value. (Sym.) Natural optimal
branch for symmetric target. (Asym.) Natural optimal branch for asymmetric target. (Sym.-U.)
Unstable uncontrolled solution with symmetric target. (Asym.-S.) Stable uncontrolled solution
with asymmetric target. (B.M.E.) Below machine epsilon.

Sym.-U. Asym.-S. Sym. Asym. Sym. Asym. Sym. Asym. Sym. Asym.
𝜇

Uncontrolled 𝛼 = 1 𝛼 = 0.1 𝛼 = 0.01 𝛼 = 0.001

2 5.14e–9 1.88e+1 5.06e–9 1.81e+1 4.51e–9 1.36e+1 2.22e–9 4.23e+0 4.04e–10 5.66e–1
1.5 4.38e–6 1.88e+1 4.29e–6 1.77e+1 3.61e–6 1.20e+1 1.46e–6 3.09e+0 2.28e–7 3.87e–1
1 4.10e–3 1.86e+1 3.95e–3 1.67e+1 2.99e–3 9.15e+0 9.14e–4 1.86e+0 1.23e–4 2.17e–1
0.9 1.63e–2 1.84e+1 1.56e–2 1.54e+1 1.14e–2 7.88e+0 3.26e–3 1.50e+0 4.26e–4 1.73e–1
0.8 6.52e–2 1.54e+1 6.21e–2 1.31e+1 4.36e–2 6.06e+0 1.14e–2 1.08e+0 1.45e–3 1.22e–1
0.7 2.59e–1 1.15e+1 2.45e–1 9.28e+0 1.63e–1 3.68e+0 3.93e–2 6.16e–1 4.81e–3 6.90e–2
0.6 1.70e+0 5.34e+0 9.54e–1 3.76e+0 5.94e–1 1.24e+0 1.28e–1 2.00e–1 1.70e–2 2.22e–2
0.5 3.92e+0 B.M.E. 3.59e+0 B.M.E. 2.04e+0 B.M.E. 3.92e–1 B.M.E. 4.47e–2 B.M.E.

order to do so, the control variable has to be large when 𝜇 > 𝜇*, i.e., when the uncontrolled configuration
on Γobs would lead to a symmetric profile. Indeed, in Figure 10c the maximum control value reaches 7 for
𝜇 = 2 in the upper part of the domain. In contrast Figure 10d it lowers to 10−11 for 𝜇 = 0.5 when the stable
asymmetric velocity solution does not need to be controlled by an external forcing term. This is confirmed
in the right plot of Figure 12 for several values of 𝜇.
Also in this case a non-natural optimal branch (featuring symmetric solutions) continues to exist, but it is
numerically difficult to reach.

We show the comparison of the values of the cost functional (4.1) in Table 2 for the reached natural branch
for both symmetric and asymmetric targets. Several values of 𝜇 (rows) and 𝛼 (columns) have been analyzed and
compared to the uncontrolled functional, computed as in the Neumann test case. As expected, we notice that
the functional is lower for smaller 𝛼. For the symmetric target, the action of the distributed control is indeed
able to steer the solution towards the desired symmetric profile. Indeed, for 𝜇 = 0.05, the choice 𝛼 = 0.01 shows
that the functional is decreased by a 90% w.r.t. its uncontrolled counterpart, while for 𝛼 = 0.001, the cost
functional is almost decreased by 99%. Similarly, for the asymmetric target, the maximum action of the control
variable is given for low Reynolds and, for 𝜇 = 2. we can observe a decrease of the functional of the 77.5% for
𝛼 = 0.01, up to a 97% for 𝛼 = 0.001. We remark that no control action is needed for 𝜇 = 0.5 ≈ 0.49, which
is the parameter value for which the asymmetric 𝑣d was computed: this was underlined by very low values of
(4.1), which were below the machine precision.

The plots of Figure 13 represent the spectral analysis for this optimal control problem: in particular, Fig-
ures 13a (𝛼 = 1) and 13b (𝛼 = 0.1) are associated with the symmetric target when following the corresponding
natural optimal branch, while Figures 13c (𝛼 = 1) and 13d (𝛼 = 0.1) consider the asymmetric target when
following its natural optimal branch. As the behavior between the top and bottom panels of Figure 13 is
comparable, we will only comment in the following on the role of 𝛼.

We plot the eigenvalues for 𝛼 = 1 in ℜ(𝜎𝜇) = [−0.01, 0.01] and for 𝛼 = 0.1 in ℜ(𝜎𝜇) = [−0.005, 0.005].
For this test case, the predominance of positive eigenvalues is visible also for large values of the penalization
parameter. The smaller is 𝛼, the more negative eigenvalues are lowered. For all the 𝛼 taken into account, the
shears phenomenon does not appear: for 𝛼 = 1 a small trace of the shears structure is still visible (highlighted
in blue) in Figures 13a and 13c where the bottom part of the shear is pushed away from ℜ(𝜎𝜇) = 0. Instead, for
𝛼 = 0.1 the shears structure is completely lost: Figures 13c and 13d show that only one eigenvalue (representing
the top of the shears, and marked in blue) approaches ℜ(𝜎𝜇) = 0 without crossing it.

We finally notice that the point 𝜇**, where the upper shears curve is the closest to the axis ℜ(𝜎𝜇) = 0, allows
to obtain further information on the bifurcating phenomenon. From Figure 13, 𝜇** ≈ 0.96 for the symmetric
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Figure 13. Distributed Control : spectral analysis with 𝛼 = 1, 0.1 (left to right) for the natural
optimal branch with symmetric (top) and asymmetric (bottom) targets.

target, regardless of 𝛼, while requiring an asymmetric target leads to 𝜇** ∈ [1.0, 1.2] with a mild dependence
on 𝛼.

Thanks to the aid of Figure 14, which shows the bifurcation diagram for the controlled solution with asym-
metric target (a similar plot can be obtained for the symmetric target as well, but is here omitted because the
lines almost overlap), we can state that optimal control is not only able to steer the state solution towards a
desired branch, but may also affect the location of the bifurcation point.

The role of the penalization parameter 𝛼 will be clarified in the next section and it will result into a completely
new optimal solution behavior in Section 4.5.

4.4. Channel control: the 𝛼 effect

This section aims at describing how the value of the penalization parameter 𝛼 can affect the natural conver-
gence towards a symmetric target over Γobs.

Towards this goal, we analyzed the action of a control variable defined at the end of inlet channel, i.e.,
Ω𝑢 = Γch, as depicted in Figure 1. The boundary Γwall is, once again, Γ0 ∪ΓD. Within this setting, the problem
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Figure 14. Distributed Control : bifurcation diagram (upper branch only) for controlled state
velocity obtained with 𝛼 = 1, 0.1, 0.01, 0.001 and asymmetric target, compared to the uncon-
trolled velocity.

reads: given 𝜇 ∈ 𝒫 find the optimal solution 𝑋 ∈ X such that the following holds⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑣IΓobs − 𝜇∆𝑤 − 𝑣 · ∇𝑤 + (∇𝑣)𝑇𝑤 +∇𝑞 = 𝑣dIΓobs in Ω,
∇ · 𝑤 = 0 in Ω,
𝑤 = 0 on Γin ∪ Γwall,

−𝑞𝑛+ (𝜇∇𝑤)𝑛 = 0 on Γout,

𝛼𝑢IΓch = 𝑤IΓch in Ω,
−𝜇∆𝑣 + 𝑣 · ∇𝑣 +∇𝑝 = 𝑢IΓch in Ω,
∇ · 𝑣 = 0 in Ω,
𝑣 = 𝑣in on Γin,

𝑣 = 0 on Γwall,

−𝑝𝑛+ (𝜇∇𝑣)𝑛 = 0 on Γout.

(4.16)

The optimal control acts as a forcing term capable to change the way the flow enters in the expansion channel. In
Figure 15 we show the adjoint velocity and pressure profiles obtained for 𝜇 = 0.5 and two different penalization
values, namely 𝛼 = 1 and 𝛼 = 0.01. In the first case, following Algorithm 1, the natural optimal branch presents
a wall-hugging behavior, while for smaller values of 𝛼 the control variable is able to drive the velocity towards a
straight flux (see the left panels of Figs. 16 and 17). Therefore, for large values of 𝛼 the natural optimal branch
is composed by asymmetric solutions (i.e., far away from the target), while for smaller values of 𝛼 the natural
optimal branch is made of symmetric solutions.

From the right plots of Figures 16 and 17, the control is very sensitive close to 𝜇* and this is shown by its
asymmetric configuration both for the wall-hugging solution and the straight one. For 𝛼 = 1, 0.1, 0.01, we were
able to detect two solutions using different initial guesses in the continuation method, showing symmetric and
asymmetric features coexisting for some values of 𝜇 < 𝜇*. The smaller was 𝛼, the more difficult was to recover
the non-natural branch. For example, when 𝛼 = 0.001, the action of the control variable drives the wall-hugging
phenomenon towards a straight flux so strongly that we were not able to really reconstruct the whole optimal
non-natural branch. Indeed, either the Newton’s solver did not converge (this happens also for 𝛼 = 0.1 and
𝜇 = 0.5, compare Tab. 3) or converged to the natural branch consisting in symmetric features.
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Figure 15. Channel Control : two optimal solutions for adjoint velocity and pressure for 𝜇 =
0.5: 𝛼 = 1 in (a) and (b), and 𝛼 = 0.01 in (c) and (d), respectively.

Figure 16. Channel Control : Left : comparison of velocity profiles in the controlled and uncon-
trolled cases for 𝛼 = 1, 𝜇 = 0.5 on Γobs w.r.t. the symmetric desired profile when following
the natural optimal branch. Right : representation of control variable evolution for 𝛼 = 1,
𝜇 = 2, 1, 0.95, 0.5 at 𝑥1 = 10 when following the natural optimal branch.

As usual, the role of 𝛼 is highlighted in reducing objective functional, as Table 3 shows. As already specified
in Sections 4.2 and 4.3, the straight configuration is lowering much more the functional than the asymmetric
solution, due to its similarity with the symmetric 𝑣d, which is the fixed target for this test case. In this case, the
role of 𝛼 is crucial in order to reach a solution which represents better the desired state. Indeed, the control was
able to steer the solution to the symmetric profile for 𝛼 = 0.1, 0.01, 0.001. From the functional point of view, we
do not have a notable decrease, as can be observed in Table 3, where the value of (4.1) is presented for different
values of 𝜇 and 𝛼 w.r.t. the uncontrolled problem solution. Yet, acting at the end of the inlet channel still allows
to drive the optimal solution towards a natural convergence to the symmetric 𝑣d, but the parabolic profile on
Γobs is not reached (the functional decreases only of a 10% for 𝜇 = 0.5 and 𝛼 = 0.001 w.r.t. the uncontrolled
symmetric solution).
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Figure 17. Channel Control : Left : comparison of velocity profiles in the controlled and uncon-
trolled cases for 𝛼 = 0.01, 𝜇 = 0.5 on Γobs w.r.t. the symmetric desired profile when following
the natural optimal branch. Right : representation of control variable evolution for 𝛼 = 0.01,
𝜇 = 2, 1, 0.95, 0.5 for 𝑥1 = 10 when following the natural optimal branch.

Table 3. Channel Control : comparison of the functional value w.r.t. stable and unstable uncon-
trolled solutions. Headers: (Nat.) Natural optimal branch. (n-Nat.) Non-natural optimal branch.
Trailing cell characters: (s) the solution has symmetric profile. (a) The solution has asymmetric
profile. (nat-C.) Converging to natural branch despite tailored guess. (non-C.) Non-converging
Newton’s solver for tailored guess.

Stable Unstable Nat. n-Nat. Nat. n-Nat. Nat. n-Nat. Nat. n-Nat.
𝜇

Uncontrolled 𝛼 = 1 𝛼 = 0.1 𝛼 = 0.01 𝛼 = 0.001

2 5.14e–9 5.14e–9 5.14e–9s 5.14e–9s 5.14e–9s 5.14e–9s 5.14e–9s 5.14e–9s 5.07e–9s 5.14e–9s

1.5 4.38e–6 4.38e–6 4.38e–6s 4.38e–6s 4.38e–6s 4.38e–6s 4.38e–6s 4.38e–6s 4.28e–6s 4.38e–6s

1 4.10e–3 4.10e–3 4.10e–3s 4.10e–3s 4.10e–3s 4.10e–3s 4.08e–3s 4.10e–3s 3.92e–3s 4.10e–3s

0.9 3.33e–2 1.63e–2 3.33e–2a 1.63e–2s 1.63e–1s 3.33e–2a 1.63e–1s nat-C. 2.93e–2s non-C.

0.8 2.08e–1 6.52e–2 2.08e–1a 6.52e–2s 6.52e–2s 2.07e–1a 6.52e–2s 2.04e–1a 6.51e–2s nat-C.

0.7 1.01e+0 2.59e–1 1.01e+0a 2.59e–1s 2.59e–1s 1.01e+0a 2.59e–1s 9.76e–1a 2.24e–1s nat-C.

0.6 4.48e+0 1.70e+0 4.48e+0a 1.02e+0s 1.02e+0s 4.43e+0a 1.02e+0s 4.03e+0a 9.90e–1s nat-C.

0.5 1.88e+1 3.92e+0 1.87e+1a 3.92e+0s 3.92e+1s non-C. 3.87e+0s non-C. 3.50e+0s nat-C.

Figure 18 shows the eigenvalues of the global eigenproblem in the range ℜ(𝜎𝜇) = [−0.01, 0.01] when following
the natural optimal branch. For 𝛼 = 1, we can observe the shears phenomenon, which disappears for other values
of the penalization parameter. Lowering the value of 𝛼, leads to a positive-dominated eigenvalues ensemble.
Furthermore, a clustering around the value of 𝛼 can be observed in plots 18c and 18d. In the next section, very
peculiar features have been observed as well, while changing the value of the penalization parameter 𝛼 in a
Dirichlet control.

4.5. Dirichlet control: flux action

In this final example, we propose a Dirichlet control over the boundary Ω𝑢 ≡ ΓD. We fix the symmetric
configuration as desired state 𝑣d over the line Γobs, while we set Γwall = Γ0. In other words, we are trying to
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Figure 18. Channel Control : spectral analysis with 𝛼 = 1, 0.1, 0.01, 0.001 following the natural
branch.

control a Dirichlet boundary condition in order to lead the controlled solution towards the symmetric profile.
The problem to be solved reads: given 𝜇 ∈ 𝒫 find 𝑋 ∈ X such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑣IΓobs − 𝜇∆𝑤 − 𝑣 · ∇𝑤 + (∇𝑣)𝑇𝑤 +∇𝑞 = 𝑣dIΓobs in Ω,
∇ · 𝑤 = 0 in Ω,
𝑤 = 0 on Γin ∪ ΓD ∪ Γwall,

−𝑞𝑛+ (𝜇∇𝑤)𝑛 = 0 on Γout,

𝛼𝑢 = 𝑤 on Γ𝐷,

−𝜇∆𝑣 + 𝑣 · ∇𝑣 +∇𝑝 = 0 in Ω,
∇ · 𝑣 = 0 in Ω,
𝑣 = 𝑣in on Γin,

𝑣 = 𝑢 on ΓD,

𝑣 = 0 on Γwall,

−𝑝𝑛+ (𝜇∇𝑣)𝑛 = 0 on Γout.

(4.17)

Allowing the flux to freely enter or exit from the boundary ΓD drastically changes the optimal solution
behavior. Since we are asking for a symmetric desired profile, the main action of the control is to straighten the
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Figure 19. Dirichlet Control : Left : comparison of velocity profiles in the controlled and uncon-
trolled cases for 𝛼 = 1, 0.01, 𝜇 = 0.5 on Γobs w.r.t. the symmetric desired profile when
following the natural optimal branch. Right : representation of control variable evolution for
𝛼 = 0.1, 0.01, 0.001, 0.001 and 𝜇 = 0.5 at 𝑥1 = 10 when following the natural optimal branch.

Figure 20. Dirichlet Control : two optimal velocity solutions for 𝜇 = 0.5, with 𝛼 = 1 and
𝛼 = 0.001, left and right, respectively.

flow: this behavior can be observed from Figure 20a and the left plot of Figure 19. Indeed, even for large values of
𝛼, the velocity profile reaches the symmetric configuration, while for lower values of the penalization parameter,
the velocity on Γobs is parabolic. This feature is highlighted also from the functional values in Table 4, where
the functional (4.1) is shown for several 𝜇 (rows) and 𝛼 (columns) w.r.t. the uncontrolled stable and unstable
solutions. The cost functional largely decreases for smaller values of 𝛼, e.g., 𝛼 = 0.001: for example, focusing
on 𝜇 = 0.5, the functional only lowers of 18% for 𝛼 = 0.01, in contrast to almost 82% for 𝛼 = 0.001. Within the
setting of 𝛼 = 0.001, the system manifests an interesting and unexpected profile, shown in Figure 20b. The flux
presents an asymmetric configuration for low value of 𝜇. Namely, for low 𝛼 a bifurcating solution appears as
depicted in Figure 20b. The asymmetric behavior is due to the control variable which not only allows the flow
to exit from ΓD (in order to avoid the asymmetric recirculation of the wall-hugging solution), but it is adding
flux near the channel, in order to achieve the straight configuration and the parabolic velocity profile given by
the symmetric target velocity over the observation domain, as it is represented in the right plot of Figure 19.

Figure 21 provides the eigenvalue analysis, where we show some close-ups starting with ℜ(𝜎𝜇) =
[−0.001, 0.001] for 𝛼 = 1 in the top-right image, and restricting the vertical interval due to the order of the
lowered 𝛼 in the remaining images. As already noticed in Section 4.3, the strongest is the control, the more the
eigenvalues are positive. Furthermore, as it already happened in the distributed control case with asymmetric
target in Section 4.3, the value 𝜇* seems to be not relevant anymore as an indication of the bifurcation point.
Recalling the definition of 𝜇** in Section 4.3 as the value of the parameter for which the top curve of the shears
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Table 4. Dirichlet Control : comparison of the functional value w.r.t. the stable and unstable
uncontrolled solutions.

𝜇
Stable Unstable Controlled solution

Uncontrolled 𝛼 = 1 𝛼 = 0.1 𝛼 = 0.01 𝛼 = 0.001

2 5.14e–9 5.14e–9 4.98e–9 4.83e–9 4.79e–9 4.79e–9
1.5 4.38e–6 4.38e–6 4.24e–6 4.10e–6 4.07e–6 4.06e–6
1 4.10e–3 4.10e–3 3.94e–3 3.78e–3 3.74e–3 3.72e–3
0.9 3.33e–2 1.63e–2 1.56e–2 1.49e–2 1.47e–2 1.45e–2
0.8 2.08e–1 6.52e–2 6.20e–2 5.88e–2 5.78e–2 5.46e–2
0.7 1.01e+0 2.69e–1 2.44e–1 2.29e–1 2.21e–1 1.82e–1
0.6 4.48e+0 1.70e+0 9.49e–1 8.73e–1 8.09e–1 3.57e–1
0.5 1.88e+1 3.92e+0 3.58e+0 3.21e+0 2.41e+0 4.73e–1

Figure 21. Dirichlet Control : spectral analysis with 𝛼 = 1, 0.1, 0.01, 0.001.
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Figure 22. Dirichlet Control : eigenvalues of the state eigenproblem in the complex plane:
asymmetric and symmetric solutions, left and right, respectively.

(marked in blue) is approaching ℜ(𝜎𝜇) = 0 from above, Figure 21 shows that such a curve is moving away from
ℜ(𝜎𝜇) = 0 as 𝛼 decreases, and thus no such point 𝜇** exists. The results of the previous sections have shown
that the top shear structure is typically associated to the wall-hugging bifurcation, and that 𝜇** provides an
indication of the bifurcation: we are thus lead to believe that the standard bifurcating configuration observed
in the uncontrolled case, consisting of a branch of symmetric solutions and a branch of wall-hugging ones, is
not present here, with the latter branch disappearing. However, the system seems to be featuring a different
bifurcation, presented in Figure 20b. Indeed, we can see an eigenvalue crossing the line ℜ(𝜎𝜇) = 0 for the global
eigenproblem in Figure 21d for 𝛼 = 0.001. Therefore, if we plot the eigenvalues of the state eigenproblem of
Algorithm 1 (Fig. 22), we see how the symmetric profile does never cross the origin, while the asymmetric
solution in Figure 20b for 𝛼 = 0.001 does. In the setting with the modified BCs, the physical stable solution
behavior is a feature of straight profile. Moreover, from Figure 22, we can clearly observe a couple of complex
and conjugate eigenvalue crossing the imaginary axis. This is, in fact, a paradigm for Hopf bifurcation [47, 52]
and represents another evidence of how deeply the system changed its inner features.

Remark 4.1 (Lagrange multipliers). From a numerical point of view, we employed Lagrange multipliers to
solve the optimality system (4.17). The condition 𝑣 = 𝑢 on ΓD has been weakly imposed in integral form.

This will result in extra terms in the adjoint equations. Furthermore, we weakly impose also the boundary
condition 𝑤 = 0 on ΓD with another multiplier. The reason of this latter decision will be explained in Section 5.

4.6. Comparative eigenvalue analysis

In this section, we sum up all the observations and results derived from the global eigenvalue analysis over the
four test cases. Therefore, we now list the similarities between these, especially for what concerns the variation
against different values of the penalization parameter 𝛼:

– the eigenvalues cluster around the value of 𝛼. This behavior is well represented in Figures 9c, 9d, 18c
and 18d. These eigenvalues come from the optimality equation;

– the predominance of positive eigenvalues over the negative ones. In all the performed spectral analysis we
have observed that the control action lowers the negative eigenvalues. The stronger is the control, the greater
is the number of positive eigenvalues, as it is represented in Figures 13b and 21;

– the shears effect for low controlled system. The shears configuration is characteristic of control problems
which do not highly change the uncontrolled system solution. It is the case of Neumann control in Figure 9a
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Figure 23. Comparative Analysis: Left : asymmetric velocity with Neumann control for 𝛼 = 1.
Right : symmetric velocity with distributed control for 𝛼 = 1.

and of the channel control for 𝛼 = 1 as shown in Figure 18a. For the other cases, the smaller is 𝛼 the least
visible is this eigenvalue configuration: in some cases, the structure is completely broken;

– the 𝜇** identification. It is clear that the shears (or their top curve, if shears are broken) approach to the
real line in the point 𝜇** for which the bifurcating phenomenon of the controlled system occurs. This is the
same situation we found for the uncontrolled problem, in which the path of the eigenvalue identifies the
value of bifurcation parameter 𝜇*. Moreover, this situation is often preserved regardless of 𝛼. Indeed, the
positive shears eigenvalue is still present in Figures 13b, 18b, 18c and even in the Dirichlet optimal control,
as shown in Figure 21. In some cases, a shift of the 𝜇** compared to 𝜇* has been observed.

Since the structure of the spectral analysis is highly influenced by the control strength, we tried to perform
an eigenvalue analysis dealing with only state and adjoint equations. For all the test cases, shears occurs. The
shears structure is symmetric when the solution shows the wall-hugging property, while it is slightly asymmetric
when the state flow is straight (Fig. 23). We guess that this behavior is due to the different reaction of state and
adjoint blocks to the bifurcating phenomena. Indeed, for the symmetric flux, the behavior of the state equation
has to be preserved for all 𝜇, while the adjoint problem, which is strictly linked to the control variable, puts
more effort in rebalancing the flux, resulting in an asymmetric contribution that causes the shears to be slightly
asymmetric.

The spectral analysis of a nonlinear system is a indispensable tool to understand bifurcation phenomena,
eventually. Under the point of view of computational costs, it is a very tough task, most of all for nonlinear
OCP(𝜇)s. Indeed, FE discretization leads to huge systems to be solved for a wide sample of parameter 𝜇 ∈ 𝒫.
In the next section, we propose ROMs as a suitable approach to overcome this issue.

5. ROMs for nonlinear OCP(𝜇)s

This section introduces ROM approximation techniques for nonlinear OCP(𝜇)s. The proposed reduced strat-
egy is independent from the governing state equation. Indeed, we refer to [54–56,60] for previous contributions
to ROM for nonlinear OCP(𝜇)s, extending them to standard techniques proposed in [24, 25, 41, 42, 44, 45], for
bifurcating systems. Section 5.1 introduces the basics ideas of ROM approach and the standard assumptions to
guarantee its efficiency and applicability. Moreover, in Section 5.2, we will describe the used reduction strategy,
relying on POD-Galerkin basis construction, see [5, 14,16,26] as introductory references, combined with aggre-
gated spaces techniques, following the linear OCP(𝜇)s fashion, as already presented in [3,4,19,21,28,29,39,40,49].
Finally, numerical results are shown in Section 5.3.
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5.1. General reduction strategy

In Section 4, we analyzed how optimal flow control can modify an expected behavior in bifurcating systems.
In such problems, a parametric study of the state solution is necessary in order to understand the solution
properties. The FE method cannot be exploitable when several instances of parametrized problem have to be
studied. Indeed, the computational time required can be too costly, especially in an optimal control setting,
where the state equation is associated to an optimization system. ROM techniques aim at building a reduced
surrogate of the FE approximation. The main idea of ROM is to spend computational resources to build a
new (smaller) model starting from FE solutions. Such a reduced system, although having a considerably lower
dimension, is built in a way that it does not lose accuracy and can be used to analyze several parametric
configurations in a versatile low-dimensional framework. We now briefly introduce ROM ideas in the OCP(𝜇)s
setting. At the continuous level, we have already defined the solution branch 𝒳𝑖, which represents how an optimal
solution 𝑋(𝜇) = (𝑦(𝜇), 𝑢(𝜇), 𝑧(𝜇)) of (2.6) changes w.r.t. the parameter 𝜇 ∈ 𝒫. For the sake of clarity, in this
section we will underline the parameter dependence of our solution branch, since it is of primary importance to
understand the ROM basics and notions. From now on we will refer to FE as high-fidelity approximation. Indeed,
we suppose that the FE discretization reliably represents the solution branch 𝒳𝑖 as its discretized counterpart
𝒳𝒩𝑖 .

The ROM aims at representing the high-fidelity 𝒳𝒩𝑖 through the construction of basis derived from snapshots,
i.e., properly chosen solutions of (2.8). The reduced function spaces are contained in the FE spaces: a standard
Galerkin projection is performed, resulting in an efficient low-dimensional solution which is still accurate w.r.t.
the high-fidelity model. We exploited a branch-wise reduction, namely, for every bifurcating solution branch 𝒳𝑖,
we build a different ROM.

Of course this is the best approach form the accuracy standpoint, but in [41, 42] a different context a global
approach was pursued, where the loss in accuracy is balanced with the construction of a single ROM. We
suppose to have already constructed the reduced spaces Y𝑁 ⊂ Y𝒩𝑦 ⊂ Y and U𝑁 ⊂ U𝒩𝑢 ⊂ U, the former for
state and adjoint variables, the latter for control, respectively (description of the construction of reduced spaces
is postponed to Sect. 5.2). The function space dimension 𝑁 is usually much lower than 𝒩 . We will refer to this
stage as offline phase: here, apart from the basis construction, all the parameter independent quantities are
assembled and stored.

After this reduced spaces building process, one can solve the following low-dimensional problem in an online
phase given 𝜇 ∈ 𝒫, find 𝑋𝑁 (𝜇) = (𝑦𝑁 (𝜇), 𝑢𝑁 (𝜇), 𝑧𝑁 (𝜇)) ∈ X𝑁 := Y𝑁 × U𝑁 × Y𝑁 such that it holds:⎧⎪⎨⎪⎩

𝐷𝑦L (𝑋𝑁 ; 𝑦d,𝜇)[𝜔] = 0 ∀𝜔 ∈ Y𝑁 ,

𝐷𝑢L (𝑋𝑁 ; 𝑦d,𝜇)[𝜅] = 0 ∀𝜅 ∈ U𝑁 ,

𝐷𝑧L (𝑋𝑁 ; 𝑦d,𝜇)[𝜁] = 0 ∀𝜁 ∈ Y𝑁 .

(5.1)

Namely, at each new parametric instance 𝜇 ∈ 𝒫, the system (5.1), which inherits the features from the high-
fidelity dynamics (2.8), is assembled and solved. Also in this case, we can deal with the nonlinearity applying
a Newton’s method, as in the FE setting. Moreover, the stability analysis can be performed as described in
Algorithm 1, employing the Galerkin projection in the reduced space. It is clear that, it is convenient to exploit
the ROM only if one does not have to build from scratch the reduced model for any parametric instance. For
this reason, the system (5.1) is assumed to be affinely decomposed, i.e., all the variational forms involved can
be written as the product of 𝜇-independent forms and 𝜇-dependent functions [26].

When the affine dependency assumption is verified, the online phase does not depend on 𝒩 , and can be
performed in a small amount of time. Conversely, the offline process is performed only once and can take
advantage of High Performance Computing (HPC) resources.

Remark 5.1. Our test cases deal with Navier–Stokes governing equations (3.1), then, it has at most quadrat-
ically nonlinear terms and the affine decomposition is not fulfilled. One can employ hyper-reduction techniques
as the Empirical Interpolation Method (EIM) to recover it. We refer the interested reader to [6] or Chapter 5
of [26].
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In the next section, we will focus on the ROM offline and online phase, showing the strategy employed to
build the reduced function spaces.

5.2. Offline and online stages

In this section, we present how to build a reduced space for OCP(𝜇)s. We exploit here the POD algorithm.
Thanks to this algorithm, 𝑁max snapshots are sampled and then compressed in order to generate function spaces
of dimension 𝑁 < 𝑁max.

It is well known that optimization governed by PDEs(𝜇) constraints leads to the solution of a saddle point
system [10, 12, 27, 53], as already specified in Section 2.2. In order to guarantee the well-posedness of such
a structure, the matrix B of system (2.13) must verify the inf-sup stability condition (2.15) for every 𝜇 ∈
𝒫. In the FE approximation, the above-mentioned relation holds since state and adjoint spaces are equally
discretized. However, the inf-sup stability must hold at the reduced level too, since the relation is provable if
the reduced spaces for state and adjoint variables coincide. The standard POD construction process leads to
the reduced function spaces for state and adjoint which may be different even under the assumption of the same
starting FE spaces. To overcome this issue, the basis are usually manipulated in order to stabilize the system.
Indeed, we apply aggregated spaces technique, as already done in several papers about ROM for OCP(𝜇)s, see
[3, 4, 19, 21, 28, 29, 39, 40, 49] as references. The strategy aims at building a common space for state and adjoint
which is able to describe both state and adjoint variables.

Let us suppose to have applied a standard POD for all the involved variables and to have defined the following
spaces Y𝑁 = span {𝜒𝑦

𝑛, 𝜒
𝑧
𝑛, 𝑛 = 1, . . . , 𝑁} and U𝑁 = span{𝜒𝑢

𝑛, 𝑛 = 1, . . . , 𝑁}, with

Z =
[︂
Zx

Zz

]︂
, and Zx =

[︂
Zy

Zu

]︂
where Zy ≡ Zz = [𝜒𝑦

1| · · · |𝜒
𝑦
𝑁 |𝜒𝑧

1| · · · |𝜒𝑧
𝑁 ] ∈ R𝒩𝑦×2𝑁 and Zu = [𝜒𝑢

1 | · · · |𝜒𝑢
𝑁 ] ∈ R𝒩𝑢×𝑁 are the reduced basis

matrices for each variable and Z spans the global space X𝑁 . We want to solve the optimality system in a low
dimensional framework at each parametric instance. To this end, we employ a Galerkin projection into the
reduced spaces and the system (2.6) will be

G𝑁 (X𝑁 ; 𝜇)X𝑁 = F𝑁 , (5.2)

where
G𝑁 (X𝑁 ; 𝜇) := Z𝑇 G(ZX𝑁 ; 𝜇), and F𝑁 := Z𝑇 F.

The system (5.2) is nonlinear, thus we apply Newton’s method and we iteratively obtain

X𝑗+1
𝑁 = X𝑗

𝑁 + Jac𝑁

(︁
X𝑗

𝑁 ; 𝜇
)︁−1(︁

F𝑁 − G
(︁
X𝑗

𝑁 ; 𝜇
)︁
X𝑗

𝑁

)︁
, 𝑗 ∈ N. (5.3)

from the FE approximation, the Fréchet derivative inherits the saddle point structure, i.e.,

Jac𝑁 (X𝑁 ; 𝜇)X𝑁 =

[︃
A𝑁 B𝑇

𝑁

B𝑁 0

]︃[︂
x𝑁

z𝑁

]︂
, (5.4)

with Jac𝑁 (X𝑁 ; 𝜇) = Z𝑇 Jac(ZX𝑁 ; 𝜇)Z, A𝑁 = Z𝑇
x AZx and B𝑁 = Z𝑇

z BZx.
We now have all the ingredients to define a reduced Brezzi inf-sup condition as follows

𝛽Br,𝑁 (𝜇) := inf
0 ̸=z𝑁

sup
0̸=x𝑁

z𝑇
𝑁B𝑁x𝑁

‖x𝑁‖Y×U‖z𝑁‖Y
≥ 𝛽Br,𝑁 > 0. (5.5)

If 𝜇 ̸= 𝜇*, relation (5.5) is verified thanks to the aggregated space definition. We remark that this technique
is increasing the dimension of the global reduced system. However, it is usually still much smaller then 𝒩 . For
the sake of simplicity and for a consistent construction of state and adjoint space, we always choose 𝑁max and
𝑁 equal for all the involved variables.
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Remark 5.2 (Supremizer stabilization). Dealing with Navier–Stokes governing equations, one has to take care
not only of the global inf-sup condition (5.5), but also with the state equation inf-sup condition. Indeed, Navier–
Stokes problem can be recast as saddle point itself, which results in a nested saddle point structure when a
Navier–Stokes problem is used as state equation of an optimal control problem. The aggregated space techniques
has to be accompanied by supremizer stabilization for the reduced velocity space. This approach [51] consists
in defining a supremizer operator 𝑇𝜇 : P𝒩𝑝 → V𝒩𝑣 as

(𝑇𝜇𝑠, 𝜑)V = 𝑏(𝜑, 𝑠; 𝜇), ∀𝜑 ∈ V𝒩𝑣 ,

where 𝑏(·, ·) is the bilinear form representing the continuity equation defined in Section 3.1. Then, we enrich the
reduced velocity space through the pressure supremizers as follows:

V𝑁 = span
{︀
𝜒𝑣

𝑛, 𝜒
𝑇𝑝
𝑛 , 𝜒𝑤

𝑛 , 𝜒
𝑇𝑞
𝑛 , 𝑛 = 1, . . . , 𝑁

}︀
,

where 𝜒𝑇𝑝
𝑛 and 𝜒

𝑇𝑞
𝑛 are the basis supremizers obtained by state and adjoint pressure snapshots, respectively.

Enlarging in this way the reduced space for velocity will guarantee inf-sup stability for the Navier–Stokes
equation. This approach, i.e., supremizer stabilization combined with aggregated spaces, is the key for the well-
posedness of the whole optimality system (4). This will lead to a reduced system of dimension 13𝑁 , which is
still convenient compared to the global FE approximation dimension.

5.3. Numerical results

In this section, we present the numerical results deriving from the reduction of the four controlled test
cases described in Section 4. For each numerical test case, the offline setting is given by 𝑁max = 51 snapshots
evaluated for equidistant parameters in the range of 𝒫 = [0.5, 2] and the POD algorithm is chosen for the ROM
construction. Let us define the basis number 𝑁 as the maximum value of 𝑁 , i.e., 𝑁 ∈ {1, . . . , 𝑁}. For Dirichlet
test case we chose 𝑁 = 12 basis functions, while for the other test cases the basis number is 𝑁 = 20. Such value
is chosen in analogy with reduction results obtained in the uncontrolled scenario, see e.g., [31,43,44]. The former
choice is due to the presence of two multiplier variables, which increase the global ROM dimension (from 13𝑁 to
15𝑁), and jeopardize the robustness of the reduced nonlinear solver. We remark that the final reduced systems
are still much smaller than their high-fidelity counterparts, which involve from 50 to 70 thousands of degrees
of freedom, depending on the type of control imposed, boundary or distributed, respectively. We perform an
online phase solving (5.1) for 151 equidistant value of 𝜇 in the same parameter space 𝒫. The performance has
been tested through separate error analysis for each variable. The reliability of the ROM approach has been
evaluated through

– an average error over the parameter space against an increasing value of the reduced spaces dimension 𝑁
from one up to 𝑁 ;

– a 𝜇-dependent error computed for the value 𝑁 .

The two error analyses highlight different features of the reduced system that we are going to discuss in
the following. Indeed, the average error gives us information about how the reliability changes as the behavior
of the solution changes. The straight profile appears to be always the best approximated, due to its Stokes-
like (symmetric) nature for all the value 𝜇 ∈ 𝒫. This is the case of Neumann and Channel control, which
average error is depicted in Figures 24a and 25a. Their asymmetric counterparts, Figures 24b and 25b, show
how representing the two different features of the solution, a Stokes-like one for 𝜇 > 𝜇* and a wall-hugging for
the lower values of 𝜇, using the same value of 𝑁 is more difficult than the symmetric one. Nonetheless, the
provided accuracy for basis size 𝑁 is satisfactory for many practical applications in both target cases. This
argument applies to the control and adjoint variables, yet the state ones are the best described by ROM for all
the test cases. Because of the optimality equation, the adjoint variables feel the direct influence of the control,
which is the most challenging one to be approximated by the reduced model due to its high variability in 𝜇.
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Figure 24. Average error over 𝜇 with 𝑁 = 20 and 𝛼 = 0.01 for symmetric and asymmetric
profile in (a) and (b) for Neumann control, respectively.

Figure 25. Average error with 𝑁 = 20 over 𝜇 for symmetric (𝛼 = 1) and asymmetric (𝛼 =
0.01) profile in (a) and (b) for Channel control, respectively.

Indeed, the control variable presents a sort of on-off behavior which drastically affects the efficiency of reduced
representation.

For example, if we deal with Stokes target 𝑣d, the control is off for high values of viscosity, but, when 𝜇 ∼ 𝜇*,
it starts to grow in magnitude and to change drastically its features. This is represented in Figures 26b and 27b,
where the higher values for the control error and, thus, for the adjoint variable, is for higher values of 𝜇. Since
the control magnitude is essentially zero, for Channel and Dirichlet test cases with low Reynolds number (high
viscosity), we chose to plot the absolute errors instead of the relative ones, in order to prevent division by zero.
This is not the case of Distributed control, see for example Figure 28b, which presents good errors decay for
all the variables, since its strong action causes the control magnitude to always be a meaningful normalization
factor.

The most challenging case to be approximated is the Dirichlet one for 𝛼 = 0.001. It is the most complex
dynamics, where a new bifurcation appears. Indeed, it can reach an error of almost 10−3 for the controlled
state (Fig. 31). Even though this result is worse than the ones obtained for the other test cases, where average
error are ranging between 10−5 and 10−8, the accuracy provided by the ROM is still acceptable for many
practical purposes. We remark that this performance is strictly correlated to the more complex features of the
Dirichlet problem. This is evident also from the 𝜇-dependent errors in Figures 27a and 27b. In both the pictures,
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Figure 26. The 𝜇-dependent error with 𝑁 = 20 and 𝛼 = 0.01 for symmetric profile for state
variable in (a) and adjoint and control variables in (b) for Neumann control, respectively.

Figure 27. The 𝜇-dependent error for 𝛼 = 0.001 with 𝑁 = 12 for state variable in (a) and
adjoint and control variables in (b) for Dirichlet control, respectively.

we see a great increment of the error for high Re. Although the phenomenon appears also for the other test
cases, see Figures 29b, 30a and 30b, it is not as strong as the Dirichlet case.

Furthermore, the 𝜇-dependent error gives an a posteriori information about the bifurcation point. Indeed, in
order to have good accuracy property, ROM approach requires regularity on the parametric dependence of the
solution instead of the spatial one. This means that reduced errors will generally exhibit a peak at 𝜇*. In fact,
an increasing value of the error can be seen around 𝜇* ∼ 0.96 for Neumann, Distributed and Channel control
as one can observe from Figures 26a, 29a and 30a for the state variable, respectively.

This feature can be very useful when there is no previous knowledge about bifurcating behaviors. In this
sense, ROM is not only an useful approach to solve in a fast way very complicated time consuming systems,
but also to detect parameters which can be related to the bifurcating nature of the problem at hand, since
their instances will be the worst approximated. Namely, the ROMs confirm “a posteriori” the location of the
bifurcation points. We conclude this analysis by noticing that the same considerations hold for the Dirichlet
control, but this time at the left end of the parametric domain 𝒫 where such phenomenon is clearly influenced
by the new configuration observed in Figure 20b.
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Figure 28. Average error over 𝜇 with 𝑁 = 20 and 𝛼 = 0.01 for symmetric and asymmetric
profile in (a) and (b) for Distributed control, respectively.

Figure 29. The 𝜇-dependent error with 𝑁 = 20 and 𝛼 = 0.01 for symmetric and asymmetric
profile of the state variable in (a) and (b) for Distributed control, respectively.

Figure 30. The 𝜇-dependent error for 𝑁 = 20 for symmetric and asymmetric profile of the
state variable in (a) and (b) for Channel control, respectively.
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Figure 31. Average error over 𝜇 with 𝑁 = 12 for 𝛼 = 1 and 𝛼 = 0.001 in (a) and (b) for
Dirichlet control, respectively.

6. Conclusions

In this work we proposed a first attempt to steer bifurcation phenomena arising from nonlinear PDE(𝜇)
through an optimal control formulation. First of all, we built a general framework which can be applied to
general nonlinear OCP(𝜇)s and we proposed a global stability analysis trough the solution of the eigenvalue
problem associated to the optimization system. We tested the stability analysis over four control problems
governed by bifurcating Navier–Stokes equations in a sudden-expansion channel. We studied how the control
can affect the classical stable wall-hugging solution of the uncontrolled state equation and we proposed some
observations on different configurations and features of the optimal solution based on the eigenvalue systems.

Furthermore, we employed ROM for all the test cases, proposing it as a strategy to solve the parametrized
analysis of the optimization system in a low-dimensional setting, while confirming the applicability of reduction
strategies to complex nonlinear models.

We believe that this work is a first step towards a better comprehension of the very complex action of optimal
control over a nonlinear bifurcating system. We believe that the content of this work could pave the way to
many improvements on the topic. Among them, one could be the deeper analysis of the Dirichlet test case,
which gives the more unexpected and, consequently, difficult to interpret, results.
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