Well-balanced positivity preserving adaptive moving mesh central-upwind schemes for the Saint-Venant system
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 4, pp. 1327-1360

We extend the adaptive moving mesh (AMM) central-upwind schemes recently proposed in Kurganov et al. [Commun. Appl. Math. Comput. 3 (2021) 445–479] in the context of one- (1-D) and two-dimensional (2-D) Euler equations of gas dynamics and granular hydrodynamics, to the 1-D and 2-D Saint-Venant system of shallow water equations. When the bottom topography is nonflat, these equations form hyperbolic systems of balance laws, for which a good numerical method should be capable of preserving a delicate balance between the flux and source terms as well as preserving the nonnegativity of water depth even in the presence of dry or almost dry regions. Therefore, in order to extend the AMM central-upwind schemes to the Saint-Venant systems, we develop special positivity preserving reconstruction and evolution steps of the AMM algorithms as well as special corrections of the solution projection step in (almost) dry areas. At the same time, we enforce the moving mesh to be structured even in the case of complicated 2-D computational domains. We test the designed method on a number of 1-D and 2-D examples that demonstrate robustness and high resolution of the proposed numerical approach.

DOI : 10.1051/m2an/2022041
Classification : 65M50, 76M12, 65M08, 86-08, 35L65, 35L67
Keywords: Adaptive moving mesh methods, Saint-Venant systems of shallow water equations, finite-volume methods, well-balanced methods, positivity preserving methods, central-upwind schemes, moving mesh differential equations
@article{M2AN_2022__56_4_1327_0,
     author = {Kurganov, Alexander and Qu, Zhuolin and Wu, Tong},
     title = {Well-balanced positivity preserving adaptive moving mesh central-upwind schemes for the {Saint-Venant} system},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1327--1360},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {4},
     doi = {10.1051/m2an/2022041},
     mrnumber = {4444533},
     zbl = {1501.65050},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2022041/}
}
TY  - JOUR
AU  - Kurganov, Alexander
AU  - Qu, Zhuolin
AU  - Wu, Tong
TI  - Well-balanced positivity preserving adaptive moving mesh central-upwind schemes for the Saint-Venant system
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2022
SP  - 1327
EP  - 1360
VL  - 56
IS  - 4
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2022041/
DO  - 10.1051/m2an/2022041
LA  - en
ID  - M2AN_2022__56_4_1327_0
ER  - 
%0 Journal Article
%A Kurganov, Alexander
%A Qu, Zhuolin
%A Wu, Tong
%T Well-balanced positivity preserving adaptive moving mesh central-upwind schemes for the Saint-Venant system
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2022
%P 1327-1360
%V 56
%N 4
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2022041/
%R 10.1051/m2an/2022041
%G en
%F M2AN_2022__56_4_1327_0
Kurganov, Alexander; Qu, Zhuolin; Wu, Tong. Well-balanced positivity preserving adaptive moving mesh central-upwind schemes for the Saint-Venant system. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 4, pp. 1327-1360. doi: 10.1051/m2an/2022041

[1] L. Arpaia and M. Ricchiuto, r -adaptation for shallow water flows: conservation, well balancedness, efficiency. Comput. Fluids 160 (2018) 175–203. | MR | Zbl | DOI

[2] G. Beckett and J. Mackenzie, Convergence analysis of finite difference approximations on equidistributed grids to a singularly perturbed boundary value problem. Appl. Numer. Math. 35 (2000) 87–109. | MR | Zbl | DOI

[3] A. Beljadid, A. Mohammadian and A. Kurganov, Well-balanced positivity preserving cell-vertex central-upwind scheme for shallow water flows. Comput. Fluids 136 (2016) 193–206. | MR | Zbl | DOI

[4] A. Bollermann, S. Noelle and M. Lukáčová-Medviďová, Finite volume evolution Galerkin methods for the shallow water equations with dry beds. Commun. Comput. Phys. 10 (2011) 371–404. | MR | Zbl | DOI

[5] A. Bollermann, G. Chen, A. Kurganov and S. Noelle, A well-balanced reconstruction of wet/dry fronts for the shallow water equations. J. Sci. Comput. 56 (2013) 267–290. | MR | Zbl | DOI

[6] S. Bryson and D. Levy, Balanced central schemes for the shallow water equations on unstructured grids. SIAM J. Sci. Comput. 27 (2005) 532–552. | MR | Zbl | DOI

[7] S. Bryson, Y. Epshteyn, A. Kurganov and G. Petrova, Well-balanced positivity preserving central-upwind scheme on triangular grids for the Saint-Venant system. ESAIM: M2AN 45 (2011) 423–446. | MR | Zbl | Numdam | DOI

[8] H. Ceniceros and T. Hou, An efficient dynamically adaptive mesh for potentially singular solutions. J. Comput. Phys. 172 (2001) 609–639. | Zbl | DOI

[9] G. Chen, H. Tang and P. Zhang, Second-order accurate Godunov scheme for multicomponent flows on moving triangular meshes. J. Sci. Comput. 34 (2008) 64–86. | MR | Zbl | DOI

[10] A. De Saint-Venant, Thèorie du mouvement non-permanent des eaux, avec application aux crues des rivières at à l’introduction des marèes dans leur lit. C. R. Acad. Sci. Paris 73 (1871) 147–154. | JFM

[11] S. Gottlieb, C. Shu and E. Tadmor, Strong stability-preserving high-order time discretization methods. SIAM Rev. 43 (2001) 89–112 (electronic). | MR | Zbl

[12] S. Gottlieb, D. Ketcheson and C.-W. Shu, Strong Stability Preserving Runge–Kutta and Multistep Time Discretizations. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2011). | MR | Zbl

[13] W. Huang and R. D. Russell, Adaptive Moving Mesh Methods. Vol. 174 of Applied Mathematical Sciences. Springer, New York (2011). | MR | Zbl

[14] W. Huang and W. Sun, Variational mesh adaptation II: error estimates and monitor functions. J. Comput. Phys. 184 (2003) 619–648. | MR | Zbl

[15] M. E. Hubbard, On the accuracy of one-dimensional models of steady converging/diverging open channel flows. Int. J. Numer. Methods Fluids 35 (2001) 785–808. | Zbl

[16] A. Kurganov, Finite-volume schemes for shallow-water equations. Acta Numer. 27 (2018) 289–351. | MR | Zbl

[17] A. Kurganov and D. Levy, Central-upwind schemes for the Saint-Venant system. ESAIM: M2AN 36 (2002) 397–425. | MR | Zbl | Numdam

[18] A. Kurganov and G. Petrova, A second-order well-balanced positivity preserving central-upwind scheme for the Saint-Venant system. Commun. Math. Sci. 5 (2007) 133–160. | MR | Zbl

[19] A. Kurganov, Z. Qu, O. Rozanova and T. Wu, Adaptive moving mesh central-upwind schemes for hyperbolic system of PDEs. Applications to compressible Euler equations and granular hydrodynamics. Commun. Appl. Math. Comput. 3 (2021) 445–479. | MR | Zbl

[20] M. Sead, Non-oscillatory relaxation methods for the shallow-water equations in one and two space dimensions. Int. J. Numer. Methods Fluids 46 (2004) 457–484. | MR | Zbl | DOI

[21] H. Shirkhani, A. Mohammadian, O. Seidou and A. Kurganov, A well-balanced positivity-preserving central-upwind scheme for shallow water equations on unstructured quadrilateral grids. Comput. Fluids 126 (2016) 25–40. | MR | Zbl | DOI

[22] H. Tang and T. Tang, Adaptive mesh methods for one- and two-dimensional hyperbolic conservation laws. SIAM J. Numer. Anal. 41 (2003) 487–515 (electronic). | MR | Zbl | DOI

[23] A. Van Dam and P. A. Zegeling, A robust moving mesh finite volume method applied to 1d hyperbolic conservation laws from magnetohydrodynamics. J. Comput. Phys. 216 (2006) 526–546. | MR | Zbl | DOI

[24] Y. Xing, Numerical methods for the nonlinear shallow water equations. In: Handbook of Numerical Methods for Hyperbolic Problems. Vol. 18 of Handb. Numer. Anal. Elsevier/North-Holland, Amsterdam (2017) 361–384. | MR | Zbl | DOI

[25] F. Zhou, G. Chen, Y. Huang, J. Z. Yang and H. Feng, An adaptive moving finite volume scheme for modeling flood inundation over dry and complex topography. Water Resour. Res. 49 (2013) 1914–1928. | DOI

[26] F. Zhou, G. Chen, S. Noelle and H. Guo, A well-balanced stable generalized Riemann problem scheme for shallow water equations using adaptive moving unstructured triangular meshes. Int. J. Numer. Methods Fluids 73 (2013) 266–283. | MR | Zbl | DOI

Cité par Sources :