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WELL-BALANCED POSITIVITY PRESERVING ADAPTIVE MOVING MESH
CENTRAL-UPWIND SCHEMES FOR THE SAINT-VENANT SYSTEM

Alexander Kurganov1,*, Zhuolin Qu2 and Tong Wu2

Abstract. We extend the adaptive moving mesh (AMM) central-upwind schemes recently proposed
in Kurganov et al. [Commun. Appl. Math. Comput. 3 (2021) 445–479] in the context of one- (1-D)
and two-dimensional (2-D) Euler equations of gas dynamics and granular hydrodynamics, to the 1-D
and 2-D Saint-Venant system of shallow water equations. When the bottom topography is nonflat,
these equations form hyperbolic systems of balance laws, for which a good numerical method should
be capable of preserving a delicate balance between the flux and source terms as well as preserving the
nonnegativity of water depth even in the presence of dry or almost dry regions. Therefore, in order to
extend the AMM central-upwind schemes to the Saint-Venant systems, we develop special positivity
preserving reconstruction and evolution steps of the AMM algorithms as well as special corrections of
the solution projection step in (almost) dry areas. At the same time, we enforce the moving mesh to be
structured even in the case of complicated 2-D computational domains. We test the designed method
on a number of 1-D and 2-D examples that demonstrate robustness and high resolution of the proposed
numerical approach.
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1. Introduction

We consider the Saint-Venant system of shallow water equations, which was first introduced in [10] and
is widely used to model water flow in rivers, canals and coastal areas as well as in atmospheric sciences and
oceanography. In the one-dimensional (1-D) case the studied system reads as(︂

ℎ
ℎ𝑢

)︂
𝑡

+

(︃
ℎ𝑢

ℎ𝑢2 +
𝑔

2
ℎ2

)︃
𝑥

=
(︂

0
−𝑔ℎ𝐵𝑥

)︂
, (1.1)
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where ℎ(𝑥, 𝑡) is the water depth, 𝑢(𝑥, 𝑡) is the velocity, 𝐵(𝑥) is the bottom topography, and 𝑔 is the constant
gravitational acceleration. The two-dimensional (2-D) Saint-Venant system is⎛⎝ ℎ

ℎ𝑢
ℎ𝑣

⎞⎠
𝑡

+

⎛⎜⎝ ℎ𝑢

ℎ𝑢2 +
𝑔

2
ℎ2

ℎ𝑢𝑣

⎞⎟⎠
𝑥

+

⎛⎜⎝ ℎ𝑣
ℎ𝑢𝑣

ℎ𝑣2 +
𝑔

2
ℎ2

⎞⎟⎠
𝑦

=

⎛⎝ 0
−𝑔ℎ𝐵𝑥

−𝑔ℎ𝐵𝑦

⎞⎠, (1.2)

where ℎ(𝑥, 𝑦, 𝑡) is the water depth, 𝑢(𝑥, 𝑦, 𝑡) and 𝑣(𝑥, 𝑦, 𝑡) are the 𝑥- and 𝑦-velocities, and 𝐵(𝑥, 𝑦) is the bottom
topography.

Development of accurate, efficient and robust numerical methods for the systems (1.1) and (1.2) is an impor-
tant and challenging problem due to several reasons. First, these systems admit nonsmooth solution, which, in
the case of discontinuous bottom topography 𝐵, may not be unique. Second, it is very important to preserve a
delicate balance between the flux and source terms since many practically relevant solutions are, in fact, small
perturbations of the so-called “lake at rest” steady states:

𝑤 := ℎ + 𝐵 = Const, 𝑢 ≡ 𝑣 ≡ 0,

where 𝑤 is an equilibrium water surface variable (we say that a numerical method is well-balanced if it is capable
of exactly preserving the “lake at rest” states). Third, in many practically important situations, one may need
to deal with dry or almost dry areas and then it is crucial for the developed numerical method to preserve the
nonnegativity of ℎ.

In the past decades, many well-balanced and positivity preserving numerical methods for the Saint-Venant
systems have been developed; see, e.g., the review papers [16, 24] and references therein. In this paper, we
focus on semi-discrete central-upwind schemes for (1.1) and (1.2), which were designed on a variety of fixed
grids: uniform Cartesian [5, 17, 18], unstructured triangular [7], quadrilateral [21], and cell-vertex polygonal
[3] ones. We follow the lines of [19] and construct an adaptive moving mesh (AMM) central-upwind scheme
for the Saint-Venant systems (1.1) and (1.2). The AMM central-upwind schemes, which have been recently
introduced in [19] for 1-D and 2-D hyperbolic systems of PDEs, are based on structural meshes, which are
evolved in time according to the movimg mesh differential equations; we refer the reader to [1,8,9,13] for several
examples of existing AMM algoritms. Our goal is to develop several techniques required to ensure that the
resulting scheme is well-balanced and positivity preserving. In order to achieve this goal, we first generalize the
1-D well-balanced positivity preserving semi-discrete central-upwind scheme from [17] for the 1-D nonuniform
grids and modify the 2-D well-balanced positivity preserving semi-discrete central-upwind scheme from [21]
to evolve the solution over the structured quadrilateral meshes. In these schemes, second-order well-balanced
quadratures for the geometric source terms are developed to ensure the well-balanced property. In order to
preserve the positivity of the computed water depth, several measures are taken. First, we either make sure that
the reconstructed values of the water surface stay above the corresponding values of the bottom topography or
use the positivity preserving reconstructions for the water depth. Second, we use a draining time-step technique,
originally proposed in [4], to ensure that the water depth remains positive during the evolution step. Third, we
propose special corrections of the solution projection step in (almost) dry areas. We stress that the positivity
preserving technique we develop here does not allow us to ensure the well-balanced property of the proposed
AMM central-upwind schemes in the presence of dry areas. An alternative positivity preserving approach was
proposed in [25,26], where a GRP AMM method on unstructured triangular meshes was introduced. In addition
to preserving positivity of the water depth, this method is capable of ensuring the total water conservation,
which is enforced by redistributing the conservation error. Such redistribution, however, may lead to a purely
artificial appearance of water in dry areas and we prefer not to implement this technique in our AMM method.
Finally, we stress that development of a well-balanced AMM method that can accurately handle wetting/drying
interfaces and preserve both “lake at rest” and “dry lake” steady states still remains an open problem.

The paper is organized as follows. The proposed AMM algorithms are presented in Section 2. First, in
Section 2.1, we introduce the second-order well-balanced and positivity preserving central-upwind scheme on
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1-D nonuniform grids for the system (1.1). Then, in Section 2.2, we discuss the 1-D moving mesh equation and
its discretization. We complete the description of the 1-D AMM algorithm in Section 2.3, where we introduce
the 1-D conservative positivity preserving projection. In Section 2.4, we present the second-order well-balanced
and positivity preserving central-upwind scheme on 2-D structured quadrilateral meshes for the system (1.2).
We then design the 2-D AMM algorithm with the help of the 2-D moving mesh equation, which is discussed
together with its discretization in Section 2.5, and a special 2-D conservative positivity preserving projection,
which is introduced in Section 2.6. Finally, in Section 3, we demonstrate the performance of the proposed AMM
algorithms through several 1-D and 2-D numerical examples.

2. Adaptive Moving Mesh central-upwind schemes

In this section, we present the AMM central-upwind schemes for the systems (1.1) and (1.2). The schemes
are based on the 1-D and 2-D AMM central-upwind schemes introduced in [19]. They are constructed in two
steps. Given the solution at a certain time level, it is first evolved to the new time level on a given mesh (see
Sects. 2.1 and 2.4), which is updated at the end of the evolution step by solving the moving mesh differential
equation (see Sects. 2.2 and 2.5). The solution is then projected in a conservative manner to the new finite-
volume mesh (see Sects. 2.3 and 2.6).

We use the same notation as in [19], which is briefly reviewed in this paper for the sake of completeness.

2.1. One-dimensional semi-discrete scheme

We first rewrite the system (1.1) in terms of the water depth ℎ and discharge 𝑞 := ℎ𝑢:

(︂
ℎ
𝑞

)︂
𝑡

+

(︃
𝑞

𝑞2

ℎ
+

𝑔

2
ℎ2

)︃
𝑥

=
(︂

0
−𝑔ℎ𝐵𝑥

)︂
.

This system can be put into the vector form

𝑈𝑡 + 𝐹 (𝑈)𝑥 = 𝑆(𝑈 , 𝐵) (2.1)

with

𝑈 :=
(︂

ℎ
𝑞

)︂
, 𝐹 (𝑈 , 𝐵) :=

(︃
𝑞

𝑞2

ℎ
+

𝑔

2
ℎ2

)︃
, 𝑆(𝑈 , 𝐵) :=

(︂
0

−𝑔ℎ𝐵𝑥

)︂
. (2.2)

We then apply the 1-D AMM central-upwind scheme from [19] to the system (2.1), (2.2). As mentioned in
Section 1, we will need to develop the scheme that preserves the positivity of ℎ and is well-balanced in the sense
that it is capable of exactly preserving the “lake at rest” steady states (𝑤 ≡ Const, 𝑞 ≡ 0).

Assume that the computational domain is covered with nonuniform cells 𝐶𝑗 =
[︁
𝑥𝑗− 1

2
, 𝑥𝑗+ 1

2

]︁
of the size

∆𝑥𝑗 := 𝑥𝑗+ 1
2
− 𝑥𝑗− 1

2
centered at 𝑥𝑗 :=

(︁
𝑥𝑗− 1

2
+ 𝑥𝑗+ 1

2

)︁
/2, and that at a certain time 𝑡, the cell averages of the

computed solution,

𝑈𝑗(𝑡) ≈ 1
∆𝑥𝑗

∫︁
𝐶𝑗

𝑈(𝑥, 𝑡) d𝑥,

are available. They are then evolved from time level 𝑡 to 𝑡 + ∆𝑡 using the semi-discrete central-upwind scheme
on nonuniform grids from Section 2.1 of [19]:

d
d𝑡

𝑈𝑗(𝑡) = −
𝐻𝑗+ 1

2
(𝑡)−𝐻𝑗− 1

2
(𝑡)

∆𝑥𝑗
+ 𝑆𝑗(𝑡), (2.3)
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where the numerical fluxes are given by

𝐻𝑗+ 1
2

=
𝑎+

𝑗+ 1
2
𝐹−

𝑗+ 1
2
− 𝑎−

𝑗+ 1
2
𝐹 +

𝑗+ 1
2

𝑎+
𝑗+ 1

2
− 𝑎−

𝑗+ 1
2

+
𝑎+

𝑗+ 1
2
𝑎−

𝑗+ 1
2

𝑎+
𝑗+ 1

2
− 𝑎−

𝑗+ 1
2

[︁
𝑈+

𝑗+ 1
2
−𝑈−

𝑗+ 1
2

]︁
. (2.4)

Here, 𝐹±
𝑗+ 1

2
= 𝐹 (𝑈±

𝑗+ 1
2
), and the second component of the source term is approximated using the well-balanced

quadrature developed in [17]:

𝑆
(2)

𝑗 = −𝑔
ℎ−

𝑗+ 1
2

+ ℎ+
𝑗− 1

2

2
·
𝐵𝑗+ 1

2
−𝐵𝑗− 1

2

∆𝑥𝑗
· (2.5)

In (2.4) and (2.5), 𝑈±
𝑗+ 1

2
are the reconstructed one-sided point values of 𝑈

(︁
𝑥𝑗+ 1

2
± 0, 𝑡

)︁
(see Sect. 2.1.1),

𝐵𝑗± 1
2

:= 𝐵
(︁
𝑥𝑗± 1

2

)︁
, and 𝑎±

𝑗+ 1
2

the one-sided local speeds of propagation (see Sect. 2.1.2).
Note that in (2.4), (2.5), all of the indexed quantities depend on 𝑡, but from now on, we will omit this

dependence for the sake of brevity.

2.1.1. Positivity preserving reconstruction

We begin by following Section 2.1 of [19] and obtain the generalized minmod piecewise linear reconstruction of
the water surface 𝑤 := ℎ + 𝐵 and discharge 𝑞 := ℎ𝑢, which are used to evaluate 𝑤±

𝑗+ 1
2

and 𝑞±
𝑗+ 1

2
. Unfortunately,

for some 𝑗 the obtained point values 𝑤±
𝑗+ 1

2
may be smaller than the corresponding value 𝐵𝑗+ 1

2
, which would

lead to negative point values of the water depth ℎ±
𝑗+ 1

2
:= 𝑤±

𝑗+ 1
2
−𝐵𝑗+ 1

2
. We therefore follow [17] and reconstruct

ℎ instead of 𝑤 in potentially dry areas.
In this paper, the cell 𝐶𝑗 is called “dry” if at least one of the following inequalities is satisfied:

min{𝑤𝑗−1,𝑤𝑗 ,𝑤𝑗+1} < max
𝑥∈[𝑥𝑗−1,𝑥𝑗+1]

𝐵(𝑥), (2.6)

𝑤𝑗 −𝐵𝑗 < 𝛿, (2.7)

where 𝛿 > 0 is a small parameter (we take 𝛿 = 10−16 in all of the numerical experiments reported in Sect. 3) and
𝐵𝑗 = 1

Δ𝑥𝑗

∫︀
𝐶𝑗

𝐵(𝑥) 𝑑𝑥, which should be numerically computed using a quadrature (in our numerical examples,
we have used either the trapezoidal or Simpson’s rule). All other cells are called “wet”.

In “dry” cells, we use the piecewise linear positivity preserving reconstruction (described in [19], Sect. 2.1)
of ℎ based on the cell averages of water depth ℎ𝑗 := 𝑤𝑗 −𝐵𝑗 . After computing ℎ−

𝑗+ 1
2

and ℎ+
𝑗− 1

2
in the “dry” cell

𝐶𝑗 , we obtain 𝑤+
𝑗− 1

2
:= ℎ+

𝑗− 1
2

+ 𝐵𝑗− 1
2

and 𝑤−
𝑗+ 1

2
:= ℎ−

𝑗+ 1
2

+ 𝐵𝑗+ 1
2

there.

Remark 2.1. In practice, one may replace the condition (2.6) with its simplified version:

min{𝑤𝑗−1,𝑤𝑗 ,𝑤𝑗+1} < max
{︁
𝐵𝑗−1, 𝐵𝑗− 1

2
,𝐵𝑗 , 𝐵𝑗+ 1

2
,𝐵𝑗+1

}︁
, (2.8)

which is much easier to check. We stress that the use of the simplified condition (2.8) does not guarantee
positivity of the projected values of ℎ (see the proof of Theorem 2.5 below), but negative ℎ may appear only
in a small number of cells located near the wet/dry interfaces. If this occurs, we reclassify these particular cells
from “wet” to “dry” and reconstruct ℎ instead of 𝑤 in them.

2.1.2. Desingularization and one-sided local speeds

In order to avoid division by zero (or by a very small number), we follow [18] and desingularize the computation
of the velocity point values needed to evaluate numerical fluxes in (2.4) by setting

𝑢±
𝑗+ 1

2
=

√
2 ℎ±

𝑗+ 1
2
𝑞±
𝑗+ 1

2√︃(︁
ℎ±

𝑗+ 1
2

)︁4

+ max
[︂(︁

ℎ±
𝑗+ 1

2

)︁4

, 𝜀4

]︂ , (2.9)
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and then for consistency we modify the corresponding values of the discharge by recalculating

𝑞±
𝑗+ 1

2
= ℎ±

𝑗+ 1
2
· 𝑢±

𝑗+ 1
2
.

In (2.9), 𝜀 is a small desingularization parameter, which we take to be equal to 𝛿 in (2.7).
Equipped with the values of 𝑢±

𝑗+ 1
2

and ℎ±
𝑗+ 1

2
, we estimate the one-sided local speeds of propagation needed

in (2.4) as follows:
𝑎+

𝑗+ 1
2

= max
{︁

𝑢+
𝑗+ 1

2
+
√︁

𝑔ℎ+
𝑗+ 1

2
, 𝑢−

𝑗+ 1
2

+
√︁

𝑔ℎ−
𝑗+ 1

2
, 0
}︁

,

𝑎−
𝑗+ 1

2
= min

{︁
𝑢+

𝑗+ 1
2
−
√︁

𝑔ℎ+
𝑗+ 1

2
, 𝑢−

𝑗+ 1
2
−
√︁

𝑔ℎ−
𝑗+ 1

2
, 0
}︁

.

2.1.3. Positivity preserving evolution

In order to guarantee the positivity of ℎ during the evolution step, a draining time-step technique introduced
in [4] is employed.

We first consider the forward Euler discretization of (2.3), the first component of which reads as

ℎ𝑗(𝑡 + ∆𝑡) = ℎ𝑗(𝑡)−∆𝑡
𝐻

(1)

𝑗+ 1
2
−𝐻

(1)

𝑗− 1
2

∆𝑥𝑗
, (2.10)

where ∆𝑡 is the time step constrained by the CFL condition:

∆𝑡 max
𝑗

⎧⎨⎩max
{︁⃒⃒⃒

𝑎+
𝑗− 1

2

⃒⃒⃒
,
⃒⃒⃒
𝑎−

𝑗+ 1
2

⃒⃒⃒}︁
∆𝑥𝑗

⎫⎬⎭ ≤ 1
2
·

We then denote by

∆𝑡drain
𝑗 :=

∆𝑥𝑗 ℎ𝑗(𝑡)

max
(︁

0, 𝐻
(1)

𝑗+ 1
2

)︁
+ max

(︁
0,−𝐻

(1)

𝑗− 1
2

)︁ ,

and replace (2.10) by

ℎ𝑗(𝑡 + ∆𝑡) = ℎ𝑗(𝑡)−
∆𝑡𝑗+ 1

2
𝐻

(1)

𝑗+ 1
2
−∆𝑡𝑗− 1

2
𝐻

(1)

𝑗− 1
2

∆𝑥𝑗
,

where the time step ∆𝑡𝑗+ 1
2

is defined as:

∆𝑡𝑗+ 1
2

= min
(︀
∆𝑡, ∆𝑡drain

𝑖

)︀
, 𝑖 = 𝑗 +

1
2
−

sgn
(︁
𝐻

(1)

𝑗+ 1
2

)︁
2

·

The corresponding forward Euler step for 𝑞𝑗 is

𝑞𝑗(𝑡 + ∆𝑡) = 𝑞𝑗(𝑡)−
∆𝑡𝑗+ 1

2
𝐻

(𝑎,2)

𝑗+ 1
2
−∆𝑡𝑗− 1

2
𝐻

(𝑎,2)

𝑗− 1
2

∆𝑥𝑗
−∆𝑡

⎛⎝𝐻
(𝑔,2)

𝑗+ 1
2
−𝐻

(𝑔,2)

𝑗− 1
2

∆𝑥𝑗
− 𝑆

(2)

⎞⎠,

where the advective and gravitational parts of the fluxes are defined by⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝐻
(𝑎,2)

𝑗+ 1
2

=
𝑎+

𝑗+ 1
2
ℎ−

𝑗+ 1
2

(︁
𝑢−

𝑗+ 1
2

)︁2

− 𝑎−
𝑗+ 1

2
ℎ+

𝑗+ 1
2

(︁
𝑢+

𝑗+ 1
2

)︁2

𝑎+
𝑗+ 1

2
− 𝑎−

𝑗+ 1
2

,

𝐻
(𝑔,2)

𝑗+ 1
2

= 𝑔
𝑎+

𝑗+ 1
2

(︁
ℎ−

𝑗+ 1
2

)︁2

− 𝑎−
𝑗+ 1

2

(︁
ℎ+

𝑗+ 1
2

)︁2

2
(︁
𝑎+

𝑗+ 1
2
− 𝑎−

𝑗+ 1
2

)︁ +
𝑎+

𝑗+ 1
2
𝑎−

𝑗+ 1
2

𝑎+
𝑗+ 1

2
− 𝑎−

𝑗+ 1
2

(︁
𝑞+
𝑗+ 1

2
− 𝑞−

𝑗+ 1
2

)︁
.
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It has been shown in [5] that in the case of uniform grid the resulting central-upwind scheme is both positivity
preserving and well-balanced. The proof can be directly extended to the case of a nonuniform grid and the
three-stage third-order strong stability preserving (SSP) Runge–Kutta method (see, e.g., [11, 12]) as it can be
written as a convex combination of forward Euler steps.

Remark 2.2. An alternative way to ensure the positivity of ℎ during the time evolution is to use a more
restrictive CFL condition, which we derive in Appendix C.1. This approach, however, will significantly affect
the efficiency of the overall method as the size of time steps is to be reduced by a factor of about 3. We have
carefully compared the numerical results obtained by both approaches and realized that using much smaller
CFL number does not lead to any improvement in the quality of the computed solutions. Therefore, in all of
the numerical examples reported in Section 3, we have used the draining time-step technique.

2.2. One-dimensional moving mesh equation

In this section, we briefly describe the 1-D moving mesh equation and its numerical solution algorithm; see
Section 3.1 of [19] for details.

In addition to the computational domain [𝑎, 𝑏] covered by the nonuniform mesh
{︁

𝑥𝑗+ 1
2

}︁
, we introduce the

uniform logical mesh 𝜉𝑗+ 1
2

= 𝑗∆𝜉, 𝑗 = 0, . . . , 𝑁, with ∆𝜉 = 1/𝑁 . Let us denote the one-to-one coordinate
transformation from the logical domain to the computational one by

𝑥 = 𝑥(𝜉), 𝜉 ∈ [0, 1], 𝑥(0) = 𝑎, 𝑥(1) = 𝑏,

so that 𝑥𝑗+ 1
2

= 𝑥
(︁
𝜉𝑗+ 1

2

)︁
.

The mesh is distributed according to the following moving mesh equation (see, e.g., [13] for a detailed
derivation):

(𝜔𝑥𝜉)𝜉 = 0, 𝜔(𝑈) = 1 + 𝛼𝜙(|𝐷𝑈 |), (2.11)

where 𝜔 is a monitor function and 𝐷 is a differential operator (see, e.g., [2, 13, 23]). In this paper, we use
𝐷𝑈 = 𝑈

(𝑖)
𝜉𝜉 (for some component of 𝑈), which is approximated using the second-order centered difference:

𝐷𝑈𝑗 =
(︁
𝑈

(𝑖)
𝜉𝜉

)︁
𝑗

=
𝑈

(𝑖)

𝑗+1 − 2𝑈
(𝑖)

𝑗 + 𝑈
(𝑖)

𝑗−1

(∆𝜉)2
·

The function 𝜙 in (2.11) is a smoothing filter designed as follows. We first compute 𝜙0
𝑗 = |𝐷𝑈𝑗 |, and then

smooth 𝜙0
𝑗 out by averaging over the neighboring cells for each 𝑗 for a prescribed number of iterations, that is,

we introduce

𝜙ℓ+1
𝑗 =

1
4
(︀
𝜙ℓ

𝑗+1 + 2𝜙ℓ
𝑗 + 𝜙ℓ

𝑗−1

)︀
, ℓ = 0, 1, . . . ,𝑚− 1,

and then set (𝜙(|𝐷𝑈 |))𝑗 := 𝜙𝑚
𝑗 , which is used in (2.11). In our numerical experiments, we have taken 𝑚 = 4.

Finally, 𝛼 in (2.11) is the intensity parameter employed to control the mesh concentration: the use of larger
values of 𝛼 leads to the higher concentration of grid points in the “rough” areas. We follow [14] and choose 𝛼
to be

𝛼 =

(︃
1− 𝛽

𝛽(𝑏− 𝑎)

∫︁ 𝑏

𝑎

𝜙(|𝐷𝑈 |) d𝑥

)︃−1

,

where 𝛽 ∈ (0, 1) is a prescribed fraction of mesh points to be concentrated in the “rough” areas of the computed
solution.
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Equipped with the monitor function 𝜔, we discretize the moving mesh equation (2.11) using the centered
difference approximation, which results in the following linear algebraic system for the mesh points locations:⎧⎪⎪⎨⎪⎪⎩

𝑥 1
2

= 𝑎,

𝜔𝑗+1

(︁
𝑥𝑗+ 3

2
− 𝑥𝑗+ 1

2

)︁
− 𝜔𝑗

(︁
𝑥𝑗+ 1

2
− 𝑥𝑗− 1

2

)︁
= 0, 𝑗 = 1, . . . 𝑁 − 1,

𝑥𝑁+ 1
2

= 𝑏.

We numerically solve this system using the Jacobi iterations combined with the mesh relaxation procedure
needed to ensure that the mesh does not get distracted during the iterations. Denoting by 𝑥𝜈

𝑗+ 1
2

the grid nodes

in the beginning of the (𝜈 + 1)-th iteration step (with the initial guess 𝑥0
𝑗+ 1

2
being the grid nodes from the

previous evolution step), we take one Jacobi sweep

𝑥*𝑗+ 1
2

=
𝜔𝜈

𝑗+1𝑥
𝜈
𝑗+ 3

2
+ 𝜔𝜈

𝑗 𝑥𝜈
𝑗− 1

2

𝜔𝜈
𝑗+1 + 𝜔𝜈

𝑗

𝑗 = 1, . . . 𝑁 − 1,

where 𝜔𝜈
𝑗 is the values of the monitor function 𝜔 at the grid point 𝑥 = 𝑥𝜈

𝑗 computed using the cell averages{︁
𝑈

𝜈

𝑗

}︁
. This results in the grid

{︁
𝑥*

𝑗+ 1
2

}︁
, which is then relaxed by setting

𝑥𝜈+1
𝑗+ 1

2
=

1
2

(︁
𝑥𝜈

𝑗+ 1
2

+ 𝑥*𝑗+ 1
2

)︁
, 𝑗 = 1, . . . 𝑁 − 1, (2.12)

which implies

𝑥𝜈
𝑗 =

1
2

(︁
𝑥𝜈

𝑗− 1
2

+ 𝑥𝜈
𝑗+ 1

2

)︁
≤ 𝑥𝜈+1

𝑗+ 1
2
≤ 1

2

(︁
𝑥𝜈

𝑗+ 1
2

+ 𝑥𝜈
𝑗+ 3

2

)︁
= 𝑥𝜈

𝑗+1, (2.13)

and thus 𝑥𝜈+1
𝑗+ 1

2
∈
(︁
𝑥𝜈+1

𝑗− 1
2
, 𝑥𝜈+1

𝑗+ 3
2

)︁
, which means that the logical structure of the mesh does not change.

Remark 2.3. One can set up a stopping criterion for the iteration (2.12), for instance, the iterations should
stop as soon as max𝑗

{︁⃒⃒⃒
𝑥𝜈+1

𝑗+ 1
2
− 𝑥𝜈

𝑗+ 1
2

⃒⃒⃒}︁
< 𝑡𝑜𝑙 for a given 𝑡𝑜𝑙 > 0. In practice, however, the mesh does not typically

change much in one evolution time step. We therefore improve the efficiency of the resulting AMM method by
stopping the iteration process after several iterations. In all of our numerical experiments, the upper bound on
the number of iterations has been set to 4.

Remark 2.4. In order to avoid the appearances of excessively small cells, which would lead to severe time step
restrictions, we modify the mesh movement as follows. If

⃒⃒⃒
𝑥𝜈+1

𝑗+ 1
2
− 𝑥𝜈+1

𝑗− 1
2

⃒⃒⃒
< ∆𝑥min, where ∆𝑥min is the smallest

allowed cell size, then we locally freeze the movement of the mesh by setting 𝑥𝜈+1
𝑗± 1

2
= 𝑥𝜈

𝑗± 1
2
, and in the next

iteration of moving mesh process, we set 𝜙0
𝑗−1 = 0, 𝜙0

𝑗 = 0 and 𝜙0
𝑗+1 = 0 to reduce the mesh concentration

nearby. In all of the numerical examples, we have set ∆𝑥min = 0.1∆𝑥unif , where ∆𝑥unif is the size of cells of
the corresponding uniform mesh, which contains precisely the same total number of cells as used in the AMM
computations.

2.3. One-dimensional conservative positivity preserving projection

After obtaining the new mesh, we project the solution from the cells 𝐶𝜈
𝑗 :=

[︁
𝑥𝜈

𝑗− 1
2
, 𝑥𝜈

𝑗+ 1
2

]︁
to the new cells

𝐶𝜈+1
𝑗 :=

[︁
𝑥𝜈+1

𝑗− 1
2
, 𝑥𝜈+1

𝑗+ 1
2

]︁
.

Let 𝑈
𝜈

𝑗 and 𝑈
𝜈+1

𝑗 be the cell averages over the cells 𝐶𝜈
𝑗 and 𝐶𝜈+1

𝑗 , respectively, and denote the mesh shift

by 𝜇
𝜈+ 1

2
𝑗+ 1

2
:= 𝑥𝜈+1

𝑗+ 1
2
− 𝑥𝜈

𝑗+ 1
2
. The conservative solution projection step from [22] is given by

∆𝑥𝜈+1
𝑗 𝑈

𝜈+1

𝑗 = ∆𝑥𝜈
𝑗 𝑈

𝜈

𝑗 + 𝜇
𝜈+ 1

2
𝑗+ 1

2
𝑈𝜈

𝑗+ 1
2
− 𝜇

𝜈+ 1
2

𝑗− 1
2
𝑈𝜈

𝑗− 1
2
,
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where

𝑈𝜈
𝑗+ 1

2
:=

⎧⎪⎨⎪⎩
𝑈+

𝑗+ 1
2
, if 𝜇

𝜈+ 1
2

𝑗+ 1
2

> 0,

𝑈−
𝑗+ 1

2
, if 𝜇

𝜈+ 1
2

𝑗+ 1
2

< 0,
(2.14)

and 𝑈±
𝑗+ 1

2
are the point values reconstructed over the grid 𝐶𝜈

𝑗 as described in Section 2.1.1.
In particular, this projection step for the water surface variable 𝑤 reads as

∆𝑥𝜈+1
𝑗 𝑤𝜈+1

𝑗 = ∆𝑥𝜈
𝑗 𝑤𝜈

𝑗 + 𝜇
𝜈+ 1

2
𝑗+ 1

2
𝑤𝜈

𝑗+ 1
2
− 𝜇

𝜈+ 1
2

𝑗− 1
2
𝑤𝜈

𝑗− 1
2
. (2.15)

We note that this projection step preserves “lake at rest” steady states, for which 𝑤𝑗 = 𝑤±
𝑗± 1

2
= 𝑤 for all 𝑗, and

thus (2.15) reduces to

∆𝑥 𝜈+1
𝑗 𝑤𝜈+1

𝑗 = ∆𝑥𝜈
𝑗 𝑤 +

(︁
𝑥𝜈+1

𝑗+ 1
2
− 𝑥𝜈

𝑗+ 1
2

)︁
𝑤−

(︁
𝑥𝜈+1

𝑗− 1
2
− 𝑥𝜈

𝑗− 1
2

)︁
𝑤 = ∆𝑥𝜈+1

𝑗 𝑤.

We also note that the total amount of 𝑤 after completion of this projection step is conserved, but the total
amount of ℎ is not conserved, since, in general,∑︁

𝑗

𝐵
𝜈

𝑗 ∆𝑥𝜈
𝑗 ̸=

∑︁
𝑗

𝐵
𝜈+1

𝑗 ∆𝑥𝜈+1
𝑗 ,

where

𝐵
𝜈

𝑗 ≈
1

∆𝑥𝜈
𝑗

∫︁
𝐶𝜈

𝑗

𝐵(𝑥) d𝑥 and 𝐵
𝜈+1

𝑗 ≈ 1
∆𝑥𝜈+1

𝑗

∫︁
𝐶𝜈+1

𝑗

𝐵(𝑥) d𝑥 (2.16)

are approximations of the cell averages of 𝐵, computed by a proper numerical quadrature. As one can expect,
the use of a higher-order quadrature may help to reduce the conservation error. In the numerical experiments
reported in Section 3, we have compared the results obtained using the trapezoidal and Simpson’s rules and
clearly seen the advantage of the higher-order quadrature.

The projection step (2.15), however, cannot be used in the “dry” areas, since one of the following may happen:

– appearance of negative water depth, that is, 𝑤𝜈+1
𝑗 < 𝐵

𝜈+1

𝑗 for some 𝑗;

– artificial propagation of water into dry areas, that is, 𝑤𝜈+1
𝑗 > 𝐵

𝜈+1

𝑗 for 𝑗 located in the totally dry area (far

away from the wetting/drying interface), where 𝑤𝜈+1
𝑗 must be equal to 𝐵

𝜈+1

𝑗 .

We therefore replace the projection step (2.15) with

∆𝑥𝜈+1
𝑗 𝑤𝜈+1

𝑗 = ∆𝑥𝜈
𝑗 𝑤𝜈

𝑗 + 𝜇
𝜈+ 1

2
𝑗+ 1

2
̃︀𝑤 𝜈

𝑗+ 1
2
− 𝜇

𝜈+ 1
2

𝑗− 1
2
̃︀𝑤 𝜈

𝑗− 1
2

+ 𝐵corr
𝑗 , (2.17)

where

̃︀𝑤 𝜈
𝑗+ 1

2
:=

⎧⎪⎨⎪⎩
𝑤𝜈

𝑗+ 1
2
, if 𝐶𝜈

𝑗 is “wet” and 𝜇
𝜈+ 1

2
𝑗+ 1

2
≤ 0 or 𝐶𝜈

𝑗+1 is “wet” and 𝜇
𝜈+ 1

2
𝑗+ 1

2
≥ 0,

ℎ𝜈
𝑗+ 1

2
+ 𝐵

𝜈+ 1
2

𝑗+ 1
2

, otherwise.

Here, 𝑤𝜈
𝑗+ 1

2
and ℎ𝜈

𝑗+ 1
2

are determined using (2.14) and

𝐵
𝜈+ 1

2
𝑗+ 1

2
≈ 1

𝜇
𝜈+ 1

2
𝑗+ 1

2

∫︁ 𝑥𝜈+1
𝑗+ 1

2

𝑥𝜈

𝑗+ 1
2

𝐵(𝑥) d𝑥 (2.18)
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is an approximation of the average of 𝐵 over the interval
[︁
𝑥𝜈

𝑗+ 1
2
, 𝑥𝜈+1

𝑗+ 1
2

]︁
or
[︁
𝑥𝜈+1

𝑗+ 1
2
, 𝑥𝜈

𝑗+ 1
2

]︁
depending on whether

𝑥𝜈+1
𝑗+ 1

2
> 𝑥𝜈

𝑗+ 1
2

or 𝑥𝜈
𝑗+ 1

2
> 𝑥𝜈+1

𝑗+ 1
2
. Finally, the “dry” cell correction term 𝐵corr

𝑗 is defined as

𝐵corr
𝑗 :=

⎧⎨⎩ 0, if 𝐶𝑗 is “wet”,

∆𝑥𝜈+1
𝑗 𝐵

𝜈+1

𝑗 −
[︁
∆𝑥𝜈

𝑗𝐵
𝜈

𝑗 + 𝜇
𝜈+ 1

2
𝑗+ 1

2
𝐵

𝜈+ 1
2

𝑗+ 1
2
− 𝜇

𝜈+ 1
2

𝑗− 1
2
𝐵

𝜈+ 1
2

𝑗− 1
2

]︁
, otherwise.

(2.19)

We note that the magnitude of 𝐵corr
𝑗 is determined by the accuracy of the quadratures used to approximate the

integrals in (2.16) and (2.18). Indeed, assuming that these integrals are evaluated using a quadrature of order
𝑝, we have

∆𝑥𝜈+1
𝑗 𝐵

𝜈+1

𝑗 −
[︁
∆𝑥𝜈

𝑗𝐵
𝜈

𝑗 + 𝜇
𝜈+ 1

2
𝑗+ 1

2
𝐵

𝜈+ 1
2

𝑗+ 1
2
− 𝜇

𝜈+ 1
2

𝑗− 1
2
𝐵

𝜈+ 1
2

𝑗− 1
2

]︁
=
∫︁ 𝑥𝜈+1

𝑗+ 1
2

𝑥𝜈+1
𝑗− 1

2

𝐵(𝑥) d𝑥−

⎡⎣∫︁ 𝑥𝜈

𝑗+ 1
2

𝑥𝜈

𝑗− 1
2

𝐵(𝑥) d𝑥 +
∫︁ 𝑥𝜈+1

𝑗+ 1
2

𝑥𝜈

𝑗+ 1
2

𝐵(𝑥) d𝑥−
∫︁ 𝑥𝜈+1

𝑗− 1
2

𝑥𝜈

𝑗− 1
2

𝐵(𝑥) d𝑥

⎤⎦+𝒪
(︀
∆𝑝+1

)︀
= 𝒪

(︀
∆𝑝+1

)︀
,

where ∆ := max
{︁

∆𝑥𝜈 , ∆𝑥𝜈+1, 𝜇
𝜈+ 1

2
𝑗− 1

2
, 𝜇

𝜈+ 1
2

𝑗+ 1
2

}︁
.

We now state the positivity preserving property of the described projection step.

Theorem 2.5. The projection step (2.17)–(2.19) preserves the positivity of ℎ𝑗, namely,

𝑤𝜈+1
𝑗 ≥𝐵

𝜈+1

𝑗 , ∀𝑗, (2.20)

provided 𝑤𝜈
𝑗 ≥𝐵

𝜈

𝑗 , ∀𝑗 and the integrals in (2.16) and (2.18) are evaluated exactly.

The proof of this important theorem is quite technical and provided in Appendix A.

Remark 2.6. The proof of Theorem 2.5 is still true if the integrals in (2.16) are computed by a numerical
quadrature with nonnegative weights (for example, the trapezoidal and Simpson’s rules, which have been used
in our numerical experiments). We only need to assume that the integral in (2.18) is computed exactly. However,
in our numerical experiments, we have used either the trapezoidal or Simpson’s rule and 𝑤𝜈+1

𝑗 −𝐵
𝜈+1

𝑗 always
remained positive.

2.4. Two-dimensional semi-discrete scheme

Similarly to the 1-D case, we rewrite the system (1.2) in terms of water depth ℎ and discharges 𝑞𝑥 := ℎ𝑢 and
𝑞𝑦 := ℎ𝑣: ⎛⎝ ℎ

𝑞𝑥

𝑞𝑦

⎞⎠
𝑡

+

⎛⎜⎜⎜⎝
𝑞𝑥

(𝑞𝑥)2

ℎ
+

𝑔

2
ℎ2

𝑞𝑥𝑞𝑦

ℎ

⎞⎟⎟⎟⎠
𝑥

+

⎛⎜⎜⎜⎝
𝑞𝑦

𝑞𝑥𝑞𝑦

ℎ
(𝑞𝑦)2

ℎ
+

𝑔

2
ℎ2

⎞⎟⎟⎟⎠
𝑦

=

⎛⎝ 0
−𝑔ℎ𝐵𝑥

−𝑔ℎ𝐵𝑦

⎞⎠.

This system can be put into the vector form

𝑈𝑡 + 𝐹 (𝑈)𝑥 + 𝐺(𝑈)𝑦 = 𝑆(𝑈 , 𝐵), (2.21)

with 𝑈 = (ℎ, 𝑞𝑥, 𝑞𝑦)⊤ and

𝐹 (𝑈) =
(︂

𝑞𝑥,
(𝑞𝑥)2

ℎ
+

𝑔

2
ℎ2,

𝑞𝑥𝑞𝑦

ℎ

)︂⊤
, 𝐺(𝑈) =

(︂
𝑞𝑦,

𝑞𝑥𝑞𝑦

ℎ
,

(𝑞𝑦)2

ℎ
+

𝑔

2
ℎ2

)︂⊤
,

𝑆(𝑈 , 𝐵) = (0,−𝑔ℎ𝐵𝑥,−𝑔ℎ𝐵𝑦)⊤.

(2.22)
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Figure 1. A typical quadrilateral cell 𝐶𝑗,𝑘 with its four neighbors.

We apply the 2-D AMM central-upwind scheme from [19] to the system (2.21), (2.22). As in the 1-D case, we
will need to develop the scheme that preserves the positivity of ℎ and is well-balanced in the sense that it is
capable of exactly preserving the “lake at rest” steady states (𝑤 = Const, 𝑞𝑥 ≡ 𝑞𝑦 ≡ 0).

Assume that the computational domain is covered with a structured irregular quadrilateral mesh consisting
of cells 𝐶𝑗,𝑘 of size |𝐶𝑗,𝑘|, and use the following notations (see Fig. 1):

𝑧𝑗+ 1
2 ,𝑘+ 1

2
:=
(︁
𝑥𝑗+ 1

2 ,𝑘+ 1
2
, 𝑦𝑗+ 1

2 ,𝑘+ 1
2

)︁
: cell vertices,

𝑧𝑗,𝑘 := (𝑥𝑗,𝑘, 𝑦𝑗,𝑘) : geometric center of 𝐶𝑗,𝑘,

ℓ𝑗+ 1
2 ,𝑘 :=

⃒⃒⃒
𝑧𝑗+ 1

2 ,𝑘+ 1
2
− 𝑧𝑗+ 1

2 ,𝑘− 1
2

⃒⃒⃒
: length of the edge 𝑧𝑗+ 1

2 ,𝑘− 1
2

𝑧𝑗+ 1
2 ,𝑘+ 1

2
,

𝑧𝑗+ 1
2 ,𝑘 :=

1
2

(︁
𝑧𝑗+ 1

2 ,𝑘+ 1
2

+ 𝑧𝑗+ 1
2 ,𝑘− 1

2

)︁
: midpoint of the edge 𝑧𝑗+ 1

2 ,𝑘− 1
2

𝑧𝑗+ 1
2 ,𝑘+ 1

2
,

𝑛𝑗+ 1
2 ,𝑘 :=

(︁
cos
(︁
𝜃𝑗+ 1

2 ,𝑘

)︁
, sin

(︁
𝜃𝑗+ 1

2 ,𝑘

)︁)︁
: the unit outer normal vector to the edge 𝑧𝑗+ 1

2 ,𝑘− 1
2

𝑧𝑗+ 1
2 ,𝑘+ 1

2
,

ℓ𝑗,𝑘+ 1
2

:=
⃒⃒⃒
𝑧𝑗+ 1

2 ,𝑘+ 1
2
− 𝑧𝑗− 1

2 ,𝑘+ 1
2

⃒⃒⃒
: length of the edge 𝑧𝑗− 1

2 ,𝑘+ 1
2

𝑧𝑗+ 1
2 ,𝑘+ 1

2
,

𝑧𝑗,𝑘+ 1
2

:=
1
2

(︁
𝑧𝑗+ 1

2 ,𝑘+ 1
2

+ 𝑧𝑗− 1
2 ,𝑘+ 1

2

)︁
: midpoint of the edge 𝑧𝑗− 1

2 ,𝑘+ 1
2

𝑧𝑗− 1
2 ,𝑘+ 1

2
,

𝑛𝑗,𝑘+ 1
2

:=
(︁

cos
(︁
𝜃𝑗,𝑘+ 1

2

)︁
, sin

(︁
𝜃𝑗,𝑘+ 1

2

)︁)︁
: the unit outer normal vector to the edge 𝑧𝑗− 1

2 ,𝑘+ 1
2

𝑧𝑗− 1
2 ,𝑘+ 1

2
.

Assume that at a certain time 𝑡, we have computed an approximate solution, realized in terms of its cell
averages:

𝑈𝑗,𝑘 ≈
1

|𝐶𝑗,𝑘|

∫︁∫︁
𝐶𝑗,𝑘

𝑈(𝑥, 𝑦, 𝑡) d𝑥 d𝑦.
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They are then evolved from time level 𝑡 to 𝑡 + ∆𝑡 using the semi-discrete central-upwind scheme on structured
quadrilateral grids from Section 2.2 of [19]:

d
d𝑡

𝑈𝑗,𝑘 = − 1
|𝐶𝑗,𝑘|

[︁
𝐻𝑗+ 1

2 ,𝑘 −𝐻𝑗− 1
2 ,𝑘 + 𝐻𝑗,𝑘+ 1

2
−𝐻𝑗,𝑘− 1

2

]︁
+ 𝑆𝑗,𝑘, (2.23)

where the numerical fluxes along the boundaries of 𝐶𝑗,𝑘 are given by

𝐻𝑚,𝑖 =
ℓ𝑚,𝑖

(︁
𝑛

(1)
𝑚,𝑖

[︀
𝑎+

𝑚,𝑖𝐹
−
𝑚,𝑖 − 𝑎−𝑚,𝑖𝐹

+
𝑚,𝑖

]︀
+ 𝑛

(2)
𝑚,𝑖

[︀
𝑎+

𝑚,𝑖𝐺
−
𝑚,𝑖 − 𝑎−𝑚,𝑖𝐺

+
𝑚,𝑖

]︀
+ 𝑎+

𝑚,𝑖𝑎
−
𝑚,𝑖

[︀
𝑈+

𝑚,𝑖 −𝑈−
𝑚,𝑖

]︀)︁
𝑎+

𝑚,𝑖 − 𝑎−𝑚,𝑖

, (2.24)

and the second and third components of the cell averages of the source term 𝑆𝑗,𝑘 are to be approximated in the
well-balance manner; see Section 2.4.1.

In equation (2.24), (𝑚, 𝑖) =
(︀
𝑗 ± 1

2 , 𝑘
)︀

or
(︀
𝑗, 𝑘 ± 1

2

)︀
, 𝐹±

𝑚,𝑖 := 𝐹
(︀
𝑈±

𝑚,𝑖

)︀
and 𝐺±

𝑚,𝑖 := 𝐺
(︀
𝑈±

𝑚,𝑖

)︀
, where 𝑈±

𝑚,𝑖

are the reconstructed one-sided point values of 𝑈(𝑧𝑚,𝑖, 𝑡) computed along the normal to the corresponding cell
edge (see Sect. 2.4.2), and 𝑎±𝑚,𝑖 are the directional local speeds of propagation (see Sect. 2.4.3).

2.4.1. Well-balanced source term quadratures

In order to derive the desired second-order well-balanced quadrature for the source term 𝑆
(2)

𝑗,𝑘 , we follow
[3,7, 21] and first use Green’s formula together with the mean-value theorem to obtain

𝑆
(2)

𝑗,𝑘 = − 1
|𝐶𝑗,𝑘|

∫︁
𝐶𝑗,𝑘

𝑔ℎ𝐵𝑥 d𝑥 d𝑦 = − 𝑔

|𝐶𝑗,𝑘|

∫︁
𝐶𝑗,𝑘

(𝑤 −𝐵)𝐵𝑥 d𝑥 d𝑦

=
𝑔

|𝐶𝑗,𝑘|

[︃∫︁
𝜕𝐶𝑗,𝑘

(︂
(𝑤 −𝐵)2

2
, 0
)︂
· 𝑛 d𝑠−

∫︁
𝐶𝑗,𝑘

(𝑤 −𝐵)𝑤𝑥 d𝑥 d𝑦

]︃

≈ 𝑔

|𝐶𝑗,𝑘|

[︃∫︁
𝜕𝐶𝑗,𝑘

(︂
ℎ2

2
, 0
)︂
· 𝑛 d𝑠−ℎ𝑗,𝑘

∫︁
𝐶𝑗,𝑘

𝑤𝑥 d𝑥 d𝑦

]︃

=
𝑔

|𝐶𝑗,𝑘|

[︃
1
2

∫︁
𝜕𝐶𝑗,𝑘

(︀
ℎ2, 0

)︀
· 𝑛 d𝑠−ℎ𝑗,𝑘

∫︁
𝜕𝐶𝑗,𝑘

(𝑤, 0) · 𝑛 d𝑠

]︃
=:

𝑔

|𝐶𝑗,𝑘|

[︁
I(2)𝑗,𝑘 − II(2)𝑗,𝑘

]︁
.

(2.25)

The line integrals in the terms I(2)𝑗,𝑘 and II(2)𝑗,𝑘 are then approximated using the midpoint rule, which results in

I(2)𝑗,𝑘 =

(︁
ℎ−

𝑗+ 1
2 ,𝑘

)︁2

ℓ𝑗+ 1
2 ,𝑘𝑛

(1)

𝑗+ 1
2 ,𝑘
−
(︁
ℎ+

𝑗− 1
2 ,𝑘

)︁2

ℓ𝑗− 1
2 ,𝑘𝑛

(1)

𝑗− 1
2 ,𝑘

+
(︁
ℎ−

𝑗,𝑘+ 1
2

)︁2

ℓ𝑗,𝑘+ 1
2
𝑛

(1)

𝑗,𝑘+ 1
2
−
(︁
ℎ+

𝑗,𝑘− 1
2

)︁2

ℓ𝑗,𝑘− 1
2
𝑛

(1)

𝑗,𝑘− 1
2

2
,

(2.26)
and

II(2)𝑗,𝑘 = ℎ𝑗,𝑘

[︁
𝑤−

𝑗+ 1
2 ,𝑘

ℓ𝑗+ 1
2 ,𝑘𝑛

(1)

𝑗+ 1
2 ,𝑘
− 𝑤+

𝑗− 1
2 ,𝑘

ℓ𝑗− 1
2 ,𝑘𝑛

(1)

𝑗− 1
2 ,𝑘

+ 𝑤−
𝑗,𝑘+ 1

2
ℓ𝑗,𝑘+ 1

2
𝑛

(1)

𝑗,𝑘+ 1
2
− 𝑤+

𝑗,𝑘− 1
2
ℓ𝑗,𝑘− 1

2
𝑛

(1)

𝑗,𝑘− 1
2

]︁
. (2.27)

Finally, the cell average of the bottom topography,

𝐵𝑗,𝑘 ≈
1

|𝐶𝑗,𝑘|

∫︁
𝐶𝑗,𝑘

𝐵(𝑥, 𝑦) d𝑥 d𝑦, (2.28)

should be numerically computed using a quadrature (in our numerical examples, we have split the quadrilateral
𝐶𝑗,𝑘 into four triangles and used 7-point Gaussian quadrature in each of the triangles; see Appendix B for
details).
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Similarly, the well-balanced quadrature for 𝑆
(3)

𝑗,𝑘 is

𝑆
(3)

𝑗,𝑘 =
𝑔

|𝐶𝑗,𝑘|

[︁
I(3)𝑗,𝑘 − II(3)𝑗,𝑘

]︁
, (2.29)

where

I(3)𝑗,𝑘 =

(︁
ℎ−

𝑗+ 1
2 ,𝑘

)︁2

ℓ𝑗+ 1
2 ,𝑘𝑛

(2)

𝑗+ 1
2 ,𝑘
−
(︁
ℎ+

𝑗− 1
2 ,𝑘

)︁2

ℓ𝑗− 1
2 ,𝑘𝑛

(2)

𝑗− 1
2 ,𝑘

+
(︁
ℎ−

𝑗,𝑘+ 1
2

)︁2

ℓ𝑗,𝑘+ 1
2
𝑛

(2)

𝑗,𝑘+ 1
2
−
(︁
ℎ+

𝑗,𝑘− 1
2

)︁2

ℓ𝑗,𝑘− 1
2
𝑛

(2)

𝑗,𝑘− 1
2

2
,

(2.30)
and

II(3)𝑗,𝑘 = ℎ𝑗,𝑘

[︁
𝑤−

𝑗+ 1
2 ,𝑘

ℓ𝑗+ 1
2 ,𝑘𝑛

(2)

𝑗+ 1
2 ,𝑘
− 𝑤+

𝑗− 1
2 ,𝑘

ℓ𝑗− 1
2 ,𝑘𝑛

(2)

𝑗− 1
2 ,𝑘

+ 𝑤−
𝑗,𝑘+ 1

2
ℓ𝑗,𝑘+ 1

2
𝑛

(2)

𝑗,𝑘+ 1
2
− 𝑤+

𝑗,𝑘− 1
2
ℓ𝑗,𝑘− 1

2
𝑛

(2)

𝑗,𝑘− 1
2

]︁
.

(2.31)

We now prove the well-balanced property of the resulting central-upwind scheme.

Theorem 2.7. The central-upwind scheme (2.23), (2.24) with the numerical source terms given by (2.25)–(2.31)
is well-balanced in the sense that it exactly preserves the “lake at rest” steady states

𝑤𝑗,𝑘 ≡ 𝑤, 𝑞𝑥
𝑗,𝑘 ≡ 𝑞𝑦

𝑗,𝑘 ≡ 0. (2.32)

Proof. Let us consider the second component of the scheme (2.23)–(2.31) and substitute (2.32) into it. The
numerical fluxes are then equal to

𝐻
(2)

𝑗+ 1
2 ,𝑘

=

(︁
𝑤−𝐵𝑗+ 1

2 ,𝑘

)︁2

2
ℓ𝑗+ 1

2 ,𝑘𝑛
(1)

𝑗+ 1
2 ,𝑘

, 𝐻
(2)

𝑗,𝑘+ 1
2

=

(︁
𝑤−𝐵𝑗,𝑘+ 1

2

)︁2

2
ℓ𝑗,𝑘+ 1

2
𝑛

(1)

𝑗,𝑘+ 1
2
,

which implies that

−
[︁
𝐻

(2)

𝑗+ 1
2 ,𝑘
−𝐻

(2)

𝑗− 1
2 ,𝑘

+ 𝐻
(2)

𝑗,𝑘+ 1
2
−𝐻

(2)

𝑗,𝑘− 1
2

]︁
+ 𝑔I(2)𝑗,𝑘 = 0, ∀𝑗, 𝑘.

The second term in the numerical source is

II(2)𝑗,𝑘 =
(︀
𝑤−𝐵𝑗,𝑘

)︀
𝑤
[︁
ℓ𝑗+ 1

2 ,𝑘𝑛
(1)

𝑗+ 1
2 ,𝑘
− ℓ𝑗− 1

2 ,𝑘𝑛
(1)

𝑗− 1
2 ,𝑘

+ ℓ𝑗,𝑘+ 1
2
𝑛

(1)

𝑗,𝑘+ 1
2
− ℓ𝑗,𝑘− 1

2
𝑛

(1)

𝑗,𝑘− 1
2

]︁
,

and it is equal to zero since

ℓ𝑗+ 1
2 ,𝑘𝑛

(1)

𝑗+ 1
2 ,𝑘
− ℓ𝑗− 1

2 ,𝑘𝑛
(1)

𝑗− 1
2 ,𝑘

+ ℓ𝑗,𝑘+ 1
2
𝑛

(1)

𝑗,𝑘+ 1
2
− ℓ𝑗,𝑘− 1

2
𝑛

(1)

𝑗,𝑘− 1
2

=
∮︁

𝜕𝐶𝑗,𝑘

(1, 0) · 𝑛 d𝑠 = 0.

Thus, we have proved that

d
d𝑡

𝑈
(2)

𝑗,𝑘 = − 1
|𝐶𝑗,𝑘|

[︁
𝐻

(2)

𝑗+ 1
2 ,𝑘
−𝐻

(2)

𝑗− 1
2 ,𝑘

+ 𝐻
(2)

𝑗,𝑘+ 1
2
−𝐻

(2)

𝑗,𝑘− 1
2

]︁
+

𝑔

|𝐶𝑗,𝑘|

[︁
I(2)𝑗,𝑘 − II(2)𝑗,𝑘

]︁
= 0.

Similarly, one can show that
d
d𝑡

𝑈
(3)

𝑗,𝑘 = 0

at “lake at rest” steady states, which completes the proof of the theorem. �
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2.4.2. Positivity preserving reconstruction

As in the 1-D case, we begin with applying the generalized minmod piecewise linear reconstruction, which has
been extended to structured quadrilateral meshes in Section 2.2 of [19], to evaluate 𝑤±

𝑗+ 1
2 ,𝑘

, 𝑤±
𝑗,𝑘+ 1

2
, (𝑞𝑥)±

𝑗+ 1
2 ,𝑘

,

(𝑞𝑥)±
𝑗,𝑘+ 1

2
, (𝑞𝑦)±

𝑗+ 1
2 ,𝑘

and (𝑞𝑦)±
𝑗,𝑘+ 1

2
. In order to preserve the positivity of the water depth, we implement the

same strategy as in the 1-D case and reconstruct ℎ in the potentially dry areas.
Similarly to the 1-D case, the cell 𝐶𝑗,𝑘 is called “dry” if the amount of water there is very small, namely, if

at least one of the following inequalities is satisfied:

min
𝑗′,𝑘′:|𝑗′−𝑗|+|𝑘′−𝑘|≤1

𝑤𝑗′,𝑘′ < max
(𝑥,𝑦)∈Ω𝑗,𝑘

𝐵(𝑥, 𝑦), (2.33)

𝑤𝑗,𝑘 −𝐵𝑗,𝑘 < 𝛿, (2.34)

where Ω𝑗,𝑘 :=
{︀

(𝑥, 𝑦) ∈ 𝐶𝑗′,𝑘′
⃒⃒
|𝑗′ − 𝑗|+ |𝑘′ − 𝑘| ≤ 1

}︀
, 𝛿 > 0 is the same small parameter as in (2.7), and 𝐵𝑗,𝑘

is given by (2.28). All other cells are called “wet”.
As in the 1-D case, in “dry” cells, we use the piecewise linear positivity preserving reconstruction (described in

[19], Sect. 2.2) of ℎ based on the cell averages of water depth ℎ𝑗,𝑘 := 𝑤𝑗,𝑘−𝐵𝑗,𝑘. After computing ℎ−
𝑗+ 1

2 ,𝑘
, ℎ+

𝑗− 1
2 ,𝑘

,

ℎ−
𝑗,𝑘+ 1

2
and ℎ+

𝑗,𝑘− 1
2

in the “dry” cell 𝐶𝑗,𝑘, we obtain 𝑤+
𝑗− 1

2 ,𝑘
:= ℎ+

𝑗− 1
2 ,𝑘

+ 𝐵𝑗− 1
2 ,𝑘, 𝑤−

𝑗+ 1
2 ,𝑘

:= ℎ−
𝑗+ 1

2 ,𝑘
+ 𝐵𝑗+ 1

2 ,𝑘,

𝑤+
𝑗,𝑘− 1

2
:= ℎ+

𝑗,𝑘− 1
2

+ 𝐵𝑗,𝑘− 1
2

and 𝑤−
𝑗,𝑘+ 1

2
:= ℎ−

𝑗,𝑘+ 1
2

+ 𝐵𝑗,𝑘+ 1
2

there.

Remark 2.8. In practice, one may replace the condition (2.33) with its simplified version:

min
|𝑗′−𝑗|+|𝑘′−𝑘|≤1

𝑤𝑗′,𝑘′ < max
{︁
𝐵𝑗,𝑘,𝐵𝑗+1,𝑘,𝐵𝑗,𝑘+1,𝐵𝑗−1,𝑘,𝐵𝑗,𝑘−1, 𝐵𝑗+ 1

2 ,𝑘, 𝐵𝑗− 1
2 ,𝑘, 𝐵𝑗,𝑘+ 1

2
, 𝐵𝑗,𝑘− 1

2

}︁
, (2.35)

which is much easier to check. As in the 1-D casse, the use of the simplified condition (2.35) does not guarantee
positivity of the projected values of ℎ, but negative ℎ may appear only in a small number of cells located near
the wet/dry interfaces. If this occurs, we reclassify these particular cells from “wet” to “dry” and reconstruct ℎ
instead of 𝑤 in them.

2.4.3. Desingularization and directional local speeds

Similarly to the 1-D case, we follow [18] and desingularize the computation of the velocity point values needed
to evaluate numerical fluxes by setting

𝑢±𝑚,𝑖 =

√
2 ℎ±𝑚,𝑖 (𝑞𝑥)±𝑚,𝑖√︂(︀

ℎ±𝑚,𝑖

)︀4
+ max

[︁(︀
ℎ±𝑚,𝑖

)︀4
, 𝜀4
]︁ , 𝑣±𝑚,𝑖 =

√
2 ℎ±𝑚,𝑖 (𝑞𝑦)±𝑚,𝑖√︂(︀

ℎ±𝑚,𝑖

)︀4
+ max

[︁(︀
ℎ±𝑚,𝑖

)︀4
, 𝜀4
]︁ (2.36)

where (𝑚, 𝑖) =
(︀
𝑗 + 1

2 , 𝑘
)︀

or
(︀
𝑗, 𝑘 + 1

2

)︀
and then for consistency we modify the corresponding values of the

discharges by recalculating
(𝑞𝑥)±𝑚,𝑖 = ℎ±𝑚,𝑖 · 𝑢

±
𝑚,𝑖, (𝑞𝑦)±𝑚,𝑖 = ℎ±𝑚,𝑖 · 𝑣

±
𝑚,𝑖.

In (2.36), 𝜀 is a small desingularization parameter, which we take to be equal to 𝛿 in (2.34).
Equipped with the values ℎ±𝑚,𝑖, 𝑢±𝑚,𝑖, and 𝑣±𝑚,𝑖, we estimate the directional local speeds of propagation needed

in (2.24) as follows:

𝑎+
𝑚,𝑖 = max

{︂
𝒱±𝑚,𝑖 +

√︁
𝑔ℎ±𝑚,𝑖, 0

}︂
, 𝑎−𝑚,𝑖 = min

{︂
𝒱±𝑚,𝑖 −

√︁
𝑔ℎ±𝑚,𝑖, 0

}︂
,

where 𝒱 is the velocity in the direction normal to the corresponding side of 𝐶𝑗,𝑘, namely,

𝒱±𝑚,𝑖 := 𝑛𝑚,𝑖 ·
(︀
𝑢±𝑚,𝑖, 𝑣

±
𝑚,𝑖

)︀
. (2.37)
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2.4.4. Positivity preserving evolution

As in the 1-D case, we enforce the positivity of ℎ during the evolution step by implementing the draining
time-step technique from [4].

We first consider the forward Euler discretization of (2.23), the first component of which reads as

ℎ𝑗,𝑘(𝑡 + ∆𝑡) = ℎ𝑗,𝑘(𝑡)− ∆𝑡

|𝐶𝑗,𝑘|

[︁
𝐻

(1)

𝑗+ 1
2 ,𝑘
−𝐻

(1)

𝑗− 1
2 ,𝑘

+ 𝐻
(1)

𝑗,𝑘+ 1
2
−𝐻

(1)

𝑗,𝑘− 1
2

]︁
, (2.38)

where ∆𝑡 is the time step constrained by the CFL condition:

∆𝑡 max
𝑗,𝑘

{Ψ𝑗,𝑘} ≤ 1, Ψ𝑗,𝑘 :=
max

{︁⃒⃒⃒
𝑎−

𝑗+ 1
2 ,𝑘

⃒⃒⃒
,
⃒⃒⃒
𝑎+

𝑗− 1
2 ,𝑘

⃒⃒⃒
,
⃒⃒⃒
𝑎−

𝑗,𝑘+ 1
2

⃒⃒⃒
,
⃒⃒⃒
𝑎+

𝑗,𝑘− 1
2

⃒⃒⃒}︁
dist(𝑧𝑗,𝑘, 𝜕𝐶𝑗,𝑘)

·

We then denote by

∆𝑡drain
𝑗,𝑘 :=

|𝐶𝑗,𝑘|ℎ𝑗,𝑘(𝑡)

max
(︁

0, 𝐻
(1)

𝑗+ 1
2 ,𝑘

)︁
+ max

(︁
0,−𝐻

(1)

𝑗− 1
2 ,𝑘

)︁
+ max

(︁
0, 𝐻

(1)

𝑗,𝑘+ 1
2

)︁
+ max

(︁
0,−𝐻

(1)

𝑗,𝑘+ 1
2

)︁ ,

and replace (2.38) with

ℎ𝑗,𝑘(𝑡 + ∆𝑡) = ℎ𝑗,𝑘(𝑡)− 1
|𝐶𝑗,𝑘|

[︁
∆𝑡𝑗+ 1

2 ,𝑘𝐻
(1)

𝑗+ 1
2 ,𝑘
−∆𝑡𝑗− 1

2 ,𝑘𝐻
(1)

𝑗− 1
2 ,𝑘

+ ∆𝑡𝑗,𝑘+ 1
2
𝐻

(1)

𝑗,𝑘+ 1
2
−∆𝑡𝑗,𝑘− 1

2
𝐻

(1)

𝑗,𝑘− 1
2

]︁
,

where ∆𝑡𝑗+ 1
2 ,𝑘 and ∆𝑡𝑗,𝑘+ 1

2
are defined as follows:

∆𝑡𝑗+ 1
2 ,𝑘 = min

(︀
∆𝑡, ∆𝑡drain

𝑖,𝑘

)︀
, 𝑖 = 𝑗 +

1
2
−

sgn
(︁
𝐻

(1)

𝑗+ 1
2 ,𝑘

)︁
2

,

∆𝑡𝑗,𝑘+ 1
2

= min
(︀
∆𝑡, ∆𝑡drain

𝑗,𝑖

)︀
, 𝑖 = 𝑘 +

1
2
−

sgn
(︁
𝐻

(1)

𝑗,𝑘+ 1
2

)︁
2

·

The corresponding forward Euler steps for 𝑞𝑥 and 𝑞𝑦 are

𝑞𝑥
𝑗,𝑘(𝑡 + ∆𝑡) = 𝑞𝑥

𝑗,𝑘(𝑡)− 1
|𝐶𝑗,𝑘|

[︁
∆𝑡𝑗+ 1

2 ,𝑘𝐻
(𝑎,2)

𝑗+ 1
2 ,𝑘
−∆𝑡𝑗− 1

2 ,𝑘𝐻
(𝑎,2)

𝑗− 1
2 ,𝑘

+ ∆𝑡𝑗,𝑘+ 1
2
𝐻

(𝑎,2)

𝑗,𝑘+ 1
2
−∆𝑡𝑗,𝑘− 1

2
𝐻

(𝑎,2)

𝑗,𝑘− 1
2

]︁
− ∆𝑡

|𝐶𝑗,𝑘|

[︁
𝐻

(𝑔,2)

𝑗+ 1
2 ,𝑘
−𝐻

(𝑔,2)

𝑗− 1
2 ,𝑘

+ 𝐻
(𝑔,2)

𝑗,𝑘+ 1
2
−𝐻

(𝑔,2)

𝑗,𝑘− 1
2

]︁
+ ∆𝑡𝑆

(2)

𝑗,𝑘 ,

𝑞𝑦
𝑗,𝑘(𝑡 + ∆𝑡) = 𝑞𝑦

𝑗,𝑘(𝑡)− 1
|𝐶𝑗,𝑘|

[︁
∆𝑡𝑗+ 1

2 ,𝑘𝐻
(𝑎,3)

𝑗+ 1
2 ,𝑘
−∆𝑡𝑗− 1

2 ,𝑘𝐻
(𝑎,3)

𝑗− 1
2 ,𝑘

+ ∆𝑡𝑗,𝑘+ 1
2
𝐻

(𝑎,3)

𝑗,𝑘+ 1
2
−∆𝑡𝑗,𝑘− 1

2
𝐻

(𝑎,3)

𝑗,𝑘− 1
2

]︁
− ∆𝑡

|𝐶𝑗,𝑘|

[︁
𝐻

(𝑔,3)

𝑗+ 1
2 ,𝑘
−𝐻

(𝑔,3)

𝑗− 1
2 ,𝑘

+ 𝐻
(𝑔,3)

𝑗,𝑘+ 1
2
−𝐻

(𝑔,3)

𝑗,𝑘− 1
2

]︁
+ ∆𝑡𝑆

(3)

𝑗,𝑘 ,



WELL-BALANCED AMM CENTRAL-UPWIND SCHEMES 1341

where the advective and gravitational parts of the fluxes can be obtained by

𝐻
(𝑎,2)
𝑚,𝑖 =

ℓ𝑚,𝑖

𝑎+
𝑚,𝑖 − 𝑎−𝑚,𝑖

{︁
𝑛

(1)
𝑚,𝑖

[︁
𝑎+

𝑚,𝑖ℎ
−
𝑚,𝑖

(︀
𝑢−𝑚,𝑖

)︀2 − 𝑎−𝑚,𝑖ℎ
+
𝑚,𝑖

(︀
𝑢+

𝑚,𝑖

)︀2]︁
+ 𝑛

(2)
𝑚,𝑖

[︀
𝑎+

𝑚,𝑖ℎ
−
𝑚,𝑖𝑢

−
𝑚,𝑖𝑣

−
𝑚,𝑖 − 𝑎−𝑚,𝑖ℎ

+
𝑚,𝑖𝑢

+
𝑚,𝑖𝑣

+
𝑚,𝑖

]︀}︁
,

𝐻
(𝑔,2)
𝑚,𝑖 =

ℓ𝑚,𝑖

𝑎+
𝑚,𝑖 − 𝑎−𝑚,𝑖

{︃
𝑔𝑛

(1)
𝑚,𝑖

2

[︁
𝑎+

𝑚,𝑖

(︀
ℎ−𝑚,𝑖

)︀2 − 𝑎−𝑚,𝑖

(︀
ℎ+

𝑚,𝑖

)︀2]︁
+ 𝑎+

𝑚,𝑖𝑎
−
𝑚,𝑖

[︀
(𝑞𝑥)+𝑚,𝑖 − (𝑞𝑥)−𝑚,𝑖

]︀}︃
,

𝐻
(𝑎,3)
𝑚,𝑖 =

ℓ𝑚,𝑖

𝑎+
𝑚,𝑖 − 𝑎−𝑚,𝑖

{︁
𝑛

(1)
𝑚,𝑖

[︀
𝑎+

𝑚,𝑖ℎ
−
𝑚,𝑖𝑢

−
𝑚,𝑖𝑣

−
𝑚,𝑖 − 𝑎−𝑚,𝑖ℎ

+
𝑚,𝑖𝑢

+
𝑚,𝑖𝑣

+
𝑚,𝑖

]︀
+ 𝑛

(2)
𝑚,𝑖

[︁
𝑎+

𝑚,𝑖ℎ
−
𝑚,𝑖

(︀
𝑣−𝑚,𝑖

)︀2 − 𝑎−𝑚,𝑖ℎ
+
𝑚,𝑖

(︀
𝑣+

𝑚,𝑖

)︀2]︁}︁
,

𝐻
(𝑔,3)
𝑚,𝑖 =

ℓ𝑚,𝑖

𝑎+
𝑚,𝑖 − 𝑎−𝑚,𝑖

{︃
𝑔𝑛

(2)
𝑚,𝑖

2

[︁
𝑎+

𝑚,𝑖

(︀
ℎ−𝑚,𝑖

)︀2 − 𝑎−𝑚,𝑖

(︀
ℎ+

𝑚,𝑖

)︀2]︁
+ 𝑎+

𝑚,𝑖𝑎
−
𝑚,𝑖

[︀
(𝑞𝑦)+𝑚,𝑖 − (𝑞𝑦)−𝑚,𝑖

]︀}︃
,

with (𝑚, 𝑖) =
(︀
𝑗 + 1

2 , 𝑘
)︀

or
(︀
𝑗, 𝑘 + 1

2

)︀
.

Remark 2.9. Similarly to the 1-D case, one can alternatively use a more restrictive CFL condition (derived in
Appendix C.2) to ensure the positivity of ℎ during the time evolution, but this will slow down the computations
by a factor of about 2. At the same time, as in the 1-D case the use of smaller CFL number does not lead to any
improvement in the quality of the computed solutions. In all of the numerical examples reported in Section 3,
we have used the draining time-step technique.

2.5. Two-dimensional moving mesh equation

In this section, we briefly describe the 2-D MMPDE and its numerical solution algorithm; see Section 3.2 of
[19] for details.

Assume that the computational domain [𝑎, 𝑏]×[𝑐, 𝑑] is covered by the nonuniform mesh
{︁

𝑥𝑗+ 1
2 ,𝑘+ 1

2
, 𝑦𝑗+ 1

2 ,𝑘+ 1
2

}︁
.

We introduce the uniform rectangular logical mesh{︁
(𝜉𝑗+ 1

2
, 𝜂𝑘+ 1

2
)
⃒⃒⃒

𝜉𝑗+ 1
2

= 𝑗∆𝜉, 𝜂𝑘+ 1
2

= 𝑘∆𝜂
}︁

, 𝑗 = 0, . . . , 𝑁, 𝑘 = 0, . . . ,𝑀,

where ∆𝜉 = 1/𝑁 and ∆𝜂 = 1/𝑀 are the spatial scales in the 𝜉- and 𝜂-directions, respectively. Let us denote
the one-to-one coordinate transformation from the logical domain to the computational one by

(𝑥, 𝑦) = (𝑥(𝜉, 𝜂), 𝑦(𝜉, 𝜂)), (𝜉, 𝜂) ∈ [0, 1]× [0, 1],

so that 𝑥𝑗+ 1
2 ,𝑘+ 1

2
= 𝑥(𝜉𝑗+ 1

2
, 𝜂𝑘+ 1

2
) and 𝑦𝑗+ 1

2 ,𝑘+ 1
2

= 𝑦(𝜉𝑗+ 1
2
, 𝜂𝑘+ 1

2
). We assume that 𝑥(0, 𝜂) = 𝑎 and 𝑥(1, 𝜂) = 𝑏

for all 𝜂 as well as 𝑦(𝜉, 0) = 𝑐 and 𝑦(𝜉, 1) = 𝑑 for all 𝜉.
The mesh is distributed according to the following MMPDE:

(𝜔𝑧𝜉)𝜉 + (𝜔𝑧𝜂)𝜂 = 0, 𝜔(𝑈) = 1 + 𝛼𝜙(‖𝐷𝑈‖), (2.39)

where 𝑧 := (𝑥, 𝑦), 𝜔 is a monitor function, and 𝐷 is a differential operator. In this paper, we use 𝐷𝑈 = 𝑈
(𝑖)
𝜉𝜉 +𝑈

(𝑖)
𝜂𝜂

(for some component of 𝑈), which is approximated using the second-order centered differences:

𝐷𝑈𝑗,𝑘 =
(︁
𝑈

(𝑖)
𝜉𝜉

)︁
𝑗,𝑘

+
(︁
𝑈 (𝑖)

𝜂𝜂

)︁
𝑗,𝑘

=
𝑈

(𝑖)

𝑗+1,𝑘 − 2𝑈
(𝑖)

𝑗,𝑘 + 𝑈
(𝑖)

𝑗−1,𝑘

(∆𝜉)2
+

𝑈
(𝑖)

𝑗,𝑘+1 − 2𝑈
(𝑖)

𝑗,𝑘 + 𝑈
(𝑖)

𝑗,𝑘−1

(∆𝜂)2
·



1342 A. KURGANOV ET AL.

The function 𝜙 in (2.39) is a smoothing filter designed as follows. We first compute 𝜙0
𝑗,𝑘 := |𝐷𝑈𝑗,𝑘| and

then smooth 𝜙0
𝑗,𝑘 out by averaging the values over the neighboring cells for each 𝑗, 𝑘 for a prescribed number of

iterations, that is, we introduce

𝜙ℓ+1
𝑗,𝑘 =

1
4

𝜙ℓ
𝑗,𝑘 +

1
8
(︀
𝜙ℓ

𝑗,𝑘−1 + 𝜙ℓ
𝑗,𝑘+1 + 𝜙ℓ

𝑗−1,𝑘 + 𝜙ℓ
𝑗+1,𝑘

)︀
+

1
16
(︀
𝜙ℓ

𝑗−1,𝑘−1 + 𝜙ℓ
𝑗+1,𝑘−1 + 𝜙ℓ

𝑗−1,𝑘+1 + 𝜙ℓ
𝑗+1,𝑘+1

)︀
, ℓ = 0, . . . ,𝑚− 1,

and then set (𝜙(‖𝐷𝑈‖))𝑗,𝑘 := 𝜙𝑚
𝑗,𝑘, which is used in (2.39). In our numerical experiments, we have taken 𝑚 = 4.

Finally, 𝛼 in (2.39) is an intensity parameter needed to control the mesh concentration. In our computation,
we choose 𝛼 to be

𝛼 =

(︃
1− 𝛽

𝛽(𝑏− 𝑎)(𝑑− 𝑐)

∫︁∫︁
[𝑎,𝑏]×[𝑐,𝑑]

𝜙(‖𝐷𝑈‖) d𝑥 d𝑦

)︃−1

,

where 𝛽 ∈ (0, 1) is the prescribed fraction of mesh points to be concentrated at the “rough” areas of the
computed solution.

Equipped with the monitor function 𝜔, we discretize the MMPDEs (2.39) using the centered difference
approximation, which results in the following linear algebraic system for the mesh points locations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑥 1
2 ,𝑘+ 1

2
= 𝑎, 𝑥𝑁+ 1

2 ,𝑘+ 1
2

= 𝑏, 𝑘 = 0, . . . ,𝑀

𝜔𝑗+1,𝑘+ 1
2

(︁
𝑥𝑗+ 3

2 ,𝑘+ 1
2
− 𝑥𝑗+ 1

2 ,𝑘+ 1
2

)︁
− 𝜔𝑗,𝑘+ 1

2

(︁
𝑥𝑗+ 1

2 ,𝑘+ 1
2
− 𝑥𝑗− 1

2 ,𝑘+ 1
2

)︁
(∆𝜉)2

+
𝜔𝑗+ 1

2 ,𝑘+1

(︁
𝑥𝑗+ 1

2 ,𝑘+ 3
2
− 𝑥𝑗+ 1

2 ,𝑘+ 1
2

)︁
− 𝜔𝑗+ 1

2 ,𝑘

(︁
𝑥𝑗+ 1

2 ,𝑘+ 1
2
− 𝑥𝑗+ 1

2 ,𝑘− 1
2

)︁
(∆𝜂)2

= 0, 1 ≤ 𝑗 ≤ 𝑁 − 1, 0 ≤ 𝑘 ≤ 𝑀,

𝑥𝑗+ 1
2 ,− 1

2
= 𝑥𝑗+ 1

2 , 3
2
, 𝑥𝑗+ 1

2 ,𝑀+ 3
2

= 𝑥𝑗+ 1
2 ,𝑀− 1

2
, 𝑗 = 0, . . . , 𝑁,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑦𝑗+ 1
2 , 1

2
= 𝑐, 𝑦𝑗+ 1

2 ,𝑀+ 1
2

= 𝑑, 𝑗 = 0, . . . , 𝑁

𝜔𝑗+1,𝑘+ 1
2

(︁
𝑦𝑗+ 3

2 ,𝑘+ 1
2
− 𝑦𝑗+ 1

2 ,𝑘+ 1
2

)︁
− 𝜔𝑗,𝑘+ 1

2

(︁
𝑦𝑗+ 1

2 ,𝑘+ 1
2
− 𝑦𝑗− 1

2 ,𝑘+ 1
2

)︁
(∆𝜉)2

+
𝜔𝑗+ 1

2 ,𝑘+1

(︁
𝑦𝑗+ 1

2 ,𝑘+ 3
2
− 𝑦𝑗+ 1

2 ,𝑘+ 1
2

)︁
− 𝜔𝑗+ 1

2 ,𝑘

(︁
𝑦𝑗+ 1

2 ,𝑘+ 1
2
− 𝑦𝑗+ 1

2 ,𝑘− 1
2

)︁
(∆𝜂)2

= 0, 0 ≤ 𝑗 ≤ 𝑁, 1 ≤ 𝑘 ≤ 𝑀 − 1,

𝑦− 1
2 ,𝑘+ 1

2
= 𝑦 3

2 ,𝑘+ 1
2
, 𝑦𝑁+ 3

2 ,𝑘+ 1
2

= 𝑦𝑁− 1
2 ,𝑘+ 1

2
, 𝑘 = 0, . . . ,𝑀,

where 𝜔𝑗,𝑘+ 1
2

:= (𝜔𝑗,𝑘 + 𝜔𝑗,𝑘+1)/2 and 𝜔𝑗+ 1
2 ,𝑘 := (𝜔𝑗,𝑘 + 𝜔𝑗+1,𝑘)/2. Similarly to the 1-D case, we numerically

solve this system using the Jacobi iterations combined with the mesh relaxation procedure to avoid rapid change
of mesh. Denoting by 𝑧𝜈

𝑗+ 1
2 ,𝑘+ 1

2
the grid nodes in the beginning of the (𝜈 + 1)th iteration step (with the initial

guess 𝑧0
𝑗+ 1

2 ,𝑘+ 1
2

being the grid nodes from the previous evolution step), we take one Jacobi sweep

𝑥*𝑗+ 1
2 ,𝑘+ 1

2
=

(︁
𝜔𝜈

𝑗+ 1
2 ,𝑘+1

𝑥𝜈
𝑗+ 1

2 ,𝑘+ 3
2

+ 𝜔𝜈
𝑗+ 1

2 ,𝑘
𝑥𝜈

𝑗+ 1
2 ,𝑘− 1

2

)︁
∆𝜉2 +

(︁
𝜔𝜈

𝑗+1,𝑘+ 1
2
𝑥𝜈

𝑗+ 3
2 ,𝑘+ 1

2
+ 𝜔𝜈

𝑗,𝑘+ 1
2
𝑥𝜈

𝑗− 1
2 ,𝑘+ 1

2

)︁
∆𝜂2(︁

𝜔𝜈
𝑗+ 1

2 ,𝑘+1
+ 𝜔𝜈

𝑗+ 1
2 ,𝑘

)︁
∆𝜉2 +

(︁
𝜔𝜈

𝑗+1,𝑘+ 1
2

+ 𝜔𝜈
𝑗,𝑘+ 1

2

)︁
∆𝜂2

,

1 ≤ 𝑗 ≤ 𝑁 − 1, 0 ≤ 𝑘 ≤ 𝑀,

𝑦*𝑗+ 1
2 ,𝑘+ 1

2
=

(︁
𝜔𝜈

𝑗+ 1
2 ,𝑘+1

𝑦𝜈
𝑗+ 1

2 ,𝑘+ 3
2

+ 𝜔𝜈
𝑗+ 1

2 ,𝑘
𝑦𝜈

𝑗+ 1
2 ,𝑘− 1

2

)︁
∆𝜉2 +

(︁
𝜔𝜈

𝑗+1,𝑘+ 1
2
𝑦𝜈

𝑗+ 3
2 ,𝑘+ 1

2
+ 𝜔𝜈

𝑗,𝑘+ 1
2
𝑦𝜈

𝑗− 1
2 ,𝑘+ 1

2

)︁
∆𝜂2(︁

𝜔𝜈
𝑗+ 1

2 ,𝑘+1
+ 𝜔𝜈

𝑗+ 1
2 ,𝑘

)︁
∆𝜉2 +

(︁
𝜔𝜈

𝑗+1,𝑘+ 1
2

+ 𝜔𝜈
𝑗,𝑘+ 1

2

)︁
∆𝜂2

0 ≤ 𝑗 ≤ 𝑁, 1 ≤ 𝑘 ≤ 𝑀 − 1,
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where 𝜔𝜈
𝑗,𝑘+ 1

2
and 𝜔𝜈

𝑗+ 1
2 ,𝑘

are the values of the monitor function 𝜔 at the grid points 𝑧 = 𝑧𝜈
𝑗,𝑘+ 1

2
and

𝑧 = 𝑧𝜈
𝑗+ 1

2 ,𝑘
, respectively, computed using the cell averages

{︁
𝑈

𝜈

𝑗,𝑘

}︁
. This results in the grid

{︁
𝑧*

𝑗+ 1
2 ,𝑘+ 1

2

}︁
={︁(︁

𝑥*
𝑗+ 1

2 ,𝑘+ 1
2
, 𝑦*

𝑗+ 1
2 ,𝑘+ 1

2

)︁}︁
, which is then relaxed by setting

𝑧𝜈+1
𝑗+ 1

2 ,𝑘+ 1
2

=
1
2

(︁
𝑧𝜈

𝑗+ 1
2 ,𝑘+ 1

2
+ 𝑧*𝑗+ 1

2 ,𝑘+ 1
2

)︁
, 𝑗 = 1, . . . , 𝑁 − 1, 𝑘 = 1, . . . ,𝑀 − 1. (2.40)

Remark 2.10. Similarly to 1-D case, we stop the iteration process in (2.40) after a fixed number of iterations.
In all of our numerical experiments, the upper bound on the number of iterations has been set to 4.

2.6. Two-dimensional conservative positivity preserving projection

After obtaining the new mesh, we need to project the solution from the cells 𝐶𝜈
𝑗,𝑘, whose vertices are 𝑧𝜈

𝑗± 1
2 ,𝑘± 1

2
,

to the new cells 𝐶𝜈+1
𝑗,𝑘 with the vertices 𝑧𝜈+1

𝑗± 1
2 ,𝑘± 1

2
.

We denote by 𝑈
𝜈

𝑗,𝑘 and 𝑈
𝜈+1

𝑗,𝑘 the cell averages over the cells 𝐶𝜈
𝑗,𝑘 and 𝐶𝜈+1

𝑗,𝑘 , respectively, and introduce the
following quantities measuring the mesh shift (for their precise geometric meaning; see [19], Sect. 3.2):

𝜇
𝜈+ 1

2
𝑗+ 1

2 ,𝑘
=

1

2

[︁(︁
𝑥𝜈+1

𝑗+ 1
2 ,𝑘− 1

2
− 𝑥𝜈

𝑗+ 1
2 ,𝑘+ 1

2

)︁(︁
𝑦𝜈+1

𝑗+ 1
2 ,𝑘+ 1

2
− 𝑦𝜈

𝑗+ 1
2 ,𝑘− 1

2

)︁
−
(︁
𝑥𝜈+1

𝑗+ 1
2 ,𝑘+ 1

2
− 𝑥𝜈

𝑗+ 1
2 ,𝑘− 1

2

)︁(︁
𝑦𝜈+1

𝑗+ 1
2 ,𝑘− 1

2
− 𝑦𝜈

𝑗+ 1
2 ,𝑘+ 1

2

)︁]︁
,

𝜇
𝜈+ 1

2
𝑗,𝑘+ 1

2
=

1

2

[︁(︁
𝑥𝜈+1

𝑗+ 1
2 ,𝑘+ 1

2
− 𝑥𝜈

𝑗− 1
2 ,𝑘+ 1

2

)︁(︁
𝑦𝜈+1

𝑗− 1
2 ,𝑘+ 1

2
− 𝑦𝜈

𝑗+ 1
2 ,𝑘+ 1

2

)︁
−
(︁
𝑥𝜈+1

𝑗− 1
2 ,𝑘+ 1

2
− 𝑥𝜈

𝑗+ 1
2 ,𝑘+ 1

2

)︁(︁
𝑦𝜈+1

𝑗+ 1
2 ,𝑘+ 1

2
− 𝑦𝜈

𝑗− 1
2 ,𝑘+ 1

2

)︁]︁
.

The conservative solution projection step from [22] is given by⃒⃒⃒
𝐶𝜈+1

𝑗,𝑘

⃒⃒⃒
𝑈

𝜈+1

𝑗,𝑘 =
⃒⃒
𝐶𝜈

𝑗,𝑘

⃒⃒
𝑈

𝜈

𝑗,𝑘 + 𝜇
𝜈+ 1

2
𝑗+ 1

2 ,𝑘
𝑈𝜈

𝑗+ 1
2 ,𝑘 − 𝜇

𝜈+ 1
2

𝑗− 1
2 ,𝑘

𝑈𝜈
𝑗− 1

2 ,𝑘 + 𝜇
𝜈+ 1

2
𝑗,𝑘+ 1

2
𝑈𝜈

𝑗,𝑘+ 1
2
− 𝜇

𝜈+ 1
2

𝑗,𝑘− 1
2
𝑈𝜈

𝑗,𝑘− 1
2
,

where

𝑈𝜈
𝑗+ 1

2 ,𝑘 :=

⎧⎨⎩𝑈+
𝑗+ 1

2 ,𝑘
, if 𝜇

𝜈+ 1
2

𝑗+ 1
2 ,𝑘

> 0,

𝑈−
𝑗+ 1

2 ,𝑘
, if 𝜇

𝜈+ 1
2

𝑗+ 1
2 ,𝑘

< 0,
𝑈𝜈

𝑗,𝑘+ 1
2

:=

⎧⎨⎩𝑈+
𝑗,𝑘+ 1

2
, if 𝜇

𝜈+ 1
2

𝑗,𝑘+ 1
2

> 0,

𝑈−
𝑗,𝑘+ 1

2
, if 𝜇

𝜈+ 1
2

𝑗,𝑘+ 1
2

< 0,
(2.41)

and 𝑈±
𝑗+ 1

2 ,𝑘
and 𝑈±

𝑗,𝑘+ 1
2

are the point values reconstructed over the grid 𝐶𝜈
𝑗,𝑘 as described in Section 2.4.2.

In particular, this projection step for the water surface variable 𝑤 reads as⃒⃒⃒
𝐶𝜈+1

𝑗,𝑘

⃒⃒⃒
𝑤𝜈+1

𝑗,𝑘 =
⃒⃒
𝐶𝜈

𝑗,𝑘

⃒⃒
𝑤𝜈

𝑗,𝑘 + 𝜇
𝜈+ 1

2
𝑗+ 1

2 ,𝑘
𝑤𝜈

𝑗+ 1
2 ,𝑘 − 𝜇

𝜈+ 1
2

𝑗− 1
2 ,𝑘

𝑤𝜈
𝑗− 1

2 ,𝑘 + 𝜇
𝜈+ 1

2
𝑗,𝑘+ 1

2
𝑤𝜈

𝑗,𝑘+ 1
2
− 𝜇

𝜈+ 1
2

𝑗,𝑘− 1
2
𝑤𝜈

𝑗,𝑘− 1
2
. (2.42)

Again, by the same reason as in the 1-D case, this projection step cannot be used in the “dry” areas, and
therefore we replace the projection step (2.42) with⃒⃒⃒

𝐶𝜈+1
𝑗,𝑘

⃒⃒⃒
𝑤𝜈+1

𝑗,𝑘 =
⃒⃒
𝐶𝜈

𝑗,𝑘

⃒⃒
𝑤𝜈

𝑗,𝑘 + 𝜇
𝜈+ 1

2
𝑗+ 1

2 ,𝑘
̃︀𝑤 𝜈

𝑗+ 1
2 ,𝑘 − 𝜇

𝜈+ 1
2

𝑗− 1
2 ,𝑘
̃︀𝑤 𝜈

𝑗− 1
2 ,𝑘 + 𝜇

𝜈+ 1
2

𝑗,𝑘+ 1
2
̃︀𝑤 𝜈

𝑗,𝑘+ 1
2
− 𝜇

𝜈+ 1
2

𝑗,𝑘− 1
2
̃︀𝑤 𝜈

𝑗,𝑘− 1
2

+ 𝐵corr
𝑗,𝑘 ,

where

̃︀𝑤 𝜈
𝑗+ 1

2 ,𝑘 :=

⎧⎪⎨⎪⎩
𝑤𝜈

𝑗+ 1
2 ,𝑘, if 𝐶𝑗,𝑘 is “wet” and 𝜇

𝜈+ 1
2

𝑗+ 1
2 ,𝑘

≤ 0 or 𝐶𝑗+1,𝑘 is “wet” and 𝜇
𝜈+ 1

2
𝑗+ 1

2 ,𝑘
≥ 0,

ℎ𝜈
𝑗+ 1

2 ,𝑘 + 𝐵
𝜈+ 1

2
𝑗+ 1

2 ,𝑘, otherwise,

and

̃︀𝑤 𝜈
𝑗,𝑘+ 1

2
:=

⎧⎪⎨⎪⎩
𝑤𝜈

𝑗,𝑘+ 1
2
, if 𝐶𝑗,𝑘 is “wet” and 𝜇

𝜈+ 1
2

𝑗,𝑘+ 1
2
≤ 0 or 𝐶𝑗,𝑘+1 is “wet” and 𝜇

𝜈+ 1
2

𝑗,𝑘+ 1
2
≥ 0,

ℎ𝜈
𝑗,𝑘+ 1

2
+ 𝐵

𝜈+ 1
2

𝑗,𝑘+ 1
2
, otherwise.
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Here, 𝑤𝜈
𝑗+ 1

2 ,𝑘
, 𝑤𝜈

𝑗,𝑘+ 1
2
, ℎ𝜈

𝑗+ 1
2 ,𝑘

and ℎ𝜈
𝑗,𝑘+ 1

2
are determined using (2.41), and

𝐵
𝜈+ 1

2
𝑗+ 1

2 ,𝑘 ≈
1

𝜇
𝜈+ 1

2
𝑗+ 1

2 ,𝑘

∫︁
𝐶𝜈

𝑗+ 1
2 ,𝑘

𝐵(𝑥, 𝑦) d𝑥 d𝑦, 𝐶
𝜈+ 1

2
𝑗+ 1

2 ,𝑘
:= 𝑧𝜈

𝑗+ 1
2 ,𝑘+ 1

2
𝑧𝜈

𝑗+ 1
2 ,𝑘− 1

2
𝑧𝜈+1

𝑗+ 1
2 ,𝑘− 1

2
𝑧𝜈+1

𝑗+ 1
2 ,𝑘+ 1

2
, (2.43)

and

𝐵
𝜈+ 1

2
𝑗,𝑘+ 1

2
≈ 1

𝜇
𝜈+ 1

2
𝑗,𝑘+ 1

2

∫︁
𝐶𝜈

𝑗,𝑘+ 1
2

𝐵(𝑥, 𝑦) d𝑥 d𝑦, 𝐶
𝜈+ 1

2
𝑗,𝑘+ 1

2
:= 𝑧𝜈

𝑗− 1
2 ,𝑘+ 1

2
𝑧𝜈

𝑗+ 1
2 ,𝑘+ 1

2
𝑧𝜈+1

𝑗+ 1
2 ,𝑘+ 1

2
𝑧𝜈+1

𝑗− 1
2 ,𝑘+ 1

2
, (2.44)

are approximations of the averages of 𝐵 over the quadrilaterals 𝐶
𝜈+ 1

2
𝑗+ 1

2 ,𝑘
and 𝐶

𝜈+ 1
2

𝑗,𝑘+ 1
2
, respectively. In our numerical

examples, we have evaluated the integrals in (2.43) and (2.44) by splitting the quadrilaterals 𝐶
𝜈+ 1

2
𝑗+ 1

2 ,𝑘
and 𝐶

𝜈+ 1
2

𝑗,𝑘+ 1
2

into the four corresponding triangles and then using in each of the triangles the 7-point Gaussian quadrature,
described in Appendix B. Finally, the “dry” cell correction term 𝐵corr

𝑗,𝑘 is defined as

𝐵corr
𝑗,𝑘 :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if 𝐶𝑗,𝑘 is “wet”,⃒⃒⃒
𝐶𝜈+1

𝑗,𝑘

⃒⃒⃒
𝐵

𝜈+1

𝑗,𝑘 −
[︁⃒⃒

𝐶𝜈
𝑗,𝑘

⃒⃒
𝐵

𝜈

𝑗,𝑘 + 𝜇
𝜈+ 1

2
𝑗+ 1

2 ,𝑘
𝐵

𝜈+ 1
2

𝑗+ 1
2 ,𝑘 − 𝜇

𝜈+ 1
2

𝑗− 1
2 ,𝑘

𝐵
𝜈+ 1

2
𝑗− 1

2 ,𝑘

+𝜇
𝜈+ 1

2
𝑗,𝑘+ 1

2
𝐵

𝜈+ 1
2

𝑗,𝑘+ 1
2
− 𝜇

𝜈+ 1
2

𝑗,𝑘− 1
2
𝐵

𝜈+ 1
2

𝑗,𝑘− 1
2

]︁
, otherwise.

Remark 2.11. For long time simulations, the mesh grid distribution may not be balanced around the shocks,
and as a result, more grid points can be concentrated on one side of the shock curve than on the other side. This
can be fixed by increasing the number of iterations of moving mesh process, since within 1–4 iterations only few
grid points can cross the shock curve. In this case, however, the resulting method will be extremely inefficient.
In order to improve the efficiency of the AMM algorithm, we re-project the solution back onto uniform mesh
from time to time and then re-start the moving mesh adjustment. This significantly improves the distribution
of resulting meshes. In all of our numerical experiments, we re-project the solution based on its second-order
reconstruction.

3. Numerical examples

In this section, we test the developed AMM central-upwind schemes for the 1-D and 2-D Saint-Venant systems
and compare the obtained results with the ones computed by the central-upwind scheme from [18] implemented
on uniform meshes.

In all of the examples, the minmod parameter in the piecewise linear reconstructions is taken to be 1.3; see
[19] for details.

The ODE systems (2.3) and (2.23) are numerically solved by the three-stage third-order SSP Runge–Kutta
method. Each forward Euler stage of the SSP solver is described in Sections 2.1.3 and 2.4.4 for the 1-D and 2-D
case, respectively.

Remark 3.1. The parameter 𝛽 will be taken different in different examples as the fraction of mesh points
that needs to be concentrated in the “rough” areas of the solution depends on the structure of the solution, in
particular, on the numbers and distribution of shocks. One can also select 𝛽 dynamically in order to keep the
smallest cell and/or time step sizes within a tolerable range. This is, however, beyond the scope of the current
paper.
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Figure 2. Example 1: Initial condition and solution profiles (𝑤 and 𝐵) computed by the AAM
and uniform grid central-upwind schemes at different times.

Example 1 – One-dimensional case

In this example, we solve the 1-D Saint-Venant system of shallow water equations on the computational
domain [−𝜋, 𝜋] with the bottom topography consisting of one hump,

𝐵(𝑥) =
1
4

(1 + cos 𝑥),

the following initial conditions:
𝑤(𝑥, 0) ≡ 1, 𝑢(𝑥, 0) = −sign(𝑥) cos 𝑥.

and the (reflective) solid wall boundary conditions at both 𝑥 = ±𝜋.
We initially split the computational domain into 𝑁 = 200 uniform finite-volume cells and compute the

solution by the proposed AMM central-upwind scheme using the monitor function in (2.11) with 𝐷𝑈 = 𝑤𝜉𝜉

and the mesh concentration parameter 𝛽 = 0.8.
In Figure 2, we plot the water surface 𝑤 together with the bottom topography 𝐵 at times 𝑡 = 0, 0.5 and 2.

As one can see, the AMM results are sharper than the ones obtained using the uniform mesh with 𝑁 = 400 and
are comparible with the ones computed using the uniform mesh with 𝑁 = 1600. In Figure 3 (left), we present
the corresponding time-space distribution of mesh cells, which clearly shows that the AMM is able to capture
and follow the solution discontinuities. Finally, in Figure 3 (right), we compare the conservation errors in the
computation of ℎ, which is measured by⃒⃒⃒⃒

⃒⃒∑︁
𝑗

ℎ𝑗(𝑡)∆𝑥𝑗(𝑡)−
∑︁

𝑗

ℎ𝑗(0)∆𝑥𝑗(0)

⃒⃒⃒⃒
⃒⃒.

As we have explained in Section 2.3, this conservation error is caused by the use of a quadrature in the approxi-
mation of cell averages of the bottom topography in (2.16). We have tested the trapezoidal and Simpson’s rules
and, as one can see in Figure 3 (right), the use of Simpson’s rule leads to much smaller conservation errors.

Example 2 – Accuracy test

In this example, we experimentally check the order of accuracy of the proposed AMM central-upwind scheme.
We take the following initial data and bottom topography:

𝑤(𝑥, 𝑦, 0) ≡ 1, 𝑢(𝑥, 𝑦, 0) ≡ 0.3, 𝑣(𝑥, 𝑦, 0) ≡ 0, 𝐵(𝑥, 𝑦) = 0.5𝑒−25(𝑥2+2𝑦2).
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Figure 3. Example 1: Time-space distribution of mesh cells (left) and time evolution of the
conservation errors in the computation of ℎ (right).

Table 1. Example 2: The 𝐿1-, 𝐿2- and 𝐿∞-errors and convergence rates for ℎ.

𝑁 𝐿1-error Rate 𝐿2-error Rate 𝐿∞-error Rate

50 9.32E-05 − 1.25E-04 − 4.40E-04 −
100 3.04E-05 1.62 4.21E-05 1.57 1.46E-04 1.60
200 8.32E-06 1.87 1.16E-05 1.85 4.15E-05 1.81

The computational domain [−1, 1] × [−0.5, 0.5] is initially split into 𝑁 × 𝑁 uniform finite-volume cells and
zero-order extrapolation is used at all boundaries.

We take 𝛽 = 0.5 and compute a sequence of numerical solutions using 𝑁 = 50, 100, 200 and 400 (with the
400 × 400 solution being used as the reference solution) until the final time 𝑡 = 0.07, by which the solution
remains smooth. In Table 1, we show the 𝐿1-, 𝐿2- and 𝐿∞-norms of the errors in the computation of ℎ together
with the experimental rates of convergence. As one can see, the rates are close to 2 as expected.

Example 3 – Waves in a water tank

In this example, we consider the initial-boundary value problem (IBVP) for the 2-D Saint-Venant system
in the computational domain [−1, 1]× [−1, 1] with the (reflective) solid wall boundary conditions. The bottom
topography function is

𝐵(𝑥, 𝑦) = 0.25 𝑒−20(𝑥2+𝑦2),

and the initial conditions are given by

𝑤(𝑥, 𝑦, 0) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, (𝑥 + 1)2 + (𝑦 + 1)2 < 0.25,

1, (𝑥 + 1)2 + (𝑦 − 1)2 < 0.25,

1, (𝑥− 1)2 + 𝑦2 < 0.25,

0.5, otherwise,

𝑢(𝑥, 𝑦, 0) = 𝑣(𝑥, 𝑦, 0) ≡ 0.

We initialy split the computational domain into 200× 200 uniform finite-volume cells and solve the studied
IBVP using the designed AMM central-upwind scheme. We choose the monitor function with 𝐷𝑈 = ∆𝑤 in
(2.11) and 𝛽 = 0.7. The contour plots of 𝑤 and the corresponding meshes at times 𝑡 = 0.125, 0.25, 0.375 and 0.5
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Figure 4. Example 3: Time evolution of 𝑤 (top row) and the corresponding meshes (bottom row).

Figure 5. Example 3: Time evolution of the conservation errors in 𝐵 and ℎ (left); mesh
distributions at 𝑡 = 0.15 with (middle) and without (right) the re-projection process.

are presented in Figure 4. As one can see, the discontinuities in 𝑤 are clearly captured by the proposed AMM
method.

The re-projection (see Rem. 2.11) onto the uniform mesh has been performed at times 𝑡 =
0.025, 0.05, . . . , 0.475, 0.5, that is, every 0.025 s. This re-projection process leads to additional conservation errors,
but it can significantly improve the quality of the mesh distribution. The time evolution of the conservation
errors in ℎ and 𝐵, as well as the comparison between meshes with/without this re-projection process at time
𝑡 = 0.15 are shown in Figure 5. As one can see, without the re-projection procedure, a large portion of the grid
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Figure 6. Example 4: Time evolution of 𝑤 (top row) and the corresponding meshes (middle
row) including zoom at [70, 130]× [80, 110] and [70, 130]× [150, 180] areas (bottom row).

points get trapped by the circular shocks, which leads to the lack of cells in the central part of the domain and
thus prevents sharp resolution of shocks.

Example 4 – Asymmetric dam break

In this example, we test the designed scheme on a benchmark taken from [20]. The computational domain is
[0, 95]× [0, 200] ∪ [95, 105]× [95, 180] ∪ [105, 200]× [0, 200] with the (reflective) solid wall boundary conditions,
the bottom topography is flat (𝐵(𝑥, 𝑦) ≡ 0), and the initial conditions are given by

𝑤(𝑥, 𝑦, 0) =
{︂

10, 𝑥 < 100,

5, otherwise,
𝑢(𝑥, 𝑦, 0) = 𝑣(𝑥, 𝑦, 0) ≡ 0.

We initially split the computational domain into the uniform Cartesian cells of size ∆𝑥 = ∆𝑦 = 1 and
solve the studied IBVP using the proposed AMM central-upwind scheme. During the moving mesh process, the
vertices at the boundary are kept fixed and all of the other grid points initially located on the boundary are
allowed to move according to the moving mesh equation, but only along the boundaries. We choose the monitor
function with 𝐷𝑈 = ∆𝑤 in (2.11) and 𝛽 = 0.7. The contour plots of 𝑤 and the corresponding meshes at times
𝑡 = 1.5, 3 and 7.5 are presented in Figure 6. As one can see, the mesh is concentrated at the discontinuous and
other rough parts of the solution, which is captured with an extremely high resolusion.
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Figure 7. Example 5: Time evolution of 𝑤 (left column) and the corresponding meshes (right
column).

Example 5 – Flow in a converging-diverging channel

In this example, taken from [15] (see also [6]), we study water flow in an open converging-diverging channel
of length 3 with a symmetric constriction of length 1 at the center. We consider the IBVP in the computational
domain [0, 3]× [−𝑦𝑏(𝑥), 𝑦𝑏(𝑥)], where

𝑦𝑏(𝑥) =

{︃
0.5− 0.05 cos2(𝜋(𝑥− 1.5)), |𝑥− 1.5| < 0.5,

0.5, otherwise,

with the (reflective) solid wall boundary conditions, flat bottom topography (𝐵(𝑥, 𝑦) ≡ 0), and the following
initial conditions:

𝑤(𝑥, 𝑦, 0) ≡ 1, 𝑢(𝑥, 𝑦, 0) ≡ 2, 𝑣(𝑥, 𝑦, 0) ≡ 0.

The mesh is initialized as follows. We split the rectangular domain [0, 3]× [−0.5, 0.5] into 300× 100 uniform
finite-volume cells whose vertices are denoted by 𝑧*

𝑗+ 1
2 ,𝑘+ 1

2
=
(︁
𝑥*

𝑗+ 1
2 ,𝑘+ 1

2
, 𝑦*

𝑗+ 1
2 ,𝑘+ 1

2

)︁
, and project them onto the

computational domain using

𝑥𝑗+ 1
2 ,𝑘+ 1

2
= 𝑥*𝑗+ 1

2 ,𝑘+ 1
2
, 𝑦𝑗+ 1

2 ,𝑘+ 1
2

= 2𝑦𝑏

(︁
𝑥*𝑗+ 1

2 ,𝑘+ 1
2

)︁
𝑦*𝑗+ 1

2 ,𝑘+ 1
2
.

We then solve the IBVP using the designed AMM central-upwind scheme. During the moving mesh process,
the grid points initially located on the upper and lower boundaries are evolved in time by changing their 𝑥-
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Figure 8. Example 6: Time evolution of 𝑤 (plotted together with 𝐵 in the left column), ℎ
(middle column) and the corresponding meshes (right column).
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coordinates according to the moving mesh equation, while their 𝑦-coordinates are computed using the boundary
function 𝑦 = 𝑦𝑏(𝑥) in order to keep these grid points on the corresponding parts of the boundary. We choose
the monitor function with 𝐷𝑈 = ∆𝑤 in (2.11) and 𝛽 = 0.2. The contour plots of 𝑤 and the corresponding
meshes at times 𝑡 = 0.5, 1.5 and 5 are presented in Figure 7. As one can see, the solution, including the steady
state reached by time 𝑡 = 5, has been accurately captured by the proposed AMM central-upwind scheme and
the mesh is automatically adjusted to the computed solution structure.

Example 6 – Dam break with wet/dry front

In the final example, we consider a dam-break example over the domain with a nonflat bottom topography
and initially dry areas. We study the IBVP in the computational domain [0, 9]× [0, 6] with the (reflective) solid
wall boundary conditions at 𝑥 = 0, 𝑦 = 0 and 𝑦 = 6 and an open boundary at 𝑥 = 9. The bottom topography
contains three exponential humps:

𝐵(𝑥, 𝑦) = 0.5 𝑒−8(𝑥−2)2−10(𝑦−3)2 + 0.2 𝑒−3(𝑥−4)2−4(𝑦−1.2)2 + 0.2 𝑒−3(𝑥−4)2−4(𝑦−4.8)2 ,

and the initial conditions are given by

𝑤(𝑥, 𝑦, 0) =
{︂

0.5, 𝑥 < 0.9,

𝐵(𝑥, 𝑦), otherwise,
𝑢(𝑥, 𝑦, 0) = 𝑣(𝑥, 𝑦, 0) ≡ 0.

We initially split the computational domain into 300× 200 uniform Cartesian cells and solve the studied IBVP
using the proposed AMM central-upwind scheme. We choose the monitor function with 𝐷𝑈 = ∆ℎ in (2.11) and
𝛽 = 0.3. In Figure 8, we show the time evolution of the dam-break wave propagating over the initially dry bed
together with the corresponding meshes. It can be observed that as in previous examples, the designed scheme
sharply captures a complicated wave structure and, in addition, the scheme performs well when handling both
wetting and drying processes.

Appendix A. Proof of Theorem 2.5

We consider several different cases depending on where the cell 𝐶𝑗 is located in.

Case 1 (𝐶𝑗 as well as 𝐶𝑗−1 and 𝐶𝑗+1 are “wet”). In this case, equation (2.17) reduces to (2.15). More-

over, since we reconstruct 𝑤 (not ℎ) in the cell 𝐶𝑗 , we have 𝑤𝜈
𝑗 = 1

2

(︁
𝑤−

𝑗+ 1
2

+ 𝑤+
𝑗− 1

2

)︁
, which after being

substituted into (2.15) gives

∆𝑥𝜈+1
𝑗 𝑤𝜈+1

𝑗 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∆𝑥𝜈
𝑗

2

(︁
𝑤−

𝑗+ 1
2

+ 𝑤+
𝑗− 1

2

)︁
+ 𝜇

𝜈+ 1
2

𝑗+ 1
2
𝑤+

𝑗+ 1
2
− 𝜇

𝜈+ 1
2

𝑗− 1
2
𝑤−

𝑗− 1
2
, if 𝜇

𝜈+ 1
2

j+ 1
2

> 0, 𝜇
𝜈+ 1

2
j− 1

2
< 0,

∆𝑥𝜈
𝑗

2
𝑤+

𝑗− 1
2

+
(︂

∆𝑥𝜈
𝑗

2
+ 𝜇

𝜈+ 1
2

𝑗+ 1
2

)︂
𝑤−

𝑗+ 1
2
− 𝜇

𝜈+ 1
2

𝑗− 1
2
𝑤−

𝑗− 1
2
, if 𝜇

𝜈+ 1
2

j+ 1
2

< 0, 𝜇
𝜈+ 1

2
j− 1

2
< 0,

∆𝑥𝜈
𝑗

2
𝑤−

𝑗+ 1
2

+ 𝜇
𝜈+ 1

2
𝑗+ 1

2
𝑤+

𝑗+ 1
2

+
(︂

∆𝑥𝜈
𝑗

2
− 𝜇

𝜈+ 1
2

𝑗− 1
2

)︂
𝑤+

𝑗− 1
2
, if 𝜇

𝜈+ 1
2

j+ 1
2

> 0, 𝜇
𝜈+ 1

2
j− 1

2
> 0,(︂

∆𝑥𝜈
𝑗

2
+ 𝜇

𝜈+ 1
2

𝑗+ 1
2

)︂
𝑤−

𝑗+ 1
2

+
(︂

∆𝑥𝜈
𝑗

2
− 𝜇

𝜈+ 1
2

𝑗− 1
2

)︂
𝑤+

𝑗− 1
2
, if 𝜇

𝜈+ 1
2

j+ 1
2

< 0, 𝜇
𝜈+ 1

2
j− 1

2
> 0.

(A.1)

Due to the relaxation step (2.12), we have Δ𝑥𝜈
𝑗

2 + 𝜇
𝜈+ 1

2
𝑗+ 1

2
≥ 0 and Δ𝑥𝜈

𝑗

2 − 𝜇
𝜈+ 1

2
𝑗− 1

2
≥ 0, which together with the

identity ∆𝑥𝜈+1
𝑗 = ∆𝑥𝜈

𝑗 +𝜇
𝜈+ 1

2
𝑗+ 1

2
−𝜇

𝜈+ 1
2

𝑗− 1
2

imply that 𝑤𝜈+1
𝑗 is a convex combination of

(︁
𝑤±

𝑗± 1
2

)︁𝜈

, which, in turn,
guarantees that

𝑤𝜈+1
𝑗 ≥ min

{︁
𝑤𝜈

𝑗+ 1
2
, 𝑤𝜈

𝑗− 1
2

}︁
≥ min

{︀
𝑤𝜈

𝑗 ,𝑤𝜈
𝑗+1,𝑤

𝜈
𝑗−1

}︀
, (A.2)
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where 𝑤𝜈
𝑗+ 1

2
is defined in (2.14) and the latter inequality is true since this is a property of the piecewise

linear reconstruction used in Section 2.1.1. We now note that since the condition (2.6) is not satisfied in the
“wet” area, we have

min
{︀
𝑤𝜈

𝑗 ,𝑤𝜈
𝑗+1,𝑤

𝜈
𝑗−1

}︀
≥ max

𝑥∈(𝑥𝜈
𝑗−1, 𝑥𝜈

𝑗+1)
𝐵(𝑥) ≥ max

𝑥∈
(︂

𝑥𝜈+1
𝑗− 1

2
, 𝑥𝜈+1

𝑗+ 1
2

)︂𝐵(𝑥), (A.3)

where the latter inequality is guaranteed by (2.13). Thus, the inequality (2.20) immediately follows from
(A.2) and (A.3).

Case 2 (𝐶𝑗 as well as 𝐶𝑗−1 and 𝐶𝑗+1 are “dry”). In this case, we reconstruct ℎ (not 𝑤) in the cell 𝐶𝑗 ,

and thus we have ℎ
𝜈

𝑗 = 1
2

(︁
ℎ−

𝑗+ 1
2

+ ℎ+
𝑗− 1

2

)︁
. Using this and the fact that 𝑤𝜈

𝑗 = ℎ
𝜈

𝑗 + 𝐵
𝜈

𝑗 , we rewrite (2.17) as
follows:

∆𝑥𝜈+1
𝑗 𝑤𝜈+1

𝑗 = ∆𝑥𝜈
𝑗

(︁
ℎ

𝜈

𝑗 + 𝐵
𝜈

𝑗

)︁
+ 𝜇

𝜈+ 1
2

𝑗+ 1
2

(︁
ℎ𝜈

𝑗+ 1
2

+ 𝐵
𝜈+ 1

2
𝑗+ 1

2

)︁
− 𝜇

𝜈+ 1
2

𝑗− 1
2

(︁
ℎ𝜈

𝑗− 1
2

+ 𝐵
𝜈+ 1

2
𝑗− 1

2

)︁
+ 𝐵corr

𝑗

= ∆𝑥𝜈
𝑗ℎ

𝜈

𝑗 + 𝜇
𝜈+ 1

2
𝑗+ 1

2
ℎ𝜈

𝑗+ 1
2
− 𝜇

𝜈+ 1
2

𝑗− 1
2
ℎ𝜈

𝑗− 1
2

+ ∆𝑥𝜈+1
𝑗 𝐵

𝜈+1

𝑗 = ∆𝑥𝜈+1
𝑗 ℎ

𝜈+1

𝑗,1 + ∆𝑥𝜈+1
𝑗 𝐵

𝜈+1

𝑗 ,

where we have used the following notation:

ℎ
𝜈+1

𝑗,1 :=
1

∆𝑥𝜈+1
𝑗

(︁
∆𝑥𝜈

𝑗ℎ
𝜈

𝑗 + 𝜇
𝜈+ 1

2
𝑗+ 1

2
ℎ𝜈

𝑗+ 1
2
− 𝜇

𝜈+ 1
2

𝑗− 1
2
ℎ𝜈

𝑗− 1
2

)︁
.

Using (2.14), this equation can be rewritten as (compare with (A.1)):

∆𝑥𝜈+1
𝑗 ℎ

𝜈+1

𝑗,1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∆𝑥𝜈
𝑗

2

(︁
ℎ−

𝑗+ 1
2

+ ℎ+
𝑗− 1

2

)︁
+ 𝜇

𝜈+ 1
2

𝑗+ 1
2
ℎ+

𝑗+ 1
2
− 𝜇

𝜈+ 1
2

𝑗− 1
2
ℎ−

𝑗− 1
2
, if 𝜇

𝜈+ 1
2

j+ 1
2

> 0, 𝜇
𝜈+ 1

2
j− 1

2
< 0,

∆𝑥𝜈
𝑗

2
ℎ+

𝑗− 1
2

+
(︂

∆𝑥𝜈
𝑗

2
+ 𝜇

𝜈+ 1
2

𝑗+ 1
2

)︂
ℎ−

𝑗+ 1
2
− 𝜇

𝜈+ 1
2

𝑗− 1
2
ℎ−

𝑗− 1
2
, if 𝜇

𝜈+ 1
2

j+ 1
2

< 0, 𝜇
𝜈+ 1

2
j− 1

2
< 0,

∆𝑥𝜈
𝑗

2
ℎ−

𝑗+ 1
2

+ 𝜇
𝜈+ 1

2
𝑗+ 1

2
ℎ+

𝑗+ 1
2

+
(︂

∆𝑥𝜈
𝑗

2
− 𝜇

𝜈+ 1
2

𝑗− 1
2

)︂
ℎ+

𝑗− 1
2
, if 𝜇

𝜈+ 1
2

j+ 1
2

> 0, 𝜇
𝜈+ 1

2
j− 1

2
> 0,(︂

∆𝑥𝜈
𝑗

2
+ 𝜇

𝜈+ 1
2

𝑗+ 1
2

)︂
ℎ−

𝑗+ 1
2

+
(︂

∆𝑥𝜈
𝑗

2
− 𝜇

𝜈+ 1
2

𝑗− 1
2

)︂
ℎ+

𝑗− 1
2
, if 𝜇

𝜈+ 1
2

j+ 1
2

< 0, 𝜇
𝜈+ 1

2
j− 1

2
> 0.

Similarly to Case 1, we conclude that ℎ
𝜈+1

𝑗,1 is a convex combination of
(︁
ℎ±

𝑗± 1
2

)︁𝜈

, which are nonnegative since

the reconstruction of ℎ is positivity preserving. Therefore, ℎ
𝜈+1

𝑗,1 ≥ 0 and thus (A.2) is satisfied.
Case 3 (𝐶𝑗 is “wet”, while 𝐶𝑗+1 or 𝐶𝑗−1 or both are “dry”). In this case, the cell 𝐶𝑗 is located near

the wetting/drying interface and the projection procedure depends on the type of the neighbouring cells and
also on whether the cell interface moves into the “wet” or “dry” area. We will first consider the situation
with only one “dry” neighbor, say, 𝐶𝑗+1 (Case 3a) and then we will consider the case when 𝐶𝑗 is an isolated
“wet” cell (Case 3b).
Case 3a (𝐶𝑗−1 and 𝐶𝑗 are “wet”, while 𝐶𝑗+1 is “dry”). There are two possible situations: either the

interface 𝑥𝜈
𝑗+ 1

2
moves to the left

(︁
𝜇

𝜈+ 1
2

𝑗+ 1
2

< 0
)︁

into the “wet” area or to the right
(︁
𝜇

𝜈+ 1
2

𝑗+ 1
2

> 0
)︁

into the
“dry” area. In the former situation, the proof is identical to Case 1. We therefore consider the case
𝜇

𝜈+ 1
2

𝑗+ 1
2

> 0 and use (2.14) to reduce (2.17) to

∆𝑥𝜈+1
𝑗 𝑤𝜈+1

𝑗 = ∆𝑥𝜈
𝑗𝑤

𝜈
𝑗 + 𝜇

𝜈+ 1
2

𝑗+ 1
2

(︁
ℎ+

𝑗+ 1
2

+ 𝐵
𝜈+ 1

2
𝑗+ 1

2

)︁
− 𝜇

𝜈+ 1
2

𝑗− 1
2
𝑤𝜈

𝑗− 1
2
,
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and then rewrite it as

∆𝑥𝜈+1
𝑗 𝑤𝜈+1

𝑗 =

⎧⎪⎪⎨⎪⎪⎩
∆𝑥𝜈

𝑗𝑤
𝜈
𝑗 + 𝜇

𝜈+ 1
2

𝑗+ 1
2

(︁
ℎ+

𝑗+ 1
2

+ 𝐵
𝜈+ 1

2
𝑗+ 1

2

)︁
− 𝜇

𝜈+ 1
2

𝑗− 1
2
𝑤−

𝑗− 1
2
, if 𝜇

𝜈+ 1
2

j− 1
2

< 0,

∆𝑥𝜈
𝑗

2
𝑤−

𝑗+ 1
2

+ 𝜇
𝜈+ 1

2
𝑗+ 1

2
(ℎ+

𝑗+ 1
2

+ 𝐵
𝜈+ 1

2
𝑗+ 1

2
) +

(︂
∆𝑥𝜈

𝑗

2
− 𝜇

𝜈+ 1
2

𝑗− 1
2

)︂
𝑤+

𝑗− 1
2
, if 𝜇

𝜈+ 1
2

j− 1
2

> 0.
(A.4)

We now denote by 𝐵max
𝑗 := max𝑥∈(𝑥𝜈

𝑗−1,𝑥𝜈
𝑗+1)

𝐵(𝑥) and note that since 𝐶𝑗−1 and 𝐶𝑗 are “wet” and we
use the maximum principle preserving reconstruction of 𝑤 in these cells, 𝑤𝜈

𝑗 ≥ 𝐵max
𝑗 , 𝑤±

𝑗− 1
2
≥ 𝐵max

𝑗

and 𝑤−
𝑗+ 1

2
≥ 𝐵max

𝑗 . We also note that since the reconstruction of ℎ is positivity preserving, ℎ+
𝑗+ 1

2
≥ 0,

and that due to the relaxatoin step (2.12), we have Δ𝑥𝜈
𝑗

2 − 𝜇
𝜈+ 1

2
𝑗− 1

2
≥ 0. The desired bound (2.20) is then

obtained by estimating the right-hand side (RHS) of (A.4) as follows:

𝑤𝜈+1
𝑗 ≥ 1

∆𝑥𝜈+1
𝑗

[︁(︁
∆𝑥𝜈

𝑗 − 𝜇
𝜈+ 1

2
𝑗− 1

2

)︁
𝐵max

𝑗 + 𝜇
𝜈+ 1

2
𝑗+ 1

2
𝐵

𝜈+ 1
2

𝑗+ 1
2

]︁
=

1
∆𝑥𝜈+1

𝑗

⎡⎣(︁𝑥𝜈
𝑗+ 1

2
− 𝑥𝜈+1

𝑗− 1
2

)︁
𝐵max

𝑗 +
∫︁ 𝑥𝜈+1

𝑗+ 1
2

𝑥𝜈

𝑗+ 1
2

𝐵(𝑥) d𝑥

⎤⎦
≥ 1

∆𝑥𝜈+1
𝑗

⎛⎝∫︁ 𝑥𝜈

𝑗+ 1
2

𝑥𝜈+1
𝑗− 1

2

𝐵(𝑥) d𝑥 +
∫︁ 𝑥𝜈+1

𝑗+ 1
2

𝑥𝜈

𝑗+ 1
2

𝐵(𝑥) d𝑥

⎞⎠ = 𝐵
𝜈+1

𝑗 .

Case 3b (𝐶𝑗 is “wet”, while both 𝐶𝑗−1 and 𝐶𝑗+1 are “dry”). The only situation in which the pro-
jection step is different from the one that have been already investigated, is when both interfaces of the
cell 𝐶𝑗 propagate into the “dry” areas, that is, when 𝜇

𝜈+ 1
2

𝑗− 1
2

< 0 and 𝜇
𝜈+ 1

2
𝑗+ 1

2
> 0. In this case, we once again

use (2.14) so that (2.17) reduces to

∆𝑥𝜈+1
𝑗 𝑤𝜈+1

𝑗 = ∆𝑥𝜈
𝑗𝑤

𝜈
𝑗 + 𝜇

𝜈+ 1
2

𝑗+ 1
2

(︁
ℎ+

𝑗+ 1
2

+ 𝐵
𝜈+ 1

2
𝑗+ 1

2

)︁
− 𝜇

𝜈+ 1
2

𝑗− 1
2

(︁
ℎ−

𝑗− 1
2

+ 𝐵
𝜈+ 1

2
𝑗− 1

2

)︁
,

from which we obtain (2.20) using the fact that 𝑤𝜈
𝑗 ≥𝐵

𝜈

𝑗 , ℎ+
𝑗+ 1

2
≥ 0 and ℎ−

𝑗− 1
2
≥ 0, namely:

𝑤𝜈+1
𝑗 ≥ 1

∆𝑥𝜈+1
𝑗

⎛⎝∆𝑥𝜈
𝑗 𝐵

𝜈

𝑗 +
∫︁ 𝑥𝜈+1

𝑗+ 1
2

𝑥𝜈

𝑗+ 1
2

𝐵(𝑥) d𝑥 +
∫︁ 𝑥𝜈

𝑗− 1
2

𝑥𝜈+1
𝑗− 1

2

𝐵(𝑥) d𝑥

⎞⎠ =
1

∆𝑥𝜈+1
𝑗

∫︁ 𝑥𝜈+1
𝑗+ 1

2

𝑥𝜈+1
𝑗− 1

2

𝐵(𝑥) d𝑥 = 𝐵
𝜈+1

𝑗 .

Case 4 (𝐶𝑗 is “dry”, while 𝐶𝑗+1 or 𝐶𝑗−1 or both are “wet”). As in Case 3, the cell 𝐶𝑗 is located at
the wetting/drying interface and the projection procedure depends on the type of the neighbouring cells and
also on whether the cell interface moves into the “wet” or “dry” area. We will first consider the situation
with only one “wet” neighbor, say, 𝐶𝑗+1 (Case 4a) and then we will consider the case when 𝐶𝑗 is an isolated
“dry” cell (Case 4b).
Case 4a (𝐶𝑗−1 and 𝐶𝑗 are “dry”, while 𝐶𝑗+1 is “wet”). There are two possible situations: either the

interface 𝑥𝜈
𝑗+ 1

2
moves to the left

(︁
𝜇

𝜈+ 1
2

𝑗+ 1
2

< 0
)︁

into the “dry” area or to the right
(︁
𝜇

𝜈+ 1
2

𝑗+ 1
2

> 0
)︁

into the
“wet” area. In the former situation, the proof is identical to Case 2. We therefore consider the case
𝜇

𝜈+ 1
2

𝑗+ 1
2

> 0, in which (2.17) becomes

∆𝑥𝜈+1
𝑗 𝑤𝜈+1

𝑗 = ∆𝑥𝜈
𝑗

(︁
ℎ

𝜈

𝑗 + 𝐵
𝜈

𝑗

)︁
+ 𝜇

𝜈+ 1
2

𝑗+ 1
2
𝑤+

𝑗+ 1
2
− 𝜇

𝜈+ 1
2

𝑗− 1
2

(︁
ℎ𝜈

𝑗− 1
2

+ 𝐵
𝜈+ 1

2
𝑗− 1

2

)︁
+ 𝐵corr

𝑗

= ∆𝑥𝜈
𝑗ℎ

𝜈

𝑗 + 𝜇
𝜈+ 1

2
𝑗+ 1

2

(︁
𝑤+

𝑗+ 1
2
−𝐵

𝜈+ 1
2

𝑗+ 1
2

)︁
− 𝜇

𝜈+ 1
2

𝑗− 1
2
ℎ𝜈

𝑗− 1
2

+ ∆𝑥𝜈+1
𝑗 𝐵

𝜈+1

𝑗 = ∆𝑥𝜈+1
𝑗 ℎ

𝜈+1

𝑗,2 + ∆𝑥𝜈+1
𝑗 𝐵

𝜈+1

𝑗 ,
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where we have used (2.14) and the fact that 𝑤𝜈
𝑗 = ℎ

𝜈

𝑗 + 𝐵
𝜈

𝑗 and introduced the following notation:

ℎ
𝜈+1

𝑗,2 :=
1

∆𝑥𝜈+1
𝑗

(︁
∆𝑥𝜈

𝑗ℎ
𝜈

𝑗 + 𝜇
𝜈+ 1

2
𝑗+ 1

2

(︁
𝑤+

𝑗+ 1
2
−𝐵

𝜈+ 1
2

𝑗+ 1
2

)︁
− 𝜇

𝜈+ 1
2

𝑗− 1
2
ℎ𝜈

𝑗− 1
2

)︁
.

Taking into account (2.14), the last equation can be rewritten as:

∆𝑥𝜈+1
𝑗 ℎ

𝜈+1

𝑗,2 =

⎧⎪⎪⎨⎪⎪⎩
∆𝑥𝜈

𝑗

2
ℎ−

𝑗+ 1
2

+ 𝜇
𝜈+ 1

2
𝑗+ 1

2

(︁
𝑤+

𝑗+ 1
2
−𝐵

𝜈+ 1
2

𝑗+ 1
2

)︁
+
(︂

∆𝑥𝜈
𝑗

2
− 𝜇

𝜈+ 1
2

𝑗− 1
2

)︂
ℎ+

𝑗− 1
2
, if 𝜇

𝜈+ 1
2

𝑗− 1
2

> 0,

∆𝑥𝜈
𝑗

2

(︁
ℎ+

𝑗− 1
2

+ ℎ−
𝑗+ 1

2

)︁
+ 𝜇

𝜈+ 1
2

𝑗+ 1
2

(︁
𝑤+

𝑗+ 1
2
−𝐵

𝜈+ 1
2

𝑗+ 1
2

)︁
− 𝜇

𝜈+ 1
2

𝑗− 1
2
ℎ−

𝑗− 1
2
, if 𝜇

𝜈+ 1
2

𝑗− 1
2

< 0.

Since the piecewise linear reconstruction of 𝑤 satisfies the right inequality in (A.2) and the cell 𝐶𝑗+1 is
“wet”, we have

𝑤+
𝑗+ 1

2
≥ min

{︀
𝑤𝜈

𝑗 ,𝑤𝜈
𝑗+1

}︀
≥ min

{︀
𝑤𝜈

𝑗 ,𝑤𝜈
𝑗+1,𝑤

𝜈
𝑗+2

}︀ (2.6)

≥ max
𝑥∈(𝑥𝜈

𝑗 ,𝑥𝜈
𝑗+2)

𝐵(𝑥)
(2.12)

≥ max
𝑥∈
(︂

𝑥𝜈

𝑗+ 1
2

, 𝑥𝜈+1
𝑗+ 1

2

)︂𝐵(𝑥)
(2.18)

≥ 𝐵
𝜈+ 1

2
𝑗+ 1

2
.

Next, due to the relaxation step (2.12), we have Δ𝑥𝜈
𝑗

2 − 𝜇
𝜈+ 1

2
𝑗− 1

2
≥ 0, which together with the identity

∆𝑥𝜈+1
𝑗 = ∆𝑥𝜈

𝑗 + 𝜇
𝜈+ 1

2
𝑗+ 1

2
− 𝜇

𝜈+ 1
2

𝑗− 1
2

and positivity preserving property of the reconstruction of ℎ imply that

ℎ
𝜈+1

𝑗 is a convex combination of (ℎ±
𝑗± 1

2
)𝜈 and 𝑤+

𝑗+ 1
2
− 𝐵

𝜈+ 1
2

𝑗+ 1
2

. Therefore, ℎ
𝜈+1

𝑗,2 ≥ 0 and thus (2.20) is
satisfied.

Case 4b (𝐶𝑗 is “dry”, while both 𝐶𝑗−1 and 𝐶𝑗+1 are “wet”). The only situation in which the pro-
jection step is different from the one that have been already investigated, is when both interfaces of the
cell 𝐶𝑗 propagate into the “wet” areas, that is, when 𝜇

𝜈+ 1
2

𝑗− 1
2

< 0 and 𝜇
𝜈+ 1

2
𝑗+ 1

2
> 0. In this case, we use (2.14)

and the fact that 𝑤𝜈
𝑗 = ℎ

𝜈

𝑗 + 𝐵
𝜈

𝑗 to rewrite as

∆𝑥𝜈+1
𝑗 𝑤𝜈+1

𝑗 = ∆𝑥𝜈
𝑗

(︁
ℎ

𝜈

𝑗 + 𝐵
𝜈

𝑗

)︁
+ 𝜇

𝜈+ 1
2

𝑗+ 1
2
𝑤+

𝑗+ 1
2
− 𝜇

𝜈+ 1
2

𝑗− 1
2
𝑤−

𝑗− 1
2

+ 𝐵corr
𝑗

= ∆𝑥𝜈
𝑗ℎ

𝜈

𝑗 + 𝜇
𝜈+ 1

2
𝑗+ 1

2

(︁
𝑤+

𝑗+ 1
2
−𝐵

𝜈+ 1
2

𝑗+ 1
2

)︁
− 𝜇

𝜈+ 1
2

𝑗− 1
2

(︁
𝑤−

𝑗− 1
2
−𝐵

𝜈+ 1
2

𝑗− 1
2

)︁
+ ∆𝑥𝜈+1

𝑗 𝐵
𝜈+1

𝑗

= ∆𝑥𝜈+1
𝑗 ℎ

𝜈+1

𝑗,3 + ∆𝑥𝜈+1
𝑗 𝐵

𝜈+1

𝑗 ,

where we have used the following notation:

ℎ
𝜈+1

𝑗,3 :=
1

∆𝑥𝜈+1
𝑗

(︁
∆𝑥𝜈

𝑗ℎ
𝜈

𝑗 + 𝜇
𝜈+ 1

2
𝑗+ 1

2

(︁
𝑤+

𝑗+ 1
2
−𝐵

𝜈+ 1
2

𝑗+ 1
2

)︁
− 𝜇

𝜈+ 1
2

𝑗− 1
2

(︁
𝑤−

𝑗− 1
2
−𝐵

𝜈+ 1
2

𝑗− 1
2

)︁)︁
.

Similarly to Case 3a, we note that since piecewise linear reconstruction of 𝑤 satisfies the right inequality

in (A.2) and the cells 𝐶𝑗−1 and 𝐶𝑗+1 are “wet”, we have 𝑤−
𝑗− 1

2
−𝐵

𝜈+ 1
2

𝑗− 1
2
≥ 0 and 𝑤+

𝑗+ 1
2
−𝐵

𝜈+ 1
2

𝑗+ 1
2
≥ 0, which,

together with the identity ∆𝑥𝜈+1
𝑗 = ∆𝑥𝜈

𝑗 + 𝜇
𝜈+ 1

2
𝑗+ 1

2
− 𝜇

𝜈+ 1
2

𝑗− 1
2

, imply that ℎ
𝜈+1

𝑗,3 is a convex combination of

ℎ
𝜈

𝑗 , 𝑤−
𝑗− 1

2
−𝐵

𝜈+ 1
2

𝑗− 1
2

and 𝑤+
𝑗+ 1

2
−𝐵

𝜈+ 1
2

𝑗+ 1
2

. Therefore, we conclude that ℎ
𝜈+1

𝑗,3 ≥ 0 and the inequality (2.20)
immediately follows.

Appendix B. Quadrature for general quadrilaterals

In this appendix, we provide a detailed description of the 2-D quadrature over quadrilaterals, which was used
in our numerical experiments. Here, we consider a general quadrilateral 𝐴𝐵𝐶𝐷, which may be convex, concave
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Figure B.1. Convex (left), concave (middle) and self-intersecting (right) quadrilaterals.

or even self-intersecting; see Figure B.1. We set 𝑂 := 1
4 (𝐴 + 𝐵 + 𝐶 + 𝐷) and split the quadrilateral into four

triangles and then we define a signed integral by∫︁∫︁
𝐴𝐵𝐶𝐷

𝑓(𝑥, 𝑦) d𝑥 d𝑦 := ±
∫︁∫︁

𝑂𝐴𝐵

𝑓(𝑥, 𝑦) d𝑥 d𝑦 ±
∫︁∫︁

𝑂𝐵𝐶

𝑓(𝑥, 𝑦) d𝑥 d𝑦

±
∫︁∫︁

𝑂𝐶𝐷

𝑓(𝑥, 𝑦) d𝑥 d𝑦 ±
∫︁∫︁

𝑂𝐷𝐴

𝑓(𝑥, 𝑦) d𝑥 d𝑦,

(B.1)

where the sign in front of each of the integrals on the RHS of (B.1) is “+” if the verticies of the triangle are
listed in the counterclockwise order, and “−” otherwise.

We then approximate the integrals over each of the triangles using a 7-point Gaussian quadrature, for example,∫︁∫︁
Δ𝑂𝐴𝐵

𝑓(𝑥, 𝑦) d𝑥 d𝑦 ≈
⃒⃒⃒−→
𝑂𝐴×

−−→
𝑂𝐵

⃒⃒⃒(︂𝑓(𝑂) + 𝑓(𝐴) + 𝑓(𝐵)
40

+
𝑓(𝑀𝑂𝐴) + 𝑓(𝑀𝑂𝐵) + 𝑓(𝑀𝐴𝐵)

15
+

9
40

𝑓
(︀
𝑂CM

)︀)︂
,

where 𝑀𝑂𝐴, 𝑀𝑂𝐵 and 𝑀𝐴𝐵 are the midpoints of the corresponding edges of the triangle 𝑂𝐴𝐵 and 𝑂CM is its
center of mass.

Appendix C. Positivity ensuring CFL conditions

In this appendix, we derive the CFL conditions, which ensure the positivity of ℎ during the time evolution
without applying the draining time-step technique introduced in Sections 2.1.3 and 2.4.4 in the 1-D and 2-D
cases, respectively.

C.1. One-dimensional CFL condition

We first note that if the cell 𝐶𝑗 is “wet”, the cell average 𝐵𝑗 in (2.16) (we omit the upper index 𝜈 for the sake

of brevity) is obtained using a quadrature. If the trapezoidal rule is used, then 𝐵𝑗 =
(︁
𝐵𝑗+ 1

2
+ 𝐵𝑗− 1

2

)︁
/2 and

ℎ𝑗 = 𝑤𝑗 −𝐵𝑗 =
1
2

(︁
𝑤−

𝑗+ 1
2

+ 𝑤+
𝑗− 1

2
−
(︁
𝐵𝑗+ 1

2
+ 𝐵𝑗− 1

2

)︁)︁
=

1
2

(︁
ℎ−

𝑗+ 1
2

+ ℎ+
𝑗− 1

2

)︁
.

If Simpson’s rule is used, then 𝐵𝑗 =
(︁
𝐵𝑗+ 1

2
+ 4𝐵𝑗 + 𝐵𝑗− 1

2

)︁
/6 and

ℎ𝑗 =
1
6

(︁
𝑤−

𝑗+ 1
2
−𝐵𝑗+ 1

2
+ 4(𝑤𝑗 −𝐵𝑗) + 𝑤+

𝑗− 1
2
−𝐵𝑗− 1

2

)︁
≥ 1

6

(︁
ℎ−

𝑗+ 1
2

+ ℎ+
𝑗− 1

2

)︁
, (C.1)
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where 𝐵𝑗 := 𝐵(𝑥𝑗) and we have used the fact that for a piecewise linear reconstruction of 𝑤, 𝑤𝑗 = 𝑤𝑗 , Simpson’s

rule is exact, and thus 𝑤𝑗 =
(︁
𝑤−

𝑗+ 1
2

+ 4𝑤𝑗 + 𝑤+
𝑗− 1

2

)︁
/6. Notice that in order to establish the inequality (C.1),

one needs to use the inequality 𝑤𝑗 ≥ 𝐵𝑗 . In the cells, where the latter inequality is not true, that is, where
𝑤𝑗 < 𝐵𝑗 , or in “dry” cells defined in (2.6), (2.7), we reconstruct ℎ instead of 𝑤 and this approach gives

ℎ𝑗 =
1
2

(︁
ℎ−

𝑗+ 1
2

+ ℎ+
𝑗− 1

2

)︁
.

We now prove the following theorem.

Theorem C.1. Let ℎ is evolved in time using the forward Euler discretization (2.10). If ℎ𝑗(𝑡) ≥ 0 for all 𝑗,
and the time step satisfies the following CFL condition:

∆𝑡 ≤ 𝛼 min
𝑗

⎧⎨⎩ ∆𝑥𝑗

𝑎+
𝑗+ 1

2

,
∆𝑥𝑗⃒⃒⃒
𝑎−

𝑗− 1
2

⃒⃒⃒
⎫⎬⎭,

where 𝛼 = 1/2 if 𝐵𝑗 is computed using the trapezoidal rule and 𝛼 = 1/6 if Simpson’s rule is used, then
ℎ𝑗(𝑡 + ∆𝑡) ≥ 0 for all 𝑗.

Proof. First, we use (2.4) and rewrite the central-upwind numerical flux as follows:

𝐻
(1)

𝑗+ 1
2

=
𝑎+

𝑗+ 1
2
ℎ−

𝑗+ 1
2
𝑢−

𝑗+ 1
2
− 𝑎−

𝑗+ 1
2
ℎ+

𝑗+ 1
2
𝑢+

𝑗+ 1
2

+ 𝑎+
𝑗+ 1

2
𝑎−

𝑗+ 1
2

[︁
ℎ+

𝑗+ 1
2
− ℎ−

𝑗+ 1
2

]︁
𝑎+

𝑗+ 1
2
− 𝑎−

𝑗+ 1
2

=
ℎ−

𝑗+ 1
2
𝑎+

𝑗+ 1
2

(︁
𝑢−

𝑗+ 1
2
− 𝑎−

𝑗+ 1
2

)︁
− ℎ+

𝑗+ 1
2
𝑎−

𝑗+ 1
2

(︁
𝑢+

𝑗+ 1
2
− 𝑎+

𝑗+ 1
2

)︁
𝑎+

𝑗+ 1
2
− 𝑎−

𝑗+ 1
2

·

(C.2)

We then substitute (C.2) into (2.10) and use the established inequality

ℎ𝑗(𝑡) ≥ 𝛼
(︁
ℎ−

𝑗+ 1
2

+ ℎ+
𝑗− 1

2

)︁
,

where 𝛼 = 1/2 or 1/6 for 𝐵𝑗 computed using the trapezoidal or Simpson’s rule, respectively, to obtain

ℎ𝑗(𝑡 + ∆𝑡) ≥ 𝛼ℎ−
𝑗+ 1

2
− ∆𝑡

∆𝑥𝑗
𝐻

(1)

𝑗+ 1
2

+ 𝛼ℎ+
𝑗− 1

2
+

∆𝑡

∆𝑥𝑗
𝐻

(1)

𝑗− 1
2
. (C.3)

We now consider the first two terms on the RHS of (C.3) and use (C.2) to obtain

𝛼ℎ−
𝑗+ 1

2
− ∆𝑡

∆𝑥𝑗
𝐻

(1)

𝑗+ 1
2

= ℎ−
𝑗+ 1

2

⎡⎣𝛼− ∆𝑡

∆𝑥𝑗
·
𝑎+

𝑗+ 1
2

(︁
𝑢−

𝑗+ 1
2
− 𝑎−

𝑗+ 1
2

)︁
𝑎+

𝑗+ 1
2
− 𝑎−

𝑗+ 1
2

⎤⎦− ∆𝑡

∆𝑥𝑗
·
ℎ+

𝑗+ 1
2
𝑎−

𝑗+ 1
2

(︁
𝑎+

𝑗+ 1
2
− 𝑢+

𝑗+ 1
2

)︁
𝑎+

𝑗+ 1
2
− 𝑎−

𝑗+ 1
2

,

which is nonnegative provided

∆𝑡 ≤ 𝛼∆𝑥𝑗

𝑎+
𝑗+ 1

2

,

since 𝑎+
𝑗+ 1

2
− 𝑢+

𝑗+ 1
2
≥ 0 and 0 ≤ 𝑢−

𝑗+ 1
2
− 𝑎−

𝑗+ 1
2
≤ 𝑎+

𝑗+ 1
2
− 𝑎−

𝑗+ 1
2
.

Similarly, the last two terms on the RHS of (C.3) are nonnegative provided

∆𝑡 ≤ −𝛼∆𝑥𝑗

𝑎−
𝑗− 1

2

,

and the proof of the theorem is completed. �
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Remark C.2. The proof of Theorem C.1 can be directly extended to the case when the time discretization
is performed using the three-stage third-order SSP Runge–Kutta method as it can be written as a convex
combination of forward Euler steps.

C.2. Two-dimensional CFL condition

We begin with proving the following lemma.

Lemma C.3. Assume that in the convex quadrilateral cell 𝐶𝑗,𝑘, the water depth ℎ is approximated using a
nonnegative conservative linear function. Then,

ℎ𝑗,𝑘 =
1

2|𝐶𝑗,𝑘|

[︁
𝑟𝑗+ 1

2 ,𝑘ℓ𝑗+ 1
2 ,𝑘ℎ−

𝑗+ 1
2 ,𝑘

+ 𝑟𝑗− 1
2 ,𝑘ℓ𝑗− 1

2 ,𝑘ℎ+
𝑗− 1

2 ,𝑘
+ 𝑟𝑗,𝑘+ 1

2
ℓ𝑗,𝑘+ 1

2
ℎ−

𝑗,𝑘+ 1
2

+ 𝑟𝑗,𝑘− 1
2
ℓ𝑗,𝑘− 1

2
ℎ+

𝑗,𝑘− 1
2

]︁
, (C.4)

where 𝑟𝑗+ 1
2 ,𝑘, 𝑟𝑗− 1

2 ,𝑘, 𝑟𝑗,𝑘+ 1
2

and 𝑟𝑗,𝑘− 1
2

are the distances from 𝑧𝑗,𝑘 to the edges 𝑧𝑗+ 1
2 ,𝑘− 1

2
𝑧𝑗+ 1

2 ,𝑘+ 1
2
,

𝑧𝑗− 1
2 ,𝑘− 1

2
𝑧𝑗− 1

2 ,𝑘+ 1
2
, 𝑧𝑗− 1

2 ,𝑘+ 1
2
𝑧𝑗+ 1

2 ,𝑘+ 1
2

and 𝑧𝑗− 1
2 ,𝑘− 1

2
𝑧𝑗+ 1

2 ,𝑘− 1
2
, respectively.

Proof. We first split the cell 𝐶𝑗,𝑘 into the following four triangles: 𝑇𝑗+ 1
2 ,𝑘 := 𝑧𝑗,𝑘𝑧𝑗+ 1

2 ,𝑘+ 1
2
𝑧𝑗+ 1

2 ,𝑘− 1
2
, 𝑇𝑗− 1

2 ,𝑘 :=
𝑧𝑗,𝑘𝑧𝑗− 1

2 ,𝑘+ 1
2
𝑧𝑗− 1

2 ,𝑘− 1
2
, 𝑇𝑗,𝑘+ 1

2
:= 𝑧𝑗,𝑘𝑧𝑗+ 1

2 ,𝑘+ 1
2
𝑧𝑗− 1

2 ,𝑘+ 1
2

and 𝑇𝑗,𝑘− 1
2

:= 𝑧𝑗,𝑘𝑧𝑗+ 1
2 ,𝑘− 1

2
𝑧𝑗− 1

2 ,𝑘− 1
2
, whose areas are⃒⃒⃒

𝑇𝑗± 1
2 ,𝑘

⃒⃒⃒
=

1
2
𝑟𝑗± 1

2 ,𝑘ℓ𝑗± 1
2 ,𝑘,

⃒⃒⃒
𝑇𝑗,𝑘± 1

2

⃒⃒⃒
=

1
2
𝑟𝑗,𝑘± 1

2
ℓ𝑗,𝑘± 1

2
, (C.5)

and
|𝐶𝑗,𝑘| =

⃒⃒⃒
𝑇𝑗+ 1

2 ,𝑘

⃒⃒⃒
+
⃒⃒⃒
𝑇𝑗− 1

2 ,𝑘

⃒⃒⃒
+
⃒⃒⃒
𝑇𝑗,𝑘+ 1

2

⃒⃒⃒
+
⃒⃒⃒
𝑇𝑗,𝑘− 1

2

⃒⃒⃒
. (C.6)

We then compute the cell average of ℎ over 𝐶𝑗,𝑘 and obtain

ℎ𝑗,𝑘 =

2ℎ−
𝑗+ 1

2 ,𝑘
+ℎ𝑗,𝑘

3

⃒⃒⃒
𝑇𝑗+ 1

2 ,𝑘

⃒⃒⃒
+

2ℎ+
𝑗− 1

2 ,𝑘
+ℎ𝑗,𝑘

3

⃒⃒⃒
𝑇𝑗− 1

2 ,𝑘

⃒⃒⃒
+

2ℎ−
𝑗,𝑘+ 1

2
−+ℎ𝑗,𝑘

3

⃒⃒⃒
𝑇𝑗,𝑘+ 1

2

⃒⃒⃒
+

2ℎ+
𝑗,𝑘− 1

2
+ℎ𝑗,𝑘

3

⃒⃒⃒
𝑇𝑗,𝑘− 1

2

⃒⃒⃒
|𝐶𝑗,𝑘|

(C.6)
=

1
3|𝐶𝑗,𝑘|

[︁
2
⃒⃒⃒
𝑇𝑗+ 1

2 ,𝑘

⃒⃒⃒
ℎ−

𝑗+ 1
2 ,𝑘

+ 2
⃒⃒⃒
𝑇𝑗− 1

2 ,𝑘

⃒⃒⃒
ℎ+

𝑗− 1
2 ,𝑘

+ 2
⃒⃒⃒
𝑇𝑗,𝑘+ 1

2

⃒⃒⃒
ℎ−

𝑗,𝑘+ 1
2
− + 2

⃒⃒⃒
𝑇𝑗,𝑘− 1

2

⃒⃒⃒
ℎ+

𝑗,𝑘− 1
2

+ |𝐶𝑗,𝑘|ℎ𝑗,𝑘

]︁
.

(C.5)
=

1
3|𝐶𝑗,𝑘|

[︁
𝑟𝑗+ 1

2 ,𝑘ℓ𝑗+ 1
2 ,𝑘ℎ−

𝑗+ 1
2 ,𝑘

+ 𝑟𝑗− 1
2 ,𝑘ℓ𝑗− 1

2 ,𝑘ℎ+
𝑗− 1

2 ,𝑘
+ 𝑟𝑗,𝑘+ 1

2
ℓ𝑗,𝑘+ 1

2
ℎ−

𝑗,𝑘+ 1
2

+ 𝑟𝑗,𝑘− 1
2
ℓ𝑗,𝑘− 1

2
ℎ+

𝑗,𝑘− 1
2

]︁
+

1
3
ℎ𝑗,𝑘. (C.7)

Since 𝑧𝑗,𝑘 is the geometric center of the quadrilateral and ℎ is a linear function, we have ℎ𝑗,𝑘 = ℎ𝑗,𝑘 and thus
(C.7) implies (C.4). �

Equipped with Lemma C.3, we now extend the definition of potentially dry cells as those cells 𝐶𝑗,𝑘 in which
either (2.33), (2.34) or the following inequality:

ℎ𝑗,𝑘 <
1

2|𝐶𝑗,𝑘|

[︁
𝑟𝑗+ 1

2 ,𝑘ℓ𝑗+ 1
2 ,𝑘ℎ−

𝑗+ 1
2 ,𝑘

+ 𝑟𝑗− 1
2 ,𝑘ℓ𝑗− 1

2 ,𝑘ℎ+
𝑗− 1

2 ,𝑘
+ 𝑟𝑗,𝑘+ 1

2
ℓ𝑗,𝑘+ 1

2
ℎ−

𝑗,𝑘+ 1
2

+ 𝑟𝑗,𝑘− 1
2
ℓ𝑗,𝑘− 1

2
ℎ+

𝑗,𝑘− 1
2

]︁
,

is satisfied. Recall that in such “dry” cells we reconstruct ℎ instead of 𝑤, which ensures that (C.4) is satisfied
there. Therefore, we obtain that throughout the entire computational domain

ℎ𝑗,𝑘 ≥
1

2|𝐶𝑗,𝑘|

[︁
𝑟𝑗+ 1

2 ,𝑘ℓ𝑗+ 1
2 ,𝑘ℎ−

𝑗+ 1
2 ,𝑘

+ 𝑟𝑗− 1
2 ,𝑘ℓ𝑗− 1

2 ,𝑘ℎ+
𝑗− 1

2 ,𝑘
+ 𝑟𝑗,𝑘+ 1

2
ℓ𝑗,𝑘+ 1

2
ℎ−

𝑗,𝑘+ 1
2

+ 𝑟𝑗,𝑘− 1
2
ℓ𝑗,𝑘− 1

2
ℎ+

𝑗,𝑘− 1
2

]︁
. (C.8)

We now prove the following theorem.
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Theorem C.4. Let ℎ is evolved in time using the forward Euler discretization (2.38). If ℎ𝑗,𝑘(𝑡) ≥ 0 for all 𝑗, 𝑘,
and the time step satisfies the following CFL condition:

∆𝑡 ≤ 1
2

min
𝑗,𝑘

⎧⎨⎩ 𝑟𝑗+ 1
2 ,𝑘

𝑎+
𝑗+ 1

2 ,𝑘

,
𝑟𝑗− 1

2 ,𝑘⃒⃒⃒
𝑎−

𝑗− 1
2 ,𝑘

⃒⃒⃒ , 𝑟𝑗,𝑘+ 1
2

𝑎+
𝑗,𝑘+ 1

2

,
𝑟𝑗,𝑘− 1

2⃒⃒⃒
𝑎−

𝑗,𝑘− 1
2

⃒⃒⃒
⎫⎬⎭,

then ℎ𝑗,𝑘(𝑡 + ∆𝑡) ≥ 0 for all 𝑗, 𝑘.

Proof. First, we use (2.24) and rewrite the central-upwind numerical fluxes along the boundaries of 𝐶𝑗,𝑘 as
follows:

𝐻
(1)
𝑚,𝑖 =

ℓ𝑚,𝑖

(︁
𝑛

(1)
𝑚,𝑖

[︀
𝑎+

𝑚,𝑖(𝑞
𝑥)−𝑚,𝑖 − 𝑎−𝑚,𝑖(𝑞

𝑥)+𝑚,𝑖

]︀
+ 𝑛

(2)
𝑚,𝑖

[︀
𝑎+

𝑚,𝑖(𝑞
𝑦)−𝑚,𝑖 − 𝑎−𝑚,𝑖(𝑞

𝑦)+𝑚,𝑖

]︀
+ 𝑎+

𝑚,𝑖𝑎
−
𝑚,𝑖

[︀
ℎ+

𝑚,𝑖 − ℎ−𝑚,𝑖

]︀)︁
𝑎+

𝑚,𝑖 − 𝑎−𝑚,𝑖

=
ℓ𝑚,𝑖

(︁
𝑎+

𝑚,𝑖ℎ
−
𝑚,𝑖

[︁
𝑛

(1)
𝑚,𝑖𝑢

−
𝑚,𝑖 + 𝑛

(2)
𝑚,𝑖𝑣

−
𝑚,𝑖

]︁
− 𝑎−𝑚,𝑖ℎ

+
𝑚,𝑖

[︁
𝑛

(1)
𝑚,𝑖𝑢

+
𝑚,𝑖 + 𝑛

(2)
𝑚,𝑖𝑣

+
𝑚,𝑖

]︁
+ 𝑎+

𝑚,𝑖𝑎
−
𝑚,𝑖

[︀
ℎ+

𝑚,𝑖 − ℎ−𝑚,𝑖

]︀)︁
𝑎+

𝑚,𝑖 − 𝑎−𝑚,𝑖

=
ℓ𝑚,𝑖

(︀
ℎ−𝑚,𝑖𝑎

+
𝑚,𝑖

(︀
𝒱−𝑚,𝑖 − 𝑎−𝑚,𝑖

)︀
− ℎ+

𝑚,𝑖𝑎
−
𝑚,𝑖

(︀
𝒱+

𝑚,𝑖 − 𝑎+
𝑚,𝑖

)︀)︀
𝑎+

𝑚,𝑖 − 𝑎−𝑚,𝑖

, (C.9)

where 𝒱±𝑚,𝑖 given by (2.37) are the velocities in the direction normal to the corresponding side of 𝐶𝑗,𝑘. We then
substitute (C.9) into (2.38) and use the inequality (C.8) to obtain

ℎ𝑗,𝑘(𝑡 + ∆𝑡) ≥ 1
2|𝐶𝑗,𝑘|

𝑟𝑗+ 1
2 ,𝑘ℓ𝑗+ 1

2 ,𝑘ℎ−
𝑗+ 1

2 ,𝑘
− ∆𝑡

|𝐶𝑗,𝑘|
𝐻

(1)

𝑗+ 1
2 ,𝑘

+
1

2|𝐶𝑗,𝑘|
𝑟𝑗− 1

2 ,𝑘ℓ𝑗− 1
2 ,𝑘ℎ+

𝑗− 1
2 ,𝑘

+
∆𝑡

|𝐶𝑗,𝑘|
𝐻

(1)

𝑗− 1
2 ,𝑘

+
1

2|𝐶𝑗,𝑘|
𝑟𝑗,𝑘+ 1

2
ℓ𝑗,𝑘+ 1

2
ℎ−

𝑗,𝑘+ 1
2
− ∆𝑡

|𝐶𝑗,𝑘|
𝐻

(1)

𝑗,𝑘+ 1
2

+
1

2|𝐶𝑗,𝑘|
𝑟𝑗,𝑘− 1

2
ℓ𝑗,𝑘− 1

2
ℎ+

𝑗,𝑘− 1
2

+
∆𝑡

|𝐶𝑗,𝑘|
𝐻

(1)

𝑗,𝑘− 1
2
.

(C.10)

We now consider the first two terms on the RHS of (C.10) and use (C.9) to have

1
2|𝐶𝑗,𝑘|

𝑟𝑗+ 1
2 ,𝑘ℓ𝑗+ 1

2 ,𝑘ℎ−
𝑗+ 1

2 ,𝑘
− ∆𝑡

|𝐶𝑗,𝑘|
𝐻

(1)

𝑗+ 1
2 ,𝑘

=
ℓ𝑗+ 1

2 ,𝑘ℎ−
𝑗+ 1

2 ,𝑘

|𝐶𝑗,𝑘|

⎡⎣𝑟𝑗+ 1
2 ,𝑘

2
−

𝑎+
𝑗+ 1

2 ,𝑘
∆𝑡
(︁
𝒱−

𝑗+ 1
2 ,𝑘
− 𝑎−

𝑗+ 1
2 ,𝑘

)︁
𝑎+

𝑗+ 1
2 ,𝑘
− 𝑎−

𝑗+ 1
2 ,𝑘

⎤⎦− ℓ𝑗+ 1
2 ,𝑘ℎ+

𝑗+ 1
2 ,𝑘

|𝐶𝑗,𝑘|
·
𝑎−

𝑗+ 1
2 ,𝑘

∆𝑡
(︁
𝑎+

𝑗+ 1
2 ,𝑘
− 𝒱+

𝑗+ 1
2 ,𝑘

)︁
𝑎+

𝑗+ 1
2 ,𝑘
− 𝑎−

𝑗+ 1
2 ,𝑘

,

which is nonnegative provided

∆𝑡 ≤
𝑟𝑗+ 1

2 ,𝑘

2𝑎+
𝑗+ 1

2 ,𝑘

,

since 𝑎+
𝑗+ 1

2 ,𝑘
− 𝒱+

𝑗+ 1
2 ,𝑘

≥ 0 and 0 ≤ 𝒱−
𝑗+ 1

2 ,𝑘
− 𝑎−

𝑗+ 1
2 ,𝑘

≤ 𝑎+
𝑗+ 1

2 ,𝑘
− 𝑎−

𝑗+ 1
2 ,𝑘

.
Similarly, the third and fourth, the fifth and sixth, and the seventh and eights terms on the RHS of (C.10)

are nonnegative provided

∆𝑡 ≤ −
𝑟𝑗− 1

2 ,𝑘

2𝑎−
𝑗− 1

2 ,𝑘

, ∆𝑡 ≤
𝑟𝑗,𝑘+ 1

2

2𝑎+
𝑗,𝑘+ 1

2

, and ∆𝑡 ≤ −
𝑟𝑗,𝑘− 1

2

2𝑎−
𝑗,𝑘− 1

2

,

respectively, and the proof of the theorem is completed. �
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Remark C.5. The proof of Theorem C.4 can be directly extended to the case when the time discretization
is performed using the three-stage third-order SSP Runge–Kutta method as it can be written as a convex
combination of forward Euler steps.
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