A posteriori error analysis for a distributed optimal control problem governed by the von Kármán equations
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 5, pp. 1655-1686

This article discusses the numerical analysis of the distributed optimal control problem governed by the von Kármán equations defined on a polygonal domain in ℝ2. The state and adjoint variables are discretised using the nonconforming Morley finite element method and the control is discretized using piecewise constant functions. A priori and a posteriori error estimates are derived for the state, adjoint and control variables. The a posteriori error estimates are shown to be efficient. Numerical results that confirm the theoretical estimates are presented.

DOI : 10.1051/m2an/2022040
Classification : 65N30, 65N15, 49M05, 49M25
Keywords: von Kármán equations, distributed control, plate bending, non-linear, nonconforming, Morley FEM, $$, $$, error estimates
@article{M2AN_2022__56_5_1655_0,
     author = {Chowdhury, Sudipto and Dond, Asha K. and Nataraj, Neela and Shylaja, Devika},
     title = {\protect\emph{A posteriori} error analysis for a distributed optimal control problem governed by the von {K\'arm\'an} equations},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1655--1686},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {5},
     doi = {10.1051/m2an/2022040},
     mrnumber = {4454164},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2022040/}
}
TY  - JOUR
AU  - Chowdhury, Sudipto
AU  - Dond, Asha K.
AU  - Nataraj, Neela
AU  - Shylaja, Devika
TI  - A posteriori error analysis for a distributed optimal control problem governed by the von Kármán equations
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2022
SP  - 1655
EP  - 1686
VL  - 56
IS  - 5
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2022040/
DO  - 10.1051/m2an/2022040
LA  - en
ID  - M2AN_2022__56_5_1655_0
ER  - 
%0 Journal Article
%A Chowdhury, Sudipto
%A Dond, Asha K.
%A Nataraj, Neela
%A Shylaja, Devika
%T A posteriori error analysis for a distributed optimal control problem governed by the von Kármán equations
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2022
%P 1655-1686
%V 56
%N 5
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2022040/
%R 10.1051/m2an/2022040
%G en
%F M2AN_2022__56_5_1655_0
Chowdhury, Sudipto; Dond, Asha K.; Nataraj, Neela; Shylaja, Devika. A posteriori error analysis for a distributed optimal control problem governed by the von Kármán equations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 5, pp. 1655-1686. doi: 10.1051/m2an/2022040

[1] A. Allendes, F. Fuica, E. Otarola and D. Quero, A posteriori error estimates for a distributed optimal control problem of the stationary Navier-Stokes equations. SIAM J. Control Optim. 59 (2021) 2898–2923. | MR | DOI

[2] M. S. Berger, On von Kármán equations and the buckling of a thin elastic plate, I the clamped plate. Comm. Pure Appl. Math. 20 (1967) 687–719. | MR | Zbl | DOI

[3] M. S. Berger and P. C. Fife, On von Kármán equations and the buckling of a thin elastic plate. Bull. Amer. Math. Soc. 72 (1966) 1006–1011. | MR | Zbl | DOI

[4] M. S. Berger and P. C. Fife, Von Kármán equations and the buckling of a thin elastic plate. II plate with general edge conditions. Comm. Pure Appl. Math. 21 (1968) 227–241. | MR | Zbl | DOI

[5] H. Blum and R. Rannacher, On the boundary value problem of the biharmonic operator on domains with angular corners. Math. Methods Appl. Sci. 2 (1980) 556–581. | MR | Zbl | DOI

[6] S. C. Brenner and L.-Y. Sung, C 0 interior penalty methods for fourth order elliptic boundary value problems on polygonal domains. J. Sci. Comput. 22-23 (2005) 83–118. | MR | Zbl | DOI

[7] S. C. Brenner, L.-Y. Sung, H. Zhang and Y. Zhang, A Morley finite element method for the displacement obstacle problem of clamped Kirchhoff plates. J. Comput. Appl. Math. 254 (2013) 31–42. | MR | Zbl | DOI

[8] S. C. Brenner, M. Neilan, A. Reiser and L.-Y. Sung, A C 0 interior penalty method for a von Kármán plate. Numer. Math. 135 (2017) 803–832. | MR | DOI

[9] F. Brezzi, Finite element approximations of the von Kármán equations. RAIRO Anal. Numér. 12 (1978) 303–312. | MR | Zbl | Numdam | DOI

[10] C. Carstensen and N. Nataraj, Adaptive Morley FEM for the von Kármán equations with optimal convergence rates. SIAM J. Numer. Anal. 59 (2021) 696–719. | MR | DOI

[11] C. Carstensen and N. Nataraj, A priori and a posteriori error analysis of the Crouzeix-Raviart and Morley FEM with original and modified right-hand sides. Comput. Methods Appl. Math. 21 (2021) 289–315. | MR | DOI

[12] C. Carstensen and S. Puttkammer, How to prove the discrete reliability for nonconforming finite element methods. J. Comput. Math 38 (2020) 142–175. | MR | DOI

[13] C. Carstensen, D. Gallistl and J. Hu, A discrete Helmholtz decomposition with Morley finite element functions and the optimality of adaptive finite element schemes. Comput. Math. Appl. 68 (2014) 2167–2181. | MR | DOI

[14] C. Carstensen, G. Mallik and N. Nataraj, A priori and a posteriori error control of discontinuous Galerkin finite element methods for the von Kármán equations. IMA J. Numer. Anal. 39 (2019) 167–200. | MR

[15] C. Carstensen, G. Mallik and N. Nataraj, Nonconforming finite element discretization for semilinear problems with trilinear nonlinearity. IMA J. Numer. Anal. 41 (2021) 164–205. | MR | DOI

[16] E. Casas, M. Mateos and J.-P. Raymond, Error estimates for the numerical approximation of a distributed control problem for the steady-state Navier-Stokes equations. SIAM J. Control Optim. 46 (2007) 952–982 (electronic). | MR | Zbl | DOI

[17] H. Chen, A. K. Pani and W. Qiu, A mixed finite element scheme for biharmonic equation with variable coefficient and von Kármán equations. (2020). | arXiv | MR

[18] S. Chowdhury, T. Gudi and A. K. Nandakumaran, A framework for the error analysis of discontinuous finite element methods for elliptic optimal control problems and applications to C 0 IP methods. Numer. Funct. Anal. Optim. 36 (2015) 1388–1419. | MR | DOI

[19] S. Chowdhury, N. Nataraj and D. Shylaja, Morley FEM for a distributed optimal control problem governed by the von Kármán equations. Comput. Methods Appl. Math. 21 (2021) 233–262. | MR | DOI

[20] P. G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978). | MR | Zbl

[21] P. G. Ciarlet, Mathematical Elasticity: Theory of Plates. Vol. II. North-Holland, Amsterdam (1997). | MR | Zbl

[22] D. A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous GAlerkin Methods. Vol. 69 of Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer, Heidelberg (2012). | MR | Zbl | DOI

[23] A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements. Vol. 159 of Applied Mathematical Sciences. Springer-Verlag, New York (2004). | MR | Zbl | DOI

[24] D. Gallistl, Morley finite element method for the eigenvalues of the biharmonic operator. IMA J. Numer. Anal. 35 (2015) 1779–1811. | MR | DOI

[25] P. Grisvard, Singularities in Boundary Value Problems. Vol. RMA 22. Masson & Springer-Verlag (1992). | MR | Zbl

[26] L. Hou and J. C. Turner, Finite element approximation of optimal control problems for the von Kármán equations. Numer. Methods Part. Differ. Equ. 11 (1995) 111–125. | MR | Zbl | DOI

[27] J. Hu and Z. C. Shi, The best L 2 norm error estimate of lower order finite element methods for the fourth order problem. J. Comput. Math. 30 (2012) 449–460. | MR | Zbl | DOI

[28] H. B. Keller, Approximation methods for nonlinear problems with application to two-point boundary value problems. Math. Comput. 29 (1975) 464–474. | MR | Zbl | DOI

[29] G. H. Knightly, An existence theorem for the von Kármán equations. Arch. Ration. Mech. Anal. 27 (1967) 233–242. | MR | Zbl | DOI

[30] J.-L. Lions, Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin (1971). | MR | Zbl | DOI

[31] G. Mallik and N. Nataraj, Conforming finite element methods for the von Kármán equations. Adv. Comput. Math. 42 (2016) 1031–1054. | MR | DOI

[32] G. Mallik and N. Nataraj, A nonconforming finite element approximation for the von Kármán equations. ESAIM: M2AN 50 (2016) 433–454. | MR | Numdam | Zbl | DOI

[33] G. Mallik, N. Nataraj and J.-P. Raymond, Error estimates for the numerical approximation of a distributed optimal control problem governed by the von Kármán equations. ESAIM: M2AN 52 (2018) 1137–1172. | MR | Zbl | Numdam | DOI

[34] T. Miyoshi, A mixed finite element method for the solution of the von Kármán equations. Numer. Math. 26 (1976) 255–269. | MR | Zbl | DOI

[35] F. Tröltzsch, Optimal Control of Partial Differential Equations: Theory, Methods and Applications. Vol. 112 of Graduate Studies in Mathematics. Translated from the 2005 German original by Jürgen Sprekels. American Mathematical Society, Providence, RI (2010). | MR | Zbl

[36] R. Verfürth, A Posteriori Error Estimation Techniques for Finite Element Methods. Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2013). | MR | Zbl | DOI

Cité par Sources :