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A POSTERIORI ERROR ANALYSIS FOR A DISTRIBUTED OPTIMAL
CONTROL PROBLEM GOVERNED BY THE VON KÁRMÁN EQUATIONS

Sudipto Chowdhury1, Asha K. Dond2, Neela Nataraj3,* and Devika Shylaja4

Abstract. This article discusses the numerical analysis of the distributed optimal control problem
governed by the von Kármán equations defined on a polygonal domain in R2. The state and adjoint
variables are discretised using the nonconforming Morley finite element method and the control is
discretized using piecewise constant functions. A priori and a posteriori error estimates are derived
for the state, adjoint and control variables. The a posteriori error estimates are shown to be efficient.
Numerical results that confirm the theoretical estimates are presented.
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1. Introduction

Problem formulation

Let Ω ⊂ R2 be a polygonal domain and 𝜈 denote the outward unit normal vector to the boundary 𝜕Ω of Ω.
This paper considers the distributed control problem governed by the von Kármán equations stated below:

min
𝑢∈𝑈𝑎𝑑

𝒥 (Ψ, 𝑢) subject to (1.1a)

∆2𝜓1 = [𝜓1, 𝜓2] + 𝑓 + 𝒞𝑢, ∆2𝜓2 = −1
2

[𝜓1, 𝜓1] in Ω, (1.1b)

𝜓1 = 0,
𝜕𝜓1

𝜕𝜈
= 0 and 𝜓2 = 0,

𝜕𝜓2

𝜕𝜈
= 0 on 𝜕Ω. (1.1c)

Here the cost functional 𝒥 (Ψ, 𝑢) := 1
2 |||Ψ−Ψ𝑑|||2𝐿2(Ω) + 𝛼

2 ‖𝑢‖
2
𝐿2(𝜔), the state variable Ψ := (𝜓1, 𝜓2), where

𝜓1 and 𝜓2 correspond to the displacement and Airy-stress, Ψ𝑑 := (𝜓𝑑,1, 𝜓𝑑,2) ∈ 𝐿2(Ω) := 𝐿2(Ω) × 𝐿2(Ω) is
the prescribed desired state for Ψ, |||Ψ−Ψ𝑑|||2𝐿2(Ω) :=

∑︀2
𝑖=1 ‖𝜓𝑖 − 𝜓𝑑,𝑖‖2𝐿2(Ω), 𝛼 > 0 is a fixed regularization
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parameter, 𝑈𝑎𝑑 ⊂ 𝐿2(𝜔), 𝜔 ⊂ Ω is a non-empty, closed, convex and bounded set of admissible controls defined
by

𝑈𝑎𝑑 =
{︀
𝑢 ∈ 𝐿2(𝜔) : 𝑢𝑎 ≤ 𝑢(𝑥) ≤ 𝑢𝑏 for almost every 𝑥 in 𝜔

}︀
,

𝑢𝑎 ≤ 𝑢𝑏 ∈ R are given, ∆2 denotes the fourth-order biharmonic operator, the von Kármán bracket [𝜂, 𝜒] :=
𝜂𝑥𝑥𝜒𝑦𝑦 + 𝜂𝑦𝑦𝜒𝑥𝑥 − 2𝜂𝑥𝑦𝜒𝑥𝑦 = cof

(︀
𝐷2𝜂

)︀
: 𝐷2𝜒 with the co-factor matrix cof

(︀
𝐷2𝜂

)︀
of 𝐷2𝜂, 𝑓 ∈ 𝐿2(Ω), and

𝒞 ∈ ℒ(𝐿2(𝜔), 𝐿2(Ω)) is the extension operator defined by 𝒞𝑢(𝑥) = 𝑢(𝑥) if 𝑥 ∈ 𝜔 and 𝒞𝑢(𝑥) = 0 if 𝑥 ̸∈ 𝜔.

Motivation

The von Kármán equations [2–5, 21, 29] that describe the bending of very thin elastic plates offer challenges
in its numerical approximation; mainly due to its nonlinearity and higher-order nature. The numerical analysis
of von Kármán equations has been studied using conforming finite element methods (FEMs) in [9, 31], non-
conforming Morley FEM in [15, 32], mixed FEMs in [17, 34], discontinuous Galerkin methods and 𝐶0 interior
penalty methods in [8,14]. The optimal control problem governed by the von Kármán equations (1.1a)–(1.1c) is
analysed in [33] using 𝐶1 conforming finite elements. In [19], the state and adjoint variables are discretised using
the Morley FEM and a priori error estimates are derived under minimal regularity assumptions on the exact
solution. The article [14] discusses reliable and efficient a posteriori estimates for the state equations. To the best
of our knowledge, there are no results in literature that discuss a posteriori error analysis for the approximation
of regular solutions of optimal control problems governed by von Kármán equations. Recently, a posteriori error
analysis for the optimal control problem governed by second-order stationary Navier–Stokes equations is studied
in [1] using conforming finite elements under smallness assumption on the data. The trilinear form in [1] vanishes
whenever the second and third variables are equal, and satisfies the anti-symmetric property with respect to the
second and third variables and this aids the a posteriori error analysis. This paper discusses approximation of
regular solutions for fourth-order semilinear problems without any smallness assumption on the data. Moreover,
the trilinear form for von Kármán equations does not satisfy the properties stated above and hence leads to
interesting challenges in the analysis.

Nonconforming Morley, FEM based on piecewise quadratic polynomials in a triangle is more elegant and simpler
for fourth-order problems. However, since the discrete space 𝑉M is not a subspace of 𝐻2

0 (Ω), the convergence
analysis offers a lot of novelty in the context of control problems governed by semilinear problems with trilinear
nonlinearity. The adjoint variable in the control problem satisfies a fourth-order linear problem with lower-order
terms and its a priori and a posteriori analysis with Morley FEM are not available in literature.

Contributions

In continuous formulation (see (2.1)) and the conforming FEM [33], the trilinear form 𝑏(∙, ∙, ∙) is symmetric
with respect to all the three variables making the analysis simpler to a certain extent. However, for fourth-
order systems, nonconforming Morley FEM is attractive, is a method of choice [15], provides optimal order
estimates, and these aspects motivated the a priori analysis for the optimal control problem considered in [19].
The nonconforming Morley finite elements are based on piecewise quadratic polynomials and are simpler to
use. They have lesser number of degrees of freedom in comparison with the conforming Argyris finite elements
with 21 degrees of freedom in a triangle or the Bogner–Fox–Schmit finite elements with 16 degrees of freedom
in a rectangle. The discrete trilinear form 𝑏NC(∙, ∙, ∙) := 1

2

∑︀
𝐾∈𝒯

∫︀
𝐾

cof(𝐷2𝜂M)𝐷𝜒M ·𝐷𝜙M d𝑥 for all Morley
functions 𝜂M, 𝜒M and 𝜙M utilized in [19]; is obtained after an integration by parts, where 𝒯 denotes an admissible
triangulation of Ω. This form is symmetric with respect to the second and third variables. Although this choice
of trilinear form leads to optimal order error estimates for the optimal control problem (1.1a)–(1.1c), it leads
to terms that involve averages in the reliability analysis of the state equations (as in the case of Navier–Stokes
equation considered in [15]). The efficiency estimates are unclear in this context. To overcome this, a more
natural trilinear form 𝑏NC(𝜂M, 𝜒M, 𝜙M) := − 1

2

∑︀
𝐾∈𝒯

∫︀
𝐾

[𝜂M, 𝜒M]𝜙M d𝑥 that is symmetric with respect to the
first and second variables is chosen in this article. The a priori and a posteriori analysis for the state equations
are discussed in [10,15] for this modified choice of 𝑏NC(∙, ∙, ∙).
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The a posteriori analysis for the fully discrete optimal control problem governed by the von Kármán equations
addressed in this article is novel. For example, this formulation is different from that in [19], and it is essential to
modify the a priori error estimates for the discrete optimal problem. The adjoint system of the optimal control
problem involves lower-order terms with leading biharmonic operators. A posteriori analysis for biharmonic
operator with lower-order terms is a problem of independent interest.

Thus the contributions of this article can be summarized as follows.

– Reliable and efficient a posteriori error estimates that drive the adaptive refinement for the optimal state
and adjoint variables in the energy norm and control variable in the 𝐿2 norm are developed. The approach
followed provides a strategy for the nonconforming FEM analysis of distributed optimal control problems
governed by higher-order semilinear problems.

– Several auxiliary results that are derived will be of interest in other applications – for example, optimal
control problems governed by Navier–Stokes problems in the stream-vorticity formulation.

– The paper illustrates results of computational experiments that validate both theoretical a priori and a
posteriori estimates for the optimal control problem under consideration.

– For a formulation that is different from that in [19], optimal order a priori error estimates in energy norm
when state and adjoint variables are approximated by Morley FEM and linear order of convergence for
control variable in 𝐿2 norm when control is approximated using piecewise constants are outlined.

Organisation

The remaining parts of this paper are organised as follows. Section 2 first presents the weak and Morley finite
element formulations for (1.1a)–(1.1c). The main results of this article are also stated. The state and adjoint
variables are discretised using Morley finite elements and the control variable is discretised using piecewise
constant functions. Section 3 discusses some auxiliary results related to the continuous formulation and Morley
FEM. The properties of the interpolation and companion operators that are crucial for the error analysis are
discussed in this section. The proofs of the results for the a posteriori estimates stated in Section 2 are presented
in Sections 4 and 5. Section 4 develops reliable a posteriori estimates for the state, adjoint and control variables of
the optimal control problem. The efficiency results are discussed in Section 5. Results of numerical experiments
that validate theoretical estimates are presented in Section 6. The intermediate results for establishing the a
priori error estimates for the state, adjoint and control variables under minimal regularity assumption on the
exact solution differ from [19] due to a different form of 𝑏NC(∙, ∙, ∙) and hence are outlined in the appendix.

Notation

Throughout the paper, standard notations on Lebesgue and Sobolev spaces and their norms are employed.
The standard seminorm and norm on 𝐻𝑠(Ω) (resp. 𝑊 𝑠,𝑝(Ω)) for 𝑠 > 0 and 1 ≤ 𝑝 ≤ ∞ are denoted by | · |𝑠 and
‖·‖𝑠 (resp. |·|𝑠,𝑝 and ‖·‖𝑠,𝑝) and norm in 𝐿∞(Ω) is denoted by ‖·‖0,∞. The norm in 𝐻−𝑠(Ω) is denoted by ‖·‖−𝑠.
The standard 𝐿2 inner product and norm are denoted by (·, ·) and ‖ · ‖. The notation ‖ · ‖ is also used to denote
the operator norm and should be understood from the context. The notation 𝐻𝑠(Ω) (resp. 𝐿𝑝(Ω)) is used to
denote the product space 𝐻𝑠(Ω)×𝐻𝑠(Ω) (resp. 𝐿𝑝(Ω)× 𝐿𝑝(Ω)). For all Φ = (𝜙1, 𝜙2) ∈ 𝐻𝑠(Ω)

(︀
resp. 𝐿2(Ω)

)︀
,

the product space is equipped with the norm |||Φ|||𝑠 :=
(︁
‖𝜙1‖2𝑠 + ‖𝜙2‖2𝑠

)︁1/2
(︂

resp. |||Φ||| :=
(︁
‖𝜙1‖2 + ‖𝜙2‖2

)︁1/2
)︂

.

The notation 𝑎 . 𝑏 (resp. 𝑎 & 𝑏) means there exists a generic mesh independent constant 𝐶 such that 𝑎 ≤ 𝐶𝑏
(resp. 𝑎 ≥ 𝐶𝑏). The positive constants 𝐶 appearing in the inequalities denote generic constants which do not
depend on the mesh size.

Let 𝒯 be an admissible and regular triangulation of the domain Ω into simplices in R2, ℎ𝐾 be the diameter
of 𝐾 ∈ 𝒯 and ℎ := max𝐾∈𝒯 ℎ𝐾 . Let T be the set of all admissible triangulations 𝒯 . Given any 0 < 𝛿 < 1,
let T(𝛿) be the set of all triangulations 𝒯 with mesh size ≤ 𝛿 for all triangles 𝐾 ∈ 𝒯 with area |𝐾|. Let ℰ(Ω)
(resp. ℰ(𝜕Ω)) denotes the set of all interior edges (resp. boundary edges) of Ω. The length of any edge 𝐸 is
denoted by ℎ𝐸 . For a nonnegative integer 𝑘 ∈ N0, 𝒫𝑘(𝒯 ) denotes the space of piecewise polynomials of degree
at most equal to 𝑘. Let Π𝑘 denote the 𝐿2 projection onto the space of piecewise polynomials 𝒫𝑘(𝒯 ). The mesh
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size ℎ𝒯 ∈ 𝒫0(𝒯 ) is defined by ℎ𝒯 |𝐾 := ℎ𝐾 . The oscillation of 𝑓 in 𝒯 reads osc𝑘(𝑓, 𝒯 ) =
⃦⃦
ℎ2
𝒯 (𝑓 −Π𝑘𝑓)

⃦⃦
for

𝑘 ∈ N0. For a nonnegative integer 𝑚, and Φ = (𝜙1, 𝜙2) ∈𝑊𝑚,𝑝(𝒯 ), where 𝑊𝑚,𝑝(𝒯 ) denotes the broken Sobolev

space with respect to 𝒯 , |||Φ|||2𝑚,𝑝,ℎ := |𝜙1|2𝑚,𝑝,ℎ + |𝜙2|2𝑚,𝑝,ℎ, and |𝜙𝑖|𝑚,𝑝,ℎ =
(︁∑︀

𝐾∈𝒯 |𝜙𝑖|𝑝𝑚,𝑝,𝐾

)︁1/𝑝

, 𝑖 = 1, 2; with

| · |𝑚,𝑝,𝐾 denoting the usual seminorm in 𝑊𝑚,𝑝(𝐾). The notation 𝐻1(𝒯 ) is used to denote the product space
𝐻1(𝒯 )×𝐻1(𝒯 ).

2. Main results

The weak and Morley FEM formulations corresponding to (1.1) are stated and the main results of this article
are presented in this section. The proofs of the reliability and efficiency estimates in Theorem 2.4 are detailed
in Sections 4 and 5.

The weak formulation that corresponds to (1.1a)–(1.1c) seeks (Ψ, 𝑢) ∈ V× 𝑈𝑎𝑑 such that

min
(Ψ, 𝑢)∈V×𝑈𝑎𝑑

𝒥 (Ψ, 𝑢) subject to (2.1a)

𝑎(𝜓1, 𝜙1) + 𝑏(𝜓1, 𝜓2, 𝜙1) + 𝑏(𝜓2, 𝜓1, 𝜙1) = (𝑓 + 𝒞𝑢, 𝜙1) for all 𝜙1 ∈ 𝑉, (2.1b)
𝑎(𝜓2, 𝜙2)− 𝑏(𝜓1, 𝜓1, 𝜙2) = 0 for all 𝜙2 ∈ 𝑉, (2.1c)

with 𝑉 := 𝐻2
0 (Ω), V = 𝑉 × 𝑉 , the continuous, 𝑉 -elliptic bilinear form 𝑎(∙, ∙) : 𝑉 × 𝑉 → R is defined by

𝑎(𝜙1, 𝜙2) :=
∫︀
Ω
𝐷2𝜙1 : 𝐷2𝜙2 d𝑥, and the continuous trilinear form 𝑏(∙, ∙, ∙) : 𝑉 × 𝑉 × 𝑉 → R is defined by

𝑏(𝜙1, 𝜙2, 𝜙3) := − 1
2

∫︀
Ω

[𝜙1, 𝜙2]𝜙3 d𝑥. For a given 𝑢 ∈ 𝐿2(𝜔), (2.1b) and (2.1c) possesses at least one solution
[29].

For all 𝜉 = (𝜉1, 𝜉2), Φ = (𝜙1, 𝜙2), 𝜂 = (𝜂1, 𝜂2) ∈ V, the operator form for (2.1b) and (2.1c) is

Ψ ∈ V, 𝒜Ψ + ℬ(Ψ) = F + Cu in V′, (2.2)

with 𝒜 ∈ ℒ(V,V′) defined by ⟨𝒜𝜉,Φ⟩ 1= 𝐴(𝜉,Φ) = 𝑎(𝜉1, 𝜙1)+𝑎(𝜉2, 𝜙2), ℬ from V to V′ defined by ⟨ℬ(𝜂),Φ⟩ =

𝐵(𝜂,𝜂,Φ) where 𝐵(𝜂,Φ, 𝜉) = 𝑏(𝜂1, 𝜙2, 𝜉1) + 𝑏(𝜂2, 𝜙1, 𝜉1) − 𝑏(𝜂1, 𝜙1, 𝜉2), F =
(︂
𝑓
0

)︂
, Cu =

(︂
𝒞𝑢
0

)︂
, u =

(︂
𝑢
0

)︂
,

and (F + Cu,Φ) := (𝑓 + 𝒞𝑢, 𝜙1).
The linearization of (2.1b) and (2.1c) around Ψ in the direction 𝜉 is given by 𝐿𝜉 := 𝒜𝜉 +ℬ′(Ψ)𝜉, where the

operator ℬ′(Ψ) ∈ ℒ(V,V′)2 is defined by ⟨ℬ′(Ψ)𝜉,Φ⟩ := 2𝐵(Ψ, 𝜉,Φ).

Definition 2.1 (Regular solution). For a given 𝑢 ∈ 𝐿2(𝜔), a solution Ψ of (2.1b) and (2.1c) is said to be regular
if the linearized form is well-posed. That is, if ⟨𝐿𝜉,Φ⟩ = 0 for all Φ ∈ V, then 𝜉 = 0. In this case, the pair
(Ψ, 𝑢) also is referred to as a regular solution to (1.1b) and (1.1c).

Definition 2.2 (Local solution). [16] The pair
(︀
Ψ̄, 𝑢̄

)︀
∈ V×𝑈𝑎𝑑 is a local solution to (2.1) if and only if

(︀
Ψ̄, 𝑢̄

)︀
satisfies (2.1b) and (2.1c) and there exist neighbourhoods 𝒪(Ψ̄) of Ψ̄ in V and 𝒪(𝑢̄) of 𝑢̄ in 𝐿2(𝜔) such that
𝒥 (Ψ̄, 𝑢̄) ≤ 𝒥 (Ψ, 𝑢) for all pairs (Ψ, 𝑢) ∈ 𝒪(Ψ̄)× (𝑈𝑎𝑑 ∩ 𝒪(𝑢̄)) that satisfy (2.1b) and (2.1c).

Local solutions
(︀
Ψ̄, 𝑢̄

)︀
to (2.1) such that the pair is a regular solution to (2.2) are approximated in this article.

The existence result for (2.1) is stated in Theorem 3.1. The optimality system for the optimal control problem
(2.1) is

𝐴
(︀
Ψ̄,Φ

)︀
+𝐵

(︀
Ψ̄, Ψ̄,Φ

)︀
= (F + Cū,Φ) for all Φ ∈ V (State equations) (2.3a)

𝐴
(︀
Φ, Θ̄

)︀
+ 2𝐵

(︀
Ψ̄,Φ, Θ̄

)︀
=
(︀
Ψ̄−Ψ𝑑,Φ

)︀
for all Φ ∈ V (Adjoint equations) (2.3b)

1The subscripts in the duality pairings are omitted for notational convenience.
2The same notation ′ is used either to denote the Fréchet derivative of an operator or the dual of a space, but the context helps

to clarify its precise meaning.
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Figure 1. Morley triangle.

(︀
C*Θ̄ + 𝛼ū,u− ū

)︀
𝐿2(𝜔)

≥ 0 for all u = (𝑢, 0)𝑇 , 𝑢 ∈ 𝑈𝑎𝑑 (First-order optimality condition)
(2.3c)

where Θ̄ is the adjoint state and C* denotes the adjoint of C. For almost all 𝑥 ∈ Ω, the optimal control
ū(𝑥) := (𝑢̄(𝑥), 0) in (2.3c) satisfies ([35], Thm. 2.28)

ū(𝑥) = Π[𝑢𝑎,𝑢𝑏]

(︂
− 1
𝛼

(︀
C*Θ̄

)︀)︂
, (2.4)

where Θ̄ =
(︀
𝜃1, 𝜃2

)︀
and the projection operator Π[𝑢𝑎,𝑢𝑏] is defined by Π[𝑢𝑎,𝑢𝑏](𝑔) := min{𝑢𝑏,max{𝑢𝑎, 𝑔}}.

The nonconforming Morley element space 𝑉M is defined by

𝑉M :=
{︂
𝑣M ∈ 𝒫2(𝒯 )|𝑣M is continuous at the interior vertices and vanishes at the vertices of 𝜕Ω;

for all 𝐸 ∈ ℰ(Ω),
∫︁

𝐸

[︂
𝜕𝑣M
𝜕𝜈

]︂
𝐸

d𝑠 = 0; for all 𝐸 ∈ ℰ(𝜕Ω),
∫︁

𝐸

𝜕𝑣M
𝜕𝜈

d𝑠 = 0
}︂
,

where [𝜑]𝐸 denotes the jump of a function 𝜑 across 𝐸 and is equipped with the norm ‖ ∙ ‖NC defined by

‖𝜙‖NC =
(︁∑︀

𝐾∈𝒯 ‖𝐷2
NC𝜙‖2𝐿2(𝐾)

)︁1/2

. Throughout the paper, 𝐷NC∙ and 𝐷2
NC∙ denote the piecewise gradient and

Hessian of the arguments on triangles 𝐾 ∈ 𝒯 . Figure 1 illustrates a Morley triangle 𝐾 ∈ 𝒯 . Let VM := 𝑉M×𝑉M

and for Φ = (𝜙1, 𝜙2) ∈ VM, |||Φ|||2NC := ‖𝜙1‖2NC + ‖𝜙2‖2NC.
For all 𝜂M, 𝜒M and 𝜙M ∈ 𝑉M, define the discrete bilinear and trilinear forms by

𝑎NC(𝜂M, 𝜒M) :=
∑︁
𝐾∈𝒯

∫︁
𝐾

𝐷2𝜂M : 𝐷2𝜒M d𝑥 and 𝑏NC(𝜂M, 𝜒M, 𝜙M) := −1
2

∑︁
𝐾∈𝒯

∫︁
𝐾

[𝜂M, 𝜒M]𝜙M d𝑥.

Similarly, for ΞM = (𝜉1, 𝜉2), ΘM = (𝜃1, 𝜃2), ΦM = (𝜙1, 𝜙2) ∈ VM, define

𝐴NC(ΘM,ΦM) := 𝑎NC(𝜃1, 𝜙1) + 𝑎NC(𝜃2, 𝜙2), 𝐹NC(ΦM) :=
∑︁
𝐾∈𝒯

∫︁
𝐾

𝑓𝜙1 d𝑥 and

𝐵NC(ΞM,ΘM,ΦM) := 𝑏NC(𝜉1, 𝜃2, 𝜙1) + 𝑏NC(𝜉2, 𝜃1, 𝜙1)− 𝑏NC(𝜉1, 𝜃1, 𝜙2).

The definitions of the discrete bilinear and trilinear forms are meaningful for functions in 𝑉 +𝑉M (resp. V+VM).
Note that for all 𝜉, 𝜃, 𝜙 ∈ 𝑉 , 𝑎NC(𝜉, 𝜃) = 𝑎(𝜉, 𝜃) and 𝑏NC(𝜉, 𝜃, 𝜙) = 𝑏(𝜉, 𝜃, 𝜙).

The admissible space for discrete controls is 𝑈ℎ,𝑎𝑑 :=
{︀
𝑢 ∈ 𝐿2(𝜔) : 𝑢|𝐾 ∈ 𝒫0(𝐾), 𝑢𝑎 ≤ 𝑢 ≤ 𝑢𝑏 for all 𝐾 ∈ 𝒯

}︀
.

The discrete control problem associated with (2.1) reads

min
(ΨM,𝑢ℎ)∈VM×𝑈ℎ,𝑎𝑑

𝒥 (ΨM, 𝑢ℎ) subject to (2.5a)
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𝐴NC(ΨM,ΦM) +𝐵NC(ΨM,ΨM,ΦM) = (F + Cuℎ,ΦM) for all ΦM ∈ VM. (2.5b)

The existence of a solution to the discrete problem (2.5) follows from Theorem 4.3 of [33]. The discrete first-
order optimality system that consists of the discrete state and adjoint equations and the first-order optimality
condition corresponding to (2.5) is

𝐴NC

(︀
Ψ̄M,ΦM

)︀
+𝐵NC

(︀
Ψ̄M, Ψ̄M,ΦM

)︀
= (F + Cūℎ,ΦM) for all ΦM ∈ VM (2.6a)

𝐴NC

(︀
ΦM, Θ̄M

)︀
+ 2𝐵NC

(︀
Ψ̄M,ΦM, Θ̄M

)︀
=
(︀
Ψ̄M −Ψ𝑑,ΦM

)︀
for all ΦM ∈ VM (2.6b)(︀

C*Θ̄M + 𝛼ūℎ,uℎ − ūℎ

)︀
≥ 0 for all uℎ = (𝑢ℎ, 0)𝑇 , 𝑢ℎ ∈ 𝑈ℎ,𝑎𝑑, (2.6c)

where Θ̄M ∈ VM (resp. ūℎ = (𝑢̄ℎ, 0)𝑇 , 𝑢̄ℎ ∈ 𝑈ℎ,𝑎𝑑) denotes the discrete adjoint (resp. control) variable that
corresponds to the optimal state variable Ψ̄M ∈ VM.

Theorem 2.3 (A priori error control). Given a regular solution
(︀
Ψ̄, 𝑢̄

)︀
to (2.1), there exist 𝛿0, 𝜖0 > 0 such that

any triangulation 𝒯 ∈ T(𝛿0) yields a unique discrete solution
(︀
Ψ̄M, Θ̄M, ūℎ

)︀
to (2.6) that satisfies

⃒⃒⃒⃒⃒⃒
Ψ̄− Ψ̄M

⃒⃒⃒⃒⃒⃒
NC

+⃒⃒⃒⃒⃒⃒
Θ̄− Θ̄M

⃒⃒⃒⃒⃒⃒
NC

+ ‖𝑢̄− 𝑢̄ℎ‖𝐿2(𝜔) ≤ 𝜀0, where Θ̄ is the corresponding continuous adjoint variable.

The proof of the a priori estimates differ from that in [19] due to the different expression for the trilinear
form. The crucial intermediate steps are outlined in the appendix. The choice of the constants 𝜖0 and 𝛿0 are
discussed in Section 4.

A posteriori error control

Assume that (i) 𝜔 ⊂ Ω is a polygonal domain and (ii) 𝒯 restricted to 𝜔 yields a triangulation for 𝜔. Define
the auxiliary variable ̃︀𝑢ℎ by

̃︀𝑢ℎ := Π[𝑢𝑎,𝑢𝑏]

(︂
− 1
𝛼

(︀
𝒞*𝜃M,1

)︀)︂
, (2.7)

where Θ̄M =
(︀
𝜃M,1, 𝜃M,2

)︀
is the discrete adjoint variable corresponding to the control 𝑢̄ℎ.

Let Ψ̄M =
(︀
𝜓M,1, 𝜓M,2

)︀
∈ VM. For 𝐾 ∈ 𝒯 and 𝐸 ∈ ℰ(Ω), define the volume estimators as

𝜂2
𝐾,Ψ̄M

:= ℎ4
𝐾

(︁⃦⃦
𝑓 + 𝒞𝑢̄ℎ +

[︀
𝜓M,1, 𝜓M,2

]︀⃦⃦2

𝐿2(𝐾)
+
⃦⃦[︀
𝜓M,1, 𝜓M,1

]︀⃦⃦2

𝐿2(𝐾)

)︁
, 𝜂2

𝐾,𝑢̄ℎ
:= ‖̃︀𝑢ℎ − 𝑢̄ℎ‖2𝐿2(𝐾), (2.8a)

𝜂2
𝐾,res,Θ̄M

:= ℎ4
𝐾

(︁⃦⃦
𝜓M,1 − 𝜓𝑑,1 −

[︀
𝜓M,1, 𝜃M,2

]︀
+
[︀
𝜓M,2, 𝜃M,1

]︀⃦⃦2

𝐿2(𝐾)
+
⃦⃦
𝜓M,2 − 𝜓𝑑,2 +

[︀
𝜓M,1, 𝜃M,1

]︀⃦⃦2

𝐿2(𝐾)

)︁
,

(2.8b)

𝜂2
𝐾,𝒫0,Θ̄M

:=
⃦⃦
𝐷2𝜓M,1(1− 𝒫0)𝜃M,2

⃦⃦2

𝐿2(𝐾)
+
⃦⃦
𝐷2𝜓M,2(1− 𝒫0)𝜃M,1

⃦⃦2

𝐿2(𝐾)
+
⃦⃦
𝐷2𝜓M,1(1− 𝒫0)𝜃M,1

⃦⃦2

𝐿2(𝐾)
,

(2.8c)

𝜂2
𝐾,Θ̄M

:= 𝜂2
𝐾,res,Θ̄M

+ 𝜂2
𝐾,𝒫0,Θ̄M

, (2.8d)

and the edge estimators as

𝜂2
𝐸,Ψ̄M

:= ℎ𝐸

(︁⃦⃦[︀
𝐷2𝜓M,1𝜏𝐸

]︀
𝐸

⃦⃦2

𝐿2(𝐸)
+
⃦⃦[︀
𝐷2𝜓M,2𝜏𝐸

]︀
𝐸

⃦⃦2

𝐿2(𝐸)

)︁
, and (2.8e)

𝜂2
𝐸,Θ̄M

:= ℎ𝐸

(︁⃦⃦[︀
𝐷2𝜃M,1𝜏𝐸

]︀
𝐸

⃦⃦2

𝐿2(𝐸)
+
⃦⃦[︀
𝐷2𝜃M,2𝜏𝐸

]︀
𝐸

⃦⃦2

𝐿2(𝐸)

)︁
, (2.8f)

where 𝜏𝐸 denotes the unit tangential vector to the edge 𝐸 and [𝜑]𝐸 denotes the jump of a function 𝜑 across 𝐸.
Further, define the total error estimator 𝜂 as

𝜂2 := 𝜂2
ST + 𝜂2

AD + 𝜂2
CON, where (2.9)

𝜂2
ST :=

∑︁
𝐾∈𝒯

𝜂2
𝐾,Ψ̄M

+
∑︁

𝐸∈ℰ(Ω)

𝜂2
𝐸,Ψ̄M

, 𝜂2
AD :=

∑︁
𝐾∈𝒯

𝜂2
𝐾,Θ̄M

+
∑︁

𝐸∈ℰ(Ω)

𝜂2
𝐸,Θ̄M

, 𝜂2
CON :=

∑︁
𝐾∈𝒯

𝜂2
𝐾,𝑢̄ℎ

.

The main result stated next discusses the reliability and efficiency estimates for the control problem.
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Theorem 2.4 (A posteriori error control). Given the exact solution
(︀
Ψ̄, Θ̄, ū

)︀
, 𝜀0, 𝛿0 > 0 from a priori error

estimate Theorem 2.3, there exist positive constants 𝐶rel and 𝐶eff (which depend on 𝒯 and on the solution(︀
Ψ̄, Θ̄, ū

)︀
, 𝜀0, 𝛿0 > 0) such that for all 𝒯 ∈ T(𝛿0), the discrete solution

(︀
Ψ̄M, Θ̄M, ūℎ

)︀
and the error estimator 𝜂

satisfy

(a) (Reliability) ⃒⃒⃒⃒⃒⃒
Ψ̄− Ψ̄M

⃒⃒⃒⃒⃒⃒
NC

+
⃒⃒⃒⃒⃒⃒

Θ̄− Θ̄M

⃒⃒⃒⃒⃒⃒
NC

+ ‖𝑢̄− 𝑢̄ℎ‖𝐿2(𝜔) ≤ 𝐶rel𝜂.

(b) (Efficiency)

𝜂 ≤ 𝐶eff

(︁⃒⃒⃒⃒⃒⃒
Ψ̄− Ψ̄M

⃒⃒⃒⃒⃒⃒
NC

+
⃒⃒⃒⃒⃒⃒

Θ̄− Θ̄M

⃒⃒⃒⃒⃒⃒
NC

+ ‖𝑢̄− 𝑢̄ℎ‖𝐿2(𝜔) + osc0(𝑓, 𝒯 ) + osc0(Ψ𝑑, 𝒯 ) +
⃦⃦

(1− 𝐼M)Θ̄
⃦⃦

𝐻1(𝒯 )

+
⃦⃦
(1− 𝐼M)Θ̄

⃦⃦
𝐿∞(𝒯 )

+
⃦⃦

(1− 𝒫0)Θ̄
⃦⃦

𝐿∞(𝒯 )

)︁
.

Recall that osc0(𝑓, 𝒯 ) =
⃦⃦
ℎ2
𝒯 (𝑓 −Π0𝑓)

⃦⃦
; where Π0 denotes the 𝐿2 projection onto the space of piecewise

constant polynomials and 𝐼M : 𝑉 → 𝑉M is the Morley interpolation operator defined in Lemma 3.5.

3. Auxiliary results

This section deals with some auxiliary results in the continuous and discrete frameworks that are useful to
establish the error estimates.

The state equations in (2.1b) and (2.1c) can be written as

𝑁(Ψ; Φ) := 𝐴(Ψ,Φ) +𝐵(Ψ,Ψ,Φ)− (F + Cu,Φ) = 0 for all Φ ∈ V.

The first and second-order Fréchet derivatives of 𝑁(Ψ) at Ψ in the direction 𝜉 are given by 𝐷𝑁(Ψ; 𝜉,Φ) :=
⟨𝒜𝜉 + ℬ′(Ψ)𝜉,Φ⟩ and 𝐷2𝑁(Ψ; 𝜉, 𝜉,Φ) := ⟨ℬ′′(𝜉, 𝜉),Φ⟩, where the operator ℬ′′(Ψ, 𝜉) ∈ ℒ(V×V,V′) is defined
by ⟨ℬ′′(Ψ, 𝜉),Φ⟩ := 2𝐵(Ψ, 𝜉,Φ).

Define the discrete counterparts ℬNC : V+VM → (V+VM)′ as ⟨ℬNC(Ψ),Φ⟩ = 𝐵NC(Ψ,Ψ,Φ) for all Ψ,Φ ∈
V + VM. The Fréchet derivative of ℬNC around Ψ at the direction of 𝜉 denoted by ℬ′NC(Ψ)(𝜉) is

⟨ℬ′NC(Ψ)(𝜉),Φ⟩ = 2𝐵NC(Ψ, 𝜉,Φ) for all Ψ,Φ, 𝜉 ∈ V + VM. (3.1)

Theorem 3.1 (Existence result [16]). Let (Ψ̄, 𝑢̄) ∈ V×𝐿2(𝜔) be a regular solution to (2.1). Then there exist an
open ball 𝒪(𝑢̄) of 𝑢̄ in 𝐿2(𝜔), an open ball 𝒪(Ψ̄) of Ψ̄ in V, and a mapping 𝐺 from 𝒪(𝑢̄) to 𝒪(Ψ̄) of class 𝐶∞,
such that, for all 𝑢 ∈ 𝒪(𝑢̄), Ψ𝑢 = 𝐺(𝑢) is the unique solution in 𝒪(Ψ̄) to (2.2). Thus, 𝐺′(𝑢) = (𝒜+ ℬ′(Ψ𝑢))−1

is uniformly bounded from a smaller ball into a smaller ball (these smaller balls are still denoted by 𝒪(𝑢̄) and
𝒪(Ψ̄) for notational simplicity). Moreover, if 𝐺′(𝑢)𝑣 =: z𝑣 ∈ V and 𝐺′′(𝑢)𝑣2 =: w ∈ V, then z𝑣 and w satisfy

𝒜z𝑣 + ℬ′(Ψ𝑢)z𝑣 = Cv in V′, 𝒜w + ℬ′(Ψ𝑢)w + ℬ′′(z𝑣, z𝑣) = 0 in V′, (3.2)

where 𝒜+ℬ′(Ψ𝑢) is an isomorphism from V into V′ for all 𝑢 ∈ 𝒪(𝑢̄). Moreover, there exists a constant 𝐶ub > 0
such that ‖(𝒜+ ℬ′(Ψ𝑢))−1‖ℒ(V′,V) ≤ 𝐶ub and |||z𝑣|||2 ≤ ‖𝐺′(𝑢)‖ℒ(𝐿2(𝜔),𝐻2(Ω))‖𝑣‖𝐿2(𝜔).

Remark 3.2. The dependence of Ψ with respect to 𝑢 is made explicit with the notation Ψ𝑢 only when it is
necessary.

Remark 3.3. In this paper, we assume that the exact solution Ψ to the nonlinear problem (2.1) is regular,
that is, the linearized form is nonsingular ([28], Def. 2.4, p. 466). Hence the bounded derivative 𝐷𝑁(Ψ) of the
operator 𝑁 at the solution Ψ is an isomorphism. That is, the regular solution Ψ̄ to (2.1) satisfies the inf-sup
condition [22]:

0 < 𝛽 := inf
𝜉∈V
|||𝜉|||2=1

sup
Φ∈V
|||Φ|||2=1

⟨︀
𝒜𝜉 + ℬ′

(︀
Ψ̄
)︀
𝜉,Φ

⟩︀
, and this leads to

⃦⃦⃦(︀
𝒜+ ℬ′(Ψ̄)

)︀−1
⃦⃦⃦
ℒ(V′,V)

= 1/𝛽. (3.3)
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The existence of a solution to (2.1) can be obtained using standard arguments of considering a minimizing
sequence, that is bounded in V× 𝐿2(𝜔), and passing to the limit [26,30,35].

Lemma 3.4 (A priori bounds, regularity and convergence ([33], Lems. 2.7, 2.9 & 2.10, [10], Thm. 2.1)).

(a) For 𝑓 ∈ 𝐻−1(Ω) and 𝑢 ∈ 𝐿2(𝜔), the solution Ψ of (2.1b) and (2.1c) belongs to V ∩𝐻2+𝛾(Ω), 𝛾 ∈ (1/2, 1]
is the elliptic regularity index, and satisfies the 𝑎 𝑝𝑟𝑖𝑜𝑟𝑖 bounds |||Ψ|||2 . (‖𝑓‖−1 + ‖𝑢‖𝐿2(𝜔)), |||Ψ|||2+𝛾 .
(‖𝑓‖3−1 + ‖𝑢‖3𝐿2(𝜔) + ‖𝑓‖−1 + ‖𝑢‖𝐿2(𝜔)).

(b) The solution z𝑣 of the linearized problem (3.2) also belongs to V ∩ 𝐻2+𝛾(Ω), and satisfies the 𝑎 𝑝𝑟𝑖𝑜𝑟𝑖
bound |||z𝑣|||2+𝛾 . ‖𝑣‖𝐿2(𝜔).

(c) Let
(︀
Ψ̄, 𝑢̄

)︀
be a regular solution to (2.1) and (𝑢𝑘)𝑘 be a sequence in 𝒪(𝑢̄) weakly converging to 𝑢̄ in 𝐿2(𝜔).

Let Ψ𝑢𝑘
be the solution to (2.2) in 𝒪

(︀
Ψ̄
)︀

that corresponds to 𝑢𝑘. Then (Ψ𝑢𝑘
)𝑘 converges to Ψ̄ in V.

When the load function belongs to 𝐻−1(Ω), the solution of the clamped biharmonic plate problem belongs
to 𝐻2

0 (Ω) ∩ 𝐻2+𝛾(Ω), with 𝛾 ∈
(︀

1
2 , 1
]︀
, when all the interior angles are less than 126.283∘ ([5], Thm. 2). Note

that when Ω is convex, 𝛾 = 1. These regularity results extend to the von Kármán equations ([5], Sect. 6) and
to the state and adjoint variables of the control problem [33]. The optimal state and adjoint variables belong
to V ∩𝐻2+𝛾(Ω), with 𝛾 ∈

(︀
1
2 , 1
]︀
, referred to as the index of elliptic regularity.

The crucial properties of Morley interpolation and companion operators that are useful in the analysis are
stated below.

Lemma 3.5 (Morley interpolation operator [12, 13, 24]). For 𝑣 ∈ 𝑉 , the Morley interpolation oper-
ator 𝐼M : 𝑉 → 𝑉M defined by (𝐼M𝑣)(𝑧) = 𝑣(𝑧) for any vertex 𝑧 of 𝒯 and

∫︀
𝐸
𝜕𝐼M𝑣/𝜕𝜈𝐸 d𝑠 =∫︀

𝐸
𝜕𝑣/𝜕𝜈𝐸 d𝑠 for any edge 𝐸 of 𝒯 satisfies (a) the integral mean property 𝐷2

NC𝐼M = Π0𝐷
2
NC of the Hessian, (b)∑︀1

𝑚=0 ℎ
𝑚−2|(1− 𝐼M)𝑣|𝐻𝑚(𝐾) ≤ 𝐶I|(1− 𝐼M)𝑣|𝐻2(𝐾) = 𝐶I

(︁
‖𝐷2𝑣‖𝐿2(𝐾) −

⃦⃦
𝐷2𝐼M𝑣

⃦⃦
𝐿2(𝐾)

)︁
for all 𝑣 ∈ 𝐻2(𝐾)

and 𝐾 ∈ 𝒯 , and (𝑐)‖(1− 𝐼M)𝑣‖NC . ℎ𝛾 ||𝑣‖2+𝛾 for all 𝑣 ∈ 𝑉 ∩𝐻2+𝛾(Ω).

Lemma 3.6 (Companion operator [12,24]). For any 𝑣M ∈ 𝑉M, there exists 𝐽 : 𝑉M → 𝑉 such that

(a) 𝐼M𝐽𝑣M = 𝑣M for all 𝑣M ∈ 𝑉M, (b) Π0((1− 𝐽)𝑣M) = 0, (c) Π0𝐷
2
NC((1− 𝐽)𝑣M) = 0,

(d)
⃦⃦
ℎ−2

𝐾 ((1− 𝐽)𝑣M)
⃦⃦

+
⃦⃦
ℎ−1

𝐾 𝐷NC((1− 𝐽)𝑣M)
⃦⃦

+
⃦⃦
𝐷2

NC((1− 𝐽)𝑣M)
⃦⃦
≤ ΛJ min

𝑣∈𝑉

⃦⃦
𝐷2

NC(𝑣M − 𝑣)
⃦⃦
,

(e)
2∑︁

𝑚=0

ℎ2𝑚−4
𝐾 ‖(1− 𝐽)𝑣M‖2𝐻𝑚(𝐾) ≤ 𝐶2

J

∑︁
𝐸∈ℰ(Ω(𝐾))

ℎ𝐸

⃦⃦[︀
𝐷2

NC𝑣M
]︀
𝐸
𝜏𝐸
⃦⃦2

𝐿2(𝐸)
. min

𝑣∈𝑉

⃦⃦
𝐷2

NC(𝑣M − 𝑣)
⃦⃦2

𝐿2(Ω(𝐾))
.

Here 𝒩 (𝐾) denotes the set of vertices of 𝐾 ∈ 𝒯 and patch Ω(𝐾) := int
(︀
∪𝑧∈𝒩 (𝐾) ∪ 𝒯 (𝑧)

)︀
, 𝒯 (𝑧) denotes the

triangles that share the vertex 𝑧 and ℰ(Ω(𝐾)) denotes the edges in Ω(𝐾).

For vector-valued functions, the interpolation and companion operators are to be understood componentwise.
The bound for discrete trilinear form and lower bounds for discrete norms stated in the next lemma are essential
in the analysis.

Lemma 3.7. For 𝜒,𝜆,Φ ∈ V + VM, there exist positive constants 𝐶dS and 𝐶b such that

(a) (Lower bounds for discrete norms) |||Φ|||0,∞ + |||Φ|||1,2,ℎ ≤ 𝐶dS|||Φ|||NC.
(b) (Bound for 𝐵NC(∙, ∙, ∙)) 𝐵NC(𝜒,𝜆,Φ) ≤ 𝐶b|||𝜒|||NC|||𝜆|||NC|||Φ|||NC.

For proofs, see Lemma 4.7 of [15] and Lemma 2.6 of [10].
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Optimality conditions

Recall the auxiliary variable ̃︀𝑢ℎ given in (2.7). This computable variable helps to derive the reliability estimate
for the control variable.

A key property in favor of ̃︀𝑢ℎ ∈ 𝑈𝑎𝑑 is that it satisfies the optimality condition(︀
C*Θ̄M + 𝛼̃︀uℎ,u− ̃︀uℎ

)︀
𝐿2(𝜔)

≥ 0 for all u = (𝑢, 0)𝑇 , 𝑢 ∈ 𝑈𝑎𝑑. (3.4)

Define for 𝑢, 𝑣 ∈ 𝑈𝑎𝑑, 𝑗′(𝑢)𝑣 := (𝒞*𝜃𝑢,1 + 𝛼𝑢, 𝑣)𝐿2(𝜔), where 𝑗 : 𝑈𝑎𝑑 ∩ 𝒪(𝑢̄) → R is the reduced cost functional
defined by 𝑗(𝑢) := 𝒥 (𝐺(𝑢), 𝑢) and 𝐺(𝑢) = Ψ𝑢 = (𝜓𝑢,1, 𝜓𝑢,2) ∈ V is the unique solution to (2.2) corresponding
to 𝑢. Note that the first-order optimality condition 𝑗′(𝑢̄)(𝑢 − 𝑢̄) ≥ 0 for all 𝑢 ∈ 𝑈𝑎𝑑 translates to (2.3c). The
second-order sufficient optimality conditions that ensure the error estimates for this nonlinear control problem
are discussed below. For a detailed discussion, we refer to Section 2.3 of [33] and Section 3.2 of [16].

For a local regular solution
(︀
Ψ̄, 𝑢̄

)︀
of (2.1), the reduced control problem seeks a local solution 𝑢̄ that satisfies

inf𝑢∈𝑈𝑎𝑑∩𝒪(𝑢̄) 𝑗(𝑢), where 𝑗 : 𝑈𝑎𝑑 ∩𝒪(𝑢̄) → R is the reduced local cost functional defined by 𝑗(𝑢) := 𝐽(𝐺(𝑢), 𝑢)
and 𝐺(𝑢) = Ψ𝑢 = (𝜓𝑢,1, 𝜓𝑢,2) ∈ V is the unique solution to (2.2) as defined in Theorem 3.1. Since 𝐺 is of class
𝐶∞ in 𝒪(𝑢̄), 𝑗 is of class 𝐶∞ and for every 𝑢 ∈ 𝒪(𝑢̄) and 𝑣 ∈ 𝐿2(Ω) ([33], Sect. 2.3),

𝑗′′(𝑢)𝑣2 =
∫︁

Ω

(︀
|z𝑣|2 + [[z𝑣, z𝑣]] ·Θ𝑢

)︀
d𝑥+ 𝛼

∫︁
Ω

|𝑣|2 d𝑥,

where z𝑣 = (𝑧𝑣,1, 𝑧𝑣,2) is the solution of (3.2), [[z𝑣, z𝑣]] := ([𝑧𝑣,1, 𝑧𝑣,2] + [𝑧𝑣,2, 𝑧𝑣,1],−[𝑧𝑣,1, 𝑧𝑣,1]), [·, ·] being
the von Kármán bracket, Θ𝑢 = (𝜃𝑢,1, 𝜃𝑢,2) ∈ V is the solution of the adjoint system and [[z𝑣, z𝑣]] · Θ𝑢 :=
([𝑧𝑣,1, 𝑧𝑣,2] + [𝑧𝑣,2, 𝑧𝑣,1])𝜃𝑢,1 − [𝑧𝑣,1, 𝑧𝑣,1]𝜃𝑢,2. Define the tangent cone at 𝑢̄ to 𝑈𝑎𝑑 as

C𝑈𝑎𝑑
(𝑢̄) :=

{︀
𝑢 ∈ 𝐿2(𝜔) : 𝑢(𝑥) ∈ R if 𝑢̄(𝑥) ∈ (𝑢𝑎, 𝑢𝑏), 𝑢(𝑥) ≥ 0 if 𝑢̄(𝑥) = 𝑢𝑎, 𝑢(𝑥) ≤ 0 if 𝑢̄(𝑥) = 𝑢𝑏

}︀
.

Introduce the notation 𝑑(𝑥) = 𝒞*𝜃1(𝑥) + 𝛼𝑢̄(𝑥), 𝑥 ∈ 𝜔. Associated with 𝑑, we introduce another cone C𝑢̄ ⊂
C𝑈𝑎𝑑

(𝑢̄) defined by

C𝑢̄ :=
{︁
𝑢 ∈ 𝐿2(𝜔) :𝑢(𝑥) = 0 if 𝑑(𝑥) ̸= 0, 𝑢(𝑥) ≥ 0 if 𝑑(𝑥) = 0 and 𝑢̄(𝑥) = 𝑢𝑎,

𝑢(𝑥) ≤ 0 if 𝑑(𝑥) = 0 and 𝑢̄(𝑥) = 𝑢𝑏

}︁
.

Theorem 3.8 (Second-order necessary condition ([33], Thm. 2.14)). Let
(︀
Ψ̄, 𝑢̄

)︀
be a regular local solution of

(2.1). Then,
𝑗′′(𝑢̄)𝑣2 ≥ 0 for all 𝑣 ∈ C𝑢̄. (3.5)

The optimality condition (3.5) is equivalent to∫︁
Ω

(︁
|z̄𝑣|2 + [[z̄𝑣, z̄𝑣]]Θ̄

)︁
d𝑥+ 𝛼

∫︁
𝜔

|𝑣|2 d𝑥 ≥ 0

for all 𝑣 ∈ C𝑢̄, where Θ̄ = Θ(𝑢̄) is the associated adjoint state and z̄𝑣 = 𝑧𝑣(𝑢̄) is the solution to (3.2) for 𝑢 = 𝑢̄
and 𝑣 ∈ C𝑢̄.

Theorem 3.9 (Second-order sufficient condition [1,16]). Let
(︀
Ψ̄, 𝑢̄

)︀
be a nonsingular local solution of (2.1) and

let Θ̄ = Θ(𝑢̄) be the associated adjoint state. Let the triplet (Ψ̄, Θ̄, 𝑢̄) ∈ V ×V × 𝐿2(𝜔) satisfy the first-order
optimality system in (2.3a)–(2.3c) and∫︁

Ω

(︀
|z̄𝑣|2 + [[z̄𝑣, z̄𝑣]]Θ̄

)︀
d𝑥+ 𝛼

∫︁
𝜔

|𝑣|2 d𝑥 > 0 (3.6)
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for all non zero 𝑣 ∈ C𝑢̄. Then, there exist 𝜖 > 0 and 𝜇 > 0 such that, for all 𝑢 ∈ 𝑈𝑎𝑑 satisfying, together with
Ψ𝑢,

‖𝑢− 𝑢̄‖2𝐿2(𝜔) +
⃒⃒⃒⃒⃒⃒

Ψ𝑢 − Ψ̄
⃒⃒⃒⃒⃒⃒2 ≤ 𝜖2,

we have
𝒥
(︀
Ψ̄, 𝑢̄

)︀
+
𝜇

2

(︁
‖𝑢− 𝑢̄‖2𝐿2(𝜔) +

⃒⃒⃒⃒⃒⃒
Ψ𝑢 − Ψ̄

⃒⃒⃒⃒⃒⃒2)︁ ≤ 𝒥 (Ψ𝑢, 𝑢).

Note that the condition (3.6) is equivalent to the existence of ̂︀𝛿, 𝜏 > 0 such that ([16], Cor. 3.11)

𝑗′′(𝑢̄)𝑣2 > ̂︀𝛿(︁‖𝑣‖2𝐿2(𝜔) + |||z̄𝑣|||2
)︁
, for all 𝑣 ∈ C 𝜏

𝑢̄ , (3.7)

where z̄𝑣 is the solution of (3.2) with 𝑢 = 𝑢̄ and

C 𝜏
𝑢̄ :=

{︁
𝑣 ∈ 𝐿2(𝜔) : 𝑣(𝑥) = 0 if

⃒⃒
𝑑(𝑥)

⃒⃒
> 𝜏, 𝑣(𝑥) ≥ 0 if

⃒⃒
𝑑(𝑥)

⃒⃒
≤ 𝜏 and 𝑢̄(𝑥) = 𝑢𝑎,

𝑣(𝑥) ≤ 0 if
⃒⃒
𝑑(𝑥)

⃒⃒
≤ 𝜏 and 𝑢̄(𝑥) = 𝑢𝑏

}︁
.

The next result follows from Lemma 5 of [1].

Lemma 3.10 (Property of 𝑗′′). Let ℳ > 0 be such that max
{︁
‖𝑢̄+ 𝑡(̃︀𝑢ℎ − 𝑢̄)‖𝐿∞(Ω), ‖𝑢̄− ̃︀𝑢ℎ‖𝐿∞(Ω)

}︁
≤

ℳ with 𝑡 ∈ (0, 1). Then, there exists 𝐶ℳ > 0 such that
⃒⃒⃒
(𝑗′′(𝑢̄+ 𝑡(̃︀𝑢ℎ − 𝑢̄))− 𝑗′′(̃︀𝑢ℎ − 𝑢̄))(̃︀𝑢ℎ − 𝑢̄)2

⃒⃒⃒
≤

𝐶ℳ‖̃︀𝑢ℎ − 𝑢̄‖𝐿∞(Ω)‖̃︀𝑢ℎ − 𝑢̄‖2𝐿2(Ω).

4. Reliability analysis

This section deals with the proofs of Theorem 2.4(a) and (b).
The reliability error estimate for the control problem can be expressed as a combination of the reliability

results for the state, adjoint and control variables. The individual contributions are presented first. The proof
of the main result is presented at the end of this section.

4.1. A posteriori error analysis for the state equations

Let
(︀
Ψ̄, 𝑢̄

)︀
be a regular solution to (2.1) and let ̂︀Ψ ∈ V solve the auxiliary state equation

𝐴
(︁̂︀Ψ,Φ)︁+𝐵

(︁̂︀Ψ, ̂︀Ψ,Φ)︁ = (F + Cūℎ,Φ) for all Φ ∈ V, (4.1)

where ūℎ = (𝑢̄ℎ, 0)𝑇 is the discrete control defined in (2.6). Since Ψ̄ is a regular solution and 𝑢̄ℎ is sufficiently
close to 𝑢̄ from Theorem 2.3, Theorem 3.1 yields ̂︀Ψ is regular. That is,

0 < 𝛽 := inf
𝜉∈V
|||𝜉|||2=1

sup
Φ∈V
|||Φ|||2=1

𝐷𝑁
(︁̂︀Ψ; 𝜉,Φ

)︁
. (4.2)

Note that ̂︀Ψ solves the von Kármán equations (4.1) and its Morley FE approximation seeks Ψ̄M as stated in
(2.6a). Given the exact solution

(︀
Ψ̄, Θ̄, ū

)︀
to (2.3), suppose 𝜀0, 𝛿0 > 0 satisfy Theorem 2.3, and if necessary,

are chosen smaller such that, for any 𝒯 ∈ T(𝛿0), the discrete solution
(︀
Ψ̄M, Θ̄M, ūℎ

)︀
to (2.6) satisfies 𝜀0 ≤

min
{︁
𝛽/(2𝐶b(1 + ΛJ + 𝐶ub)), 𝛽/(4𝐶b), 𝛼̂︀𝛿(2𝐶ℳ)−1

/𝐶dS, 𝜏/(2𝐶dS)
}︁

and⃒⃒⃒⃒⃒⃒
Ψ̄− Ψ̄M

⃒⃒⃒⃒⃒⃒
NC

+
⃒⃒⃒⃒⃒⃒

Θ̄− Θ̄M

⃒⃒⃒⃒⃒⃒
NC

+ ‖𝑢̄− 𝑢̄ℎ‖𝐿2(𝜔) ≤ 𝜀0, (4.3)

where the constants ̂︀𝛿, 𝐶ℳ and 𝜏 are defined in (3.7) and Lemma 3.10, and 𝛽 (resp. 𝛽) is the inf-sup constant
in (3.3) (resp. (4.2)). Note that the constants ΛJ, 𝐶b, 𝐶dS and 𝐶ub are from Lemmas 3.6(d), 3.7(a), (b), and
Theorem 3.1, respectively.
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Theorem 4.1 (Reliability for the state variable). Let
(︀
Ψ̄, 𝑢̄

)︀
∈ V × 𝐿2(𝜔) be a regular solution to (2.1) and

(Ψ̄M, 𝑢̄ℎ) ∈ VM × 𝑈ℎ,𝑎𝑑 solve (2.5). Then for all 𝒯 ∈ T(𝛿0), there exists an ℎ-independent positive constant
𝐶ST,rel such that

⃒⃒⃒⃒⃒⃒
Ψ̄− Ψ̄M

⃒⃒⃒⃒⃒⃒
NC

≤ 𝐶ST,rel

⎛⎝∑︁
𝐾∈𝒯

𝜂2
𝐾,Ψ̄M

+
∑︁

𝐸∈ℰ(Ω)

𝜂2
𝐸,Ψ̄M

+ ‖𝑢̄− 𝑢̄ℎ‖2𝐿2(𝜔)

⎞⎠1/2

. (4.4)

Proof. The terms
⃒⃒⃒⃒⃒⃒⃒⃒⃒ ̂︀Ψ− Ψ̄M

⃒⃒⃒⃒⃒⃒⃒⃒⃒
NC

and
⃒⃒⃒⃒⃒⃒⃒⃒⃒

Ψ̄− ̂︀Ψ⃒⃒⃒⃒⃒⃒⃒⃒⃒
2

are estimated and then a triangle inequality completes the

proof. Theorem 3.1 for (2.3a) and (4.1) yield 𝐺(𝑢̄) = Ψ̄, 𝐺(𝑢̄ℎ) = ̂︀Ψ. Also, if 𝐺′(𝑢)𝑣 =: z𝑣 ∈ V, then z𝑣 satisfies
𝒜z𝑣 + ℬ′(Ψ)z𝑣 = Cv in V′, where Ψ = 𝐺(𝑢) and 𝑢, 𝑣 belong to the interior of 𝒪(𝑢̄). Theorem 3.1 proves the
uniform boundedness of

⃒⃒⃒⃒⃒⃒⃒⃒⃒
(𝒜+ ℬ′(Ψ𝑢))−1

⃒⃒⃒⃒⃒⃒⃒⃒⃒
ℒ(V′,V)

whenever 𝑢 ∈ 𝒪(𝑢̄).

Hence, for 𝑢𝑡 = 𝑢̄ℎ + 𝑡(𝑢̄− 𝑢̄ℎ) and Ψ𝑡 = 𝐺(𝑢𝑡), mean value theorem, Theorem 3.1 and 𝑢̄ℎ ∈ 𝒪(𝑢̄) show⃒⃒⃒⃒⃒⃒⃒⃒⃒
Ψ̄− ̂︀Ψ⃒⃒⃒⃒⃒⃒⃒⃒⃒

2
=
⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒∫︁ 1

0

𝐺′(𝑢𝑡)(C(ū− ūℎ)) d𝑡
⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒

2

=
⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒∫︁ 1

0

(𝒜+ ℬ′(Ψ𝑡))
−1(C(ū− ūℎ)) d𝑡

⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒
2

≤ 𝐶ub‖𝑢̄− 𝑢̄ℎ‖𝐿2(𝜔).

(4.5)

The estimate of
⃒⃒⃒⃒⃒⃒⃒⃒⃒ ̂︀Ψ− Ψ̄M

⃒⃒⃒⃒⃒⃒⃒⃒⃒
NC

adapts the ideas of [15]. The inf-sup condition (4.2) implies that for any 0 <

𝜖1 < 𝛽, there exists some Φ ∈ V with |||Φ|||2 = 1 and

(𝛽 − 𝜖1)
⃒⃒⃒⃒⃒⃒⃒⃒⃒ ̂︀Ψ− 𝐽Ψ̄M

⃒⃒⃒⃒⃒⃒⃒⃒⃒
2
≤ 𝐷𝑁(̂︀Ψ; ̂︀Ψ− 𝐽Ψ̄M,Φ). (4.6)

Since 𝑁(∙) is quadratic, the finite Taylor series is exact and hence

𝑁
(︀
𝐽Ψ̄M; Φ

)︀
= 𝐷𝑁

(︁̂︀Ψ; 𝐽Ψ̄M − ̂︀Ψ,Φ)︁+
1
2
𝐷2𝑁

(︁̂︀Ψ; 𝐽Ψ̄M − ̂︀Ψ, 𝐽Ψ̄M − ̂︀Ψ,Φ)︁.
This with 𝐷2𝑁

(︁̂︀Ψ; ̂︀Ψ− 𝐽Ψ̄M, ̂︀Ψ− 𝐽Ψ̄M,Φ
)︁

= 2𝐵
(︁̂︀Ψ− 𝐽Ψ̄M, ̂︀Ψ− 𝐽Ψ̄M,Φ

)︁
, (4.6) and Lemma 3.7(b) show

(︁
𝛽 − 𝜖1

)︁⃒⃒⃒⃒⃒⃒⃒⃒⃒̂︀Ψ− 𝐽Ψ̄M

⃒⃒⃒⃒⃒⃒⃒⃒⃒
2
≤
⃒⃒
𝑁
(︀
𝐽Ψ̄M; Φ

)︀⃒⃒
+ 𝐶b

⃒⃒⃒⃒⃒⃒⃒⃒⃒ ̂︀Ψ− 𝐽Ψ̄M

⃒⃒⃒⃒⃒⃒⃒⃒⃒2
2
. (4.7)

A triangle inequality, (4.5), (4.3), Lemma 3.6(d) with 𝑣 = ̂︀Ψ and 𝜀0 ≤ 𝛽/(2𝐶b(1 + ΛJ + 𝐶ub)) imply⃒⃒⃒⃒⃒⃒⃒⃒⃒ ̂︀Ψ− 𝐽Ψ̄M

⃒⃒⃒⃒⃒⃒⃒⃒⃒
NC

≤
⃒⃒⃒⃒⃒⃒⃒⃒⃒ ̂︀Ψ− Ψ̄

⃒⃒⃒⃒⃒⃒⃒⃒⃒
2

+
⃒⃒⃒⃒⃒⃒

Ψ̄− Ψ̄M

⃒⃒⃒⃒⃒⃒
NC

+
⃒⃒⃒⃒⃒⃒

(1− 𝐽)Ψ̄M

⃒⃒⃒⃒⃒⃒
NC

≤ (𝐶ub + 1 + ΛJ)𝜀0 ≤ 𝛽/2𝐶b. (4.8)

A substitution of (4.8) in (4.7) leads to(︁
𝛽/2− 𝜖1

)︁⃒⃒⃒⃒⃒⃒⃒⃒⃒̂︀Ψ− 𝐽Ψ̄M

⃒⃒⃒⃒⃒⃒⃒⃒⃒
2
≤
⃒⃒
𝑁
(︀
𝐽Ψ̄M; Φ

)︀⃒⃒
.

This eventually shows that⃒⃒⃒⃒⃒⃒⃒⃒⃒ ̂︀Ψ− Ψ̄M

⃒⃒⃒⃒⃒⃒⃒⃒⃒
NC

≤ 2𝛽−1
⃒⃒
𝑁
(︀
𝐽Ψ̄M; Φ

)︀⃒⃒
+
⃒⃒⃒⃒⃒⃒

(𝐽 − 1)Ψ̄M

⃒⃒⃒⃒⃒⃒
NC
. (4.9)

The definition of 𝑁(∙), (2.6a) and rearrangements lead to

𝑁
(︀
𝐽Ψ̄M; Φ

)︀
= 𝐴

(︀
𝐽Ψ̄M,Φ

)︀
+𝐵

(︀
𝐽Ψ̄M, 𝐽Ψ̄M,Φ

)︀
− (F + Cuℎ,Φ)
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= 𝐴NC((𝐽 − 1)Ψ̄M,Φ) +𝐴NC

(︀
Ψ̄M, (1− 𝐼M)Φ

)︀
+𝐵NC

(︀
(𝐽 − 1)Ψ̄M, 𝐽Ψ̄M,Φ

)︀
+𝐵NC

(︀
Ψ̄M, (𝐽 − 1)Ψ̄M,Φ

)︀
+𝐵NC

(︀
Ψ̄M, Ψ̄M, (1− 𝐼M)Φ

)︀
− (F + Cuℎ, (1− 𝐼M)Φ) =:

6∑︁
𝑖=1

𝑆𝑖.

(4.10)

The Cauchy–Schwarz inequality proves 𝑆1 ≤
⃒⃒⃒⃒⃒⃒

(𝐽 − 1)Ψ̄M

⃒⃒⃒⃒⃒⃒
NC
. Since the piecewise second derivatives of Ψ̄M

are constants, Lemma 3.5(a) implies 𝑆2 = 0. The triangle inequalities, Lemma 3.6(d) with 𝑣 = Ψ̄, (4.3) and
Lemma 3.4(a) prove⃦⃦

𝐽Ψ̄M

⃦⃦
2

+
⃦⃦
Ψ̄M

⃦⃦
NC

≤
⃦⃦

(𝐽 − 1)Ψ̄M

⃦⃦
NC

+ 2
(︀⃦⃦

Ψ̄− Ψ̄M

⃦⃦
NC

+
⃦⃦

Ψ̄
⃦⃦

2

)︀
≤ (2 + ΛJ)𝜀0 + 2

⃦⃦
Ψ̄
⃦⃦

2
:= ℳ1. (4.11)

Lemma 3.7(b) and (4.11) show 𝑆3 + 𝑆4 ≤ 𝐶bℳ1

⃒⃒⃒⃒⃒⃒
(𝐽 − 1)Ψ̄M

⃒⃒⃒⃒⃒⃒
NC

. The definition
of 𝐵NC(∙, ∙, ∙), the Cauchy–Schwarz inequality and Lemma 3.5(b) prove 𝑆5 + 𝑆6 ≤

𝐶I

(︁∑︀
𝐾∈𝒯 ℎ

4
𝐾

(︁⃦⃦
𝑓 + 𝒞𝑢ℎ +

[︀
𝜓M,1, 𝜓M,2

]︀⃦⃦2

𝐿2(𝐾)
+
⃦⃦[︀
𝜓M,1, 𝜓M,1

]︀⃦⃦2

𝐿2(𝐾)

)︁)︁1/2

. A substitution of 𝑆1–𝑆6 in
(4.10) and then in (4.9) with Lemma 3.6(e), the definitions (2.8a) and (2.8e) result in

⃒⃒⃒⃒⃒⃒⃒⃒⃒ ̂︀Ψ− Ψ̄M

⃒⃒⃒⃒⃒⃒⃒⃒⃒
NC

≤ 𝐶ST,rel

⎛⎝∑︁
𝐾∈𝒯

𝜂2
𝐾,Ψ̄M

+
∑︁

𝐸∈ℰ(Ω)

𝜂2
𝐸,Ψ̄M

⎞⎠1/2

, (4.12)

with 𝐶2
ST,rel := 𝐶2

J

(︁
1 + 2𝛽−1(1 + 𝐶bℳ1)

)︁2

+ 4𝛽−2𝐶2
I .

A combination of (4.5) and the last displayed result with a triangle inequality concludes the proof. �

4.2. A posteriori error analysis for the adjoint equations

The auxiliary problem that corresponds to the adjoint equations seeks ̂︀Θ ∈ V such that

𝐴
(︁

Φ, ̂︀Θ)︁+ 2𝐵NC

(︁
Ψ̄M,Φ, ̂︀Θ)︁ =

(︀
Ψ̄M −Ψ𝑑,Φ

)︀
for all Φ ∈ V, (4.13)

where Ψ̄M ∈ VM is the solution to (2.6a).
Since Ψ̄ is a regular solution to (2.1), the adjoint of the operator in (3.3) satisfies the inf-sup condition given

by
𝛽 = inf

𝜉∈V
|||𝜉|||2=1

sup
Φ∈V
|||Φ|||2=1

⟨︀
𝒜Φ + ℬ′

(︀
Ψ̄
)︀
Φ, 𝜉

⟩︀
,
⃒⃒⃒⃒⃒⃒

Θ̄
⃒⃒⃒⃒⃒⃒

2
≤ 𝛽−1

⃒⃒⃒⃒⃒⃒
Ψ̄−Ψ𝑑

⃒⃒⃒⃒⃒⃒
(4.14)

with the last inequality derived from (2.3b).
An introduction of Ψ̄ in the second term on the left-hand side of (4.13) yields

𝐴
(︁

Φ, ̂︀Θ)︁+2𝐵NC

(︁
Ψ̄M,Φ, ̂︀Θ)︁ = 𝐴

(︁
Φ, ̂︀Θ)︁+ 2𝐵

(︁
Ψ̄,Φ, ̂︀Θ)︁+ 2𝐵NC

(︁
Ψ̄M − Ψ̄,Φ, ̂︀Θ)︁.

The first inequality of (4.14), Lemma 3.7(b), (4.3) and 𝜀0 ≤ 𝛽/(4𝐶b) show that for any 0 < 𝜖2 < 𝛽, there exists
some Φ ∈ V with |||Φ|||2 = 1 such that

𝐴
(︁

Φ, ̂︀Θ)︁+ 2𝐵NC

(︁
Ψ̄M,Φ, ̂︀Θ)︁ ≥ (︀𝛽 − 𝜖2 − 2𝐶b

⃒⃒⃒⃒⃒⃒
Ψ̄M − Ψ̄

⃒⃒⃒⃒⃒⃒
NC

)︀⃒⃒⃒⃒⃒⃒⃒⃒⃒ ̂︀Θ⃒⃒⃒⃒⃒⃒⃒⃒⃒
2
≥ (𝛽 − 2𝐶b𝜀0)

⃒⃒⃒⃒⃒⃒⃒⃒⃒ ̂︀Θ⃒⃒⃒⃒⃒⃒⃒⃒⃒
2
≥ 𝛽

2

⃒⃒⃒⃒⃒⃒⃒⃒⃒ ̂︀Θ⃒⃒⃒⃒⃒⃒⃒⃒⃒
2

(4.15)

with 𝜖2 ↘ 0 in the second last step of the inequality above.
This shows the wellposedness of (4.13). A combination of (4.13) and (4.15) leads to a bound for the solution

of ̂︀Θ of (4.13) as ⃒⃒⃒⃒⃒⃒⃒⃒⃒ ̂︀Θ⃒⃒⃒⃒⃒⃒⃒⃒⃒
2
≤ 2𝛽−1

⃒⃒⃒⃒⃒⃒
Ψ̄M −Ψ𝑑

⃒⃒⃒⃒⃒⃒
. (4.16)
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For Ψ,Φ ∈ V + VM, define linear operators ℱΨ and ℱΨ,NC ∈ ℒ(V + VM) by

ℱΨ(Φ) = Φ + 𝑇 [ℬ′NC(Ψ)*(Φ)] and ℱΨ,NC(Φ) = Φ + 𝑇NC[ℬ′NC(Ψ)*(Φ)], (4.17)

where ℬ′NC(Ψ)* is the adjoint operator corresponding to ℬ′NC(Ψ). Here the bounded linear operator 𝑇 (∙) (resp.
𝑇NC(∙)) solves the biharmonic system in the sense that for the load 𝑔 ∈ V′ (resp. 𝑔 ∈ V′

M), 𝐴(𝑇𝑔,Φ) = ⟨𝑔,Φ⟩
for all Φ ∈ V (resp. 𝐴NC(𝑇NC𝑔,ΦM) = ⟨𝑔,ΦM⟩ for all ΦM ∈ VM). A detailed discussion of these operators is
provided in the appendix.

The next lemma (proved in the appendix) is utilized in the proof of Theorem 4.3.

Lemma 4.2 (Uniform boundeness of ℱ−1
Ψ𝑢

). If Ψ̄ ∈ V is a regular solution to (2.1), then ℱΨ𝑢
is an

automorphism on V + VM, whenever 𝑢 is sufficiently close to 𝑢̄. Moreover,
⃦⃦
ℱ−1

Ψ𝑢

⃦⃦
ℒ(V+VM)

≤ 1 +

2𝐶b

⃦⃦⃦(︀
𝒜+ ℬ′

(︀
Ψ̄
)︀)︀−1

⃦⃦⃦
ℒ(V′,V)

⃒⃒⃒⃒⃒⃒
Ψ̄
⃒⃒⃒⃒⃒⃒

2
.

Theorem 4.3 (Reliability for the adjoint variable). Let
(︀
Ψ̄, Θ̄, ū

)︀
(resp.

(︀
Ψ̄M, Θ̄M, ūℎ

)︀
) solve the optimality

system (2.3) (resp. (2.6)). Then for all 𝒯 ∈ T(𝛿0), there exists an ℎ-independent positive constant 𝐶AD,rel such
that

⃒⃒⃒⃒⃒⃒
Θ̄− Θ̄M

⃒⃒⃒⃒⃒⃒
NC

≤ 𝐶AD,rel

⎛⎝∑︁
𝐾∈𝒯

𝜂2
𝐾,Ψ̄M

+
∑︁
𝐾∈𝒯

𝜂2
𝐾,Θ̄M

+
∑︁

𝐸∈ℰ(Ω)

𝜂2
𝐸,Ψ̄M

+
∑︁

𝐸∈ℰ(Ω)

𝜂2
𝐸,Θ̄M

+ ‖𝑢̄− 𝑢̄ℎ‖2𝐿2(𝜔)

⎞⎠1/2

.

(4.18)

Proof. The terms
⃒⃒⃒⃒⃒⃒⃒⃒⃒ ̂︀Θ− Θ̄M

⃒⃒⃒⃒⃒⃒⃒⃒⃒
NC

and
⃒⃒⃒⃒⃒⃒⃒⃒⃒

Θ̄− ̂︀Θ⃒⃒⃒⃒⃒⃒⃒⃒⃒
2

are estimated and then a triangle inequality completes the

proof. The inf-sup condition (4.14) implies for any 0 < 𝜖3 < 𝛽, there exists some Φ ∈ V with |||Φ|||2 = 1 and

(𝛽 − 𝜖3)
⃒⃒⃒⃒⃒⃒⃒⃒⃒ ̂︀Θ− 𝐽Θ̄M

⃒⃒⃒⃒⃒⃒⃒⃒⃒
2
≤ 𝐴

(︁̂︀Θ− 𝐽Θ̄M,Φ
)︁

+ 2𝐵NC

(︁
Ψ̄M,Φ, ̂︀Θ− 𝐽Θ̄M

)︁
+ 2𝐵NC

(︁
Ψ̄− Ψ̄M,Φ, ̂︀Θ− 𝐽Θ̄M

)︁
.

Since
⃒⃒⃒⃒⃒⃒

Ψ̄− Ψ̄M

⃒⃒⃒⃒⃒⃒
NC

≤ 𝜀0 ≤ 𝛽/(4𝐶b), Lemma 3.7(b) for the last term in the right-hand side of the above
inequality shows

(𝛽/2− 𝜖3)
⃒⃒⃒⃒⃒⃒⃒⃒⃒ ̂︀Θ− 𝐽Θ̄M

⃒⃒⃒⃒⃒⃒⃒⃒⃒
2
≤ 𝐴

(︁̂︀Θ− 𝐽Θ̄M,Φ
)︁

+ 2𝐵NC

(︁
Ψ̄M,Φ, ̂︀Θ− 𝐽Θ̄M

)︁
.

This, equations (4.13), (2.6b) and simple manipulation eventually lead to

(𝛽/2− 𝜖3)
⃒⃒⃒⃒⃒⃒⃒⃒⃒ ̂︀Θ− 𝐽Θ̄M

⃒⃒⃒⃒⃒⃒⃒⃒⃒
2
≤
(︀
Ψ̄M −Ψ𝑑,Φ

)︀
−𝐴

(︀
𝐽Θ̄M,Φ

)︀
− 2𝐵NC

(︀
Ψ̄M,Φ, 𝐽Θ̄M

)︀
=
(︀
Ψ̄M −Ψ𝑑, (1− 𝐼M)Φ

)︀
−𝐴NC

(︀
(𝐽 − 1)Θ̄M,Φ

)︀
+𝐴NC

(︀
Θ̄M, (𝐼M − 1)Φ

)︀
− 2𝐵NC

(︀
Ψ̄M,Φ, 𝐽Θ̄M

)︀
+ 2𝐵NC

(︀
Ψ̄M, 𝐼MΦ, Θ̄M

)︀
=
(︀
Ψ̄M −Ψ𝑑, (1− 𝐼M)Φ

)︀
−𝐴NC

(︀
(𝐽 − 1)Θ̄M,Φ

)︀
+𝐴NC

(︀
Θ̄M, (𝐼M − 1)Φ

)︀
+ 2𝐵NC

(︀
Ψ̄M,Φ, (1− 𝐽)Θ̄M

)︀
+ 2𝐵NC

(︀
Ψ̄M, (𝐼M − 1)Φ, Θ̄M

)︀
=:

5∑︁
𝑖=1

𝑆𝑖. (4.19)

The Cauchy–Schwarz inequality shows that 𝑆2 ≤
⃒⃒⃒⃒⃒⃒

(𝐽 − 1)Θ̄M

⃒⃒⃒⃒⃒⃒
NC
. Since the piecewise second derivatives of Θ̄M

are constants, Lemma 3.5(a) implies 𝑆3 = 0. Lemma 3.7(b) and (4.11) prove 𝑆4 ≤ 𝐶bℳ1

⃒⃒⃒⃒⃒⃒
(𝐽 − 1)Θ̄M

⃒⃒⃒⃒⃒⃒
NC

. The
orthogonality property of 𝐽 in Lemma 3.6(c) proves 𝐵NC(Ψ̄M, (1 − 𝐽)𝐼MΦ,𝒫0Θ̄M) = 0. This and elementary
algebra lead to

𝑆5/2 = 𝐵NC

(︀
Ψ̄M, (1− 𝐽)𝐼MΦ, (1− 𝒫0)Θ̄M

)︀
+𝐵NC

(︀
Ψ̄M, (𝐽𝐼M − 1)Φ, (1− 𝐽)Θ̄M

)︀
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+𝐵NC

(︀
(1− 𝐽)Ψ̄M, (𝐽𝐼M − 1)Φ, 𝐽Θ̄M

)︀
+𝐵

(︀
𝐽Ψ̄M, (𝐽𝐼M − 1)Φ, 𝐽Θ̄M

)︀
. (4.20)

Triangle inequalities, Lemma 3.6(d) with 𝑣 = Θ̄, (4.3), the second inequality of (4.14) and Lemma 3.4(a) show⃒⃒⃒⃒⃒⃒
𝐽Θ̄M

⃒⃒⃒⃒⃒⃒
2

+
⃒⃒⃒⃒⃒⃒

Θ̄M

⃒⃒⃒⃒⃒⃒
NC

≤
⃒⃒⃒⃒⃒⃒

(𝐽 − 1)Θ̄M

⃒⃒⃒⃒⃒⃒
NC

+ 2
(︀⃒⃒⃒⃒⃒⃒

Θ̄− Θ̄M

⃒⃒⃒⃒⃒⃒
NC

+
⃒⃒⃒⃒⃒⃒

Θ̄
⃒⃒⃒⃒⃒⃒

2

)︀
≤ (2 + ΛJ)𝜀0 + 2

⃒⃒⃒⃒⃒⃒
Θ̄
⃒⃒⃒⃒⃒⃒

2
:= ℳ2. (4.21)

Lemmas 3.5(b) and 3.6(d) with 𝑣 = Φ verify

|||(𝐽𝐼M − 1)Φ|||NC ≤ |||(𝐽 − 1)𝐼MΦ|||NC + |||(𝐼M − 1)Φ|||NC ≤ (ΛJ + 1)|||(𝐼M − 1)Φ|||NC ≤ 𝐶I(ΛJ + 1). (4.22)

The first three terms in the right-hand side of (4.20) are estimated now. The definition of 𝐵NC(∙, ∙, ∙), the
Cauchy–Schwarz inequality, (4.22) and the definitions (2.8c) prove

𝐵NC

(︀
Ψ̄M, (1− 𝐽)𝐼MΦ, (1− 𝒫0)Θ̄M

)︀
≤ 𝐶I(ΛJ + 1)

(︃∑︁
𝐾∈𝒯

𝜂2
𝐾,𝒫0,Θ̄M

)︃1/2

. (4.23)

Lemma 3.7(b), (4.11), (4.21), (4.22), Lemma 3.6(e) and the definitions (2.8e), (2.8f) show

𝐵NC

(︀
Ψ̄M, (𝐽𝐼M − 1)Φ, (1− 𝐽)Θ̄M

)︀
≤ 𝐶b𝐶I𝐶J(ΛJ + 1)ℳ1

⎛⎝ ∑︁
𝐸∈ℰ(Ω)

𝜂2
𝐸,Θ̄M

⎞⎠1/2

, (4.24)

𝐵NC

(︀
(1− 𝐽)Ψ̄M, (𝐽𝐼M − 1)Φ, 𝐽Θ̄M

)︀
≤ 𝐶b𝐶I𝐶J(ΛJ + 1)ℳ2

⎛⎝ ∑︁
𝐸∈ℰ(Ω)

𝜂2
𝐸,Ψ̄M

⎞⎠1/2

. (4.25)

The last term on the right-hand side of (4.20) is estimated in its scalar version and details are provided for
clarity. The symmetry of 𝑏(∙, ∙, ∙) with respect to the second and third variables, and an introduction of 𝜓M,1

and 𝜃M,1 imply that the first term in the expansion can be rewritten as

𝑏
(︀
𝐽𝜓M,1, (𝐽𝐼M − 1)𝜑2, 𝐽𝜃M,1

)︀
= 𝑏NC

(︀
(𝐽 − 1)𝜓M,1, 𝐽𝜃M,1, (𝐽𝐼M − 1)𝜑2

)︀
+ 𝑏NC

(︀
𝜓M,1, (𝐽 − 1)𝜃M,1, (𝐽𝐼M − 1)𝜑2

)︀
+ 𝑏NC

(︀
𝜓M,1, 𝜃M,1, (𝐼M − 1)𝜑2

)︀
(4.26)

with 𝑏NC

(︀
𝜓M,1, 𝜃M,1, (𝐽 − 1)𝐼M𝜑2

)︀
= 0 from Lemma 3.6(b) in the last step. Lemma 3.7(b) (in its scalar version),

(4.11), (4.21), (4.22), Lemma 3.6(e) and (2.8e), (2.8f) lead to bounds for the first and second terms on the right-
hand side of (4.26). The third term in the right-hand side of (4.26) is combined with the scalar form of 𝑆1 as

2𝑏NC

(︀
𝜓M,1, 𝜃M,1, (𝐼M − 1)𝜑2

)︀
+
(︀
𝜓M,2 − 𝜓𝑑,2, (𝐼M − 1)𝜑2

)︀
≤ 𝐶Iℎ

2

(︃∑︁
𝐾∈𝒯

⃦⃦
𝜓M,2 − 𝜓𝑑,2 +

[︀
𝜓M,1, 𝜃M,1

]︀⃦⃦2

𝐿2(𝐾)

)︃1/2

(4.27)
with the Cauchy–Schwarz inequality and Lemma 3.5(b). The remaining two terms in the expansion of
𝐵NC(∙, ∙, ∙) are dealt with in an analogous way.

The results (4.23)–(4.27) are employed to estimate 𝑆1 +𝑆5 first and then substituted in (4.19) with estimates
of 𝑆2 to 𝑆4. This, a triangle inequality with 𝐽Θ̄M, Lemma 3.6(e) and (2.8d)–(2.8f) show

⃒⃒⃒⃒⃒⃒⃒⃒⃒ ̂︀Θ− Θ̄M

⃒⃒⃒⃒⃒⃒⃒⃒⃒
2
≤ 𝐶AD,rel

⎛⎝∑︁
𝐾∈𝒯

𝜂2
𝐾,Θ̄M

+
∑︁

𝐸∈ℰ(Ω)

𝜂2
𝐸,Ψ̄M

+
∑︁

𝐸∈ℰ(Ω)

𝜂2
𝐸,Θ̄M

⎞⎠1/2

(4.28)
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with 𝜖3 ↘ 0, where

𝐶2
AD,rel := 4𝛽−2

(︁
𝐶2

J((𝛽/2 + 1 + 𝐶bℳ1) + 8𝐶I𝐶bℳ1(ΛJ + 1))2

+ 𝐶2
J(8𝐶I𝐶bℳ2(ΛJ + 1))2 + 𝐶2

I

(︁
1 + 4(ΛJ + 1)2

)︁)︁
.

The uniform boundedness property of ℱ−1
Ψ̄

in Lemma 4.2 implies⃒⃒⃒⃒⃒⃒⃒⃒⃒ ̂︀Θ− Θ̄
⃒⃒⃒⃒⃒⃒⃒⃒⃒

2
=
⃒⃒⃒⃒⃒⃒⃒⃒⃒
ℱ−1

Ψ̄
ℱΨ̄

(︁̂︀Θ− Θ̄
)︁⃒⃒⃒⃒⃒⃒⃒⃒⃒

2
≤
⃦⃦
ℱ−1

Ψ̄

⃦⃦
ℒ(V+VM)

⃒⃒⃒⃒⃒⃒⃒⃒⃒
ℱΨ̄

(︁̂︀Θ− Θ̄
)︁⃒⃒⃒⃒⃒⃒⃒⃒⃒

NC
.

The definition of ℱΨ̄ given by (4.17), (2.3b) and (4.13) show

ℱΨ̄

(︁
Θ̄− ̂︀Θ)︁ = 𝑇

(︀
Ψ̄−Ψ𝑑

)︀
−ℱΨ̄

(︁̂︀Θ)︁ = 𝑇
(︀
Ψ̄−Ψ𝑑

)︀
− ̂︀Θ− 𝑇

[︁
ℬ′NC

(︀
Ψ̄
)︀*(︁̂︀Θ)︁]︁

= 𝑇
(︀
Ψ̄− Ψ̄M

)︀
+ 𝑇

[︁
ℬ′NC

(︀
Ψ̄M − Ψ̄

)︀*(︁̂︀Θ)︁]︁.
Hence, Lemma 3.7(a) and (b), (4.16) and Theorem 4.1 prove

⃒⃒⃒⃒⃒⃒⃒⃒⃒ ̂︀Θ− Θ̄
⃒⃒⃒⃒⃒⃒⃒⃒⃒

2
≤ 𝐶ST,rel

⃦⃦
ℱ−1

Ψ̄

⃦⃦
ℒ(V+VM)

‖𝑇‖
(︀
𝐶dS + 2𝐶b𝛽

−1
)︀⎛⎝∑︁

𝐾∈𝒯
𝜂2

𝐾,Ψ̄M
+

∑︁
𝐸∈ℰ(Ω)

𝜂2
𝐸,Ψ̄M

+ ‖𝑢̄− 𝑢̄ℎ‖2𝐿2(𝜔)

⎞⎠1/2

.

(4.29)

The combination of (4.28) and (4.29) concludes the proof.
�

Remark 4.4. (a) Note that the terms involving 𝒫0 in the reliability estimate of adjoint equations 𝜂2
𝐾,Θ̄M

of
(2.8d) are due to the combined effect of non-conformity of the method plus linear lower-order terms.

(b) It is possible to avoid the terms involving 𝒫0 in the reliability estimator 𝜂2
𝐾,Θ̄M

of (2.8d) which comes from
𝑆5 = 𝐵NC

(︀
Ψ̄M, (𝐼M − 1)Φ, Θ̄M

)︀
in (4.19) with piecewise integration by parts. However, this leads to several

average terms in the edge estimators that are not residuals (in addition to the volume terms). The efficiency
analysis for this is still open. A similar observation for the two-dimensional Navier–Stokes equation in the
stream function-vorticity formulation can be found in Remark 4.12 of [15].

4.3. A posteriori error analysis for the control variable

Let ̃︀Ψ and ̃︀Θ be the auxiliary continuous state and adjoint variables associated with the control ̃︀𝑢ℎ. That is,
for all Φ ∈ V, seek

(︁̃︀Ψ, ̃︀Θ)︁ ∈ V×V such that

𝐴
(︁̃︀Ψ,Φ)︁+𝐵

(︁̃︀Ψ, ̃︀Ψ,Φ)︁ = (F + C̃︀uℎ,Φ) and 𝐴
(︁

Φ, ̃︀Θ)︁+ 2𝐵
(︁̃︀Ψ,Φ, ̃︀Θ)︁ =

(︁̃︀Ψ−Ψ𝑑,Φ
)︁
.

From Lemmas 3.7(a), 3.10 and (4.3), it follows that⃒⃒⃒⃒⃒⃒
Θ̄− Θ̄M

⃒⃒⃒⃒⃒⃒
𝐿∞(Ω)

≤ 𝐶dS𝜀0 ≤ min
{︁
𝛼̂︀𝛿(2𝐶ℳ)−1

, 𝜏/2
}︁
.

Lemma 4.5 (An auxiliary control estimate ([1], Thm. 8)). Let
(︀
Ψ̄, 𝑢̄

)︀
be a regular solution to (2.1), (Ψ̄, Θ̄, 𝑢̄)

solve (2.3) and satisfies the sufficient second-order optimality condition. Recall ̃︀𝑢ℎ := Π[𝑢𝑎,𝑢𝑏]

(︀
− 1

𝛼

(︀
𝒞*𝜃M,1

)︀)︀
from (2.7) and the constant ̂︀𝛿 > 0 from (3.7). Then for 𝒯 ∈ T(𝛿0), ̂︀𝛿‖𝑢̄− ̃︀𝑢ℎ‖2𝐿2(𝜔) ≤ 2(𝑗′(̃︀𝑢ℎ)− 𝑗′(𝑢̄))(̃︀𝑢ℎ − 𝑢̄).
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Theorem 4.6 (Reliability for the control variable). Let
(︀
Ψ̄, Θ̄, ū

)︀
(resp.

(︀
Ψ̄M, Θ̄M, ūℎ

)︀
) solve the optimality

system (2.3) (resp. (2.6)). Then for all 𝒯 ∈ T(𝛿0), there exists an ℎ-independent positive constant 𝐶CON,rel such
that

‖𝑢̄− 𝑢̄ℎ‖𝐿2(𝜔) ≤ 𝐶CON,rel

⎛⎝∑︁
𝐾∈𝒯

𝜂2
𝐾,Ψ̄M

+
∑︁
𝐾∈𝒯

𝜂2
𝐾,Θ̄M

+
∑︁
𝐾∈𝒯

𝜂2
𝐾,𝑢̄ℎ

+
∑︁

𝐸∈ℰ(Ω)

𝜂2
𝐸,Ψ̄M

+
∑︁

𝐸∈ℰ(Ω)

𝜂2
𝐸,Θ̄M

⎞⎠1/2

. (4.30)

Proof. The triangle inequality with ̃︀𝑢ℎ and (2.8a) lead to ‖𝑢̄− 𝑢̄ℎ‖𝐿2(𝜔) ≤ ‖𝑢̄− ̃︀𝑢ℎ‖𝐿2(𝜔)+
(︀∑︀

𝐾∈𝒯 𝜂
2
𝐾,𝑢̄ℎ

)︀1/2.
The continuous optimality condition (2.3c) with 𝑢 = ̃︀𝑢ℎ and (3.4) with 𝑢 = 𝑢̄ show

𝑗′(𝑢̄)(̃︀𝑢ℎ − 𝑢̄) ≥ 0, −
(︀
𝒞*𝜃M,1 + 𝛼̃︀𝑢ℎ, ̃︀𝑢ℎ − 𝑢̄

)︀
≥ 0.

These bounds, Lemma 4.5 and the definition of 𝑗′(∙) lead to

̂︀𝛿
2
‖𝑢̄− ̃︀𝑢ℎ‖2𝐿2(𝜔) ≤ (𝑗′(̃︀𝑢ℎ)− 𝑗′(𝑢̄))(̃︀𝑢ℎ − 𝑢̄) ≤ 𝑗′(̃︀𝑢ℎ)(̃︀𝑢ℎ − 𝑢̄)

≤ 𝑗′(̃︀𝑢ℎ)(̃︀𝑢ℎ − 𝑢̄)−
(︀
𝒞*𝜃M,1 + 𝛼̃︀𝑢ℎ, ̃︀𝑢ℎ − 𝑢̄

)︀
=
(︁
𝒞*
(︁̃︀𝜃 − 𝜃M,1

)︁
, ̃︀𝑢ℎ − 𝑢̄

)︁
.

Therefore, the Cauchy–Schwarz inequality results in

̂︀𝛿‖𝑢̄− ̃︀𝑢ℎ‖𝐿2(𝜔) ≤ 2
⃒⃒⃒⃒⃒⃒⃒⃒⃒ ̃︀Θ− Θ̄M

⃒⃒⃒⃒⃒⃒⃒⃒⃒
. (4.31)

A triangle inequality that introduces ̂︀Θ, Poincaré inequality with constant 𝐶p, Lemma 3.7(a) and (4.28) yield

̂︀𝛿
2
‖𝑢̄− ̃︀𝑢ℎ‖𝐿2(𝜔) ≤ 𝐶p

⃒⃒⃒⃒⃒⃒⃒⃒⃒ ̃︀Θ− ̂︀Θ⃒⃒⃒⃒⃒⃒⃒⃒⃒
NC

+ 𝐶dS𝐶AD,rel

⎛⎝∑︁
𝐾∈𝒯

𝜂2
𝐾,Θ̄M

+
∑︁

𝐸∈ℰ(Ω)

𝜂2
𝐸,Θ̄M

+
∑︁

𝐸∈ℰ(Ω)

𝜂2
𝐸,Ψ̄M

⎞⎠1/2

. (4.32)

The definitions (2.4), (2.7), the Lipschitz property of operator Π[𝑢𝑎,𝑢𝑏] and Lemma 3.7(a) show ‖𝑢̄− ̃︀𝑢ℎ‖𝐿2(𝜔) ≤
𝛼−1

⃒⃒⃒⃒⃒⃒
Θ̄− Θ̄M

⃒⃒⃒⃒⃒⃒
𝐿2(𝜔)

≤ 𝛼−1𝐶dS

⃒⃒⃒⃒⃒⃒
Θ̄− Θ̄M

⃒⃒⃒⃒⃒⃒
NC
. Hence, (4.3) implies ‖𝑢̄− ̃︀𝑢ℎ‖𝐿2(𝜔) ≤ 𝛼−1𝐶dS𝜀0. This, the esti-

mate in (4.29) with
(︀
Θ̄, Ψ̄, 𝑢̄

)︀
replaced by

(︁̃︀Θ, ̃︀Ψ, ̃︀𝑢ℎ

)︁
and the definition (2.8a) show

⃒⃒⃒⃒⃒⃒⃒⃒⃒ ̃︀Θ− ̂︀Θ⃒⃒⃒⃒⃒⃒⃒⃒⃒
NC

≤ 𝐶ST,rel

⃦⃦⃦
ℱ−1
̃︀Ψ

⃦⃦⃦
ℒ(V+VM)

‖𝑇‖(𝐶dS + 2𝐶b𝛽
−1)

⎛⎝∑︁
𝐾∈𝒯

𝜂2
𝐾,Ψ̄M

+
∑︁

𝐸∈ℰ(Ω)

𝜂2
𝐸,Ψ̄M

+
∑︁
𝐾∈𝒯

𝜂2
𝐾,𝑢̄ℎ

⎞⎠1/2

.

A substitution of the last displayed inequality in (4.32) with 𝐶2
CON,rel := 2 +

8̂︀𝛿−2

(︂
𝐶2

dS𝐶
2
AD,rel + (𝐶p𝐶ST,rel

⃦⃦⃦
ℱ−1
̃︀Ψ

⃦⃦⃦
ℒ(V+VM)

‖𝑇‖(𝐶dS + 2𝐶b𝛽
−1))2

)︂
concludes the proof. �

Proof of Theorem 2.4(a). The proof follows from a combination of Theorems 4.1, 4.3 and 4.6. �

5. Efficiency

Lemma 5.1 (Local efficiency for state estimator). Let
(︀
Ψ̄, Θ̄, ū

)︀
(resp.

(︀
Ψ̄M, Θ̄M, ūℎ

)︀
) solve the optimality

system (2.3) (resp. (2.6)). Then,

𝜂𝐾,Ψ̄M
.
⃒⃒⃒⃒⃒⃒
𝐷2
(︀
Ψ̄− Ψ̄M

)︀⃒⃒⃒⃒⃒⃒
𝐿2(𝐾)

+ ℎ2
𝐾

(︁
‖𝑢̄− 𝑢̄ℎ‖𝐿2(𝐾) + ‖𝑓 − 𝑓ℎ‖𝐿2(𝐾)

)︁
, 𝜂𝐸,Ψ̄M

.
⃒⃒⃒⃒⃒⃒
𝐷2

NC

(︀
Ψ̄− Ψ̄M

)︀⃒⃒⃒⃒⃒⃒
𝐿2(Ω(𝐾))

,

where 𝐾 ∈ 𝒯 , 𝐸 ∈ ℰ(Ω(𝐾)) and 𝑓ℎ denotes the piecewise average of 𝑓 .
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Proof. Recall the volume estimator 𝜂2
𝐾,Ψ̄M

= ℎ4
𝐾

(︁⃦⃦
𝑓 + 𝒞𝑢̄ℎ +

[︀
𝜓M,1, 𝜓M,2

]︀⃦⃦2

𝐿2(𝐾)
+
⃦⃦[︀
𝜓M,1, 𝜓M,1

]︀⃦⃦2

𝐿2(𝐾)

)︁
from

(2.8a). For each element 𝐾 ∈ 𝒯 , it holds that

ℎ2
𝐾

⃦⃦
𝑓 + 𝒞𝑢ℎ +

[︀
𝜓M,1, 𝜓M,2

]︀⃦⃦
𝐿2(𝐾)

+ ℎ2
𝐾

⃦⃦[︀
𝜓M,1, 𝜓M,1

]︀⃦⃦
𝐿2(𝐾)

. ℎ2
𝐾‖𝑓 − 𝑓ℎ‖𝐿2(𝐾)

+ ℎ2
𝐾‖𝑢̄− 𝑢̄ℎ‖𝐿2(𝐾) +

⃒⃒⃒⃒⃒⃒
𝐷2
(︀
Ψ̄− Ψ̄M

)︀⃒⃒⃒⃒⃒⃒
𝐿2(𝐾)

+
⃒⃒⃒⃒⃒⃒
𝐷2Ψ̄

⃒⃒⃒⃒⃒⃒
𝐿2(𝐾)

⃒⃒⃒⃒⃒⃒
𝐷2
(︀
Ψ̄− Ψ̄M

)︀⃒⃒⃒⃒⃒⃒
𝐿2(𝐾)

. (5.1)

The proof of (5.1) follows from the standard bubble functions arguments as in Lemma 5.3 of [14]. In the proof
therein for the first term on the left-hand side of (5.1), set 𝜎 :=

(︀
𝑓ℎ + 𝒞𝑢ℎ +

[︀
𝜓M,1, 𝜓M,2

]︀)︀
𝑏2𝐾 in 𝐾, and zero

in Ω ∖𝐾, where 𝑏𝐾 denotes the standard interior bubble function [36]. Then the state equation (2.3a) with the
test function (𝜎, 0), ∆2𝜓M,1 = 0 and 𝜎 ∈ 𝐻2

0 (𝐾) prove (5.1). The term
⃦⃦[︀
𝜓M,1, 𝜓M,1

]︀⃦⃦
𝐿2(𝐾)

can be estimated
similar to the above analysis.

For the edge estimator term 𝜂2
𝐸,Ψ̄M

= ℎ𝐸

(︁⃦⃦[︀
𝐷2𝜓M,1𝜏𝐸

]︀
𝐸

⃦⃦2

𝐿2(𝐸)
+
⃦⃦[︀
𝐷2𝜓M,2𝜏𝐸

]︀
𝐸

⃦⃦2

𝐿2(𝐸)

)︁
, Lemma 3.6(e) with

𝑣 = 𝜓M,1 implies, for 𝐸 ∈ ℰ(Ω(𝐾)),

ℎ𝐸

⃦⃦[︀
𝐷2𝜓M,1𝜏𝐸

]︀
𝐸

⃦⃦2

𝐿2(𝐸)
.
⃦⃦
𝐷2

NC

(︀
𝜓M,1 − 𝜓1

)︀⃦⃦2

𝐿2(Ω(𝐾))
. (5.2)

Analogous arguments lead to similar result for the edge estimator
⃦⃦[︀
𝐷2𝜓M,2𝜏𝐸

]︀
𝐸

⃦⃦2

𝐿2(𝐸)
. �

Lemma 5.2 (Local efficiency for adjoint estimator). Let
(︀
Ψ̄, Θ̄, ū

)︀
(resp.

(︀
Ψ̄M, Θ̄M, ūℎ

)︀
) solve the optimality

system (2.3) (resp. (2.6)). Then,

𝜂𝐾,Θ̄M
.
⃒⃒⃒⃒⃒⃒
𝐷2
(︀
Ψ̄− Ψ̄M

)︀⃒⃒⃒⃒⃒⃒
𝐿2(𝐾)

+
⃒⃒⃒⃒⃒⃒
𝐷2
(︀
Θ̄− Θ̄M

)︀⃒⃒⃒⃒⃒⃒
𝐿2(𝐾)

+ ℎ2
𝐾 |||Ψ𝑑 −Ψ𝑑,ℎ|||𝐿2(𝐾) +

⃒⃒⃒⃒⃒⃒
Ψ̄− Ψ̄M

⃒⃒⃒⃒⃒⃒
𝐿2(𝐾)

+
⃒⃒⃒⃒⃒⃒
∇
(︀
Θ̄M − Θ̄

)︀⃒⃒⃒⃒⃒⃒
𝐿2(𝐾)

+
⃒⃒⃒⃒⃒⃒
∇(1− 𝐼M)Θ̄

⃒⃒⃒⃒⃒⃒
𝐿2(𝐾)

+
⃒⃒⃒⃒⃒⃒

(1− 𝐼M)Θ̄
⃒⃒⃒⃒⃒⃒

𝐿∞(𝐾)
+
⃒⃒⃒⃒⃒⃒

(1− 𝒫0)Θ̄
⃒⃒⃒⃒⃒⃒

𝐿∞(𝐾)
,

and 𝜂𝐸,Θ̄M
.
⃒⃒⃒⃒⃒⃒
𝐷2

NC

(︀
Θ̄− Θ̄M

)︀⃒⃒⃒⃒⃒⃒
𝐿2(Ω(𝐾))

,

where 𝐾 ∈ 𝒯 , 𝐸 ∈ ℰ(Ω(𝐾)) and Ψ𝑑,ℎ denotes the piecewise average of Ψ𝑑.

Proof. The adjoint volume estimator 𝜂𝐾,Θ̄M
contains two parts: 𝜂𝐾,res,Θ̄M

and 𝜂𝐾,𝒫0,Θ̄M
. Recall 𝜂2

𝐾,res,Θ̄M
=

ℎ4
𝐾

(︁⃦⃦
𝜓M,1 − 𝜓𝑑,1 − [𝜓M,1, 𝜃M,2] + [𝜓M,2, 𝜃M,1]

⃦⃦2

𝐿2(𝐾)
+
⃦⃦
𝜓M,2 − 𝜓𝑑,2 +

[︀
𝜓M,1, 𝜃M,1

]︀⃦⃦2

𝐿2(𝐾)

)︁
from (2.8b). For

𝜂𝐾,res,Θ̄M
over each 𝐾 ∈ 𝒯 , the standard bubble function technique shows

ℎ2
𝐾

⃦⃦
𝜓M,1 − 𝜓𝑑,1 −

[︀
𝜓M,1, 𝜃M,2

]︀
+
[︀
𝜓M,2, 𝜃M,1

]︀⃦⃦
𝐿2(𝐾)

+ ℎ2
𝐾

⃦⃦
𝜓M,2 − 𝜓𝑑,2 +

[︀
𝜓M,1, 𝜃M,1

]︀⃦⃦
𝐿2(𝐾)

≤ ℎ2
𝐾 |||Ψ𝑑 −Ψ𝑑,ℎ|||𝐿2(𝐾) + ℎ2

𝐾

⃒⃒⃒⃒⃒⃒
Ψ̄− Ψ̄M

⃒⃒⃒⃒⃒⃒
𝐿2(𝐾)

+
⃒⃒⃒⃒⃒⃒
𝐷2Θ̄

⃒⃒⃒⃒⃒⃒
𝐿2(𝐾)

⃒⃒⃒⃒⃒⃒
𝐷2
(︀
Ψ̄− Ψ̄M

)︀⃒⃒⃒⃒⃒⃒
𝐿2(𝐾)

+
(︁

1 +
⃒⃒⃒⃒⃒⃒
𝐷2Ψ̄

⃒⃒⃒⃒⃒⃒
𝐿2(𝐾)

)︁⃒⃒⃒⃒⃒⃒
𝐷2
(︀
Θ̄− Θ̄M

)︀⃒⃒⃒⃒⃒⃒
𝐿2(𝐾)

. (5.3)

In the proof therein for the first term on the left-hand side of (5.3), set 𝜎 :=(︀
𝜓M,1 − 𝜓𝑑,ℎ,1 −

[︀
𝜓M,1, 𝜃M,2

]︀
+
[︀
𝜓M,2, 𝜃M,1

]︀)︀
𝑏2𝐾 in 𝐾, and zero in Ω ∖ 𝐾. The adjoint system (2.3b) with

the test function (𝜎, 0), and the symmetry of 𝑏(∙, ∙, ∙) with respect to the second and third variables show∫︁
𝐾

𝐷2𝜃1 : 𝐷2𝜎 d𝑥−
∫︁

𝐾

(︀
𝜓1 − 𝜓𝑑,1

)︀
𝜎 d𝑥+

∫︁
𝐾

(︀[︀
𝜓1, 𝜃2

]︀
−
[︀
𝜓2, 𝜃1

]︀)︀
𝜎 d𝑥 = 0.

The combination of this, ∆2𝜃M,1 = 0 and the arguments in the proof of Lemma 5.3 from [14] prove (5.3). The
estimate for the second term on the left-hand side of (5.3) is analogous to that of the first term.
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The second part of the adjoint estimator is 𝜂2
𝐾,𝒫0,Θ̄M

:=
⃦⃦
𝐷2𝜓M,1(1− 𝒫0)𝜃M,2

⃦⃦2

𝐿2(𝐾)
+⃦⃦

𝐷2𝜓M,2(1− 𝒫0)𝜃M,1

⃦⃦2

𝐿2(𝐾)
+
⃦⃦
𝐷2𝜓M,1(1− 𝒫0)𝜃M,1

⃦⃦2

𝐿2(𝐾)
. Consider

⃦⃦
𝐷2𝜓M,1(1− 𝒫0)𝜃M,1

⃦⃦
𝐿2(𝐾)

, 𝐾 ∈ 𝒯
from (2.8c). The Hölder’s inequality shows that⃦⃦

𝐷2𝜓M,1(1− 𝒫0)𝜃M,1

⃦⃦
𝐿2(𝐾)

≤
⃦⃦
𝐷2𝜓M,1

⃦⃦
𝐿2(𝐾)

⃦⃦
(1− 𝒫0)𝜃M,1

⃦⃦
𝐿∞(𝐾)

. (5.4)

A triangle inequality with 𝒫0𝐼M𝜃1 leads to⃦⃦
(1− 𝒫0)𝜃M,1

⃦⃦
𝐿∞(𝐾)

≤
⃦⃦

(1− 𝒫0)
(︀
𝜃M,1 − 𝐼M𝜃1

)︀⃦⃦
𝐿∞(𝐾)

+
⃦⃦

(1− 𝒫0)𝐼M𝜃1
⃦⃦

𝐿∞(𝐾)
.

An inverse inequality ([20], Thm. 3.2.6) for the first term and a triangle inequality with (1−𝒫0)𝜃1 for the second
term lead to⃦⃦

(1− 𝒫0)𝜃M,1

⃦⃦
𝐿∞(𝐾)

. ℎ−1
⃦⃦
(1− 𝒫0)

(︀
𝜃M,1 − 𝐼M𝜃1

)︀⃦⃦
𝐿2(𝐾)

+
⃦⃦

(𝐼M − 1)𝜃1
⃦⃦

𝐿∞(𝐾)
+
⃦⃦

(1− 𝒫0)𝜃1
⃦⃦

𝐿∞(𝐾)

+
⃦⃦
𝒫0

(︀
𝜃1 − 𝐼M𝜃1

)︀⃦⃦
𝐿∞(𝐾)

.
(︁⃦⃦
∇
(︀
𝜃M,1 − 𝜃1

)︀⃦⃦
𝐿2(𝐾)

+
⃦⃦
∇(1− 𝐼M)𝜃1

⃦⃦
𝐿2(𝐾)

)︁
+
⃦⃦

(1− 𝐼M)𝜃1
⃦⃦

𝐿∞(𝐾)

+
⃦⃦

(1− 𝒫0)𝜃1
⃦⃦

𝐿∞(𝐾)
,

where the last inequality uses the projection estimate for 𝒫0 in 𝐿2(𝐾) ([23], Prop. 1.135) and the boundedness
property of 𝒫0. This with (5.4) result in⃦⃦

𝐷2𝜓M,1(1− 𝒫0)𝜃M,1

⃦⃦
𝐿2(𝐾)

.
⃦⃦
𝐷2𝜓M,1

⃦⃦
𝐿2(𝐾)

(︁⃦⃦
∇
(︀
𝜃M,1 − 𝜃1

)︀⃦⃦
𝐿2(𝐾)

+
⃦⃦
∇(1− 𝐼M)𝜃1

⃦⃦
𝐿2(𝐾)

+
⃦⃦

(1− 𝐼M)𝜃1
⃦⃦

𝐿∞(𝐾)
+
⃦⃦

(1− 𝒫0)𝜃1
⃦⃦

𝐿∞(𝐾)

)︁
. (5.5)

From (4.11),
⃒⃒⃒⃒⃒⃒
𝐷2Ψ̄M

⃒⃒⃒⃒⃒⃒
𝐿2(𝐾)

≤ ℳ1. The estimates for the remaining terms
⃦⃦
𝐷2𝜓M,1(1− 𝒫0)𝜃M,2

⃦⃦
𝐿2(𝐾)

,⃦⃦
𝐷2𝜓M,2(1− 𝒫0)𝜃M,1

⃦⃦
𝐿2(𝐾)

follow from similar arguments and hence the details are omitted for brevity.
Lemma 3.6(e) leads to the desired estimate for the edge estimator 𝜂𝐸,Θ̄M

. �

Remark 5.3. Analogous terms involving projection operators as the last term on the right-hand side of (5.5)
are dealt with in Theorem 4.10 of [18].

Lemma 5.4 (Local efficiency for control estimator). Let
(︀
Ψ̄, Θ̄, ū

)︀
(resp.

(︀
Ψ̄M, Θ̄M, ūℎ

)︀
) solve the optimality

system (2.3) (resp. (2.6)). Then, 𝜂𝐾,𝑢̄ℎ
≤ 𝛼−1

⃒⃒⃒⃒⃒⃒
Θ̄− Θ̄M

⃒⃒⃒⃒⃒⃒
𝐿2(𝐾)

+ ‖𝑢̄− 𝑢̄ℎ‖𝐿2(𝐾).

Proof. The control estimator 𝜂𝐾,𝑢̄ℎ
:= ‖̃︀𝑢ℎ − 𝑢̄ℎ‖𝐿2(𝐾). The definitions (2.4), (2.7) and the Lipschitz property

of operator Π[𝑢𝑎,𝑢𝑏] show

‖𝑢̄− ̃︀𝑢ℎ‖𝐿2(𝐾) ≤
⃦⃦

Π[𝑢𝑎,𝑢𝑏]

(︀
−𝛼−1

(︀
𝒞*
(︀
𝜃1 − 𝜃M,1

)︀)︀)︀⃦⃦
𝐿2(𝐾)

≤ 𝛼−1
⃒⃒⃒⃒⃒⃒

Θ̄− Θ̄M

⃒⃒⃒⃒⃒⃒
𝐿2(𝐾)

.

This and a triangle inequality prove ‖̃︀𝑢ℎ − 𝑢̄ℎ‖𝐿2(𝐾) ≤ 𝛼−1
⃒⃒⃒⃒⃒⃒

Θ̄− Θ̄M

⃒⃒⃒⃒⃒⃒
𝐿2(𝐾)

+ ‖𝑢̄− 𝑢̄ℎ‖𝐿2(𝐾) and concludes the
proof of local efficiency for the control variable. �

Proof of Theorem 2.4(b). Recall the definition of the estimator 𝜂 from (2.9). The summation over all the element
and edges of the triangulation 𝒯 , and the local efficiency results in Lemmas 5.1–5.4 show

𝜂 .
⃒⃒⃒⃒⃒⃒

Ψ̄− Ψ̄M

⃒⃒⃒⃒⃒⃒
NC

+
⃒⃒⃒⃒⃒⃒

Θ̄− Θ̄M

⃒⃒⃒⃒⃒⃒
NC

+ ‖𝑢̄− 𝑢̄ℎ‖𝐿2(𝜔) + osc0(𝑓, 𝒯 ) + osc0(Ψ𝑑, 𝒯 ) +
⃒⃒⃒⃒⃒⃒

Ψ̄− Ψ̄M

⃒⃒⃒⃒⃒⃒
+
⃒⃒⃒⃒⃒⃒

Θ̄− Θ̄M

⃒⃒⃒⃒⃒⃒
+
⃒⃒⃒⃒⃒⃒

Θ̄− Θ̄M

⃒⃒⃒⃒⃒⃒
1,2,ℎ

+
⃒⃒⃒⃒⃒⃒

(1− 𝐼M)Θ̄
⃒⃒⃒⃒⃒⃒

1,2,ℎ
+
⃒⃒⃒⃒⃒⃒

(1− 𝐼M)Θ̄
⃒⃒⃒⃒⃒⃒

0,∞ +
⃒⃒⃒⃒⃒⃒

(1− 𝒫0)Θ̄
⃒⃒⃒⃒⃒⃒

0,∞.
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This and Lemma 3.7(a) result in

𝜂 .
⃒⃒⃒⃒⃒⃒

Ψ̄− Ψ̄M

⃒⃒⃒⃒⃒⃒
NC

+
⃒⃒⃒⃒⃒⃒

Θ̄− Θ̄M

⃒⃒⃒⃒⃒⃒
NC

+ ‖𝑢̄− 𝑢̄ℎ‖𝐿2(𝜔) + osc0(𝑓, 𝒯 ) + osc0(Ψ𝑑, 𝒯 ) +
⃒⃒⃒⃒⃒⃒

(1− 𝐼M)Θ̄
⃒⃒⃒⃒⃒⃒

1,2,ℎ

+
⃒⃒⃒⃒⃒⃒

(1− 𝐼M)Θ̄
⃒⃒⃒⃒⃒⃒

0,∞ +
⃒⃒⃒⃒⃒⃒

(1− 𝒫0)Θ̄
⃒⃒⃒⃒⃒⃒

0,∞.

Here the constant absorbed in “.” depends on the shape-regularity of 𝒯 . This concludes the proof. �

6. Numerical results

The results of the numerical experiments that support the a priori and a posteriori estimates are presented
in this section.

6.1. Preliminaries

The state and adjoint variables are discretised using the Morley FE and the control variable is discretised
using piecewise constant functions. The discrete solution

(︀
Ψ̄M, Θ̄M, 𝑢̄ℎ

)︀
is computed using a combination of

Newtons’ method in an inner loop and primal-dual active set strategy in an outer loop, see Section 6.1 of [19]
for the details of the implementation procedure for the a priori case and a different choice of the trilinear form.
The initial guess for

(︀
Ψ̄M, Θ̄M

)︀
in the Newton’s method is chosen as the discrete solution to the biharmonic

part of the discrete state and adjoint equations in (2.6a) and (2.6b). At each iteration of primal-dual active set
algorithm, the Newtons’ method converges in ten iterations when the tolerence level for errors is set as less than
10−9. The primal-dual active set algorithm terminates within four steps.

The numerical experiments are performed over uniform and adaptive refinements. The uniform mesh refine-
ment is done by red-refinement criteria, where each triangle is subdivided into four sub-triangles by connecting
the midpoints of the edges. The standard adaptive algorithm Solve-Estimate-Mark-Refine [14, 36] is used for
the adaptive refinement, and is described in Section 6.3.

Let Ψ̄ℓ be the discrete solution Ψ̄M at the ℓth level for ℓ = 1, 2, 3, . . . and define 𝑒ℓ

(︀
Ψ̄
)︀

:=⃒⃒⃒⃒⃒⃒
Ψ̄− Ψ̄ℓ

⃒⃒⃒⃒⃒⃒
NC
. The order of convergence in the energy norm at ℓth level for Ψ̄ is computed as Order(ℓ) :=

log
(︀
𝑒ℓ

(︀
Ψ̄
)︀
/𝑒ℓ+1

(︀
Ψ̄
)︀)︀
/log(ℎℓ/ℎℓ+1) (resp. Order(ℓ) := log

(︀
𝑒ℓ

(︀
Ψ̄
)︀
/𝑒ℓ+1

(︀
Ψ̄
)︀)︀
/log(NDOFℓ/NDOFℓ+1)) for uni-

form refinements (resp. adaptive refinements), where ℎℓ and NDOFℓ denote the mesh size and number
of degrees of freedom at ℓth level triangulation 𝒯ℓ. The total number of degrees of freedom is NDOF
:= 2 dim (VM) + dim (𝑈ℎ,𝑎𝑑). Finally, the total error is a sum of

⃒⃒⃒⃒⃒⃒
Ψ̄− Ψ̄M

⃒⃒⃒⃒⃒⃒
NC

,
⃒⃒⃒⃒⃒⃒

Θ̄− Θ̄M

⃒⃒⃒⃒⃒⃒
NC

and ‖𝑢̄− 𝑢̄ℎ‖.
Two examples are presented to illustrate the a priori and a posteriori reliability and efficiency estimates

with 𝜔 = Ω, that is, 𝒞 = I. The first example is considered over unit square domain where the solution of the
von Kármán equations is sufficiently smooth and the second example is over an L-shaped domain where the
solution of the von Kármán equations belongs to V ∩𝐻2+𝛾(Ω) with 𝛾 ≈ 0.5445.

6.2. Uniform refinement

Example 6.1 (Convex domain). Let the computational domain be Ω = (0, 1)2. The model problem is con-
structed in such a way that the exact solution is known. The data in the distributed optimal control problem
are chosen as 𝜓1 = 𝜓2 = sin2(𝜋𝑥) sin2(𝜋𝑦), 𝜃1 = 𝜃2 = 𝑥2𝑦2(1 − 𝑥)2(1 − 𝑦)2, 𝑢̄(𝑥) = Π[−750,−50]

(︀
−1/𝛼 𝜃1(𝑥)

)︀
,

𝛼 = 10−5, where Ψ̄ =
(︀
𝜓1, 𝜓2

)︀
and Θ̄ =

(︀
𝜃1, 𝜃2

)︀
denote the optimal state and adjoint variables. The source

terms 𝑓, 𝑔 and observation Ψ̄𝑑 =
(︀
𝜓𝑑,1, 𝜓𝑑,2

)︀
for Ψ̄ are then computed using 𝑓 = ∆2𝜓1 −

[︀
𝜓1, 𝜓2

]︀
− 𝑢̄, 𝑔 =

∆2𝜓2 + 1
2

[︀
𝜓1, 𝜓1

]︀
and 𝜓𝑑,1 = 𝜓1 −∆2𝜃1, 𝜓𝑑,2 = 𝜓2 −∆2𝜃2 +

[︀
𝜓1, 𝜃1

]︀
.

The relative errors and orders of convergence for the state, adjoint and control variables and the combined
relative errors and orders of convergence are presented in Table 1. Since Ω is convex, Theorem A.10 predicts
linear order of convergence for the state and adjoint variables (resp. control variable) in the energy (resp. 𝐿2)
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Table 1. Errors and orders of convergence for state, adjoint and control variables in Example 6.1.

ℎ
|||Ψ̄−Ψ̄M|||NC

|||Ψ̄|||2
Order

|||Θ̄−Θ̄M|||NC

|||Θ̄|||2
Order ‖𝑢̄−𝑢̄ℎ‖

‖𝑢̄‖ Order Total error Order

0.2500 1.208162 – 1.793806 – 1.638183 – 1.574966 –
0.1250 0.654690 0.88 0.730500 1.30 0.581509 1.49 0.592373 1.41
0.0625 0.357561 0.87 0.377143 0.95 0.175353 1.73 0.202300 1.55
0.0312 0.183915 0.96 0.190428 0.99 0.055375 1.66 0.074381 1.44
0.0156 0.092662 0.99 0.095447 1.00 0.021294 1.38 0.031846 1.22
0.0078 0.046422 1.00 0.047753 1.00 0.009674 1.14 0.015107 1.08

Table 2. Errors and orders of convergence for state, adjoint and control variables in Example 6.2.

ℎ NDOF
|||Ψ̄−Ψ̄M|||NC

|||Ψ̄|||2
Order

|||Θ̄−Θ̄M|||NC

|||Θ̄|||2
Order ‖𝑢̄−𝑢̄ℎ‖

‖𝑢̄‖ Order Total error Order

0.3536 156 1.371575 – 1.355646 – 0.760376 – 0.812881 –
0.1768 740 0.875686 0.65 0.906115 0.58 0.498261 0.61 0.532436 0.61
0.0884 3204 0.502780 0.80 0.508682 0.83 0.197497 1.34 0.224325 1.25
0.0442 13316 0.270684 0.89 0.268696 0.92 0.072470 1.45 0.089636 1.32
0.0221 54276 0.143731 0.91 0.141920 0.92 0.029279 1.31 0.039162 1.19

norm. These theoretical rates of convergence are confirmed by the numerical outputs. Thus, the error estimates
for Ψ̄ and Θ̄ with respect to the energy norm converge at optimal rates. The same applies to the error estimate
on 𝑢̄ with respect to the 𝐿2(𝜔).

Example 6.2 (Non-convex domain). Consider the non-convex L-shaped domain Ω = (−1, 1)2 ∖
(︀
[0, 1) ×

(−1, 0]
)︀
. The source terms 𝑓, 𝑔 and the observation Ψ𝑑 = (𝜓𝑑,1, 𝜓𝑑,2) are chosen such that the model

problem has the exact singular solution ([25], Sect. 3.4.1) given by 𝜓1 = 𝜓2 = 𝜃1 = 𝜃2 =(︀
𝑟2 cos2 𝜃 − 1

)︀2(︀
𝑟2 sin2 𝜃 − 1

)︀2
𝑟1+𝛾𝑔𝛾,𝜔(𝜃) where 𝛾 ≈ 0.5444837367 is a non-characteristic root of sin2(𝛾𝜔) =

𝛾2 sin2(𝜔), 𝜔 = 3𝜋
2 , and 𝑔𝛾,𝜔(𝜃) =

(︁
1

𝛾−1 sin((𝛾 − 1)𝜔)− 1
𝛾+1 sin((𝛾 + 1)𝜔)

)︁
(cos((𝛾 − 1)𝜃)− cos((𝛾 + 1)𝜃))

−
(︁

1
𝛾−1 sin((𝛾 − 1)𝜃)− 1

𝛾+1 sin((𝛾 + 1)𝜃)
)︁

(cos((𝛾 − 1)𝜔)− cos((𝛾 + 1)𝜔)). The exact control 𝑢̄ is chosen as

𝑢̄(𝑥) = Π[−600,−50](−1/𝛼 𝜃1(𝑥)), where 𝛼 = 10−3.

Table 2 shows error estimates and the convergence rates of the state, adjoint and control variables. Since Ω
is non-convex, only suboptimal orders of convergence for the state and adjoint variables in the energy norm are
obtained as predicted by Theorem A.10.

6.3. Adaptive mesh refinement

The standard adaptive algorithm: Solve-Estimate-Mark-Refine is used for the adaptive mesh-refinement.
The total estimator 𝜂2 := 𝜂2

ST + 𝜂2
AD + 𝜂2

CON is considered in the adaptive algorithm. Recall 𝛿0, 𝜀0 from
Theorem 2.4.
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Table 3. Estimator and order of convergence for state, adjoint and control variables, plus the
data oscillation terms in Example 6.1.

ℎ 𝜂ST Order 𝜂AD Order 𝜂CON Order 𝜂 Order osc0(𝑓, 𝒯 ) osc0(Ψ𝑑, 𝒯 )

0.2500 101.670150 – 1.464635 – 84.529580 – 132.227890 – 5.1290e+01 1.0984e-01
0.1250 46.982720 1.11 0.252129 2.54 31.588806 1.42 56.615300 1.22 5.7172e+00 1.4637e-02
0.0625 25.973543 0.86 0.115093 1.13 13.233906 1.26 29.150891 0.96 7.3786e-01 1.8138e-03
0.0312 13.650921 0.93 0.058224 0.98 6.187437 1.10 14.987842 0.96 9.2981e-02 2.2589e-04
0.0156 6.942815 0.98 0.029375 0.99 3.031687 1.03 7.575927 0.98 1.1643e-02 2.8207e-05
0.0078 3.491406 0.99 0.014750 0.99 1.508851 1.01 3.803520 0.99 1.4561e-03 3.5250e-06

Algorithm 1: Adaptive mesh-refinement algorithm.
Set the initial triangulation 𝒯0 such that 𝒯0 ∈ T(𝛿), 0 < 𝛿 ≤ 𝛿0 and 0 < 𝜃 ≤ 1;
Set the maximum number of iteration Maxℓ

while ℓ < Maxℓ do
Solve: Compute the solution (Ψ̄M, Θ̄M, 𝑢̄ℎ) over the triangulation 𝒯ℓ using Newtons’ method and
primal dual active set strategy
Estimate: Compute the complete estimator 𝜂2

ℓ from (2.9)
Mark: Mark a minimal subset Mℓ ⊂ 𝒯ℓ by Dörfler marking criteria

𝜃
∑︁

𝐾∈𝒯ℓ

𝜂2
ℓ (𝐾) ≤

∑︁
𝐾∈Mℓ

𝜂2
ℓ (𝐾)

Refine: Compute the closure of Mℓ and generate new triangulation 𝒯ℓ+1 using the newest vertex
bisection
Update the triangulation

end

The initial triangulation 𝒯0 ∈ T(𝛿) can be obtained by the uniform red-refinement of some admissible trian-
gulation over the domain. In general, it is difficult to quantify the constants 𝜀0, 𝛿0 from Theorem 2.4. The initial
triangulation used in the following numerical experiments are specified in the respective examples. Further, the
marking parameter 𝜃 = 0.2 is used.

Convex domain. Consider Example 6.1. This is a test case over the square domain with a smooth exact solution,
performed to test the performance of the adaptive estimator for the uniform refinement. The initial triangula-
tion is a criss-cross mesh with one red-refinement, that is, 16 uniform triangles. Table 3 depicts the convergence
history of the estimators (defined in (2.8)) for the uniform refinements for the state, adjoint and control estima-
tors. The combined error and estimator convergence rates are also computed. It is observed that the individual
errors and estimators as well as the combined error have linear order of convergence. Further, the oscillation
terms osc0(𝑓, 𝒯 ) and osc0(Ψ𝑑, 𝒯 ) converge with order three (since this is a problem with smooth function over
the convex domain). Hence, the theoretical rates of convergence are confirmed by these numerical outputs.

Non-convex domain. This numerical experiment is performed over the non-convex domain (Example 6.2) with
the exact solution has a singularity at the origin. The numerical experiment starts on the initial mesh with 24
triangles, and then adaptive refinements are carried out using Algorithm 1. Figure 2 shows that the significant
adaptive refinement occurs near the control variable interface and the singularity point of the L-shaped domain.
This is expected as the state and adjoint solutions have a singularity at the origin. From Figure 3, it is observed
that the control estimator dominates other estimators. This supports the efficiency of the adaptive estimator
in the theoretical estimates obtained in the previous section. Figure 3 and Table 4 also indicate that the
errors and estimators have optimal convergence in the adaptive refinement. The oscillation terms osc0(𝑓, 𝒯 )
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Figure 2. Discrete control solution 𝑢̄ℎ (a) and the adaptive mesh-refinement (b) (at level
ℓ = 24) in Example 6.2.

Figure 3. Convergence plot of the approximation errors and estimators with adaptive and
uniform refinement for state, adjoint and control variables in Example 6.2 (State approxi-
mation (left), Adjoint approximation (Middle), Control approximation (right), Uni=Uniform
refinement, Ada=Adaptive refinement).

and osc0(Ψ𝑑, 𝒯 ) in the Table 4 have linear order of convergence with respective NDOF, which is higher-order
in comparison to the error and estimator.

Figure 4a displays the convergence history of the total error and estimator; both achieve optimal convergence
in adaptive refinement. Further, it can be observed that the adaptive refinements are performing better in terms
of accuracy compared to the uniform refinements. Figure 4b illustrates that reliability and efficiency constants
are approaching a constant value with mesh refinement, thus providing a numerical evidence for the efficiency
and reliability of a posteriori estimator derived in the theory section.

7. Conclusions

This paper presents reliable and efficient a posteriori error estimates for the distributed optimal control
problem governed by the von Kármán equations. The a posteriori estimator identifies the solution singularity
region and the interface of the discrete control, and produces optimal convergence rates. The a posteriori
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Table 4. Errors and orders of convergence for state, adjoint and control variables with adaptive
refinement in Example 6.2.

Iter NDOF
|||Ψ̄−Ψ̄M|||NC

|||Ψ̄|||2
Order

|||Θ̄−Θ̄M|||NC

|||Θ̄|||2
Order ‖𝑢̄−𝑢̄ℎ‖

‖𝑢̄‖ Order Error Order Er/Et osc0(𝑓) osc0(Ψ𝑑)

0 156 1.371575 – 1.355646 – 0.760376 – 0.812881 – 1.47 36.2833 25.8111
4 464 0.842764 0.62 0.866655 0.59 0.488350 0.80 0.520237 0.77 1.93 11.9203 10.4362
8 1643 0.540211 0.32 0.533029 0.32 0.223952 0.47 0.251166 0.44 1.82 3.7135 3.4141
12 5030 0.330837 0.46 0.326537 0.47 0.107915 0.78 0.127130 0.71 1.72 1.2898 1.2332
16 15512 0.195581 0.44 0.191774 0.45 0.050371 0.70 0.062844 0.64 1.41 0.5876 0.5832
20 45948 0.115454 0.56 0.112701 0.58 0.026069 0.54 0.033729 0.55 1.25 0.1031 0.1022
22 73926 0.091240 0.53 0.089210 0.53 0.019682 0.57 0.025822 0.56 1.22 0.0817 0.0815

Figure 4. Convergence plot (left), and reliability and efficiency constants (right) over uniform
and adaptive refinements (right) in Example 6.2 (Er=Total Error, Et=Complete Estimator,
Uni=Uniform refinement, Ada=Adaptive refinement). (a) Total error and estimator. (b) Effi-
ciency and Reliability.

Table 5. Convergence results for post-processed control ̃︀𝑢ℎ for Example 6.1 (Square domain)
and Example 6.2 (L-shaped domain).

Square domain L-shaped domain

ℎ
‖𝑢̄−̃︀𝑢ℎ‖
‖𝑢̄‖ Order ℎ

‖𝑢̄−̃︀𝑢ℎ‖
‖𝑢̄‖ Order

0.250000 0.569226344 – 0.7071068 0.65981424 –
0.125000 0.160066913 1.8303 0.3535534 0.460809013 0.5179
0.062500 0.041173386 1.9589 0.1767767 0.177559399 1.3759
0.031250 0.010363721 1.9902 0.0883883 0.054638969 1.7003
0.015625 0.002595312 1.9975 0.0441941 0.016758562 1.7050
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estimator contribution 𝜂2
𝐾,𝒫0,Θ̄M

from the adjoint equations is non-standard due to the combined effect of the
chosen trilinear form 𝑏NC(∙, ∙, ∙), non-conformity of the method and linear lower-order terms.

The post-processed control ̃︀𝑢ℎ defined in (2.7) helps to establish a posteriori estimates. Table 5 shows a priori
error estimates and order of convergence for ̃︀𝑢ℎ for Examples 6.1 and 6.2.

Table 5 indicates an improved a priori error estimate for ‖𝑢̄− ̃︀𝑢ℎ‖ in comparison to ‖𝑢̄− 𝑢̄ℎ‖ in Tables 1 and 2.
To justify this theoretically, we could utilize (4.31). However, higher-order convergence rate for

⃒⃒⃒⃒⃒⃒⃒⃒⃒ ̃︀Θ− Θ̄M

⃒⃒⃒⃒⃒⃒⃒⃒⃒
needs

to be established. A theoretical justification of this superconvergence result is a topic of future research.

Appendix A.

A.1. A priori error estimates

This section deals with the a priori error estimates for the state, adjoint and control variables under minimal
regularity assumptions on the exact solution. The proof of the piecewise 𝐻1 error estimates for the adjoint
variable (see Theorem A.8) differs from that of the nonconforming Morley case in [19], since the discrete
trilinear form is different, and forms the main contribution of this subsection.

Auxiliary results

Some auxiliary results relevant for the a priori error estimates are stated and this is followed by the error
estimates.

Lemma A.1 (Bounds for 𝐴NC(∙, ∙) ([7], Lems. 4.2, 4.3)). If 𝜒 ∈ 𝐻2+𝛾(Ω), Φ ∈ V∩𝐻2+𝛾(Ω) and ΦM ∈ VM,
then

(a) 𝐴NC(𝜒, 𝐽ΦM − ΦM) . ℎ𝛾 |||𝜒|||2+𝛾 |||ΦM|||NC. (b) 𝐴NC(𝜒, 𝐼MΦ− Φ) . ℎ2𝛾 |||𝜒|||2+𝛾 |||Φ|||2+𝛾 .

(c) 𝐴NC(ΦM,ΦM) = |||ΦM|||2NC.

Lemma A.2 (Bounds for 𝐵NC(∙, ∙, ∙)). The boundedness properties of 𝐵NC(∙, ∙, ∙) stated below hold.

(a) 𝐵NC(𝜒,𝜆,Φ) . |||𝜒|||NC|||𝜆|||NC|||Φ|||∞ for all 𝜒,𝜆,Φ ∈ V + VM.

(b) 𝐵NC(𝜒,𝜆,Φ) . |||𝜒|||2+𝛾 |||𝜆|||NC|||Φ|||1 for all 𝜒 ∈ 𝐻2+𝛾(Ω),𝜆 ∈ V + VM,Φ ∈ 𝐻1
0(Ω).

(c) 𝐵NC(𝜒,𝜆,Φ) . |||𝜒|||2+𝛾 |||𝜆|||2+𝛾 |||Φ|||0,2,ℎ for all 𝜒,𝜆 ∈ 𝐻2+𝛾(Ω),Φ ∈ V + VM.

Proof. The bound in (a) follows from the definition of 𝐵NC(∙, ∙, ∙) and 𝑏NC(∙, ∙, ∙), and the generalised
Hölder’s inequality. For 𝜒 ∈ 𝑉 ∩𝐻2+𝛾(Ω), 𝜆 and 𝜑 ∈ 𝑉 + 𝑉M, (b) follows from the definition of 𝐵NC(∙, ∙, ∙)
and 𝑏NC(∙, ∙, ∙), the estimate

∑︀
𝐾∈𝒯

∫︀
𝐾

[𝜒, 𝜆]𝜑d𝑥 . ‖𝜒‖2,4‖𝜆‖NC‖𝜑‖0,4,ℎ, and the Sobolev embeddings
𝐻2+𝛾(Ω) →˓𝑊 2,4(Ω) and 𝐻1(Ω) →˓ 𝐿4(Ω). The last inequality follows using the estimate

∑︀
𝐾∈𝒯

∫︀
𝐾

[𝜒, 𝜆]𝜑 d𝑥 .
‖𝜒‖2,4‖𝜆‖2,4‖𝜑‖0,2,ℎ, and the continuous embedding 𝐻2+𝛾(Ω) →˓ 𝑊 2,4(Ω) where 𝜒, 𝜆 ∈ 𝑉 ∩ 𝐻2+𝛾(Ω) and
𝜑 ∈ 𝑉 + 𝑉M. �

Lemma A.3. For Ψ,𝜒,Θ ∈ V ∩𝐻2+𝛾(Ω) and ΨM ∈ VM,

𝐵NC(Ψ−ΨM,𝜒,Θ) . (ℎ𝛾 |||Ψ−ΨM|||NC + |||Ψ−ΨM|||)|||𝜒|||2+𝛾 |||Θ|||2+𝛾 .

Proof. Since the piecewise second derivatives of 𝐼M𝜒 are constants, the definition of 𝐵NC(∙, ∙, ∙) and
Lemma 3.6(c) show 𝐵NC((𝐽 − 1)ΨM, 𝐼M𝜒,𝒫0Θ) = 0. This and elementary algebra lead to

𝐵NC(Ψ−ΨM,𝜒,Θ) = 𝐵(Ψ− 𝐽ΨM,𝜒,Θ) +𝐵NC((𝐽 − 1)ΨM,𝜒,Θ)
= 𝐵(Ψ− 𝐽ΨM,𝜒,Θ) +𝐵NC((𝐽 − 1)ΨM, (1− 𝐼M)𝜒,Θ) +𝐵NC((𝐽 − 1)ΨM, 𝐼M𝜒, (1− 𝒫0)Θ). (A.1)
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The definition of 𝐵(∙, ∙, ∙), the symmetry of 𝑏(∙, ∙, ∙) in the first and third variables, Lemma A.2(c), triangle
inequality with ΨM and Lemma 3.6(d) with 𝑣 = Ψ lead to

𝐵(Ψ− 𝐽ΨM,𝜒,Θ) .
(︀
ℎ2|||Ψ−ΨM|||NC + |||Ψ−ΨM|||

)︀
|||𝜒|||2+𝛾 |||Θ|||2+𝛾 .

Lemmas 3.7(b), 3.5(c) and 3.6(d) with 𝑣 = Ψ result in 𝐵NC((𝐽 − 1)ΨM, (1 − 𝐼M)𝜒,Θ) . ℎ𝛾 |||𝜒|||2+𝛾 |||Θ|||2 ×
|||Ψ−ΨM|||NC. Lemmas A.2(a), 3.5(b), 3.6(d) with 𝑣 = Ψ, projection estimate in 𝐿∞(𝒯 ) ([23], Prop. 1.135)
and the global Sobolev embedding 𝐻2+𝛾(Ω) →˓ 𝑊 1,∞(Ω) imply 𝐵NC((𝐽 − 1)ΨM, 𝐼M𝜒, (1 − 𝒫0)Θ) .
ℎ|||𝜒|||2|||Θ|||2+𝛾 |||Ψ−ΨM|||NC. A substitution of the last three bounds in (A.1) concludes the proof. �

For a given F, fixed control 𝑢 ∈ 𝑈𝑎𝑑 and u = (𝑢, 0), consider the auxiliary state equation that seeks Ψ𝑢 ∈ V
such that

𝐴(Ψ𝑢,Φ) +𝐵(Ψ𝑢,Ψ𝑢,Φ) = (F + Cu,Φ) for all Φ ∈ V. (A.2)

The nonconforming Morley finite element (FE) approximation to (A.2) seeks Ψ𝑢,M ∈ VM such that

𝐴NC(Ψ𝑢,M,ΦM) +𝐵NC(Ψ𝑢,M,Ψ𝑢,M,ΦM) = (F + Cu,ΦM) for all ΦM ∈ VM. (A.3)

The result on the existence, uniqueness and error estimates of the auxiliary state equation is proved with the help
of Lemma A.4. The proofs that are available in [10, 19] are skipped. Note that a modified proof of Lemma A.4
is presented and it utilises the properties of the companion operator to obtain sharper bounds in comparison to
Lemma 3.12 of [19].

A linear mapping

For a given g = (𝑔1, 𝑔2) ∈ V′, let the linear operator 𝑇 ∈ ℒ(V′,V) defined by 𝑇g := 𝜉 = (𝜉1, 𝜉2) ∈ V solve
the biharmonic system 𝐴(𝜉,Φ) = ⟨g,Φ⟩ for all Φ ∈ V, that is,

∆2𝜉1 = 𝑔1 in Ω, ∆2𝜉2 = 𝑔2 in Ω, 𝜉1 = 0,
𝜕𝜉1
𝜕𝜈

= 0 and 𝜉2 = 0,
𝜕𝜉2
𝜕𝜈

= 0 on 𝜕Ω. (A.4)

Moreover, for g ∈ 𝐻−1(Ω), 𝜉 ∈ V ∩𝐻2+𝛾(Ω), 𝛾 ∈ (1/2, 1], the elliptic regularity [6] result stated next holds.

|||𝜉|||2 . |||g|||−1, |||𝜉|||2+𝛾 . |||g|||−1. (A.5)

For g ∈ V′
M, define the bounded discrete operator 𝑇NC : V′

M → VM by 𝑇NCg := 𝜉M where 𝜉M ∈ VM solves the
discrete problem

𝐴NC(𝜉M,ΦM) = ⟨g,ΦM⟩ for all ΦM ∈ VM. (A.6)

The lemma stated next is utilized to prove the existence and uniqueness of the solution to (A.2).

Lemma A.4 (An intermediate estimate). Let Ψ̄ ∈ V ∩𝐻2+𝛾(Ω) be a regular solution to (2.1). Then ∀𝜖 > 0,
there exists 𝒯 ∈ T(𝛿1) with 𝛿1 > 0 such that

⃦⃦
𝑇 [ℬ′NC

(︀
Ψ̄
)︀
]− 𝑇NC[ℬ′NC(Ψ)]

⃦⃦
ℒ(V+VM)

< 𝜖 for all Ψ ∈ 𝐵𝜌𝜖

(︀
Ψ̄
)︀
.

Proof. For z ∈ V + VM, (3.1) and Lemma 3.7(b) show ℬ′NC

(︀
Ψ̄
)︀
(z) ∈ V′ and ℬ′NC

(︀
Ψ̄
)︀
(z) ∈ V′

M. For Ψ ∈
V + VM, the definitions of 𝑇 (∙) and 𝑇NC(∙), and (A.5) imply that 𝜃

(︀
Ψ̄
)︀

=: 𝑇 [ℬ′NC

(︀
Ψ̄
)︀
(z)] ∈ V∩𝐻2+𝛾(Ω) and

𝜃M(Ψ) =: 𝑇NC[ℬ′NC(Ψ)(z)] ∈ VM solve

𝐴
(︀
𝜃
(︀
Ψ̄
)︀
,Φ
)︀

=
⟨︀
ℬ′NC

(︀
Ψ̄
)︀
(z),Φ

⟩︀
for all Φ ∈ V, (A.7)

𝐴NC(𝜃M(Ψ),ΦM) = ⟨ℬ′NC(Ψ)(z),ΦM⟩ for all ΦM ∈ VM. (A.8)

Let 𝜃M

(︀
Ψ̄
)︀

and 𝜃𝐽
M

(︀
Ψ̄
)︀
∈ VM solve the discrete problems

𝐴NC

(︀
𝜃M

(︀
Ψ̄
)︀
,ΦM

)︀
=
⟨︀
ℬ′NC

(︀
Ψ̄
)︀
(z),ΦM

⟩︀
for all ΦM ∈ VM, (A.9)
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𝐴NC

(︁
𝜃𝐽

M

(︀
Ψ̄
)︀
,ΦM

)︁
=
⟨︀
ℬ′NC

(︀
Ψ̄
)︀
(z), 𝐽ΦM

⟩︀
for all ΦM ∈ VM. (A.10)

A triangle inequality yields⃒⃒⃒⃒⃒⃒
𝜃
(︀
Ψ̄
)︀
− 𝜃M(Ψ)

⃒⃒⃒⃒⃒⃒
NC

≤
⃒⃒⃒⃒⃒⃒⃒⃒⃒

𝜃
(︀
Ψ̄
)︀
− 𝜃𝐽

M

(︀
Ψ̄
)︀⃒⃒⃒⃒⃒⃒⃒⃒⃒

NC
+
⃒⃒⃒⃒⃒⃒⃒⃒⃒

𝜃𝐽
M

(︀
Ψ̄
)︀
− 𝜃M

(︀
Ψ̄
)︀⃒⃒⃒⃒⃒⃒⃒⃒⃒

NC
+
⃒⃒⃒⃒⃒⃒

𝜃M

(︀
Ψ̄
)︀
− 𝜃M(Ψ)

⃒⃒⃒⃒⃒⃒
NC
. (A.11)

Notice that 𝜃𝐽
M

(︀
Ψ̄
)︀

is the Morley nonconforming solution to (A.7) for a modified right-hand side ℬ′NC

(︀
Ψ̄
)︀
(z)∘𝐽 ∈

V′
M.
The best approximation result from Theorem 3.2 of [11] shows⃒⃒⃒⃒⃒⃒⃒⃒⃒

𝜃
(︀
Ψ̄
)︀
− 𝜃𝐽

M

(︀
Ψ̄
)︀⃒⃒⃒⃒⃒⃒⃒⃒⃒

NC
≤
√︁

1 + Λ2
J

⃒⃒⃒⃒⃒⃒
(1− 𝐼M)𝜃

(︀
Ψ̄
)︀⃒⃒⃒⃒⃒⃒

NC
. (A.12)

This together with the interpolation estimate from Lemma 3.5(c), (A.5), (A.7) and Lemma A.2(b) imply⃒⃒⃒⃒⃒⃒⃒⃒⃒
𝜃
(︀
Ψ̄
)︀
− 𝜃𝐽

M

(︀
Ψ̄
)︀⃒⃒⃒⃒⃒⃒⃒⃒⃒

NC
. ℎ𝛾

√︁
1 + Λ2

J

⃒⃒⃒⃒⃒⃒
𝜃
(︀
Ψ̄
)︀⃒⃒⃒⃒⃒⃒

2+𝛾
. ℎ𝛾

⃒⃒⃒⃒⃒⃒
ℬ′NC

(︀
Ψ̄
)︀
(z)
⃒⃒⃒⃒⃒⃒
−1
. ℎ𝛾

⃒⃒⃒⃒⃒⃒
Ψ̄
⃒⃒⃒⃒⃒⃒

2+𝛾
|||z|||NC. (A.13)

The combination of (A.9) and (A.10), and (3.1) show

𝐴NC

(︁
𝜃M

(︀
Ψ̄
)︀
− 𝜃𝐽

M

(︀
Ψ̄
)︀
,ΦM

)︁
= 2𝐵NC

(︀
Ψ̄, z, (1− 𝐽)ΦM

)︀
.

The inverse inequality and Lemma 3.6(d) prove |||(1− 𝐽)ΦM|||0,∞ . ℎ−1|||(1− 𝐽)ΦM||| . ℎ|||ΦM|||NC. This,
Lemma A.1(c) with test function ΦM := 𝜃M

(︀
Ψ̄
)︀
− 𝜃𝐽

M

(︀
Ψ̄
)︀

and Lemma A.2(a) imply⃒⃒⃒⃒⃒⃒⃒⃒⃒
𝜃𝐽

M

(︀
Ψ̄
)︀
− 𝜃M

(︀
Ψ̄
)︀⃒⃒⃒⃒⃒⃒⃒⃒⃒

NC
. ℎ

⃒⃒⃒⃒⃒⃒
Ψ̄
⃒⃒⃒⃒⃒⃒

2
|||z|||NC. (A.14)

The combination of (A.8) and (A.9), and (3.1), Lemma A.1(c) with test function 𝜃M(Ψ) − 𝜃M

(︀
Ψ̄
)︀
, and

Lemma 3.7(b) prove
⃒⃒⃒⃒⃒⃒

𝜃M(Ψ)− 𝜃M

(︀
Ψ̄
)︀⃒⃒⃒⃒⃒⃒

NC
. |||z|||NC

⃒⃒⃒⃒⃒⃒
Ψ− Ψ̄

⃒⃒⃒⃒⃒⃒
NC
. A substitution of this and (A.13), (A.14)

in (A.11) lead to the result that for any preassigned 𝜖 > 0, ℎ1 and the radius 𝜌𝜖 > 0 can be chosen
small such that for all Ψ ∈ 𝐵𝜌𝜖

(︀
Ψ̄
)︀
,
⃒⃒⃒⃒⃒⃒
𝑇
[︀
ℬ′NC

(︀
Ψ̄
)︀
(z)
]︀
− 𝑇NC[ℬ′NC(Ψ)(z)]

⃒⃒⃒⃒⃒⃒
NC

< 𝜖|||z|||NC, leading to the desired
estimate. �

Recall from the notation that osc𝑘(𝑓, 𝒯 ) =
⃦⃦
ℎ2
𝒯 (𝑓 −Π𝑘𝑓)

⃦⃦
for 𝑘 ∈ N0.

Theorem A.5 (Existence, uniqueness and error estimates).

(i) Let
(︀
Ψ̄, 𝑢̄

)︀
∈ V × 𝐿2(𝜔) be a regular solution to (2.1). Then, there exist 𝛿1, 𝜌1, 𝜌2 > 0 with 𝛿2 ≤ 𝛿1 such

that, for 𝒯 ∈ T(𝛿2) and 𝑢 ∈ 𝐵𝜌2(𝑢̄), (A.3) admits a unique solution in 𝐵𝜌1

(︀
Ψ̄
)︀
, where 𝑢 ∈ 𝐵𝜌2(𝑢̄) (resp.

Ψ ∈ 𝐵𝜌1(Ψ̄)) implies ‖𝑢− 𝑢̄‖𝐿2(𝜔) ≤ 𝜌2 (resp.
⃒⃒⃒⃒⃒⃒

Ψ− Ψ̄
⃒⃒⃒⃒⃒⃒

NC
≤ 𝜌1).

(ii) Let
(︀
Ψ̄, 𝑢̄

)︀
∈ V × 𝐿2(𝜔) be a regular solution to (2.1). Then, for 𝑢 ∈ 𝐵𝜌2(𝑢̄) and 𝒯 ∈ T(𝛿2),

the solutions Ψ𝑢 and Ψ𝑢,M to (A.2) and (A.3) satisfy the energy and broken 𝐻1 norm esti-
mates (a) |||Ψ𝑢 −Ψ𝑢,M|||NC . ‖(1− 𝐼M)Ψ𝑢‖NC + osc1(𝑓 + 𝒞𝑢 + [𝜓𝑢,1, 𝜓𝑢,2], 𝒯 ) + osc1([𝜓𝑢,1, 𝜓𝑢,1], 𝒯 ),
(b) |||Ψ𝑢 −Ψ𝑢,M|||1,2,ℎ . ℎ

𝛾(|||Ψ𝑢 −Ψ𝑢,M|||NC + osc𝑚(𝑓 + 𝒞𝑢, 𝒯 )) for each 𝑚 ∈ N0.

(iii) For 𝑢, 𝑢̂ ∈ 𝐵𝜌2(𝑢̄), and 𝒯 ∈ T(𝛿2), the solutions Ψ𝑢 and Ψ𝑢̂,M to (A.2) and (A.3), with controls chosen as
𝑢 and 𝑢̂ respectively, satisfy |||Ψ𝑢 −Ψ𝑢̂,M|||NC . ℎ

𝛾 + ‖𝑢− 𝑢̂‖𝐿2(𝜔).

Here 𝛾 ∈ (1/2, 1] is the elliptic regularity index.

The proof of (i) and (iii) can be found in Theorem 3.8(i) and Lemma 3.9 of [19]. The error estimate in energy
and piecewise 𝐻1 norms given by (ii)(a) and (b) are established in Theorem 3.1 of [10].
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Remark A.6. The well-known result for the biharmonic problem for the approximation using Morley non-
conforming FEM which states that the 𝐿2 error estimate cannot be further improved than that of 𝐻1

error estimate [27] extends to von Kármán equations and thus Theorem A.5(ii), and Lemma 3.5(c) show
(a) |||Ψ𝑢 −Ψ𝑢,M|||NC . ℎ

𝛾 ,
(b) |||Ψ𝑢 −Ψ𝑢,M|||1,2,ℎ . ℎ

2𝛾 , and (𝑐) |||Ψ𝑢 −Ψ𝑢,M||| . ℎ2𝛾 .

The auxiliary problem corresponding to the adjoint equations seeks Θ𝑢 ∈ V such that

𝐴(Φ,Θ𝑢) + 2𝐵(Ψ𝑢,Φ,Θ𝑢) = (Ψ𝑢 −Ψ𝑑,Φ) for all Φ ∈ V, (A.15)

where Ψ𝑢 ∈ V is the solution to (A.2). A Morley FE discretization corresponding to (A.15) seeks Θ𝑢,M ∈ VM

such that, for all ΦM ∈ VM,

𝐴NC(ΦM,Θ𝑢,M) + 2𝐵NC(Ψ𝑢,M,ΦM,Θ𝑢,M) = (Ψ𝑢,M −Ψ𝑑,ΦM). (A.16)

The existence, uniqueness and convergence results stated in the next theorem follow analogous to that of
Theorems 4.1 and 4.2(a) from [19] and are skipped for brevity.

Theorem A.7 (Existence, uniqueness and energy error estimate). Let
(︀
Ψ̄, 𝑢̄

)︀
∈ V × 𝐿2(𝜔) be a regular

solution to (2.1). Then, (i) there exist 0 < 𝜌3 ≤ 𝜌2 and 𝛿3 ≤ 𝛿2 such that, for all 𝒯 ∈ T(𝛿3) and
𝑢 ∈ 𝐵𝜌3(𝑢̄), (A.16) admits a unique solution, (ii) for 𝑢 ∈ 𝐵𝜌3(𝑢̄) and 𝒯 ∈ T(𝛿3), the solutions Θ𝑢 and
Θ𝑢,M of (A.15) and (A.16) satisfy the energy norm error estimate: |||Θ𝑢 −Θ𝑢,M|||NC . |||Ψ𝑢 −Ψ𝑢,M|||NC +
ℎ𝛾(‖𝜓𝑢,1 − 𝜓𝑑,1 − [𝜓𝑢,1, 𝜃𝑢,2] + [𝜓𝑢,2, 𝜃𝑢,1]‖+ ‖𝜓𝑢,2 − 𝜓𝑑,2 + [𝜓𝑢,1, 𝜃𝑢,1]‖), where Ψ𝑢 (resp. Ψ𝑢,M) solves (A.2)
(resp. (A.3)) and 𝛾 ∈

(︀
1
2 , 1
]︀
.

The proof of a priori 𝐻1 error estimate stated in the next theorem for adjoint variables is a non-trivial
modification of the corresponding result in [19]. The form of the error estimate will be useful in the adaptive
convergence study that is planned for future.

Theorem A.8 (Piecewise 𝐻1 error estimate). Let
(︀
Ψ̄, 𝑢̄

)︀
∈ V×𝐿2(𝜔) be a regular solution to (2.1). Then for

𝒯 ∈ T(𝛿3), the solutions Θ𝑢 and Θ𝑢,M of (A.15) and (A.16) satisfy

|||Θ𝑢 −Θ𝑢,M|||1,2,ℎ . ℎ
𝛾
(︁
|||Ψ𝑢 −Ψ𝑢,M|||NC + |||Θ𝑢 −Θ𝑢,M|||NC + |||(1− 𝒫0)Θ𝑢|||0,∞

)︁
+ |||Ψ𝑢 −Ψ𝑢,M|||NC|||Θ𝑢 −Θ𝑢,M|||NC + |||Ψ𝑢 −Ψ𝑢,M|||+ ℎ2+𝛾osc0(Ψ𝑢 −Ψ𝑑, 𝒯 ),

where osc0(𝑓, 𝒯 ) =
⃦⃦
ℎ2
𝒯 (𝑓 −Π0𝑓)

⃦⃦
, Ψ𝑢 (resp. Ψ𝑢,M) solves (A.2) (resp. (A.3)) and 𝛾 ∈

(︀
1
2 , 1
]︀
.

Proof. Step 1: Isolates a crucial term. Let 𝜌M := 𝐼MΘ𝑢 −Θ𝑢,M ∈ VM. The triangle inequality leads to

|||Θ𝑢 −Θ𝑢,M|||1,2,ℎ ≤ |||(1− 𝐼M)Θ𝑢|||1,2,ℎ + |||(1− 𝐽)𝜌M|||1,2,ℎ + |||𝐽𝜌M|||1. (A.17)

Lemma 3.5(a) shows that Θ𝑢 − 𝐼MΘ𝑢 is orthogonal to ΦM for all ΦM ∈ 𝑉M and so Lemma 3.5(b) and the
Pythagoras theorem prove

ℎ−2|||Θ𝑢 − 𝐼MΘ𝑢|||21,2,ℎ ≤ 𝐶2
I |||Θ𝑢 − 𝐼MΘ𝑢|||2NC = 𝐶2

I

(︁
|||Θ𝑢 −Θ𝑢,M|||2NC − |||𝜌M|||

2
NC

)︁
≤ 𝐶2

I |||Θ𝑢 −Θ𝑢,M|||2NC.

(A.18)
Lemma 3.6(d) with 𝑣 = 0 and the Pythagoras theorem in the above displayed inequality show

ℎ−1|||𝜌M − 𝐽𝜌M|||1,2,ℎ ≤ ΛJ|||𝜌M|||NC . |||Θ𝑢 −Θ𝑢,M|||NC, (A.19)

where “.” absorbs ΛJ and 𝐶I. (A.17)–(A.19) conclude the first step and show

|||Θ𝑢 −Θ𝑢,M|||1,2,ℎ . ℎ|||Θ𝑢 −Θ𝑢,M|||NC + |||𝐽𝜌M|||1. (A.20)
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Step 2: Estimates |||𝐽𝜌M|||1 in (A.20). For a given g ∈ 𝐻−1(Ω), consider the dual problem that seeks 𝜒𝑔 ∈
V such that

𝐴
(︀
𝜒𝑔,Φ

)︀
+ 2𝐵

(︀
Ψ𝑢,𝜒𝑔,Φ

)︀
= ⟨g,Φ⟩ for all Φ ∈ V. (A.21)

The existence of solution to (A.21) and the regularity results stated below follow from Theorem 3.1. Note
that 𝜒𝑔 ∈ V ∩H2+𝛾(Ω) and ⃒⃒⃒⃒⃒⃒

𝜒𝑔

⃒⃒⃒⃒⃒⃒
2
. |||g|||−1 and

⃒⃒⃒⃒⃒⃒
𝜒𝑔

⃒⃒⃒⃒⃒⃒
2+𝛾
. |||g|||−1. (A.22)

Choose g = −∆𝐽𝜌M ∈ 𝐿2(Ω) and Φ = 𝐽𝜌M ∈ V. This and elementary algebra eventually lead to

‖∇𝐽𝜌M‖
2 = 𝐴NC

(︀
𝜒𝑔, (𝐽 − 1)𝜌M

)︀
+ 2
(︀
𝐵NC

(︀
Ψ𝑢,𝜒𝑔, (𝐽 − 1)𝜌M

)︀
+𝐵NC

(︀
Ψ𝑢,𝜒𝑔, (𝐼M − 1)Θ𝑢

)︀)︀
+
(︀
𝐴NC

(︀
𝜒𝑔, (𝐼M − 1)Θ𝑢

)︀
+𝐴NC

(︀
𝜒𝑔,Θ𝑢 −Θ𝑢,M

)︀)︀
+ 2𝐵NC(Ψ𝑢,𝜒𝑔,Θ𝑢 −Θ𝑢,M) =

4∑︁
𝑖=1

𝑇𝑖.

(A.23)

Step 3: Estimates the terms 𝑇1, · · · , 𝑇4. Lemma A.1(a) shows that

𝑇1 := 𝐴NC

(︀
𝜒𝑔, (𝐽 − 1)𝜌M

)︀
. ℎ𝛾 |||𝜌M|||NC

⃒⃒⃒⃒⃒⃒
𝜒𝑔

⃒⃒⃒⃒⃒⃒
2+𝛾
. ℎ𝛾 |||Θ𝑢 −Θ𝑢,M|||NC

⃒⃒⃒⃒⃒⃒
𝜒𝑔

⃒⃒⃒⃒⃒⃒
2+𝛾

with (A.19) in the end. Lemmas A.2(c), 3.6(d) with 𝑣 = 𝜌M, 3.5(b), (A.18) and (A.19) imply

1
2
𝑇2 := 𝐵NC

(︀
Ψ𝑢,𝜒𝑔, (𝐽 − 1)𝜌M

)︀
+𝐵NC

(︀
Ψ𝑢,𝜒𝑔, (𝐼M − 1)Θ𝑢

)︀
. ℎ2|||Ψ𝑢|||2+𝛾

⃒⃒⃒⃒⃒⃒
𝜒𝑔

⃒⃒⃒⃒⃒⃒
2+𝛾

|||Θ𝑢 −Θ𝑢,M|||NC.

Simple manipulations lead to

𝑇3 := 𝐴NC

(︀
𝜒𝑔, (𝐼M − 1)Θ𝑢

)︀
+𝐴NC

(︀
(1− 𝐼M)𝜒𝑔,Θ𝑢 −Θ𝑢,M

)︀
+𝐴NC

(︀
(1− 𝐽)𝐼M𝜒𝑔,Θ𝑢 −Θ𝑢,M

)︀
+𝐴NC

(︀
𝐽𝐼M𝜒𝑔,Θ𝑢 −Θ𝑢,M

)︀
. (A.24)

Lemma 3.5(a) shows 𝐴NC(ΦM, 𝐼MΘ𝑢 −Θ𝑢) = 0 = 𝐴NC

(︀
𝜒𝑔 − 𝐼M𝜒𝑔,ΦM

)︀
for all ΦM ∈ 𝑉M. This shows that

for the first two terms in (A.24) it holds

𝐴NC

(︀
𝜒𝑔 − 𝐼M𝜒𝑔, 𝐼MΘ𝑢 −Θ𝑢

)︀
+𝐴NC

(︀
𝜒𝑔 − 𝐼M𝜒𝑔,Θ𝑢 −Θ𝑢,M

)︀
= 0.

The boundedness of 𝐴NC(∙, ∙), Lemma 3.6(d) with 𝑣 = 𝜒𝑔 and Lemma 3.5(c) result in an estimate for the
third term in (A.24) as

𝐴NC

(︀
(1− 𝐽)𝐼M𝜒𝑔,Θ𝑢 −Θ𝑢,M

)︀
≤ ℎ𝛾

⃒⃒⃒⃒⃒⃒
𝜒𝑔

⃒⃒⃒⃒⃒⃒
2+𝛾

|||Θ𝑢 −Θ𝑢,M|||NC. (A.25)

Lemma 3.6(c) shows 𝐴NC

(︀
𝐽𝐼M𝜒𝑔 − 𝐼M𝜒𝑔,Θ𝑢,M

)︀
= 0. This, (A.15) and (A.16) lead to an expression for the

last term in (A.24) as

𝐴NC

(︀
𝐽𝐼M𝜒𝑔,Θ𝑢 −Θ𝑢,M

)︀
= 𝐴NC

(︀
𝐽𝐼M𝜒𝑔,Θ𝑢

)︀
−𝐴NC

(︀
𝐼M𝜒𝑔,Θ𝑢,M

)︀
=
(︀
Ψ𝑢 −Ψ𝑑, 𝐽𝐼M𝜒𝑔

)︀
− 2𝐵

(︀
Ψ𝑢, 𝐽𝐼M𝜒𝑔,Θ𝑢

)︀
−
(︀
Ψ𝑢,M −Ψ𝑑, 𝐼M𝜒𝑔

)︀
+ 2𝐵NC

(︀
Ψ𝑢,M, 𝐼M𝜒𝑔,Θ𝑢,M

)︀
=
(︀
Ψ𝑢 −Ψ𝑑, (𝐽 − 1)𝐼M𝜒𝑔

)︀
−
(︀
Ψ𝑢,M −Ψ𝑢, 𝐼M𝜒𝑔

)︀
− 2𝐵

(︀
Ψ𝑢, 𝐽𝐼M𝜒𝑔,Θ𝑢

)︀
+ 2𝐵NC

(︀
Ψ𝑢,M, 𝐼M𝜒𝑔,Θ𝑢,M

)︀
.

(A.26)

Lemma 3.6(b) shows Π0𝑧 = 0 for 𝑧 = (𝐽 − 1)𝐼M𝜒𝑔. This, the Cauchy–Schwarz inequality, Lemmas 3.6(d)
with 𝑣 = 𝜒𝑔, 3.7(a) and 3.5(b), (c) lead to the estimate for the first two terms of (A.26) as(︀

Ψ𝑢 −Ψ𝑑 −Π0(Ψ𝑢 −Ψ𝑑), (𝐽 − 1)𝐼M𝜒𝑔

)︀
. ℎ2+𝛾osc0(Ψ𝑢 −Ψ𝑑)

⃒⃒⃒⃒⃒⃒
𝜒𝑔

⃒⃒⃒⃒⃒⃒
2+𝛾

,(︀
Ψ𝑢,M −Ψ𝑢, 𝐼M𝜒𝑔

)︀
. |||Ψ𝑢,M −Ψ𝑢|||

⃒⃒⃒⃒⃒⃒
𝜒𝑔

⃒⃒⃒⃒⃒⃒
2
.

(A.27)
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The terms involving trilinear forms in (A.26) are estimated now. The orthogonality property of 𝐽 in
Lemma 3.6(c) shows that 𝐵NC(Ψ𝑢,M,𝜒𝑔 − 𝐽𝐼M𝜒𝑔,𝒫0Θ𝑢) = 0. This and a simple manipulation (omitting a
factor 2) lead to an expression for the last two terms of (A.26) combined with 𝑇4 as

𝐵NC

(︀
Ψ𝑢 −Ψ𝑢,M, (1− 𝐽𝐼M)𝜒𝑔,Θ𝑢

)︀
+𝐵NC

(︀
Ψ𝑢,M, (1− 𝐽𝐼M)𝜒𝑔, (1− 𝒫0)Θ𝑢

)︀
+𝐵NC

(︀
Ψ𝑢,M, 𝐼M𝜒𝑔,Θ𝑢,M

)︀
−𝐵NC

(︀
Ψ𝑢,𝜒𝑔,Θ𝑢,M

)︀
.

(A.28)

The triangle inequality with 𝐼M𝜒𝑔, Lemmas 3.7(b), 3.5(c) and 3.6(d) with 𝑣 = 𝜒𝑔 result in

𝐵NC

(︀
Ψ𝑢 −Ψ𝑢,M, (1− 𝐽𝐼M)𝜒𝑔,Θ𝑢

)︀
. ℎ𝛾

⃒⃒⃒⃒⃒⃒
𝜒𝑔

⃒⃒⃒⃒⃒⃒
2+𝛾

|||Θ𝑢|||2+𝛾 |||Ψ𝑢 −Ψ𝑢,M|||NC. (A.29)

Lemmas A.2(a), 3.5(c) and 3.6(d) with 𝑣 = 𝜒𝑔 show

𝐵NC

(︀
Ψ𝑢,M, (1− 𝐽𝐼M)𝜒𝑔, (1− 𝒫0)Θ𝑢

)︀
. ℎ𝛾

⃒⃒⃒⃒⃒⃒
𝜒𝑔

⃒⃒⃒⃒⃒⃒
2+𝛾

|||Ψ𝑢|||2+𝛾 |||Θ𝑢 − 𝒫0Θ𝑢|||0,∞. (A.30)

The integral mean property of 𝐼M in Lemma 3.5(a) shows 𝐵NC(Ψ𝑢,M, 𝐼M𝜒𝑔 − 𝜒𝑔,𝒫0Θ𝑢) = 0. This and a
simple manipulation show that the last two terms in (A.28) can be rewritten as

𝐵NC

(︀
Ψ𝑢 −Ψ𝑢,M, (1− 𝐼M)𝜒𝑔, Θ𝑢,M

)︀
+ 𝐵NC

(︀
Ψ𝑢, (1− 𝐼M)𝜒𝑔, Θ𝑢 −Θ𝑢,M

)︀
+ 𝐵NC

(︀
Ψ𝑢 −Ψ𝑢,M, (𝐼M − 1)𝜒𝑔, Θ𝑢

)︀
+ 𝐵NC

(︀
Ψ𝑢,M, (𝐼M − 1)𝜒𝑔, (1− 𝒫0)Θ𝑢

)︀
+ 𝐵NC

(︀
Ψ𝑢 −Ψ𝑢,M,𝜒𝑔, Θ𝑢 −Θ𝑢,M

)︀
+ 𝐵NC

(︀
Ψ𝑢,M −Ψ𝑢,𝜒𝑔, Θ𝑢

)︀
=

6∑︁
𝑖=1

T𝑖. (A.31)

The terms T1, · · · ,T6 are estimated next. The boundedness and interpolation estimates in Lem-
mas A.2(a), 3.7(b) and 3.5(c) prove

T1 . ℎ
𝛾
⃒⃒⃒⃒⃒⃒

𝜒𝑔

⃒⃒⃒⃒⃒⃒
2+𝛾

|||Θ𝑢|||2+𝛾 |||Ψ𝑢 −Ψ𝑢,M|||NC, T2 . ℎ
𝛾
⃒⃒⃒⃒⃒⃒

𝜒𝑔

⃒⃒⃒⃒⃒⃒
2+𝛾

|||Ψ𝑢|||2+𝛾 |||Θ𝑢 −Θ𝑢,M|||NC

T3 . ℎ
𝛾
⃒⃒⃒⃒⃒⃒

𝜒𝑔

⃒⃒⃒⃒⃒⃒
2+𝛾

|||Θ𝑢|||2+𝛾 |||Ψ𝑢 −Ψ𝑢,M|||NC, T4 . ℎ
𝛾
⃒⃒⃒⃒⃒⃒

𝜒𝑔

⃒⃒⃒⃒⃒⃒
2+𝛾

|||Ψ𝑢|||2+𝛾 |||Θ𝑢 − 𝒫0Θ𝑢|||0,∞

T5 .
⃒⃒⃒⃒⃒⃒

𝜒𝑔

⃒⃒⃒⃒⃒⃒
2+𝛾

|||Ψ𝑢 −Ψ𝑢,M|||NC|||Θ𝑢 −Θ𝑢,M|||NC.

Lemma A.3 shows T6 .
(︀
ℎ𝛾 |||Ψ𝑢 −Ψ𝑢,M|||NC + |||Ψ𝑢 −Ψ𝑢,M|||

)︀⃒⃒⃒⃒⃒⃒
𝜒𝑔

⃒⃒⃒⃒⃒⃒
2+𝛾

|||Θ𝑢|||2+𝛾 . A substitution of T1–T6 in
(A.31) and the resulting estimate with (A.29) and (A.30) in (A.28) lead to a bound for the terms involving
the trilinear form 𝐵NC(∙, ∙, ∙) as⃒⃒⃒⃒⃒⃒

𝜒𝑔

⃒⃒⃒⃒⃒⃒
2+𝛾

(︁
|||Θ𝑢|||2+𝛾

(︀
ℎ𝛾 |||Ψ𝑢 −Ψ𝑢,M|||NC + |||Ψ𝑢 −Ψ𝑢,M|||

)︀
+ |||Ψ𝑢 −Ψ𝑢,M|||NC|||Θ𝑢 −Θ𝑢,M|||NC

+ ℎ𝛾 |||Ψ𝑢|||2+𝛾

(︁
|||Θ𝑢 −Θ𝑢,M|||NC + |||Θ𝑢 − 𝒫0Θ𝑢|||0,∞

)︁)︁
.

This expression and (A.27) are first substituted in (A.26), the resulting expression and (A.25) are substituted
in (A.24) and utilized in (A.23) with bounds for 𝑇1 and 𝑇2. In combination with

⃒⃒⃒⃒⃒⃒
𝜒𝑔

⃒⃒⃒⃒⃒⃒
2+𝛾
. |||g|||−1 .

‖∇𝐽𝜌M‖ from (A.22), this yields

‖∇𝐽𝜌M‖ . ℎ𝛾 |||Θ𝑢|||2+𝛾

⃒⃒⃒⃒⃒⃒
Ψ𝑢 −Ψ𝑢,M

⃒⃒⃒⃒⃒⃒
NC

+
⃒⃒⃒⃒⃒⃒

Ψ𝑢 −Ψ𝑢,M

⃒⃒⃒⃒⃒⃒
NC

⃒⃒⃒⃒⃒⃒
Θ𝑢 −Θ𝑢,M

⃒⃒⃒⃒⃒⃒
NC

+
(︁
1 + |||Θ𝑢|||2+𝛾

)︁⃒⃒⃒⃒⃒⃒
Ψ𝑢 −Ψ𝑢,M

⃒⃒⃒⃒⃒⃒
+ ℎ𝛾

(︁
1 + |||Ψ𝑢|||2+𝛾

)︁⃒⃒⃒⃒⃒⃒
Θ𝑢 −Θ𝑢,M

⃒⃒⃒⃒⃒⃒
NC

+ ℎ𝛾 |||Ψ𝑢|||2+𝛾 |||Θ𝑢 − 𝒫0Θ𝑢|||0,∞ + ℎ2+𝛾osc0(Ψ𝑢 −Ψ𝑑).

The last displayed inequality, |||Θ𝑢|||2+𝛾 , |||Ψ𝑢|||2+𝛾 . 1 and (A.20) lead to the desired estimate. �
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Remark A.9. The projection estimate in 𝐿∞(𝒯 ) ([23], Prop. 1.135) and global Sobolev embedding𝐻2+𝛾(Ω) →˓
𝑊 1,∞(Ω) imply |||(1− 𝒫0)Θ𝑢|||0,∞ . ℎ|||Θ𝑢|||2+𝛾 . This, Theorems A.7 and A.8, and Remark A.6 show
(a) |||Θ𝑢 −Θ𝑢,M|||NC . ℎ

𝛾 , (b) |||Θ𝑢 −Θ𝑢,M|||1,2,ℎ . ℎ
2𝛾 , and (c) |||Θ𝑢 −Θ𝑢,M||| . ℎ2𝛾 .

The proof of the error estimates of the nonlinear control problem follows from the second-order sufficient
optimality conditions in Theorem 3.9.

Theorem A.10 (A priori error estimates ([19], Thm. 5.1)). Let
(︀
Ψ̄, 𝑢̄

)︀
be a regular solution to (2.1) and{︀(︀

Ψ̄M, 𝑢̄ℎ

)︀}︀
be a solution to (2.5) converging to

(︀
Ψ̄, 𝑢̄

)︀
in V × 𝐿2(𝜔), for 𝒯 ∈ T(𝛿3) with 𝑢̄ℎ ∈ 𝐵𝜌3(𝑢̄) as

in Theorem A.7. Let Θ̄ and Θ̄M be the corresponding continuous and discrete adjoint variables, respectively.
Then, there exist 0 < 𝛿0 ≤ 𝛿3, 𝜖0 such that for all 𝒯 ∈ T(𝛿0), it holds (a)

⃒⃒⃒⃒⃒⃒
Ψ̄− Ψ̄M

⃒⃒⃒⃒⃒⃒
NC

+
⃒⃒⃒⃒⃒⃒

Θ̄− Θ̄M

⃒⃒⃒⃒⃒⃒
NC

+
‖𝑢̄− 𝑢̄ℎ‖𝐿2(𝜔) ≤ 𝜀0; the solutions

(︀
Ψ̄, Θ̄, ū

)︀
and

(︀
Ψ̄M, Θ̄M, ūℎ

)︀
satisfy, (b)

⃒⃒⃒⃒⃒⃒
Ψ̄− Ψ̄M

⃒⃒⃒⃒⃒⃒
NC
. ℎ𝛾 ,

⃒⃒⃒⃒⃒⃒
Θ̄− Θ̄M

⃒⃒⃒⃒⃒⃒
NC
.

ℎ𝛾 , and ‖𝑢̄− 𝑢̄ℎ‖𝐿2(𝜔) . ℎ, 𝛾 ∈ (1/2, 1].

The next lemma is a standard result in Banach spaces that helps to prove Lemma 4.2.

Lemma A.11. Let 𝑋 be a Banach space, 𝐴 ∈ ℒ(𝑋) be invertible and 𝐵 ∈ ℒ(𝑋). If ‖𝐴 − 𝐵‖ℒ(𝑋) <

1/
⃦⃦
𝐴−1

⃦⃦
ℒ(𝑋)

, then 𝐵 is invertible. If ‖𝐴−𝐵‖ℒ(𝑋) < 1/
(︁

2
⃦⃦
𝐴−1

⃦⃦
ℒ(𝑋)

)︁
, then

⃦⃦
𝐵−1

⃦⃦
ℒ(𝑋)

≤ 2
⃦⃦
𝐴−1

⃦⃦
ℒ(𝑋)

.

The uniform boundedness result for the inverse of the linear mapping ℱΨ𝑢
with a bound independent of the

discretization parameter ℎ without assuming the extra regularity of Ψ̄ is proved next. This result was used to
derive the a posteriori error estimates for the adjoint variable.

Proof of Lemma 4.2. Lemma 4.3 of [19] shows that ℱΨ̄ is an automorphism on V + VM if Ψ̄ ∈ V is a
regular solution to (2.1). Also, for 𝜉 + 𝜉M ∈ V + VM, the invertibility of ℱΨ̄ leads to ℱ−1

Ψ̄
(𝜉 + 𝜉M) =

𝜉 + 𝜉M −
(︁
𝒜+ ℬ′

(︀
Ψ̄
)︀*)︁−1

ℬ′NC

(︀
Ψ̄
)︀*(𝜉 + 𝜉M). This, and Lemma 3.7(b) imply

⃦⃦
ℱ−1

Ψ̄

⃦⃦
ℒ(V+VM)

≤ 1 +

2𝐶b

⃦⃦⃦⃦(︁
𝒜+ ℬ′

(︀
Ψ̄
)︀*)︁−1

⃦⃦⃦⃦
ℒ(V′,V)

×
⃒⃒⃒⃒⃒⃒

Ψ̄
⃒⃒⃒⃒⃒⃒

2
. Since 𝒜* = 𝒜 and the operator norm of an operator and its adjoint

are equal,
⃦⃦⃦⃦(︁
𝒜+ ℬ′

(︀
Ψ̄
)︀*)︁−1

⃦⃦⃦⃦
=
⃦⃦⃦(︀
𝒜+ ℬ′

(︀
Ψ̄
)︀)︀−1

⃦⃦⃦
and hence, there exists a constant 𝐶 independent of ℎ such

that 1

‖ℱ−1
Ψ̄ ‖ℒ(V+VM)

≥ 𝐶.

For Φ ∈ V + VM, the definition of ℱΨ in (4.17), the boundedness property of 𝑇 (∙) and 𝐵NC(∙, ∙, ∙) in
Lemma 3.7(b) imply

‖ℱΨ̄(Φ)−ℱΨ𝑢
(Φ)‖ℒ(V+VM) ≤

⃦⃦⃦
𝑇
[︁
ℬ′NC

(︀
Ψ̄−Ψ𝑢

)︀*(Φ)
]︁⃦⃦⃦
.
⃒⃒⃒⃒⃒⃒

Ψ̄−Ψ𝑢

⃒⃒⃒⃒⃒⃒
2
. (A.32)

Theorem 3.1 shows 𝐺(𝑢̄) = Ψ̄, 𝐺(𝑢) = Ψ𝑢 and the uniform boundedness of
⃒⃒⃒⃒⃒⃒⃒⃒⃒

(𝒜+ ℬ′(Ψ𝑢))−1
⃒⃒⃒⃒⃒⃒⃒⃒⃒
ℒ(V′,V)

whenever

𝑢 ∈ 𝒪(𝑢̄). Hence, for 𝑢𝑡 = 𝑢+ 𝑡(𝑢̄− 𝑢) and Ψ𝑡 = 𝐺(𝑢𝑡), mean value theorem, Theorem 3.1 and 𝑢 ∈ 𝒪(𝑢̄) prove

⃒⃒⃒⃒⃒⃒
Ψ̄−Ψ𝑢

⃒⃒⃒⃒⃒⃒
2

=
⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒∫︁ 1

0

𝐺′(𝑢𝑡)(C(ū− u)) d𝑡
⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒

2

=
⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒∫︁ 1

0

(𝒜+ ℬ′(Ψ𝑡))
−1(C(ū− u)) d𝑡

⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒
2

. ‖𝑢̄− 𝑢‖𝐿2(𝜔).

Since 𝑢 is sufficently close to 𝑢̄, (A.32) leads to

‖ℱΨ̄ −ℱΨ𝑢
‖ℒ(V+VM) ≤ 𝐶 ≤ 1⃦⃦

ℱ−1
Ψ̄

⃦⃦
ℒ(V+VM)

·

An application of Lemma A.11 concludes the proof. �
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Kármán equations. arXiv:2005.11734 (2020).

[18] S. Chowdhury, T. Gudi and A.K. Nandakumaran, A framework for the error analysis of discontinuous finite element methods
for elliptic optimal control problems and applications to 𝐶0 IP methods. Numer. Funct. Anal. Optim. 36 (2015) 1388–1419.

[19] S. Chowdhury, N. Nataraj and D. Shylaja, Morley FEM for a distributed optimal control problem governed by the von Kármán
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