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A POSTERIORI ERROR ANALYSIS FOR A DISTRIBUTED OPTIMAL
CONTROL PROBLEM GOVERNED BY THE VON KARMAN EQUATIONS

SupipTo CHOWDHURY!, AsHA K. DOND?, NEELA NATARAJ** AND DEVIKA SHYLAJA?

Abstract. This article discusses the numerical analysis of the distributed optimal control problem
governed by the von Kdrmén equations defined on a polygonal domain in R2. The state and adjoint
variables are discretised using the nonconforming Morley finite element method and the control is
discretized using piecewise constant functions. A priori and a posteriori error estimates are derived
for the state, adjoint and control variables. The a posteriori error estimates are shown to be efficient.
Numerical results that confirm the theoretical estimates are presented.
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1. INTRODUCTION
Problem formulation

Let ©Q C R? be a polygonal domain and v denote the outward unit normal vector to the boundary 9 of €.
This paper considers the distributed control problem governed by the von Karman equations stated below:

m(ijn J (U, u) subject to (1.1a)
u€Uaq
1 .
A21/)1 = [wlva] + f +C'LL, A21/12 = _5[1/]1)2/}1] m Qv (11b)
B 51/11 o o aw2 _
¢1 = 0, W =0 and ’(/12 = 07 78V =0 on 0f). (11(3)

Here the cost functional J(V¥,u) := %|¥ — \I/dmiz(ﬂ) + %”“”%2@)7 the state variable U := (11,15), where
11 and 1 correspond to the displacement and Airy-stress, Uy := (Yg.1,%42) € L*(Q) := L*(Q) x L*(Q) is
the prescribed desired state for ¥, ||¥ — \I'd|||2LZ(Q) = Zle lb; — ¢d7i||2LQ(Q), a > 0 is a fixed regularization
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parameter, U,qg C L?(w), w C Q is a non-empty, closed, convex and bounded set of admissible controls defined
by
Uga = {u € L*(w) : ug < u(z) < for almost every z in w},

us < up € R are given, A? denotes the fourth-order biharmonic operator, the von Kdrman bracket [n,x] :=
NoaXyy + MyyXaz — 2NayXay = cof (D?n) : D%y with the co-factor matrix cof (D?n) of D?n, f € L?(Q), and
C € L(L*(w), L*(Q)) is the extension operator defined by Cu(z) = u(z) if # € w and Cu(z) =0 if x ¢ w.

Motivation

The von Kérmén equations [2-5,21,29] that describe the bending of very thin elastic plates offer challenges
in its numerical approximation; mainly due to its nonlinearity and higher-order nature. The numerical analysis
of von Kérmén equations has been studied using conforming finite element methods (FEMs) in [9,31], non-
conforming Morley FEM in [15,32], mixed FEMs in [17,34], discontinuous Galerkin methods and C° interior
penalty methods in [8,14]. The optimal control problem governed by the von Kdrmén equations (1.1a)—(1.1c) is
analysed in [33] using C'* conforming finite elements. In [19], the state and adjoint variables are discretised using
the Morley FEM and a priori error estimates are derived under minimal regularity assumptions on the exact
solution. The article [14] discusses reliable and efficient a posteriori estimates for the state equations. To the best
of our knowledge, there are no results in literature that discuss a posteriori error analysis for the approzimation
of reqular solutions of optimal control problems governed by von Kdrmdn equations. Recently, a posteriori error
analysis for the optimal control problem governed by second-order stationary Navier—Stokes equations is studied
in [1] using conforming finite elements under smallness assumption on the data. The trilinear form in [1] vanishes
whenever the second and third variables are equal, and satisfies the anti-symmetric property with respect to the
second and third variables and this aids the a posterior: error analysis. This paper discusses approximation of
reqular solutions for fourth-order semilinear problems without any smallness assumption on the data. Moreover,
the trilinear form for von Kdrmdn equations does not satisfy the properties stated above and hence leads to
interesting challenges in the analysis.

Nonconforming Morley, FEM based on piecewise quadratic polynomials in a triangle is more elegant and simpler
for fourth-order problems. However, since the discrete space Vi is not a subspace of H2(2), the convergence
analysis offers a lot of novelty in the context of control problems governed by semilinear problems with trilinear
nonlinearity. The adjoint variable in the control problem satisfies a fourth-order linear problem with lower-order
terms and its a priori and a posteriori analysis with Morley FEM are not available in literature.

Contributions

In continuous formulation (see (2.1)) and the conforming FEM [33], the trilinear form b(e, e, ®) is symmetric
with respect to all the three variables making the analysis simpler to a certain extent. However, for fourth-
order systems, nonconforming Morley FEM is attractive, is a method of choice [15], provides optimal order
estimates, and these aspects motivated the a priori analysis for the optimal control problem considered in [19].
The nonconforming Morley finite elements are based on piecewise quadratic polynomials and are simpler to
use. They have lesser number of degrees of freedom in comparison with the conforming Argyris finite elements
with 21 degrees of freedom in a triangle or the Bogner-Fox—Schmit finite elements with 16 degrees of freedom
in a rectangle. The discrete trilinear form bnc(e,e,0) := 23 7 [ cof (D?nu) Dxwm - Dom da for all Morley
functions nu, XM and @ utilized in [19]; is obtained after an integration by parts, where 7 denotes an admissible
triangulation of Q. This form is symmetric with respect to the second and third variables. Although this choice
of trilinear form leads to optimal order error estimates for the optimal control problem (1.1a)—(1.1c), it leads
to terms that involve averages in the reliability analysis of the state equations (as in the case of Navier—Stokes
equation considered in [15]). The efficiency estimates are unclear in this context. To overcome this, a more
natural trilinear form by (M, XM, oM) = —% doKeT fK [mM, Xm]om dz that is symmetric with respect to the
first and second variables is chosen in this article. The a priori and a posteriori analysis for the state equations
are discussed in [10,15] for this modified choice of by (e, e, ®).
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The a posteriori analysis for the fully discrete optimal control problem governed by the von Karméan equations
addressed in this article is novel. For example, this formulation is different from that in [19], and it is essential to
modify the a priori error estimates for the discrete optimal problem. The adjoint system of the optimal control
problem involves lower-order terms with leading biharmonic operators. A posteriori analysis for biharmonic
operator with lower-order terms is a problem of independent interest.

Thus the contributions of this article can be summarized as follows.

— Reliable and efficient a posteriori error estimates that drive the adaptive refinement for the optimal state
and adjoint variables in the energy norm and control variable in the L? norm are developed. The approach
followed provides a strategy for the nonconforming FEM analysis of distributed optimal control problems
governed by higher-order semilinear problems.

— Several auxiliary results that are derived will be of interest in other applications — for example, optimal
control problems governed by Navier—Stokes problems in the stream-vorticity formulation.

— The paper illustrates results of computational experiments that validate both theoretical a priori and a
posteriori estimates for the optimal control problem under consideration.

— For a formulation that is different from that in [19], optimal order a priori error estimates in energy norm
when state and adjoint variables are approximated by Morley FEM and linear order of convergence for
control variable in L2 norm when control is approximated using piecewise constants are outlined.

Organisation

The remaining parts of this paper are organised as follows. Section 2 first presents the weak and Morley finite
element formulations for (1.1a)—(1.1c). The main results of this article are also stated. The state and adjoint
variables are discretised using Morley finite elements and the control variable is discretised using piecewise
constant functions. Section 3 discusses some auxiliary results related to the continuous formulation and Morley
FEM. The properties of the interpolation and companion operators that are crucial for the error analysis are
discussed in this section. The proofs of the results for the a posteriori estimates stated in Section 2 are presented
in Sections 4 and 5. Section 4 develops reliable a posteriori estimates for the state, adjoint and control variables of
the optimal control problem. The efficiency results are discussed in Section 5. Results of numerical experiments
that validate theoretical estimates are presented in Section 6. The intermediate results for establishing the a
priori error estimates for the state, adjoint and control variables under minimal regularity assumption on the
exact solution differ from [19] due to a different form of bxc (e, e, @) and hence are outlined in the appendix.

Notation

Throughout the paper, standard notations on Lebesgue and Sobolev spaces and their norms are employed.
The standard seminorm and norm on H?(Q) (resp. W*P(Q)) for s > 0 and 1 < p < co are denoted by |- |s and
|-lls (resp. |“|s.p and ||-||s,p) and norm in L°°(2) is denoted by || -||0,00- The norm in H~*(Q) is denoted by ||-||—s.
The standard L? inner product and norm are denoted by (-, -) and || -||. The notation || - | is also used to denote
the operator norm and should be understood from the context. The notation H?(£2) (resp. LP(£2)) is used to
denote the product space H*(€2) x H*(2) (resp. LP(Q) x LP(R)). For all ® = (1, ¢2) € H*(2) (resp. L*(©)),

. . . 2 2\ 1/2 2 2\ 1/2
the product space is equipped with the norm [|®||, := (||301H5 + ||<p2||s) resp. | @] := <||<p1|\ + [lp2]] ) )

The notation a < b (resp. @ 2 b) means there exists a generic mesh independent constant C' such that a < Cb
(resp. a > Cb). The positive constants C appearing in the inequalities denote generic constants which do not
depend on the mesh size.

Let 7 be an admissible and regular triangulation of the domain € into simplices in R?, hx be the diameter
of K € T and h := maxge7 hi. Let T be the set of all admissible triangulations 7. Given any 0 < § < 1,
let T(6) be the set of all triangulations 7 with mesh size < ¢ for all triangles K € 7 with area |K|. Let £(2)
(resp. £(0N)) denotes the set of all interior edges (resp. boundary edges) of Q. The length of any edge F is
denoted by hg. For a nonnegative integer k € Ny, Pr(7) denotes the space of piecewise polynomials of degree
at most equal to k. Let II; denote the L? projection onto the space of piecewise polynomials Py (7). The mesh
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size hy € Po(7T) is defined by hr|kx = hx. The oscillation of f in 7 reads osci(f,7) = Hh%—(f — 1L f)|| for
k € Ny. For a nonnegative integer m, and ® = (p1, ¢2) € W™P(T), where W™ (T) denotes the broken Sobolev

1/p
. 2 . .
space with respect to T, | @I, ., := @115, , 0 + 9217, ns and [Qilmpn = (ZKeT \cpi|fn7p7K) ,i=1,2; with

| - |m.p.x denoting the usual seminorm in W™P(K). The notation H'(7) is used to denote the product space
HY(T) x HY(T).

2. MAIN RESULTS

The weak and Morley FEM formulations corresponding to (1.1) are stated and the main results of this article
are presented in this section. The proofs of the reliability and efficiency estimates in Theorem 2.4 are detailed
in Sections 4 and 5.

The weak formulation that corresponds to (1.1a)—(1.1c) seeks (¥, u) € V x Uy,q such that

min J (U, u) subject to (2.1a)
(¥, u)EVXUqg
a(thr, 1) + b(h1, o, 1) + (b2, 1, 01) = (f +Cu, 1)  forall gy €V, (2.1b)
a(wg, (,02) — b(wl,wl, (pg) =0 for all P9 € ‘/, (2.10)

with V := H2(Q), V = V x V, the continuous, V-elliptic bilinear form a(e,®) : V x V — R is defined by
a(er,@2) = [, D%py : D?¢ydw, and the continuous trilinear form b(e,e,0) : V x V x V — R is defined by
b(p1, P2, p3) = f% fQ[gal,gog]go;g dx. For a given u € L?(w), (2.1b) and (2.1c) possesses at least one solution
[29].

For all £ = (£1,&), ® = (v1,92), n = (m1,m2) € V, the operator form for (2.1b) and (2.1c) is

VeV, AV +B(¥)=F+CuinV/, (2.2)

with A € L(V, V') defined by (A€, ®) '= A&, ®) = a(&1, 1) +a(&2, p2), B from V to V' defined by (B(n), ®) =

B(n7n7¢)) where B(nvq)aé) = b(n1a§02a€1) + b(7727<)01a§1) - b(7717%017£2)a F = ({;)7 Cu = (Cou>a u = <8>a

and (F + Cu, ®) := (f + Cu, ¢1).
The linearization of (2.1b) and (2.1¢) around ¥ in the direction £ is given by L& := A€ + B'(¥)&, where the
operator B'(¥) € L(V,V’)? is defined by (B (V)¢, @) := 2B(¥, £, ).

Definition 2.1 (Regular solution). For a given u € L?(w), a solution ¥ of (2.1b) and (2.1c) is said to be regular
if the linearized form is well-posed. That is, if (L&, ®) = 0 for all ® € V, then & = 0. In this case, the pair
(T, u) also is referred to as a regular solution to (1.1b) and (1.1c).

Definition 2.2 (Local solution). [16] The pair (¥,%) € V x Uad is a local solution to (2.1) if and only if (¥, a)
satisfies (2.1b) and (2.1c) and there exist neighbourhoods O(¥) of ¥ in V and O(a) of @ in L*(w) such that
J W, a) < J (¥, u) for all pairs (U, u) € O(V) x (Uyqg N O(w)) that satisfy (2.1b) and (2.1c).

Local solutions (¥, @) to (2.1) such that the pair is a regular solution to (2.2) are approximated in this article.
The existence result for (2.1) is stated in Theorem 3.1. The optimality system for the optimal control problem
(2.1) is

A(V,®) + B(V,¥,0) = (F+Cu,®) forall®eV (State equations) (2.3a)
A(®,0) +2B(¥,9,0) = (V- Uy, ®) forall ® €V (Adjoint equations) (2.3b)

IThe subscripts in the duality pairings are omitted for notational convenience.

2The same notation ’ is used either to denote the Fréchet derivative of an operator or the dual of a space, but the context helps
to clarify its precise meaning.
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FIGURE 1. Morley triangle.

(C*C:) + ati,u — ﬁ) >0 for all u = (u,0)”, u € Uyq (First-order optimality condition)

(2.3c)

L?(w)

where © is the adjoint state and C* denotes the adjoint of C. For almost all z € €, the optimal control
t(z) := (a(x),0) in (2.3c) satisfies ([35], Thm. 2.28)

) = (- 7)), (2.4

where © = (6y,60>) and the projection operator iy, uy) is defined by Ip,, 4,1(g) := min{up, max{u,, g}}.
The nonconforming Morley element space Vi is defined by

VM = {UM € Pa(T)|vm is continuous at the interior vertices and vanishes at the vertices of 9€;

forallEGf(Q),/{aaWI} ds=0; for all E € £(9), /‘%Mdso}
E 12

where [¢]g denotes the jump of a function ¢ across E and is equipped with the norm || e ||y defined by

1/2
lellne = (ZKGT ||D12\IC4P||%2(K)) . Throughout the paper, Dyce and D% e denote the piecewise gradient and
Hessian of the arguments on triangles K € 7. Figure 1 illustrates a Morley triangle K € 7. Let Vy := Viy X V1

2 2 2
and for @ = (1, 2) € Vi, [[@[lxc = llerline + lle2lne:
For all ny, xm and ou € Vi, define the discrete bilinear and trilinear forms by

anc(m, xu) == Y / Dy = D*xu dz and b (v, Xus om) == — 5 Z/ [, xmom da.
KeT 2 fer

Similarly, for = = (fl,fg), Oy = (91,92), [V ((pl,QOQ) S VM7 define

Anc(Om, @um) = anc (01, ¢1) + anc (b2, ¢2), Fne(Pwm) Z / feor1dz and
KeT

Bre(Ewm, Om, Pm) = bne (61,02, 91) + b (e, 01, 91) — bne (€1, 01, @2).

The definitions of the discrete bilinear and trilinear forms are meaningful for functions in V+Vy; (resp. V4+ V).
Note that for all £,0,¢ € V, anc(&,0) = a(§,0) and bne (€, 0, ¢) = b(E, 0, ¢).

The admissible space for discrete controlsis Up, qq := {u € L*(w) 1 ulg € Po(K), ug <u < uy for all K € T}.
The discrete control problem associated with (2.1) reads

min J (P, up) subject to (2.5a)
(Un,up)EVMXUp aa
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ANC(\IJMa (I)M) + BNC(\I/M, W, (I)M) = (F + Cuy, (I)M) for all &y € V1. (25b)

The existence of a solution to the discrete problem (2.5) follows from Theorem 4.3 of [33]. The discrete first-
order optimality system that consists of the discrete state and adjoint equations and the first-order optimality
condition corresponding to (2.5) is

Anc (\TJM, (I)M) + Bne (\i/M, \I/M, CI)M> = (F + Cuy, (I)M) for all &y € Viy (2.63)
Anc (@M, éM) + 2Bnc (\TJM, Py, éM) = (\I/M — Uy, (I)M) for all &y € Vi (26b)
(C*C:)M + adip,up — ﬁh) >0 for all up = (up,0)”, uy, € Uh,ads (2.6¢)

where Oy € Vyy (resp. @iy, = (iin, 0)T, iy, € Uy aq) denotes the discrete adjoint (resp. control) variable that
corresponds to the optimal state variable Uy € V.

Theorem 2.3 (A priori error control). Given a regular solution (Ei/,ﬁ) to (2.1), there exist 0o, €9 > 0 such that
any triangulation T € T(8o) yields a unique discrete solution (¥nr, O, 0y) to (2.6) that satisfies || ¥ — \I'M|HNC—|-
|||(:) — (:)M|||Nc + ||t — @n| p2w) < €0, where © is the corresponding continuous adjoint variable.

The proof of the a priori estimates differ from that in [19] due to the different expression for the trilinear
form. The crucial intermediate steps are outlined in the appendix. The choice of the constants €y and Jy are
discussed in Section 4.

A posteriori error control

Assume that (i) w C © is a polygonal domain and (ii) 7 restricted to w yields a triangulation for w. Define
the auxiliary variable w, by

~ 1 ~
Up ‘= H[ua,yub] (—a (C*QM’1)>7 (2.7)

where Oy = (61,00 2) is the discrete adjoint variable corresponding to the control ay,.
Let Uy = (1/1M,1,1/1M’2) € V. For K € 7 and FE € £(Q), define the volume estimators as

Mg, = e (17 + Cain + [Dna1, vt ey + 1B Bl iy )5 s += i = ey, (2:8)

M reson = e (I19n0 = Va1 = [, O] + [Ew2 ] [ oy + 9wz — Yz + (a0 32 ) )-

(2.8b)
Micpon = [D*0r1 (1= Po)uta [ sy + [ D*Prn2(l = Po)onia [ ey + | D*aa (1 = P)lsna [ e
(2.8¢)
2 2 2
nK,@M T nK,res,C:)M + nK,'Po,(:)M’ (28d)
and the edge estimators as
Mg = 1 ([[D*0r178] [ gy + [0 r0278] ) 2 (2.8¢)
_ 2 —~ 2

77122,(:)1\4 =hg (H [DZGMJTE] EHL2(E) + ” [D20M72TE]E”L2(E))’ (2.8f)

where 7 denotes the unit tangential vector to the edge F and [¢]g denotes the jump of a function ¢ across E.
Further, define the total error estimator 7 as

1° == ngr + Nip + Neon, Where (2.9)
2 2 2 2 2 2 2 o 2
IsT "= Z MK, T Z e,y TAD *= Z Mk,om T Z Tg,6y> "ICON "= Z K an -
KeT EcE(Q) KeT EcE(Q) KeT

The main result stated next discusses the reliability and efficiency estimates for the control problem.
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Theorem 2.4 (A posteriori error control). Given the exact solution (@,@71’1), €0,00 > 0 from a priori error
estimate Theorem 2.8, there exist positive constants Cro and Coeg (whjch czepend on T and on the solution
(\IJ, O, ﬁ), €0,00 > 0) such that for all T € T(dg), the discrete solution (\IIM, Owm, ﬁh) and the error estimator n
satisfy

(a) (Reliability)
19 = Duillye + 16 = Onllye + 17 = @llys ey < Cran
(b) (Efficiency)
1 < Cor (1% = Pnillge. + 16 = Onlly + 17 = @l 2wy + 05o(f, T) + 0seo(¥a, T) + [|(1 = 1) s
+ 1= 18| ey + (1= P0)O| e 7))

Recall that osco(f,T) = thT(f — o f)||; where Ty denotes the L? projection onto the space of piecewise
constant polynomials and Iy : V. — Vi is the Morley interpolation operator defined in Lemma 3.5.

3. AUXILIARY RESULTS

This section deals with some auxiliary results in the continuous and discrete frameworks that are useful to
establish the error estimates.
The state equations in (2.1b) and (2.1¢) can be written as

N(U;®) := A(V,®) + B(¥,V, ) — (F+Cu,®) =0  forall® € V.

The first and second-order Fréchet derivatives of N (W) at ¥ in the direction & are given by DN(U; &, @) :=
(AE+ B'(V)¢, @) and D2N(U; ¢, €,®) := (B'(£,€), ®), where the operator B (¥, €) € L(V x V, V') is defined
by (B(0,€),®) := 2B(V,£,@).

Define the discrete counterparts Bne : V+Vy — (V+ V) as (Bye(P), ®) = Bye(P, U, ) for all U, d €
V + V. The Fréchet derivative of Byc around ¥ at the direction of £ denoted by By (¥)(€) is

(Bie(P) (&), ®) = 2Bne(P,€,®) for all U, &, € V + V. (3.1)

Theorem 3.1 (Existence result [16]). Let (¥, u) € V x L?(w) be a regular solution to (2.1). Then there exist an
open ball O(u) of i in L*(w), an open ball O(V) of ¥ in V, and a mapping G from O(u) to O(¥) of class C™,
such that, for allu € O(u), ¥,, = G(u) is the unique solution in O(V) to (2.2). Thus, G'(u) = (A+ B'(¥,))!
is uniformly bounded from a smaller ball into a smaller ball (these smaller balls are still denoted by O(u) and
O(W) for notational simplicity). Moreover, if G'(u)v =: z, € V and G" (u)v? =: w € V, then z, and w satisfy

Az, + B (9,)z, = Cv in V', Aw+ B'(¥,)w + B"(zy,2,) =0 in V', (3.2)
where A+B'(V,) is an isomorphism from V into V' for all u € O(w). Moreover, there exists a constant Cyp, > 0
such that [|(A+ B'(¥.)) " zevr,vy < Cup and [z, lly < G (w)ll 222wy, m2i0) 0]l 22 ()
Remark 3.2. The dependence of ¥ with respect to u is made explicit with the notation ¥, only when it is
necessary.

Remark 3.3. In this paper, we assume that the exact solution ¥ to the nonlinear problem (2.1) is regular,
that is, the linearized form is nonsingular ([28], Def. 2.4, p. 466). Hence the bounded derivative DN (¥) of the
operator N at the solution ¥ is an isomorphism. That is, the regular solution ¥ to (2.1) satisfies the inf-sup
condition [22]:

0<f:= Hel\f/ sup (A€ + B (V)& @), and this leads to H (A+ B/(\II))AH

dcV
llEN,=1 ||@|,=1

RN CE)

LV,
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The existence of a solution to (2.1) can be obtained using standard arguments of considering a minimizing
sequence, that is bounded in V x L?(w), and passing to the limit [26,30,35].

Lemma 3.4 (A priori bounds, regularity and convergence ([33], Lems. 2.7, 2.9 & 2.10, [10], Thm. 2.1)).

(a) For f € HY(Q) and u € L?(w), the solution ¥ of (2.1b) and (2.1c) belongs to V.0 H*™(Q), v € (1/2,1]
is the elliptic regularity index, and satisfies the a priori bounds [[¥lly < ([[fll-1 + [lullz2w))s I1¥lapy <
(A2 + lulZe ey + 1F11-1 + llullz2w)-

(b) The solution z, of the linearized problem (3.2) also belongs to V.0 H*T(Q), and satisfies the a priori
bound |2y Iy, S lvllz2(w)-

(c) Let (W, @) be a regular solution to (2.1) and (uy)r be a sequence in O() weakly converging to @ in L?(w).
Let W, be the solution to (2.2) in O(¥) that corresponds to uj. Then (V. ), converges to W in V.

When the load function belongs to H~1(£2), the solution of the clamped biharmonic plate problem belongs

to H3(Q) N H2*7(Q), with v € (4,1], when all the interior angles are less than 126.283° ([5], Thm. 2). Note

that when Q is convex, 7 = 1. These regularity results extend to the von Kdrmén equations ([5], Sect. 6) and
to the state and adjoint variables of the control problem [33]. The optimal state and adjoint variables belong
to VN H*M(Q), with v € (%, 1], referred to as the index of elliptic regularity.

The crucial properties of Morley interpolation and companion operators that are useful in the analysis are
stated below.

Lemma 3.5 (Morley interpolation operator [12, 13, 24]). For v € V, the Morley interpolation oper-
ator Iy : V. — Vu defined by (Iyv)(z) = w(z) for any vertex z of T and [, 0Ivv/Ovgds =
[ 0v/Ovp ds for any edge E of T satisfies (a) the integral mean property DIy = HoDX¢ of the Hessian, (b)

)

Z?n o h™ ?|(L = ha)v |Hm(K) < Ci|l(1 = Iu)v ‘H2(K) = C'I<||D U2y — HD IMUHL2 ) for all v € H*(K
and K € T, and (c)|[(1 — Iu)vlne < B7|[vll244 for allv € VO H*F(Q).

Lemma 3.6 (Companion operator [12,24]). For any vm € Vi, there exists J : Vi — V' such that

(a) InJuy = vy for all vy € Vi, (b) To((1 — J)uy) =0, (c) g DEc((1 — J)vm) = 0,
(@) [|hE2((1 = Dyoa) || + [P Dne((1 = Do) || + [ DR (1 = Jom) || < Ay gg‘r/lHDIZ\IC(UM - )|,

2
) Z h%{m%”(l — J)UMH?{m(K) <c? Z hEH[DNCvM] TEHL2 (B S mmHDNC UM — )Hiz(Q(K)).
=0 EcE(Q(K))

Here N (K) denotes the set of vertices of K € T and patch Q(K) := int (Uenrx) U T (2)), T(2) denotes the
triangles that share the verter z and E(QU(K)) denotes the edges in Q(K).

For vector-valued functions, the interpolation and companion operators are to be understood componentwise.
The bound for discrete trilinear form and lower bounds for discrete norms stated in the next lemma are essential
in the analysis.

Lemma 3.7. For x,\,® € V 4+ Vyy, there exist positive constants Cqs and C}, such that

(a) (Lower bounds for discrete norms) |9l .. + @1, 5., < Casll®lyc
(b) (Bound for Bxc(s,s,#)) Bxc(¢. A ®) < Collxlhyo Micl@le

For proofs, see Lemma 4.7 of [15] and Lemma 2.6 of [10].
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Optimality conditions
Recall the auxiliary variable @y, given in (2.7). This computable variable helps to derive the reliability estimate

for the control variable.
A key property in favor of up € U,q is that it satisfies the optimality condition

(C*(:)M + aup,u — ﬁh)L2 >0 for all u = (u, O)T7 u € Uyyq. (3.4)

(w)
Define for u,v € Uaa, j'(u)v := (C*0u,1 + au,v)r2(u), Where j : Uyg N O(1) — R is the reduced cost functional
defined by j(u) := J(G(u),u) and G(u) = ¥y, = (Yu.1,%u,2) € V is the unique solution to (2.2) corresponding
to u. Note that the first-order optimality condition j'(@)(u — @) > 0 for all u € U,y translates to (2.3c). The
second-order sufficient optimality conditions that ensure the error estimates for this nonlinear control problem
are discussed below. For a detailed discussion, we refer to Section 2.3 of [33] and Section 3.2 of [16].

For a local regular solution (¥, @) of (2.1), the reduced control problem seeks a local solution 4 that satisfies
inf,cu, .,now@) j(w), where j : Uyg N O(w) — R is the reduced local cost functional defined by j(u) := J(G(u),u)
and G(u) = U, = (Yy1,Yuy,2) € V is the unique solution to (2.2) as defined in Theorem 3.1. Since G is of class
C® in O(a), j is of class C*° and for every u € O(u) and v € L*(Q) ([33], Sect. 2.3),

" (u)? z/ﬂ(|zv|2+[[zv,zv”.®u)dx—|—a/ﬂ\v\2 dz,

where z, = (zy,1,%0,2) is the solution of (3.2), [[2v,2Zy]] = ([20,1, 2v,2) + [2v,2, Zv,1], —[20,1, Z01]), [,-] being
the von Kérmén bracket, ©, = (04,1,04,2) € V is the solution of the adjoint system and [[zy,2,]] - O, =
([2v,15 2v,2] F [#0,2, 20,1])0u,1 — [20,1, Z0,1]0u.2. Define the tangent cone at 4 to Uyq as

€U, (0) = {u € L*(w) : u(z) € R if u(z) € (ua,up), u(z) >0 if U(z) = uq, u(z) <0 if u(z) = up}.

Introduce the notation d(z) = C*0;(x) + au(z),r € w. Associated with d, we introduce another cone € C
¢v,,(u) defined by

Cu = {u € L*(w) :u(z) = 0if d(z) # 0, u(z) > 0 if d(z) = 0 and u(z) = uq,

u(z) < 0if d(z) = 0 and u(x) = ub}.

Theorem 3.8 (Second-order necessary condition ([33], Thm. 2.14)). Let (¥, @) be a regular local solution of
(2.1). Then,
J'(@v* >0 forallv € . (3.5)

The optimality condition (3.5) is equivalent to
/ (|zv|2 + [[zv,zv}]é) do + a/ w]2dz > 0
Q w

for all v € €y, where © = O() is the associated adjoint state and Z, = z.,(u) is the solution to (3.2) for u =1u
and v € €5.

Theorem 3.9 (Second-order sufficient condition [1,16]). Let (_\IJ, 7:7) be a nonsingular local solution of (2.1) and
let © = O(u) be the associated adjoint state. Let the triplet (¥,0,4) € V x V x L*(w) satisfy the first-order
optimality system in (2.3a)—(2.3c) and

/(|zv|2+[[zv,zv}]é) dx—l—a/ o de > 0 (3.6)
Q w
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for all non zero v € €. Then, there exist € > 0 and p > 0 such that, for all u € Uyy satisfying, together with
Uy,
_ =2
e = @l + | ¥u = ¥|" < €,

we have B u I
T(@,a) + 5 (=l + |00 = )7) < T ().

Note that the condition (3.6) is equivalent to the existence of 5,7 > 0 such that ([16], Cor. 3.11)
3" (a)v? > g(HUH%z(w) + |HZUH|2>, for all v € €7, (3.7)
where Z, is the solution of (3.2) with v = @ and
Co = {v € L*(w) :v(z) = 0 if |d(z)| > 7, v(z) > 0 if |d(z)| < 7 and a(z) = uq,
v(z) <0if |d(z)| < 7 and u(z) = ub}.

The next result follows from Lemma 5 of [1].

IN

Lemma 3.10 (Property of j”). Let M > 0 be such that max{”ﬂ—i—t(ﬂh —ﬂ)||Loo(Q),||ﬂ—ﬂh\|Lm(Q)}
!

IN

M with t € (0,1). Then, there exists Cpy > 0 such that ‘(j”(ﬁ—l—t('ﬁh—ﬂ))—j”(ﬂh—ﬂ))(ﬂh—ﬂ)

~ _ ~ _ 112
Cmllun = ull oo lltn = |72 (-
4. RELIABILITY ANALYSIS

This section deals with the proofs of Theorem 2.4(a) and (b).

The reliability error estimate for the control problem can be expressed as a combination of the reliability
results for the state, adjoint and control variables. The individual contributions are presented first. The proof
of the main result is presented at the end of this section.

4.1. A posteriori error analysis for the state equations

Let (\Tl, ﬂ) be a regular solution to (2.1) and let T € V solve the auxiliary state equation
A(@,cp) +B(@,@,<I>) — (F + Ciy, @) for all ® € V, (4.1)

where 1, = (@5, 0)” is the discrete control defined in (2.6). Since W is a regular solution and @, is sufficiently
close to @ from Theorem 2.3, Theorem 3.1 yields VU is regular. That is,
0<fB:= inf sup DN(\T/;ﬁ, <I>). (4.2)

£EV eV
€l=1®),=1

Note that U solves the von Kdrmén equations (4.1) and its Morley FE approximation seeks Uy as stated in
(2.6a). Given the exact solution (\I/, @,ﬁ) to (2.3), suppose €o,dp > 0 satisfy Theorem 2.3, and if necessary,
are chosen smaller such that, for any 7 € T(dp), the discrete solution (\IIM,GM,ﬁh) to (2.6) satisfies g9 <

min{ 3/(2C, (14 Ay + Cub)), B/(4C1), a3(2Ca0) ™" /Cas, 7/(2Cas) } and
19 = Taallye + 1€ = Orllye + 117 = @nll oy < <o, (43)

where the constants 8, Cxq and 7 are defined in (3.7) and Lemma 3.10, and 3 (resp. 3) is the inf-sup constant
in (3.3) (resp. (4.2)). Note that the constants Ay, Cy, Cqs and Cyp, are from Lemmas 3.6(d), 3.7(a), (b), and
Theorem 3.1, respectively.
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Theorem 4.1 (Reliability for the state variable). Let (¥,@) € V x L?(w) be a regular solution to (2.1) and
(Unt, @n) € Vg X Upaa solve (2.5). Then for all T € T(dy), there exists an h-independent positive constant
Cst rel Such that

1/2
o 2
H|\II o \IIM‘”NC < CST7T€1 Z niﬂ‘i’M + Z UQE"T’M + ”u - uhHLQ(W) : (4'4)
KeT EcE()
Proof. The terms H‘\Tl - \TJM‘HNC and H‘\TJ — \TJH‘ are estimated and then a triangle inequality completes the
2

proof. Theorem 3.1 for (2.3a) and (4.1) yield G(u) = ¥, G(up) = U. Also, if G'(u)v =: z, € V, then z, satisfies
Az, + B'(V)z, = Cv in V', where ¥ = G(u) and u, v belong to the interior of O(&). Theorem 3.1 proves the

uniform boundedness of ‘H(.A +B/(v,) ! Wﬁ(v' v whenever u € O(a).

Hence, for u; = @y + t(2 — up,) and ¥y = G(ut), mean value theorem, Theorem 3.1 and @y, € O(@) show
|

The estimate of H“Tf — ‘iIMH)NC adapts the ideas of [15]. The inf-sup condition (4.2) implies that for any 0 <

\H‘I’— ‘TJHL = H /Ol(A—i-B’(\I/t))_l(C(ﬁ—ﬁh))dt

/O & (u) (C(a — y)) dt

< Cubllu = tnll g2y

’ (4.5)

€1 < 3, there exists some ® € V with I®fl, =1 and
(6 — el)m@ - J@MHL < DN(T; T — JUy, &) (4.6)
Since N (e) is quadratic, the finite Taylor series is exact and hence
N(JTy; @) = DN(@; JUy — \Tmp) n %DQN(\TJ; JUy — T, Uy — \T/,q)).
This with D2N<\Tl; T — JUy, U — Jy,, @) - 23(@ — JUy, T — JTy, <1>), (4.6) and Lemma 3.7(b) show
(=)ol = e - w
A triangle inequality, (4.5), (4.3), Lemma 3.6(d) with v = W and e < 3/(2C(1 4 Ay + Cyyp)) imply
@79 < [|¥ -], + 1% - Tutlle + 11 = Nuille < (Cun+1+ Ao < Bj2Cs. (48)
A substitution of (4.8) in (4.7) leads to
(=) 5, = Wt
This eventually shows that
[#- o] <267 (¥ (B 0) [+ |7 = D]l (4.9)

The definition of N(e), (2.6a) and rearrangements lead to

N(JOri; @) = A(JTr, @) + B(JTnr, JUnr, @) — (F + Cuy, P)
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= Anc((J = 1)U, @) + Anc (U, (1 — In)®@) + Bre ((J — 1)Uy, J Oy, @)

+ Bnc (\I/M7 (J — 1)@1\/{7@) =+ BNc(\iJM,\PM, (1 — IM)q)) — (F + Cuy, (1 — IM)CI)) =: ZSZ
1=1
(4.10)

The Cauchy—Schwarz inequality proves 57 < ‘H(J — 1)\TJM|||NC. Since the piecewise second derivatives of Uy
are constants, Lemma 3.5(a) implies Sy = 0. The triangle inequalities, Lemma 3.6(d) with v = ¥, (4.3) and
Lemma 3.4(a) prove

1728, + 18l < 17 = D¥xa]l e +2([1¥ = Putllye + [[¥],) < @+ As)eo + 2] ¥l := M. (4.11)

Lemma 3.7(b) and (4.11) show S3 + Sy < CoMy|[(J - 1)\TIM|||NC. The  definition
of Bnc(e,e,e), the Cauchy-Schwarz inequality and Lemma 3.5(b) prove S; + Sg <

- - 2 - - 2 1/2 . .
Cq (ZKeTh‘}( (Hf + Cup + [w,1, ¥u 2] HL2(K) + H [Vn., ¥ HLz(K))) . A substitution of S1-5 in
(4.10) and then in (4.9) with Lemma 3.6(e), the definitions (2.8a) and (2.8¢) result in

1/2
”’\I/ \I/M”’NC < é ST,rel Z T)K Iy T Z 77E Ty ) (4.12)
EcE(9)
~ A 2 o
with C2p,q = O3 (142571 (1+ GoMy)) +4672C2.
A combination of (4.5) and the last displayed result with a triangle inequality concludes the proof. O

4.2. A posteriori error analysis for the adjoint equations

The auxiliary problem that corresponds to the adjoint equations seeks © € V such that
A(q>, (f)) + 2Bxc (\IIM ®, @) = (Ty — Uy, @) forall @ €V, (4.13)

where \IJM € V1 is the solution to (2.6a).
Since ¥ is a regular solution to (2.1), the adjoint of the operator in (3.3) satisfies the inf-sup condition given
by
G- i s (e B (008, (6], <5 v w (414)
i€l =1 | [,=1
with the last inequality derived from (2.3b).
An introduction of ¥ in the second term on the left-hand side of (4.13) yields

A(cp, (?))+QBNC (@M ®, @) - A(cb, @) n 23(@, o, @) + 2B (\IJM — 0,9, (f)).

The first inequality of (4.14), Lemma 3.7(b), (4.3) and g < 8/(4C},) show that for any 0 < e < (3, there exists
some ® € V with [|®], = 1 such that

A(0.8) + 280 (W30,8.8) > (5 - 2~ 204  ~ Wl B, = (3 -2ue0)[B], = Ffef, @s

with €5 \, 0 in the second last step of the inequality above.
This shows the wellposedness of (4.13). A combination of (4.13) and (4.15) leads to a bound for the solution
of © of (4.13) as

8], <2671 - wall- (4.16)
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For ¥, ® € V 4 Vy, define linear operators Fy and Fy nc € L(V + Vu) by
Fo(P) =D + T[Bye(V)*(®)] and Fy nc(P) = D + Tne[Bye(P)* ()], (4.17)

where B (¥)* is the adjoint operator corresponding to By (¥). Here the bounded linear operator T'(e) (resp.
Txc(e)) solves the biharmonic system in the sense that for the load g € V' (resp. g € Vy), A(Tg,®) = (g, ®)
for all ® € V (resp. Anc(Tncg, ®m) = (g, Pm) for all &y € V). A detailed discussion of these operators is
provided in the appendix.

The next lemma (proved in the appendix) is utilized in the proof of Theorem 4.3.

Lemma 4.2 (Uniform boundeness of .7-'71) If U € V is a regular solution to (2. 1) then Fg, is an
automorphism on V + Vyr, whenever u is sufficiently close to u. Moreover, H}' 1+

26| (a+ B @),

Theorem 4.3 (Reliability for the adjoint variable). Let (\Il,@,ﬁ) (resp. (@M,@M,ﬁh)) solve the optimality
system (2.3) (resp. (2.6)). Then for all T € T(dy), there exists an h-independent positive constant Cap rel Such
that

<
Do

LV, V)

1/2

1€ = Onllye < Cavwet | D Miwn + D Mo+ D Mmww T D Mmey TIE—anllza,
KeT KeT EcE(Q) Ee&(Q)
(4.18)

Proof. The terms H‘@) — éMw . and H‘C:) — @‘H are estimated and then a triangle inequality completes the
N 2
proof. The inf-sup condition (4.14) implies for any 0 < e3 < (3, there exists some ® € V with ||®[, = 1 and

48— @H‘é - J(:)Mm2 < A((:) . J(:)M,cb) + 2B (\T/M,d), 6— JéM) +2Bne (\Iz Uy, B, 0 — J(:)M).

Since |H\Il - \I]M”’NC < g9 < B/(4Ch), Lemma 3.7(b) for the last term in the right-hand side of the above
inequality shows

(ﬂ/Q — 63)”‘@ — JéM’HQ < A(@) — J(:)M, (ﬁ) + 2Bnc (\T/M, P, @ — JéM)
This, equations (4.13), (2.6b) and simple manipulation eventually lead to

(8/2 = e3)||® = JOu|, < (I — Wa, @) — A(JOr1, ®) — 2B (Tar, @, JOm) = (Tnt — W, (1 = L))

— Anc((J = 1)Om, @) + Anc (Om, (I — 1)®@) — 2Bxe (Uam, @, JOwM) + 2Bxc (¥m, In®, Onm)
= (Um — Vg, (1 = I)®) — Anc((J — 1)Ou, @) + Axc(Om, (I — 1)®) + 2Bne (Ym, @, (1 — J)Owm)

+2Byc (U, (Iv — 1)@, O1) Z S;. (4.19)
The Cauchy—Schwarz inequality shows that Sy < |” (J —1)0y H|NC. Since the piecewise second derivatives of Oy
are constants, Lemma 3.5(a) implies S3 = 0. Lemma 3.7(b) and (4.11) prove Sy < Co M4 ||(J — 1)(:)M|||NC. The

orthogonality property of J in Lemma 3.6(c) proves Bxc(Un, (1 — J)Iy®,PyOy) = 0. This and elementary
algebra lead to

S5/2 = Bxe (¥, (1= J)Iu®, (1 — Po)Owm) + Be (Y, (JIny — 1)@, (1 — J)Own)
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+ Bne((1 = J)Uy, (JIy — 1)@, JOw) + B(J Uy, (JIy — 1)@, JOy). (4.20)

Triangle inequalities, Lemma 3.6(d) with v = ©, (4.3), the second inequality of (4.14) and Lemma 3.4(a) show

70l + 183llc < 17 = DOMlle +2(10 = Oullye. + [18]l,) < @+ Apeo +2[|6]], = M. (421)
Lemmas 3.5(b) and 3.6(d) with v = & verify

(I = D@llye < 1 = DIn@line + 1Um = DPllye < (As + DI (In = DPlxe < Cr(Ay +1). (4.22)

The first three terms in the right-hand side of (4.20) are estimated now. The definition of Bnc(e, e, e), the
Cauchy—Schwarz inequality, (4.22) and the definitions (2.8¢) prove

1/2
BNC (\i/M7 (1 — J)IM(I), (1 - P())C:)M) < CI AJ =+ 1 <Z 7’]K PO,@M> . (423)
KeT

Lemma 3.7(b), (4.11), (4.21), (4.22), Lemma 3.6(e) and the definitions (2.8e), (2.8f) show

1/2
Bye Uy, (JIn = 1)@, (1= J)Oy) < CLCCy(As + DMy | > nh g, , (4.24)
ECE(Q)
1/2
Bro((1= )y, (JIy — D)@, JOy) < CLCIC (A + DM | Y npg, | - (4.25)
BeE(Q)

The last term on the right-hand side of (4.20) is estimated in its scalar version and details are provided for
clarity. The symmetry of b(e, e, 8) with respect to the second and third variables, and an introduction of ¥ ,1
and @y imply that the first term in the expansion can be rewritten as

b(JUa,1, (JIn — D)2, JOw1) = bne ((J — Donr, JOu,1, (JIn — 1)é2) + bxe (Uma, (J — 1), (JIv — 1)¢2)
+ bne (Y1, 00,1, (Ing — 1)92) (4.26)

with bxc (U1, 0m,1, (J — 1) Ivé2) = 0 from Lemma 3.6(b) in the last step. Lemma 3.7(b) (in its scalar version),
(4.11), (4.21), (4.22), Lemma 3.6(e) and (2.8¢), (2.8f) lead to bounds for the first and second terms on the right-
hand side of (4.26). The third term in the right-hand side of (4.26) is combined with the scalar form of S; as

1/2
2bnc (Va1 0n,1, (I — 1)d2) + (a2 — Va2, (I — 1)) < Crh? ( Z a2 — Ya2 + w1, ba,1) H2L2(K)>
KeT
(4.27)

with the Cauchy—Schwarz inequality and Lemma 3.5(b). The remaining two terms in the expansion of
Bnc(e, e, @) are dealt with in an analogous way.

The results (4.23)—(4.27) are employed to estimate S; + S5 first and then substituted in (4.19) with estimates
of Sy to Sy. This, a triangle inequality with JOy, Lemma 3.6(e) and (2.8d)—(2.8f) show

1/2

H‘@ @MH‘ < Caprel Z Nk .oy + Z g5, + Z Mg.6 (4.28)
BEE(Q) EeE(Q)
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with es \, 0, where

éiD,rel = 45_2(03((5/2 + 14 CpMy) +8C1C, M, (Ag + 1))

+ C3(8CIC,Ma (A +1))* + CF (1 A(A + 1)2)).

The uniform boundedness property of Fg !in Lemma 4.2 implies

[o-el, - 7577 (5~ )], = =

! Hﬁ(V+VM) ’.7-'\1, ((:) - (:)) ‘HNC'

The definition of Fg given by (4.17), (2.3b) and (4.13) show
Foy(0-8) =T( - 0y) — F4 (8) =T(¥ - Ws) -6~ T B (¥)"(8)]
=T (¥~ D) + T | By (In - 9)"(8)].

Hence, Lemma 3.7(a) and (b), (4.16) and Theorem 4.1 prove

1669

1/2

16 -6|, < Csraall 75 | civ vy IT1(Cas + 20687 [ 3w, + D iy, + 18— nlzacy

KeT EcE(Q)

The combination of (4.28) and (4.29) concludes the proof.

(4.29)

O

Remark 4.4. (a) Note that the terms involving Py in the reliability estimate of adjoint equations nf( Ous of
(2.8d) are due to the combined effect of non-conformity of the method plus linear lower-order terms.
(b) It is possible to avoid the terms involving Py in the reliability estimator n7. o, ©f (2.8d) which comes from

S5 = Bne (\IIM, (Im —1)2, @M) in (4.19) with piecewise integration by parts. However, this leads to several
average terms in the edge estimators that are not residuals (in addition to the volume terms). The efficiency
analysis for this is still open. A similar observation for the two-dimensional Navier—Stokes equation in the

stream function-vorticity formulation can be found in Remark 4.12 of [15].

4.3. A posteriori error analysis for the control variable

Let U and © be the auxiliary continuous state and adjoint variables associated with the control uy. That is,

for all ® € V, seek (El, é) € V x V such that

A(@,@) +B((17,(17,¢>) = (F + Ciiy, ®) and A(cp,é) +QB(\T/,<I>,(§) - ((17— q/d,cp).

From Lemmas 3.7(a), 3.10 and (4.3), it follows that

’H(:) — éM’”LO@(Q) < Cysep < min{ag(ZCM)_l,T/Q}.

Lemma 4.5 (An auxiliary control estimate ([1], Thm. 8)). Let (¥, %) be a regular solution to (2.1

)
1

(V,0,u)

solve (2.3) and satisfies the sufficient second-order optimality condition. Recall uj, := H[ua,ub](*g(C*éM,l))
from (2.7) and the constant & > 0 from (3.7). Then for T € T(), d|i — ﬂh”i?(w) <2(5'(un) — 7' (@) (up, — ).
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Theorem 4.6 (Reliability for the control variable). Let (\Tl,@,ﬁ) (resp. (@M,@M,ﬁh)) solve the optimality
system (2.3) (resp. (2.6)). Then for all T € T(dy), there exists an h-independent positive constant Ccon,rel Such
that

1/2
1% =l 12y < Coonet | D Mg + D Mcon + D Mcan + D Moan+ D Mpew | - (4:30)
KeT KeT KeT EcE(Q) EcE(Q)
Proof. The triangle inequality with @, and (2.8a) lead to [|@ — pl| () < 18— @nll 2+ (X rer nf(,ah)lﬂ.
The continuous optimality condition (2.3c) with u = wy, and (3.4) with w = @ show
j'(@)(, —u) >0, —(C*0m1+ auy,u, —u) > 0.
These bounds, Lemma 4.5 and the definition of j'(e) lead to
1 0l < () — 51 ()) i — ) < ) i — )
< () (@, — ) — (C*Oni + in, Up — @) = (C* (5— §M71),ﬂh - ﬂ)
Therefore, the Cauchy—Schwarz inequality results in
8lla — @l oy < 2”‘(:)_@“4‘“' (4.31)

A triangle inequality that introduces ©, Poincaré inequality with constant Cp, Lemma 3.7(a) and (4.28) yield

1/2

,Hu_uh”ww) < G| -8 +CasCiapye Z oot Y Moyt > Mhay| - (432
EEE(Q) EEE(Q)

The definitions (2.4), (2.7), the Lipschitz property of operator I, ,,) and Lemma 3.7(a) show [[@ — @ || 12(,) <
a e - ®M|||L2(w) < a 'Cgsl|© - ®M|HNC Hence, (4.3) implies [|@ — up[12(,) < a~1Cysep. This, the esti-

mate in (4.29) with (©, ¥, %) replaced by (@, \I/7uh) and the definition (2.8a) show

1/2
|o-8] . <575 I71(Cas + 20087 | 3 Mg+ D Mhan + D M
NC T Allz(Vv+vm) ker M Bz Q) ey "
A substitution of the last displayed inequality in (4.32) with C%ON’rel = 2 +
85-2( C2,C2 CyCsrra|[ 75 T)|(Cas + 2C15~1))? ludes the proof. O
(C3sCba + CoComan 75| ., ITI(Cts + 2605717 ) concludes the proo
Proof of Theorem 2.4(a). The proof follows from a combination of Theorems 4.1, 4.3 and 4.6. (]

5. EFFICIENCY

Lemma 5.1 (Local efficiency for state estimator). Let (\Tl,(:),ﬁ) (resp. (\I/M,(:)M,ﬁh)) solve the optimality
system (2.3) (resp. (2.6)). Then,

i S (| D7 (0 = W) |”L2(K)+h%((||ﬂ_ah”L2(K)+||f—fh||L2(K)>’ gy S [1PRe (¥ = U)o )y

where K € T, E € E(Q(K)) and fr, denotes the piecewise average of f.
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Proof. Recall the volume estimator nf{j,M = h} (Hf + Cayp, + WJM,M 1/_11\/[2] HQLQ(K) + || [1/31\/[,1, zZ_JMl] ||2LQ(K)) from
(2.8a). For each element K € 7, it holds that

h%{”f + Cuh + [J)M,lyijM,Q] ||L2(K) + h%{'” [Q;M,la/l/_)M,l} ||L2(K) 5 h%{”f - thL2(K)
+ gl = anll gy + (10 (¥ = On) | o ey + (1D @] o g [ 0% (¥ = On) [ 2 - (5.1)

The proof of (5.1) follows from the standard bubble functions arguments as in Lemma 5.3 of [14]. In the proof
therein for the first term on the left-hand side of (5.1), set o := (fh + Cuyp, + [@M71,1/;M,2])b%< in K, and zero
in Q\ K, where bx denotes the standard interior bubble function [36]. Then the state equation (2.3a) with the
test function (0,0), A%y 1 = 0 and o € HZ(K) prove (5.1). The term H (a1, ¥, ] can be estimated

similar to the above analysis.
For the edge estimator term 77}23’\11M =hg (H [D2n1,17E] EH;(E) + || [D2tn1,27E)] EH;(E)), Lemma 3.6(e) with
v =1by,1 implies, for E € E(Q(K)),

2

- 2 - ~ 2
hEH [D2¢M’1TE}EHL2(E) S HD12\IC (¥ne1 — 1) HL2(Q(K))' (5.2)

Analogous arguments lead to similar result for the edge estimator H [DQ’(ZJM’QTE] (I

2
EHL2(E)‘

Lemma 5.2 (Local efficiency for adjoint estimator). Let (\il,@,ﬁ) (resp. (\I/M,(:)M,ﬁh)) solve the optimality
system (2.3) (resp. (2.6)). Then,
Nicon S D% (% = ) l| g2y + 1070 = On) | oy + PN ¥a = Canlpzaey + 1 = Onal o
+ IV (O =) g2y + IV = 1O ooy + 11 = 1n)O| o ) + 11 = P0)O o 1

and NE,6OMm S |||D12\IC (@ - éM) H|L2(Q(K))’

where K € T, E € E(QUK)) and Uy, denotes the piecewise average of ¥g.

Proof. The adjoint volume estimator 1y g, contains two parts: 7y s 6, and ng p, 6, Recall nf( res. Oy =

R (H‘Z’Ml — a1 — [Um,1, Om,2) + (Ym0, éM,l]”iz(K) + |om2 — a2 + [n,1, Om ] H;(K)) from (2.8b). For
Nk res, 0y OVer each K € T, the standard bubble function technique shows
h%{H@EMl —Ya1 — [Un1, 02 + [¥m,2, 00,1 ] HLQ(K) + h%(||1zM2 — a2+ [, 00,1] ||L2(K)
<HNa = Panllpe ey + PN = Puall ooy + 10201 o ey 1D (% = Oa) | 2

+ (1 + |”D2¢l|”L2(K)> 1D (6 — On) H|L2(K)' (5.3)

In  the proof therein for the first term on the left-hand side of (5.3), set o =
(U1 — Yang — [m1,0m2] + [¥m2,0m,1])0% in K, and zero in Q \ K. The adjoint system (2.3b) with
the test function (o,0), and the symmetry of b(e, e, e) with respect to the second and third variables show

/D2§1:D20dx—/ (@l_wd,l)adﬁf ([61.02] — [ih2.61])ordz = 0.
K K

K

The combination of this, A%fy;; = 0 and the arguments in the proof of Lemma 5.3 from [14] prove (5.3). The
estimate for the second term on the left-hand side of (5.3) is analogous to that of the first term.
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The second part of the adjoint estimator is nf{ﬂ%@m = ||D21,Z_)M71(17’P0)9_M72Hig(K) +

1D20r12(1 = Po)nia |72 ) + [1D?0ri1(1 = Po)aia |52 ) Consider || D2nii(1 = Po)oninl| ooy K € T
from (2.8¢). The Holder’s inequality shows that

10233120~ Pl sy < 10280 10~ Polssal e G
A triangle inequality with Pylyf; leads to
H(l - PO)éMJHLoo(K) = H(l - PO)(éMJ - IMél)HLOC(K) + H(l - PO)IM@lHLoo(K)'

An inverse inequality ([20], Thm. 3.2.6) for the first term and a triangle inequality with (1—7)#; for the second
term lead to

100 = Po)nt e ey S B = Po) (Brat = Baafo) | gy + (1t = D0 ey + 1101 = PO,
+ HPO(Gl - IMHl)HLeo(K)
S (1901 = 0) ey + IV = 1001 ey ) + 10 = 1081 e
+ H —Po) 91||L°°(K)’

where the last inequality uses the projection estimate for Py in L?(K) ([23], Prop. 1.135) and the boundedness
property of Py. This with (5.4) result in

0265111 = Po)bsta | ey S 1D Ertall ey IV Brtt = 82) | ey + V1 = )8 | o
10 = BB | e ey + 1= P e ) (5.5)

From (4.11),

HD2¢M,2(1 —7?0 QMJH L2(K) follow from similar arguments and hence the details are omitted for brevity.

\IJMWL2 < M;. The estimates for the remaining terms HDQ@MJ(l _PO)§M72HL2(K)

Lemma 3.6(e) leads to the desired estimate for the edge estimator 1y g,, - ]

Remark 5.3. Analogous terms involving projection operators as the last term on the right-hand side of (5.5)
are dealt with in Theorem 4.10 of [18].

Lemma 5.4 (Local efficiency for control estimator). Let (\Tl,(:),ﬁ) (resp. (\PM, (:)M,ﬁh)) solve the optimality
system (2.3) (resp. (2.6)). Then, ni.a, < o '[|© — @M}HLQ(K) + 12— nll g2 g

Proof. The control estimator n,a, = [[tn — Unl|p2(x)- The definitions (2.4), (2.7) and the Lipschitz property
of operator I}, ,) show

lu— ﬂh”Lz(K) < HH[umub] (_a_l (C* (él - éM’l))) HL2(K) < 0‘_1”|é - (:)M|||L2(K)’

This and a triangle inequality prove [y — tn/| 2 (x) < a™! }H(:) - (:)MH|L2(K) + || = @p| 2, and concludes the
proof of local efficiency for the control variable. O

Proof of Theorem 2.4(b). Recall the definition of the estimator 7 from (2.9). The summation over all the element
and edges of the triangulation 7, and the local efficiency results in Lemmas 5.1-5.4 show

1S 19 = Uallyg + 1€ = Ontllye + 117 = @nl 2o + osco(f, T) + osco(¥a, T) + | ¥ — |
+[16 = Oull + (16 = ull, , , + |1 = B)®], 5, + |1 = BBy, + (2 = P)E o
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This and Lemma 3.7(a) result in

NS [1¥ = Tullye + 10 = Ontllyc + 1 = nll 2wy +osco(f, T) + osco(¥a, T) + [[ (1 = BB, 5,
{12 = B8y o + 11 = Po)E -

Here the constant absorbed in “<” depends on the shape-regularity of 7. This concludes the proof. O

6. NUMERICAL RESULTS

The results of the numerical experiments that support the a priori and a posteriori estimates are presented
in this section.

6.1. Preliminaries

The state and adjoint variables are discretised using the Morley FE and the control variable is discretised
using piecewise constant functions. The discrete solution (@M,@M,ah) is computed using a combination of
Newtons’ method in an inner loop and primal-dual active set strategy in an outer loop, see Section 6.1 of [19]
for the details of the implementation procedure for the a priori case and a different choice of the trilinear form.
The initial guess for (‘iJM, @M) in the Newton’s method is chosen as the discrete solution to the biharmonic
part of the discrete state and adjoint equations in (2.6a) and (2.6b). At each iteration of primal-dual active set
algorithm, the Newtons’ method converges in ten iterations when the tolerence level for errors is set as less than
1079, The primal-dual active set algorithm terminates within four steps.

The numerical experiments are performed over uniform and adaptive refinements. The uniform mesh refine-
ment is done by red-refinement criteria, where each triangle is subdivided into four sub-triangles by connecting
the midpoints of the edges. The standard adaptive algorithm Solve-Estimate-Mark-Refine [14, 36] is used for
the adaptive refinement, and is described in Section 6.3.

Let U, be the discrete solution Wy at the fth level for ¢ = 1,2,3,... and define e, (\T!) =
H|\i/ — \i/g|||NC. The order of convergence in the energy norm at fth level for ¥ is computed as Order({) :=
log(e¢ (V) /ee41(¥))/log(he/hes1) (resp. Order(€) := log(es(¥)/esr1(¥))/log(NDOF;/NDOF;y1)) for uni-
form refinements (resp. adaptive refinements), where hy and NDOF, denote the mesh size and number
of degrees of freedom at fth level triangulation 7,. The total number of degrees of freedom is NDOF
=2 dim (V) + dim (Up,qq)- Finally, the total error is a sum of H’\I/ - \TIMH’NC, |(:) - (:)M‘”Nc and ||@ — @

Two examples are presented to illustrate the a priori and a posteriori reliability and efficiency estimates
with w = , that is, C = I. The first example is considered over unit square domain where the solution of the
von Karman equations is sufficiently smooth and the second example is over an L-shaped domain where the
solution of the von Karman equations belongs to V N H?T7(Q) with v ~ 0.5445.

6.2. Uniform refinement

Example 6.1 (Convex domain). Let the computational domain be Q = (0,1)2. The model problem is con-
structed in such a way that the exact solution is known. The data in the distributed optimal control problem
are chosen as ¢y = ¢y = sin®(rz)sin®(wy), 1 = 0> = 22y*(1 — 2)*(1 — y)?, a(x) = _750,—50) (—1/a 01 (2)),
o = 1075, where ¥ = (¢1,72) and © = (f;,6,) denote the optimal state and adjoint variables. The source
terms f, g and observation ¥, = (1/_)d,1,1/_1d’2) for ¥ are then computed using f = A2y, — [7]}1,@/_12] -, g=
A%y + 31, ¥1] and Y1 = 1 — A0y, o = o — A0y + [¢1,61].

The relative errors and orders of convergence for the state, adjoint and control variables and the combined
relative errors and orders of convergence are presented in Table 1. Since €2 is convex, Theorem A.10 predicts
linear order of convergence for the state and adjoint variables (resp. control variable) in the energy (resp. L?)
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TABLE 1. Errors and orders of convergence for state, adjoint and control variables in Example 6.1.

h % Order % Order ”ﬁ‘;ﬁ‘h I Order Total error  Order
2 2
0.2500 1.208162 1.793806 - 1.638183 — 1.574966 -

0.1250  0.654690 0.88 0.730500 1.30 0.581509 1.49 0.592373 1.41
0.0625 0.357561 0.87 0.377143 0.95 0.175353 1.73 0.202300 1.55
0.0312  0.183915 0.96 0.190428 0.99 0.055375  1.66 0.074381 1.44
0.0156  0.092662 0.99 0.095447 1.00 0.021294 1.38 0.031846 1.22
0.0078  0.046422 1.00 0.047753 1.00 0.009674 1.14 0.015107 1.08

TABLE 2. Errors and orders of convergence for state, adjoint and control variables in Example 6.2.

¥ —nl e lle—emllyc

h NDOF IS Order Tell Order Hﬁ”*ﬂ'l_‘ilh,” Order Total error Order
2 2

0.3536 156 1371575 - 1.355646 - 0.760376  — 0812881  —

0.1768 740 0.875686 0.65 0.906115 0.58 0.498261 0.61 0.532436 0.61

0.0884 3204 0.502780 0.80 0.508682 0.83 0.197497 1.34 0.224325 1.25
0.0442 13316 0.270684 0.89 0.268696 0.92 0.072470 1.45 0.089636 1.32
0.0221 54276 0.143731 0.91 0.141920 0.92 0.029279 1.31 0.039162 1.19

norm. These theoretical rates of convergence are confirmed by the numerical outputs. Thus, the error estimates
for ¥ and © with respect to the energy norm converge at optimal rates. The same applies to the error estimate
on @ with respect to the L?(w).

Example 6.2 (Non-convex domain). Consider the non-convex L-shaped domain Q = (-1,1)%\ ([0,1) x
(71,()]). The source terms f,g and the observation Wy = (t)41,%42) are chosen such that the model
problem has the exact singular solution ([25], Sect. 3.4.1) given by t¢¥1 = 1o = 6 = 6y =

(r? cos® 6 — 1)2(r2 sin? 0 — 1)2r1+"’g%w (6) where v =~ 0.5444837367 is a non-characteristic root of sin?(yw) =
2 sin®(w), w = 3, and g,,(0) = (ﬁ sin((y — 1)w) — # sin((y + 1)w)> (cos((y — 1)8) — cos((y + 1)0))
*(ﬁ sin((y — 1)8) — # sin((y + 1)9)) (cos((y — Dw) — cos((y + 1)w)). The exact control @ is chosen as
a(x) = M[_gp0,—50)(—1/c 01 (z)), where a = 1073,

Table 2 shows error estimates and the convergence rates of the state, adjoint and control variables. Since (2
is non-convex, only suboptimal orders of convergence for the state and adjoint variables in the energy norm are
obtained as predicted by Theorem A.10.

6.3. Adaptive mesh refinement

The standard adaptive algorithm: Solve-Estimate-Mark-Refine is used for the adaptive mesh-refinement.
The total estimator n? = n3r + nip + Néon is considered in the adaptive algorithm. Recall &p,e0 from
Theorem 2.4.
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TABLE 3. Estimator and order of convergence for state, adjoint and control variables, plus the
data oscillation terms in Example 6.1.

h 7NST Order nap Order ncon Order 7 Order osco(f,7) osco(Vqa,7)

0.2500 101.670150 — 1.464635 — 84.529580 — 132.227890 5.1290e+01 1.0984e-01
0.1250 46.982720 1.11 0.252129 2.54  31.588806 1.42  56.615300 1.22 5.7172e+00 1.4637e-02
0.0625 25.973543 0.86  0.115093 1.13 13.233906 1.26  29.150891 0.96  7.3786e-01  1.8138e-03
0.0312 13.650921 0.93  0.058224 0.98  6.187437 1.10 14.987842  0.96  9.2981e-02  2.2589e-04
0.0156 6.942815 0.98  0.029375 0.99  3.031687 1.03  7.575927 0.98 1.1643e-02  2.8207e-05
0.0078 3.491406 0.99  0.014750 0.99 1.508851  1.01 3.803520 0.99 1.4561e-03  3.5250e-06

Algorithm 1: Adaptive mesh-refinement algorithm.

Set the initial triangulation 7y such that 7o € T(), 0 < 6 < Jp and 0 < 6 < 1;

Set the maximum number of iteration Maxy

while / < Max, do

Solve: Compute the solution (¥yy, Onr, %s) over the triangulation 7, using Newtons’ method and
primal dual active set strategy

Estimate: Compute the complete estimator n7 from (2.9)

Mark: Mark a minimal subset .#; C 7, by Dorfler marking criteria

0 nj(K)< Y nj(K)

KeT, Ked,

Refine: Compute the closure of .#, and generate new triangulation 741 using the newest vertex
bisection

Update the triangulation

end

The initial triangulation 7y € T(J) can be obtained by the uniform red-refinement of some admissible trian-
gulation over the domain. In general, it is difficult to quantify the constants €g, dy from Theorem 2.4. The initial
triangulation used in the following numerical experiments are specified in the respective examples. Further, the
marking parameter 6 = 0.2 is used.

Convez domain. Consider Example 6.1. This is a test case over the square domain with a smooth exact solution,
performed to test the performance of the adaptive estimator for the uniform refinement. The initial triangula-
tion is a criss-cross mesh with one red-refinement, that is, 16 uniform triangles. Table 3 depicts the convergence
history of the estimators (defined in (2.8)) for the uniform refinements for the state, adjoint and control estima-
tors. The combined error and estimator convergence rates are also computed. It is observed that the individual
errors and estimators as well as the combined error have linear order of convergence. Further, the oscillation
terms osco(f,7) and osco(¥ 4, 7) converge with order three (since this is a problem with smooth function over
the convex domain). Hence, the theoretical rates of convergence are confirmed by these numerical outputs.

Non-conver domain. This numerical experiment is performed over the non-convex domain (Example 6.2) with
the exact solution has a singularity at the origin. The numerical experiment starts on the initial mesh with 24
triangles, and then adaptive refinements are carried out using Algorithm 1. Figure 2 shows that the significant
adaptive refinement occurs near the control variable interface and the singularity point of the L-shaped domain.
This is expected as the state and adjoint solutions have a singularity at the origin. From Figure 3, it is observed
that the control estimator dominates other estimators. This supports the efficiency of the adaptive estimator
in the theoretical estimates obtained in the previous section. Figure 3 and Table 4 also indicate that the
errors and estimators have optimal convergence in the adaptive refinement. The oscillation terms osco(f,7)
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FIGURE 2. Discrete control solution %, (a) and the adaptive mesh-refinement (b) (at level
¢ =24) in Example 6.2.
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F1cUure 3. Convergence plot of the approximation errors and estimators with adaptive and
uniform refinement for state, adjoint and control variables in Example 6.2 (State approxi-
mation (left), Adjoint approximation (Middle), Control approximation (right), Uni=Uniform
refinement, Ada=Adaptive refinement).

and osco(¥y,7) in the Table 4 have linear order of convergence with respective NDOF, which is higher-order
in comparison to the error and estimator.

Figure 4a displays the convergence history of the total error and estimator; both achieve optimal convergence
in adaptive refinement. Further, it can be observed that the adaptive refinements are performing better in terms
of accuracy compared to the uniform refinements. Figure 4b illustrates that reliability and efficiency constants
are approaching a constant value with mesh refinement, thus providing a numerical evidence for the efficiency
and reliability of a posteriori estimator derived in the theory section.

7. CONCLUSIONS

This paper presents reliable and efficient a posteriori error estimates for the distributed optimal control
problem governed by the von Kdarmén equations. The a posteriori estimator identifies the solution singularity
region and the interface of the discrete control, and produces optimal convergence rates. The a posteriori
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TABLE 4. Errors and orders of convergence for state, adjoint and control variables with adaptive
refinement in Example 6.2.

Iter NDOF I =l Order lIo=Oullyc Order IZ=%nl  Order Error Order Er/Et osco(f) osco(Wq)

il liell, =l
0 156 1.371575 - 1.355646 - 0.760376 — 0.812881 — 1.47  36.2833 25.8111
4 464 0.842764 0.62 0.866655 0.59 0.488350 0.80 0.520237 0.77 1.93 11.9203 10.4362
8 1643 0.540211 0.32  0.533029 0.32 0.223952 0.47 0.251166 0.44 1.82 3.7135 3.4141
12 5030 0.330837 0.46 0.326537 0.47 0.107915 0.78 0.127130 0.71 1.72 1.2898 1.2332
16 15512 0.195581 0.44 0.191774 0.45 0.050371 0.70 0.062844 0.64 1.41 0.5876 0.5832
20 45948 0.115454 0.56 0.112701 0.58 0.026069 0.54 0.033729 0.55 1.25 0.1031 0.1022
22 73926 0.091240 0.53  0.089210 0.53 0.019682 0.57 0.025822 0.56 1.22 0.0817 0.0815
20 , —e— Er/Et A‘da .
—&— Et/Er Ada
18 —O0— Er/Et Uni |
: Lk —o— Et/Er Uni
5 1674
% 102
= 14
= . . ) N )
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FIGURE 4. Convergence plot (left), and reliability and efficiency constants (right) over uniform
and adaptive refinements (right) in Example 6.2 (Er=Total Error, Et=Complete Estimator,
Uni=Uniform refinement, Ada=Adaptive refinement). (a) Total error and estimator. (b) Effi-
ciency and Reliability.

TABLE 5. Convergence results for post-processed control u;, for Example 6.1 (Square domain)
and Example 6.2 (L-shaped domain).

Square domain L-shaped domain
h I u‘;ﬁh I Order h I u‘;ﬁh I Order
0.250000 0.569226344 — 0.7071068 0.65981424 -

0.125000 0.160066913  1.8303 0.3535534  0.460809013  0.5179
0.062500 0.041173386 1.9589 0.1767767 0.177559399  1.3759
0.031250  0.010363721 1.9902 0.0883883  0.054638969 1.7003
0.015625 0.002595312 1.9975 0.0441941 0.016758562 1.7050
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estimator contribution nimo’@M from the adjoint equations is non-standard due to the combined effect of the
chosen trilinear form bnc(e, e, @), non-conformity of the method and linear lower-order terms.

The post-processed control uy, defined in (2.7) helps to establish a posteriori estimates. Table 5 shows a priori
error estimates and order of convergence for wuy, for Examples 6.1 and 6.2.

Table 5 indicates an improved a priori error estimate for ||@ — @y, || in comparison to |@ — @y, || in Tables 1 and 2.
o - (:)Mm needs
to be established. A theoretical justification of this superconvergence result is a topic of future research.

To justify this theoretically, we could utilize (4.31). However, higher-order convergence rate for

APPENDIX A.

A.1. A priori error estimates

This section deals with the a priori error estimates for the state, adjoint and control variables under minimal
regularity assumptions on the exact solution. The proof of the piecewise H' error estimates for the adjoint
variable (see Theorem A.8) differs from that of the nonconforming Morley case in [19], since the discrete
trilinear form is different, and forms the main contribution of this subsection.

Auxiliary results
Some auxiliary results relevant for the a priori error estimates are stated and this is followed by the error

estimates.

Lemma A.1 (Bounds for Axc(e,e) ([7], Lems. 4.2, 4.3)). If x € H*™(Q), ® € VA H*™(Q) and ®y € Vy,
then

(a) Anc(X: JPu — @) S B Ixlap I Pullne:  (0) Axc(x: Iu® = @) S h Ixlloq, (202 -
2
(c) Anc(®um, Pm) = [[Pullc-

Lemma A.2 (Bounds for Byc(e,e,e)). The boundedness properties of Bnc(e, e, @) stated below hold.

(8) Bxe (6 A @) S Ixlyel M@l forall x, A @ € V + Vi,
(b) Buc(e A ®) S Ixlly Myl for all x € H*/(Q), A€ V + Vi, @ € HY(Q).
(€) BxcOGA®) S Dxllos WAl I ®llyo,  for all x, A € HZF7(2),® € V 4 V.

Proof. The bound in (a) follows from the definition of Bnc(e,e,e) and bnc(e,e,e), and the generalised
Holder’s inequality. For x € VN H?T(Q),\ and ¢ € V + Vyy, (b) follows from the definition of Byc(e,e,e)
and byc(e,e,e), the estimate > pcr [ [, Alodz < Xy allMIxcll9lloan, and the Sobolev embeddings
H?T(Q) — W24(Q) and H'(Q) — L*(Q). The last inequality follows using the estimate Y o [ [x, Al¢p dz <
lIxll2.4llM2.4]|@]l0.2.n, and the continuous embedding H?T7(Q) — W24(Q) where y,A € V N H**(Q) and
¢ eV + V. a

Lemma A.3. For ¥, x,0 € VN H*(Q) and ¥y € Vyy,

Brno(¥ = U, x; 0) S (WT[¥ = Yullxe + 10 = OulDlixllz - 19124,

Proof. Since the piecewise second derivatives of Iyx are constants, the definition of Byc(e,e,e) and
Lemma 3.6(c) show Bnc((J — 1)Pn, Inx, Po®) = 0. This and elementary algebra lead to

BNC(\II - \IIM7X7@> = B(\II - J\IIMaXa 9) + BNC((J - 1)\IIM7Xa®)
= B(\I’ — JUm, X, @) + BNc(<J - 1)‘1’1\/[, (1 - IM)X; @) + BNc((J — I)WM,IMX, (1 - P())@) (Al)
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The definition of B(e, e, e), the symmetry of b(e, e, e) in the first and third variables, Lemma A.2(c), triangle
inequality with Uy and Lemma 3.6(d) with v = ¥ lead to

B(¥ — J¥,x,0) £ (W*I¥ — Wnllye + 19 = Untll) Xz 1Ol -

Lemmas 3.7(b), 3.5(c) and 3.6(d) with v = W result in Bnc((J — 1)%m, (1 = In)x,0) < A7 |Ixll,, 100, x
¥ — W]y Lemmas A.2(a), 3.5(b), 3.6(d) with v = W, projection estimate in L>°(7) ([23], Prop. 1.135)
and the global Sobolev embedding H2*7(Q) — Wh(Q) imply Bnxc((J — )Wy, Iux, (1 — Po)O) <
Rlixlall©llg o I — Y]l A substitution of the last three bounds in (A.1) concludes the proof. O

For a given F, fixed control u € U,q and u = (u,0), consider the auxiliary state equation that seeks ¥,, € V
such that

A(Y,,®)+ B(¥,,V,,P) = (F+ Cu,®) for all ® € V. (A.2)
The nonconforming Morley finite element (FE) approximation to (A.2) seeks ¥,y € Vi such that
ANC(\IJU,Ma (I)M) + BNC(\Iju,M7 \Iju,M; (I)M) = (F + Cll, (I)M) fOI' all @M S VM (A3)

The result on the existence, uniqueness and error estimates of the auxiliary state equation is proved with the help
of Lemma A.4. The proofs that are available in [10,19] are skipped. Note that a modified proof of Lemma A .4
is presented and it utilises the properties of the companion operator to obtain sharper bounds in comparison to
Lemma 3.12 of [19].
A linear mapping

For a given g = (g1,92) € V/, let the linear operator T € L(V', V) defined by T'g := £ = (£1,&) € V solve
the biharmonic system A(&, ®) = (g, @) for all € V, that is,

A% =g1 inQ, A% =g in Q, & =0, % =0and & =0, i

o E =0on aQ (A4)

Moreover, for g € H 1(Q), £ € VN H*™(Q), v € (1/2,1], the elliptic regularity [6] result stated next holds.

el < lell—vs  N€llopy < el - (A.5)

For g € V), define the bounded discrete operator Txc : Viy — Vum by Tncg := & where &,; € V1 solves the
discrete problem

ANC(&M» (I)M) = <g, (I)M> for all &y € V. (AG)
The lemma stated next is utilized to prove the existence and uniqueness of the solution to (A.2).
Lemma A.4 (An intermediate estimate). Let ¥ € vn H?T(Q) be a regular solution to (2.1). Then Ve > 0,
there exists T € T(61) with 6, > 0 such that ||T[Byc(¥)] — TNC[BI’\IC(\II)]||£(V+VM) <e forall ¥ e B, (¥).

Proof. For z € V + Vy, (3.1) and Lemma 3.7(b) show By (¥)(z) € V' and By (¥)(z) € V. For ¥ €
V + Vyy, the definitions of T'(e) and Txc(e), and (A.5) imply that 8(¥) =: T[Bic(¥)(z)] € VNH*"(Q) and
OM(\I/) = TNC[Bf\Ic(\II)(Z)] € V1 solve

A(O(),9) = (Bao(¥)(2),8)  forall @ €V, (A7)
141\](3(01\/1(\11)7 ‘I’M) = <BII\IC(\IJ)(Z)5 (I)M> for all &y € V. (AS)

Let Oy (\Tl) and Gi\],[ (\I/) € V1 solve the discrete problems

Anc (01\/[ (\TJ),(I)M) = <Bll\IC (\i/) (Z)7 q)M> for all &y € Vu, (Ag)
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Anc (03(),@u) = (Bic(¥)(2), J@u)  for all @y € Vi, (A.10)
A triangle inequality yields
llo®) - 03l = [Jo®) - 8 (D], + [|o3:(®) ~ (D], + l102(¥) —Ou@ )l (A11)
Notice that 3; () is the Morley nonconforming solution to (A.7) for a modified right-hand side By (¥)(z)oJ €

Vi
The best approximation result from Theorem 3.2 of [11] shows

lo@) -6l (@)] . < 1+ 43 10— 20O ) e (a12)

This together with the interpolation estimate from Lemma 3.5(c), (A.5), (A.7) and Lemma A.2(b) imply
lo@@) = ol (@)|| s o183 ]16()]],,, S0 [Brc(@ @], S BT, Moo (A13)
The combination of (A.9) and (A.10), and (3.1) show

Axc(0(F) = 63 (¥), Bt ) = 2Bxc (.2, (1 = )Py,

~

Lemma A.1(c) with test function ®yy := Oy (lif) — 0{4 (‘il) and Lemma A.2(a) imply

The inverse inequality and Lemma 3.6(d) prove [[(1—J)®umlly . < A1 = J)@m| S hf|®ulxe. This,

loz:(®) 0 (9] __ < Pl el (A1)

The combination of (A.8) and (A.9), and (3.1), Lemma A.1(c) with test function Oy (¥) — 6y (¥), and
Lemma 3.7(b) prove [|6n(¥) — Oy (\Tl)|||NC < lzllyel¥ - \I!H|NC. A substitution of this and (A.13), (A.14)
in (A.11) lead to the result that for any preassigned ¢ > 0, h; and the radius p. > 0 can be chosen
small such that for all ¥ € B, (), ||T[Byc(¥)(z)] — TNC[B{\IC(\I!)(Z)H”NC < €|lz|lyes leading to the desired
estimate. (]

Recall from the notation that osci(f,7T) = ||h%-(f — ka)H for k € Ny.
Theorem A.5 (Existence, uniqueness and error estimates).

(i) Let (¥,a) € V x L*(w) be a regular solution to (2.1). Then, there exist 61, p1,p2 > 0 with 65 < 01 such
that, for T € T(82) and u € By, (u), (A.3) admits a unique solution in B,, (¥), where u € By, (1) (resp.
U € B, (V) implies [[u — ul| 2,y < p2 (resp. o — \If|||NC < p1).

(i) Let (¥,u) € V x L*(w) be a regular solution to (2.1). Then, for u € B,,(4) and T € T(d),
the solutions VW, and W,y to (A.2) and (A.3) satisfy the energy and broken H' norm esti-
mates (2) W~ Varlye S 10— B)Wullye + 0e1(f + Cu + 1z, T) + 0561 ([but, buils T),
0) 1%y = Vumlly o n S B UNWe — Yumllne + 05 (f + Cu, T)) for each m € No.

(i) Foru, @ € B,,(a), and T € T(62), the solutions ¥, and ¥gn to (A.2) and (A.3), with controls chosen as
u and @ respectively, satisfy |[Wu — Yamllye S A7+ lu— @l 12

Here v € (1/2,1] is the elliptic regularity index.

The proof of (i) and (iii) can be found in Theorem 3.8(i) and Lemma 3.9 of [19]. The error estimate in energy
and piecewise H! norms given by (ii)(a) and (b) are established in Theorem 3.1 of [10].
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Remark A.6. The well-known result for the biharmonic problem for the approximation using Morley non-
conforming FEM which states that the L? error estimate cannot be further improved than that of H*
error estimate [27] extends to von Kérméan equations and thus Theorem A.5(ii), and Lemma 3.5(c) show
(a) W, — \I’u,MlnNc Sk,

B) %0 — Cumll, 55, S A%, and (¢) Wy — Tyl S A

The auxiliary problem corresponding to the adjoint equations seeks 6, € V such that
A(®,0,)+2B(v,,9,0,)= (T, — ¥y P) forall P eV, (A.15)

where ¥, € V is the solution to (A.2). A Morley FE discretization corresponding to (A.15) seeks O, € Vi
such that, for all &y € Vy,

Anc(®m, Oum) + 2Brne(Wu M, Pus Oun) = (Vum — Yo, Pur). (A.16)

The existence, uniqueness and convergence results stated in the next theorem follow analogous to that of
Theorems 4.1 and 4.2(a) from [19] and are skipped for brevity.

Theorem A.7 (Existence, uniqueness and energy error estimate). Let (\f/,ﬂ) € V x L?(w) be a regular
solution to (2.1). Then, (i) there exist 0 < p3 < pg and d3 < &2 such that, for all T € T(d3) and
u € B,,(u), (A.16) admits a unique solution, (ii) for u € B,, (@) and T € T(d3), the solutions ©, and
Oum of (A.15) and (A.16) satisfy the energy norm error estimate: [|©y — Ounllye S Ve — YuMlye +

~

h7(||¢u,1 - wd,l - [¢u,17 eu,Q] + [¢u,27 eu,l]H + ||wu,2 - wd,2 + [%,1, eu,l]H)’ where v, (TeSP' \I/u,M) solves (A'Q)
(resp. (A.3)) and v € (%,1].

The proof of a priori H' error estimate stated in the next theorem for adjoint variables is a non-trivial
modification of the corresponding result in [19]. The form of the error estimate will be useful in the adaptive
convergence study that is planned for future.

Theorem A.8 (Piecewise H' error estimate). Let (U, %) € V x L*(w) be a regular solution to (2.1). Then for
T € T(d3), the solutions ©, and ©, M of (A.15) and (A.16) satisfy

190 = Ouatlly o0 S 1 (120 = Vuntllye + 100 = Ountliye + L = Po)Oully . )
=+ |||\IJu - \IjuMmNcm@u - @u,M‘”NC + m\I’u - \IIuM‘” + h2+70500(‘1/u — Wy, T)a
where osco(f,T) = ||h%-(f — o f)||, Yu (resp. Wy solves (A.2) (resp. (A.3)) and v € (3,1].
Proof. Step 1: Isolates a crucial term. Let py; := IO, — O, M € V. The triangle inequality leads to
1©u = Oumlly o), < 1L = In)Oully 5 + (1= T)orilly 2,0 + 1700l (A.17)

Lemma 3.5(a) shows that ©, — I\y©,, is orthogonal to @y for all &y € Vi and so Lemma 3.5(b) and the
Pythagoras theorem prove

— 2 2 2 2 2
B2000 = IOl 5, < C2IOu — TOullie = CE (118 — Ounilitc — Iouilikc) < CEIO — Ol

(A.18)
Lemma 3.6(d) with v = 0 and the Pythagoras theorem in the above displayed inequality show

= ew = Tpullizn < Asllprllse S 10w = Ounllye: (A.19)
where “<” absorbs Ay and Ci. (A.17)—(A.19) conclude the first step and show

19w = Ounlly s S AlIOw = Ountllne + I Tomlls- (A.20)
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Step 2: Estimates [|Jpy|l; in (A.20). For a given g € H ™ '(12), consider the dual problem that seeks Xg €
V such that
A(Xg, <I’) + 2B(\I/u,xg, <I>) = (g, ®) foral ®eV. (A.21)

The existence of solution to (A.21) and the regularity results stated below follow from Theorem 3.1. Note
that x, € VN H?7(Q) and

Il < lgll—y and [|xq ][, < llgll_:- (A.22)

Choose g = —AJpy € L*(2) and & = Jpy; € V. This and elementary algebra eventually lead to

IV = Axc (Xg>(J = 1)pnt) +2(Bne(Yu, Xg, (J — 1)pu) + Bre (Y, Xy, (I — 1)04))

4
+ (Anc(xg: (Im — 1)O4) + Anc(Xg: Ou — Oum)) + 2Bxc(Yu, Xg, Ou — Oun) = ZTz
=1

(A.23)
Step 3: Estimates the terms Ty,--- ,T4. Lemma A.1(a) shows that

Ty = Anc(Xg (J = Do) S 07 Ionlncllxglloy, S 57100 = Oumllnellxgll, .,

with (A.19) in the end. Lemmas A.2(c), 3.6(d) with v = py, 3.5(b), (A.18) and (A.19) imply

1

§T2 = BNC (\I/u7Xga (J - 1)pM) + BNC (\Ijua Xga (IM - 1)®u) 5 h2|”\I/uH|2+'yH|Xg”’2+,Y|||@u - @u,MMNC-

Simple manipulations lead to
Ty := Axc(Xg, (Im = 1)O4) + Anc((1 = In)Xgs Ou — Ount) + Anc ((1 = J)InXg, Ou — Oum)
+ Anc(JIaxg, Ou — Oun)- (A.24)

Lemma 3.5(a) shows Anc(®u, MOy — O4) = 0 = Anc(Xy — ImXg, Pm) for all @y € Vyr. This shows that
for the first two terms in (A.24) it holds

Anc(Xg — Inxg: IMOu — Ou) + Anc(Xg — InXg: Ou — Oum) = 0.
g g

The boundedness of Anc(e,e), Lemma 3.6(d) with v = x, and Lemma 3.5(c) result in an estimate for the
third term in (A.24) as

Anc((1 - J)Iaxg, Ou — Oum) < m|||XgH|2+w 100 — Ounmllyc- (A.25)

Lemma 3.6(c) shows Anc (JIvx, — InXgs ©unm) = 0. This, (A.15) and (A.16) lead to an expression for the
last term in (A.24) as
Anc(JhaXg: Ou — Oum) = Anc(JIuXg: Ou) — Anc (InXg, Oum)
= (‘Ilu - \I/d7 J[MXQ) - 2B (\I]ua JIMXga Gu) - (\I,u,M - \IJda IMXg) + 2BNc (\I’u,Ma IMXga ®u7M)
= (\I/u - \I/da (J - l)IMXg) - (\Iju,M - \Puv IMXg) - 2B(\:[Iu7 JIMXga ®u) + 2BNC (\I/u,M7 IMXg7 eu,M)-
(A.26)

Lemma 3.6(b) shows Ilgz = 0 for z = (J — 1)y, This, the Cauchy-Schwarz inequality, Lemmas 3.6(d)
with v = x4, 3.7(a) and 3.5(b), (c) lead to the estimate for the first two terms of (A.26) as

(Vo = Wa = Tlo(W, = Wa), (J = D) Tuxg) S h* osco(Wu = ¥a)Ixg .-

(A.27)
(Tt = W, Tuxg) S 1%t — Tl -
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The terms involving trilinear forms in (A.26) are estimated now. The orthogonality property of J in
Lemma 3.6(c) shows that Bxc(Wu,m, Xy — JIMXg, PoOu) = 0. This and a simple manipulation (omitting a
factor 2) lead to an expression for the last two terms of (A.26) combined with T as

BNC (\Ilu - \Iju,Ma (]- - JIM)ng @u) + BNC (“Iju,Ma (1 - JIM)ng (]- - ,PO)@u)

(A.28)
+ Bne (\I/u,My IMX97 @u7M) — Bnc (\I/ua Xg> Gu,M) .
The triangle inequality with Inx,, Lemmas 3.7(b), 3.5(c) and 3.6(d) with v = x,, result in
Bro (¥~ Tunt. (L= T10%xg €4) S 071Xy I€ulas 10 — Puntlye- (4.29)
Lemmas A.2(a), 3.5(c) and 3.6(d) with v = x, show
Bre(Vunt, (1= JIu)xg, (1= P0)Ou) S W7 [|Xg 5 1¥ullzi 190 = PoOully oe- (A.30)

The integral mean property of Iy in Lemma 3.5(a) shows Bxc(Wu M, ImXg — Xg> P0©u) = 0. This and a
simple manipulation show that the last two terms in (A.28) can be rewritten as

Brne (Yu — Wy, (1= In)Xg, Oun) + Bre (W, (1 — In)Xg: Ou — Oum) + Bne (Yu — Wy, (I — 1)Xg, Ou)
+ Bne (Yum, (v — Dxg, (1= P0)Ou) + Bne (Yu — Yy M, Xg, Ou — Ount) + Bre (Pum — Pus Xg, Ou)

6
=) T (A.31)
i=1
The terms Typ,---,Tg are estimated next. The boundedness and interpolation estimates in Lem-

mas A.2(a), 3.7(b) and 3.5(c) prove

T < h’megH’2+.y|”@um2+y"|\llu - \I'u,MMNca T2 S h”\HXg!H2+7|||‘I’u\||2+y\||@u - GU,MNNC
Ts g h7|||Xg|||2+7 |||6u ”|2+'y"|\1/u - \IIU,MMNC» T,y 5 h7|||Xg|”2+7 |||\I/'U4”|2+"y m@u - PO@u mo,oo

Ts 5 |||Xg”|2+7”|\l’u - \I/u,MmNC |”@u - @u,MmNc-

Lemma A.3 shows Te S (h[|[ Wy — W mllye + 1% — Pumll) [Ixg ], o 1©ull.,- A substitution of T1-Tg in

(A.31) and the resulting estimate with (A.29) and (A.30) in (A.28) lead to a bound for the terms involving
the trilinear form Bnc(e, e, ®) as

H|Xg|||2+,y (l”eu H|2+'y (hﬂ{ |||\I/u - \Iju,MmNc + |||\I}u - \Iju,MM) + quju - “IjuMmNcm@u - @u,MmNC
+ B 1%ully, (194 — Ountllye + 10w = Po®ully,s. ) )-

This expression and (A.27) are first substituted in (A.26), the resulting expression and (A.25) are substituted
in (A.24) and utilized in (A.23) with bounds for T} and T%. In combination with |||Xg|||2+7 < el <

IV Jppll from (A.22), this yields

19723l £ B 1€uls ¥ = Wil + 1% = ¥t 100 = €unalle + (1 + 10wl ) 19 = W

07 (14 10ully ) 100 = ©untllye + BV Iully 19 = PoBully o + 17 Tosco(Wu — W),

The last displayed inequality, [[©u o, [[Vully, <1 and (A.20) lead to the desired estimate. O
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Remark A.9. The projection estimate in L>(7) ([23], Prop. 1.135) and global Sobolev embedding H2*7 () —
Wee(Q) imply (1 —P0)Oullg o0 S PIOull,.,- This, Theorems A.7 and A.8, and Remark A.6 show

(@) 10 = Ounllne SH7s (0) 1Ou = Ounlly o) S, and () |04 = Ounll < A

The proof of the error estimates of the nonlinear control problem follows from the second-order sufficient
optimality conditions in Theorem 3.9.

Theorem A.10 (A priori error estimates ([19], Thm. 5.1)). Let (V,u) be a regular solution to (2.1) and
{(n,@n)} be a solution to (2.5) converging to (¥,u) in V x L?(w), for T € T(83) with uy € By, (u) as
in Theorem A.7. Let © and Oy be the corresponding continuous and discrete adjoint variables, respectively.
Then, there exist 0 < §y < 03, €o such that for all T € T(dy), it holds (a) H‘\Il — \IIMH‘NC + !HC:) — C:)MH‘NC +
lla — ﬂh||L2(w) < go; the solutions (\i/,@,ﬁ) and (@M,@M,ﬁh) satisfy, (b) ’H\Tf - \I]M’HNC < hY, |6 — éMmNc <
RY, and ||t —tp| g2y S he v € (1/2,1].

The next lemma is a standard result in Banach spaces that helps to prove Lemma 4.2.

Lemma A.11. Let X be a Banach space, A € L(X) be invertible and B € L(X). If ||[A — Bllzx) <

1/]|A- then B is invertible. If [|[A — B|lzx) < 1/(2||A*1||L(X)), then || B~ <2[|A-

IHL(X)’ 1||L(X) 1H£(X)'

The uniform boundedness result for the inverse of the linear mapping Fy, with a bound independent of the
discretization parameter h without assuming the extra reqularity of W is proved next. This result was used to
derive the a posteriori error estimates for the adjoint variable.

Proof of Lemma 4.2. Lemma 4.3 of [19] shows that Fg is an automorphism on V + Vy if ¥ € V is a
regular solution to (2.1). Also, for € + &y € V + Vi, the invertibility of Fg leads to ]—"\;1(54—51\4) =

— s\ L =\
&+ & — (.A+B’(\Il) ) Bic(¥) (€4 &y). This, and Lemma 3.7(b) imply |[|Fg 1+

1HC(V+VM) s

-1 _
204, (.A + B'(¥) ) H X |||\IJ|||2 Since A* = A and the operator norm of an operator and its adjoint
LV',V)
NS o
are equal, (A + B’(\Il) ) H = H (.A + B’(\I/)) ! H and hence, there exists a constant C' independent of h such
that — > C.
H‘r\ifll|£(v+vM) -

For ® € V 4+ Vyy, the definition of Fy in (4.17), the boundedness property of T'(e) and Byc(e,e,e) in
Lemma 3.7(b) imply

1F5(®) = Fu (@)l vy < || T[Brc(@ = w.) @)]|| S 1% - wall,. (A.32)

Theorem 3.1 shows G(u) = ¥, G(u) = ¥,, and the uniform boundedness of H‘ (A+B/(0,)"" mc(v' v whenever

u € O(u). Hence, for us = u+ (2 — u) and ¥; = G(ut), mean value theorem, Theorem 3.1 and u € O(@) prove

S = ull g2,
2

mwwwaAzﬂmxcmu»a A1A+gmm>%cmu»&

|
Since u is sufficently close to @, (A.32) leads to

1
s — Fu,

<C<L — .
FVEV ||‘7:‘~T’1HL(V+VM)

An application of Lemma A.11 concludes the proof. (Il
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