MicroROM: An efficient and accurate reduced order method to solve many-query problems in micro-motility
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 4, pp. 1151-1172

In the study of micro-swimmers, both artificial and biological ones, many-query problems arise naturally. Even with the use of advanced high performance computing (HPC), it is not possible to solve this kind of problems in an acceptable amount of time. Various approximations of the Stokes equation have been considered in the past to ease such computational efforts but they introduce non-negligible errors that can easily make the solution of the problem inaccurate and unreliable. Reduced order modeling solves this issue by taking advantage of a proper subdivision between a computationally expensive offline phase and a fast and efficient online stage. This work presents the coupling of Boundary Element Method (BEM) and Reduced Basis (RB) Reduced Order Modeling (ROM) in two models of practical interest, obtaining accurate and reliable solutions to different many-query problems. Comparisons of standard reduced order modeling approaches in different simulation settings and a comparison to typical approximations to Stokes equations are also shown. Different couplings between a solver based on a HPC boundary element method for micro-motility problems and reduced order models are presented in detail. The methodology is tested on two different models: a robotic-bacterium-like and an Eukaryotic-like swimmer, and in each case two resolution strategies for the swimming problem, the split and monolithic one, are used as starting points for the ROM. An efficient and accurate reconstruction of the performance of interest is achieved in both cases proving the effectiveness of our strategy.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1051/m2an/2022038
Classification : 65N38, 76D07, 65D99
Keywords: Micro-motility, BEM, reduced order modeling, optimization, many-query problems
@article{M2AN_2022__56_4_1151_0,
     author = {Giuliani, Nicola and Hess, Martin W. and DeSimone, Antonio and Rozza, Gianluigi},
     title = {MicroROM: {An} efficient and accurate reduced order method to solve many-query problems in micro-motility},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1151--1172},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {4},
     doi = {10.1051/m2an/2022038},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2022038/}
}
TY  - JOUR
AU  - Giuliani, Nicola
AU  - Hess, Martin W.
AU  - DeSimone, Antonio
AU  - Rozza, Gianluigi
TI  - MicroROM: An efficient and accurate reduced order method to solve many-query problems in micro-motility
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2022
SP  - 1151
EP  - 1172
VL  - 56
IS  - 4
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2022038/
DO  - 10.1051/m2an/2022038
LA  - en
ID  - M2AN_2022__56_4_1151_0
ER  - 
%0 Journal Article
%A Giuliani, Nicola
%A Hess, Martin W.
%A DeSimone, Antonio
%A Rozza, Gianluigi
%T MicroROM: An efficient and accurate reduced order method to solve many-query problems in micro-motility
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2022
%P 1151-1172
%V 56
%N 4
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2022038/
%R 10.1051/m2an/2022038
%G en
%F M2AN_2022__56_4_1151_0
Giuliani, Nicola; Hess, Martin W.; DeSimone, Antonio; Rozza, Gianluigi. MicroROM: An efficient and accurate reduced order method to solve many-query problems in micro-motility. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 4, pp. 1151-1172. doi: 10.1051/m2an/2022038

[1] F. Alouges and M. Aussal, The sparse cardinal sine decomposition and its application for fast numerical convolution. Numer. Algorithms 70 (2015) 427–448.

[2] F. Alouges, A. Desimone, L. Giraldi and M. Zoppello, Can magnetic multilayers propel artificial microswimmers mimicking sperm cells? Soft Rob. 2 (2015) 117–128.

[3] F. Alouges, M. Aussal, A. Lefebvre-Lepot, F. Pigeonneau and A. Sellier, Application of the sparse cardinal sine decomposition to 3d stokes flows. Int. J. Comput. Methods Exp. Meas. 5 (2017) 387–394.

[4] G. Alzetta, D. Arndt, W. Bangerth, V. Boddu, B. Brands, D. Davydov, R. Gassmoeller, T. Heister, L. Heltai, K. Kormann, M. Kronbichler, M. Maier, J.-P. Pelteret, B. Turcksin and D. Wells, The deal.II Library, Version 9.0. J. Numer. Math. 26 (2018) 173–183.

[5] J. Archibald, Handbook of the Protists. Springer, Cham (2017).

[6] M. Barrault, Y. Maday, N. C. Nguyen and A. T. Patera, An “empirical interpolation’” method: application to efficient reduced-basis discretization of partial differential equations. C. R. Math. 339 (2004) 667–672. | Zbl

[7] Blender Online Community, Blender – A 3D Modelling and Rendering Package. Blender Foundation, Blender Institute, Amsterdam (2019).

[8] S. Chaturantabut and D. C. Sorensen, Nonlinear model reduction via discrete empirical interpolation. SIAM J. Sci. Comput. 32 (2010) 2737–2764. | Zbl

[9] C. M. Colciago and S. Deparis, Reduced numerical approximation of reduced fluid-structure interaction problems with applications in hemodynamics. Frontiers Appl. Math. Stat. 4 (2018) 18.

[10] B. Dai, J. Wang, Z. Xiong, X. Zhan, W. Dai, C.-C. Li, S.-P. Feng and J. Tang, Programmable artificial phototactic microswimmer. Nat. Nanotechnol. 11 (2016) 1087–1092.

[11] G. Dal Maso, A. Desimone and M. Morandotti, An existence and uniqueness result for the motion of self-propelled microswimmers. SIAM J. Math. Anal. 43 (2011) 1345–1368. | Zbl

[12] G. Dal Maso, A. Desimone and M. Morandotti, One-dimensional swimmers in viscous fluids: dynamics, controllability, and existence of optimal controls. ESAIM: Control Optim. Calc. Var. 21 (2015) 190–216.

[13] K. Drescher, K. C. Leptos and R. E. Goldstein, How to track protists in three dimensions. Rev. Sci. Instrum. 80 (2009) 014301.

[14] K. Drescher, R. E. Goldstein, N. Michel, M. Polin and I. Tuval, Direct measurement of the flow field around swimming microorganisms. Phys. Rev. Lett. 105 (2010) 168101.

[15] T. Fujita and T. Kawai, Optimum shape of a flagellated microorganism. JSME Int. J. Ser. C 44 (2001) 952–957.

[16] I. Fumagalli, N. Parolini and M. Verani, Shape optimization for Stokes flows: a finite element convergence analysis. ESAIM: Math. Modell. Numer. Anal. 49 (2015) 921–951.

[17] V. F. Geyer, F. Jülicher, J. Howard and B. M. Friedrich, Cell-body rocking is a dominant mechanism for flagellar synchronization in a swimming alga. Proc. Nat. Acad. Sci. USA 110 (2013) 18058–18063.

[18] N. Giuliani, Modelling fluid structure interaction problems using boundary element method. Ph.D. thesis, SISSA, Scuola Internazionale Superiore di Studi Avanzati (2017).

[19] N. Giuliani, L. Heltai and A. Desimone, Predicting and optimizing microswimmer performance from the hydrodynamics of its components: the relevance of interactions. Soft Rob. 5 (2018) 410–424.

[20] N. Giuliani, L. Heltai and A. Desimone, BEMStokes: a boundary element method solver for micro-swimmers. https://github.com/mathLab/BEMStokes (2020).

[21] N. Giuliani, A. Mola and L. Heltai, π – BEM: a flexible parallel implementation for adaptive, geometry aware, and high order boundary element methods. Adv. Eng. Softw. 121 (2018) 39–58.

[22] J. Gray and G. J. Hancock, The propulsion of sea-urchin spermatozoa. J. Exp. Biol 32 (1955) 802–814.

[23] L. Greengard and V. Rokhlin, A fast algorithm for particle simulations. J. Comput. Phys. 73 (1987) 325–348. | Zbl

[24] J. S. Guasto, K. A. Johnson and J. P. Gollub, Oscillatory flows induced by microorganisms swimming in two dimensions. Phys. Rev. Lett. 105 (2010) 168102.

[25] M. Gurtin, An Introduction to Continuum Mechanics (Mathematics in Science and Engineering). Academic Press (1982). | Zbl

[26] E. Gutman and Y. Or, Optimizing an undulating magnetic microswimmer for cargo towing. Phys. Rev. E 93 (2016) 1–8.

[27] B. Haasdonk and M. Ohlberger, Reduced basis method for finite volume approximations of parametrized linear evolution equations. ESAIM: Math. Modell. Numer. Anal. 42 (2008) 277–302. | MR | Zbl | Numdam

[28] E. Harris, The Chlamydomonas Sourcebook: A Comprehensive Guide to Biology and Laboratory Use. Elsevier Science, Burlington (1989).

[29] M. A. Heroux, E. T. Phipps, A. G. Salinger, H. K. Thornquist, R. S. Tuminaro, J. M. Willenbring, A. Williams, S. S. Kendall, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda, R. B. Lehoucq, K. R. Long and R. P. Pawlowski, An overview of the Trilinos project. ACM Trans. Math. Softw. 31 (2005) 397–423. | Zbl

[30] J. S. Hesthaven, G. Rozza and B. Stamm, Certified Reduced Basis Methods for Parametrized Partial Differential Equations. Springer International Publishing (2016).

[31] K. Ishimoto, H. Gadêlha, E. A. Gaffney, D. J. Smith and J. Kirkman-Brown, Coarse-graining the fluid flow around a human sperm. Phys. Rev. Lett. 118 (2017) 1–5.

[32] C. Josenhans and S. Suerbaum, Motility in bacteria. Int. J. Med. Microbiol. 291 (2002) 605–614.

[33] G. Karypis and V. Kumar, A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20 (1998) 359–392. | Zbl

[34] E. E. Keaveny, S. W. Walker and M. J. Shelley, Optimization of chiral structures for microscale propulsion. Nano Lett. 13 (2013) 531–537.

[35] G. S. Klindt and B. M. Friedrich, Flagellar swimmers oscillate between pusher- and puller-type swimming. Phys. Rev. E – Stat. Nonlinear Soft Matter Phys. 92 (2015) 1–6.

[36] M. Kronbichler and T. Heister, W. Bangerth, High accuracy mantle convection simulation through modern numerical methods. Geophys. J. Int. 191 (2012) 12–29.

[37] T. Lassila, A. Quarteroni and G. Rozza, A reduced basis model with parametric coupling for fluid-structure interaction problems. SIAM J. Sci. Comput. 34 (2012) A1187–A1213. | Zbl

[38] T. Lassila, A. Manzoni, A. Quarteroni and G. Rozza, Model order reduction in fluid dynamics: challenges and perspectives. In: Reduced Order Methods for Modelling and Computational Reduction, MS&A – Modeling, Simulation and Applications, edited by A. Quarteroni and G. Rozza. Vol. 9. Springer Cham (2014) 235–273.

[39] E. Lauga and T. R. Powers, The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72 (2009) 096601.

[40] E. Lauga, W. R. Diluzio, G. M. Whitesides and H. A. Stone, Swimming in circles: motion of bacteria near solid boundaries. Biophys. J. 90 (2006) 400–12.

[41] J. Lighthill, Flagellar hydrodynamics. SIAM Rev. 18 (1976) 161–230. | Zbl

[42] A. Manzoni, F. Salmoiraghi and L. Heltai, Reduced Basis Isogeometric Methods (RB-IGA) for the real-time simulation of potential flows about parametrized NACA airfoils. Comput. Methods Appl. Mech. Eng. 284 (2015) 1147–1180.

[43] F. Negri, A. Manzoni and D. Amsallam, Efficient model reduction of parametrized systems by matrix discrete empirical interpolation. J. Comput. Phys. 303 (2015) 431–454.

[44] N. C. Nguyen, G. Rozza and A. T. Patera, Reduced basis approximation and a posteriori errorestimation for the time-dependent viscous burgers equation. Calcolo 46 (2009) 157–185. | Zbl

[45] G. Noselli, A. Beran, M. Arroyo and A. Desimone, Swimming euglena respond to confinement with a behavioural change enabling effective crawling. Nat. Phys. 15 (2019) 496–502.

[46] E. Passov and Y. Or, Dynamics of Purcell’s three-link microswimmer with a passive elastic tail. Eur. Phys. J. E 35 (2012) 1–9.

[47] N. Phan-Thien, T. Tran-Cong and M. Ramia, A boundary-element analysis of flagellar propulsion. J. Fluid Mech. 184 (1987) 533.

[48] D. Pimponi, M. Chinappi, P. Gualtieri and C. M. Casciola, Hydrodynamics of flagellated microswimmers near free-slip interfaces. J. Fluid Mech. 789 (2016) 514–533.

[49] M. E. Porter and W. S. Sale, The 9 + 2 axoneme anchors multiple inner arm dyneins and a network of kinases and phosphatases that control motility. J. Cell Biol. 151 (2000) F37–F42.

[50] C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous Flow. Vol 36. Cambridge University Press, Cambridge (1992). | Zbl | DOI

[51] E. M. Purcell, Life at low Reynolds number. Am. J. Phys. 45 (1977) 3–11. | DOI

[52] E. M. Purcell, The efficiency of propulsion by a rotating flagellum. Biophysics 94 (1997) 11307–11311.

[53] B. Rodenborn, C.-H. Chen, H. L. Swinney, B. Liu and H. P. Zhang, Propulsion of microorganisms by a helical flagellum. Proc. Nat. Acad. Sci. USA 110 (2013) E338–E347. | DOI

[54] M. Rossi, G. Cicconofri, A. Beran, G. Noselli and A. Desimone, Kinematics of flagellar swimming in euglena gracilis: helical trajectories and flagellar shapes. Proc. Nat. Acad. Sci. 114 (2017) 13085–13090. | DOI

[55] G. Rozza, D. B. P. Huynh and A. T. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Arch. Comput. Methods Eng. 15 (2008) 229–275. | Zbl | DOI

[56] R. Sevilla, L. Borchini, M. Giacomini and A. Huerta, Hybridisable discontinuous Galerkin solution of geometrically parametrised Stokes flows. Comput. Methods Appl. Mech. Eng. 372 (2020) 113397. | Zbl | DOI

[57] L. Shi, S. Čanić, A. Quaini and T. W. Pan, A study of self-propelled elastic cylindrical micro-swimmers using modeling and computation. J. Comput. Phys. 314 (2016) 264–286. | Zbl | DOI

[58] H. Shum and E. A. Gaffney, Hydrodynamic analysis of flagellated bacteria swimming near one and between two no-slip plane boundaries. Phys. Rev. E 91 (2015) 033012. | DOI

[59] H. Shum, E. A. Gaffney and D. J. Smith, Modelling bacterial behaviour close to a no-slip plane boundary: the influence of bacterial geometry. Proc. R. Soc. A: Math. Phys. Eng. Sci. 466 (2010) 1725–1748. | Zbl | DOI

[60] K. Son, J. S. Guasto and R. Stocker, Bacteria can exploit a flagellar buckling instability to change direction. Nat. Phys. 9 (2013) 494–498. | DOI

[61] O. Steinbach, Numerical Approximation Methods for Elliptic Boundary Value Problems. Springer New York, New York, NY (2008). | Zbl | DOI

[62] T. T. M. Ta, V. C. Le and H. T. Pham, Shape optimization for stokes flows using sensitivity analysis and finite element method. Appl. Numer. Math. 126 (2018) 160–179. | Zbl | DOI

[63] A. C. H. Tsang, A. T. Lam and I. H. Riedel-Kruse, Polygonal motion and adaptable phototaxis via flagellar beat switching in the microswimmer Euglena gracilis. Nat. Phys. 14 (2018) 1216–1222. | DOI

[64] D. Walker, M. Kübler, K. I. Morozov, P. Fischer and A. M. Leshansky, Optimal length of low Reynolds number nanopropellers. Nano Lett. 15 (2015) 4412–4416. | DOI

Cité par Sources :