
ESAIM: M2AN 56 (2022) 1151–1172 ESAIM: Mathematical Modelling and Numerical Analysis
https://doi.org/10.1051/m2an/2022038 www.esaim-m2an.org

MICROROM: AN EFFICIENT AND ACCURATE REDUCED ORDER METHOD
TO SOLVE MANY-QUERY PROBLEMS IN MICRO-MOTILITY

Nicola Giuliani1, Martin W. Hess1, Antonio DeSimone1,2

and Gianluigi Rozza1,*

Abstract. In the study of micro-swimmers, both artificial and biological ones, many-query problems
arise naturally. Even with the use of advanced high performance computing (HPC), it is not possible
to solve this kind of problems in an acceptable amount of time. Various approximations of the Stokes
equation have been considered in the past to ease such computational efforts but they introduce non-
negligible errors that can easily make the solution of the problem inaccurate and unreliable. Reduced
order modeling solves this issue by taking advantage of a proper subdivision between a computationally
expensive offline phase and a fast and efficient online stage. This work presents the coupling of Boundary
Element Method (BEM) and Reduced Basis (RB) Reduced Order Modeling (ROM) in two models of
practical interest, obtaining accurate and reliable solutions to different many-query problems. Compar-
isons of standard reduced order modeling approaches in different simulation settings and a comparison
to typical approximations to Stokes equations are also shown. Different couplings between a solver
based on a HPC boundary element method for micro-motility problems and reduced order models are
presented in detail. The methodology is tested on two different models: a robotic-bacterium-like and an
Eukaryotic-like swimmer, and in each case two resolution strategies for the swimming problem, the split
and monolithic one, are used as starting points for the ROM. An efficient and accurate reconstruction
of the performance of interest is achieved in both cases proving the effectiveness of our strategy.
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1. Introduction and motivation

Many interesting phenomena depend on the swimming behavior of motile cells, so there is a growing need of
accurate, reliable and efficient computational methods to be applied in the study of micro-organisms swimming in
a fluid. Understanding the behavior of micro-swimmers can give interesting insights on many complex biological
processes: the spread of a pathogen [32], the reproductive efficiency of sperm cells [22,31], the ability to change a
motility strategy depending on the environment [45,48,58], and many others. An accurate and reliable simulation
of the swimming mechanisms makes also possible the rational optimization and design of artificial micro-robots,
mimicking such behaviors [2, 10, 26, 34, 46, 64]. Eukaryotic swimmers use complex flagellar beatings to achieve
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motion. For example Chlamydomonas Reinhardtii exploits a couple of flagella that can beat symmetrically to
produce an oscillating motion [24, 35], and Euglena Gracilis uses a single flagellum [54, 63] executing a non
planar beat.

Given the very small characteristic length scale of the problem, inertia is negligible and the fluid can be well
approximated using the Stokes flow [51,52], for which a vast variety of simulation tools exist, among the others
we recall the shape optimization results of [16, 62]. Swimmers move both in bounded and unbounded domains
and their swimming mechanisms usually involve very large geometrical deformations to achieve the net rigid
motion [40,51]. This kinds of deformations make the use of standard Finite Element Method (FEM) very chal-
lenging. A possible alternative is the Immersed Boundary Method (IBM) which has been successfully applied
to simulate micro-swimmers in bounded channels [57]. The simulation of swimmers in unbounded domains
poses a challenge even for IBM. The Boundary Element Method (BEM) [61] can deal with such large deforma-
tions efficiently if compared to other simulation techniques such as Finite Element or Finite Volume Methods.
While parallelized, high-performance solvers allow very accurate simulations, many-query problems like opti-
mization and inverse problems in a repetitive computational environment still remain a challenge. Optimization
procedures which address the different possible configurations and the reconstruction of the movements of a
biological swimmer require to run many simulations quickly increasing the computational cost of the overall
algorithm. Efficient BEM implementations based on open source High Performance Computing (HPC) libraries,
are available [19–21], but given the fact that the computational cost of BEMs scales at least quadratically with
the problem complexity, the overall time required by many simulations quickly becomes unbearable even on
modern computational architectures. A possible solution comes from rigorous mathematical approximations of
the convolution integrals defining the BEM, among the others we recall the Fast Multipole Method [21, 23],
the Sparse Cardinal Sine Decomposition [1, 3] and Reduced Order Modeling (ROM) which takes advantage of
the classical many-queries settings employing a decomposition between a slow offline phase and a fast online
evaluation, see [55]. We aim to solve many-queries problems in micro-motility so we couple ROM with BEM.

In the present work we consider two different test-cases: the optimization of a bacterium-like artificial swim-
mer and the stroke reconstruction of an Eukaryotic-like organism. These examples present different challenges
and they highlight the many-query scenarios that can be studied. Many simplified models exist to ease the
computational costs, such as Resistive Force Theory [22, 41] or neglecting the hydrodynamic interactions of
different parts of the swimmer [52], but the errors introduced are often not acceptable [19,53].

The motility of micro-swimmers can be understood using accurate simulations of the underlying fluid-
dynamics. To enable many-query computations, reduced order methods are used upon a parallelized high-
performance simulation software. Many-query computations then allow to address simulation problems of larger
scale, such as iterative optimization and inverse problems. Figure 1 depicts the many query scenario coming
from the observation of micro-swimmer and the solution we propose.

The coupling of BEMs and Reduced Order Modeling (ROM), see [55], can reduce dramatically the computa-
tional costs of these many-query simulations. ROM have been recently coupled with Hybridisable discontinuous
Galerkin Methods (HDG) to solve geometrically parametrized Stokes flows around micro-swimmers in [56]. ROM
and BEM have been coupled to study the airflow around objects in 2D [42] but, as far as the authors know, this
is the first time these methods are combined to solve micro-swimmer problems on arbitrary geometries in 3D.
The model order reduction procedure relies on an offline-online decomposition [55]. During a computationally
intensive offline phase, full-order solutions are sampled, an affine parameter-dependency of the system matrices
is approximated and low-order quantities for the ROM are pre-computed. Due to the large computational load,
the offline phase is typically done on a High Performance Computing cluster. The online phase is then used for
fast many-query evaluations with the reduced order model.

In contrast to the standard reduced basis approach, we do not completely decouple all high-order dependencies
from the reduced order model. This is to allow a maximum of geometric flexibility of the micro-swimmer. In
particular, the mesh is being generated at each new parameter value during the reduced order solve. The
alternative would be to approximate mesh movement in an affine fashion, but this would limit the possible
application scenarios significantly. To reach the maximum possible flexibility the mesh is being generated with
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Figure 1. The observation of real micro-swimmers as bacteria or more complex Eukaryotic
species (as Chlamydomonas Reinhardtii or Euglena Gracilis) reveals the presence of different
many-query problems. We work on two of these problems: shape optimization and the detailed
reconstruction of the swimming stroke. Even on modern computational architectures the direct
numerical resolution of these problems is unfeasible. We propose a different approach which
couples Reduced Order Modeling and the Boundary Element Method.

the software Blender [7]. This provides only single precision accuracy, which limits a bit the maximum accuracy
that the model reduction can attain. Nevertheless we believe the use of Blender to be a strategic advantage
since (i) it allows to generate complex arbitrary geometric parameterization in a straightforward way, (ii) it is
an open source software, (iii) it has a large community of users.

The two standard approaches of reduced basis model reduction are explored, i.e., the proper orthogonal
decomposition (POD) and the Greedy approach [55]. The empirical interpolation method (EIM) [6] is used to
approximate an affine parameter dependency of the system matrices. The focus is on the POD method, which
is employed in both examples for all the full order resolution strategies. The Greedy approach is tested on one
example to have a comparison with the POD available.

The Eukaryotic-like example exhibits a time-dependent boundary control. The reduced order modeling of
time-depending problems usually makes use of a combined POD-Greedy approach, i.e., POD in time and
greedy in other parameters [27, 30, 44]. This is useful, as most time-dependent PDEs involve inertia, i.e., a
time-derivative. In the micro-swimming scenario, a time-derivative is not present and time can thus be treated
as any other physical or geometrical parameter from the model reduction point of view.

Altogether our approach produces very accurate results while achieving a drastic reduction in computational
cost. We demonstrate this result on two different test cases of interest: the optimization of artificial micro-robots
and the reconstruction of the stroke starting from a reduced set of geometrical configurations.

The organization of this work is as follows. Section 2 introduces the general boundary element frame-
work in the continuous and discrete setting, while Section 3 presents two model swimmers mimicking real-life
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microorganisms. Section 4 explains the reduced modeling procedure and Section 5 presents detailed numerical
results. Section 6 summarizes, concludes and provides further perspectives.

2. Problem description

We aim to solve the swimming problem, i.e., to recover the swimming motion from a given history of shape
changes. To do so, we define the mathematical and numerical modeling required to properly study micro-
organisms swimming in a fluid medium. In particular, the swimming model is composed by a kinematic part
describing the possible motions for the swimmer and a dynamic part defining the conservation laws for the fluid
domain. The final resolution strategy couples these two models and is solved numerically either in a monolithic
approach (2.20) or in a split approach.

2.1. Swimming model

Following [11, 12] the swimmer is represented as a time-dependent bounded open set 𝐵𝑡 ∈ R3. The map
𝜒 : 𝐵̄0 ⊂ R3 × [0, 𝑇 ] → R3 defines the position 𝑥 at time 𝑡 of a material point 𝑋 of the swimmer, namely

𝑥(𝑋, 𝑡) = 𝜒(𝑋, 𝑡) = 𝑞(𝑡) + 𝑅(𝑡)𝑠(𝑋, 𝑡), (2.1)

where 𝑞(𝑡), 𝑅(𝑡), 𝑠(𝑋, 𝑡) are the position of a point of the swimmer, the rotation of the system local frame and
the shape at time 𝑡. The time derivative of (2.1) defines the velocity of any material point on the swimmer,

𝑢𝑠 = 𝑥̇ =
𝜕𝜒(𝑋, 𝑡)

𝜕𝑡

=
d𝑞

d𝑡
+ 𝑅(𝑡)

𝜕𝑠(𝑋, 𝑡)
𝜕𝑡

+
d𝑅(𝑡)

d𝑡
𝑠(𝑋, 𝑡)

= 𝑞(𝑡) + 𝑅(𝑡)𝑠̇(𝑋, 𝑡) + 𝜔(𝑡) ∧ (𝑅(𝑡)𝑠(𝑋, 𝑡)).

(2.2)

We assume 𝑠(𝑋, 𝑡) to be known, we define “shape velocity” the quantity 𝑅(𝑡)𝑠̇(𝑋, 𝑡), therefore the unknowns
are the rigid movements 𝑞(𝑡), 𝑅(𝑡), which define the linear and angular velocities 𝑞(𝑡), 𝜔(𝑡). In the case of
self-propelled swimmers, only viscous drag is acting on the swimmer so the usual momentum balance laws read∫︁

Γ

𝑓(𝑥) d𝛾(𝑥) = 0, (2.3a)∫︁
Γ

𝑓(𝑥) ∧ (𝑥− 𝑥0) d𝛾(𝑥) = 0. (2.3b)

The viscous tractions 𝑓 are given by the action of the Cauchy stress tensor 𝜎, see [25], namely

𝑓 = 𝜎(𝑢, 𝑝)𝑛, (2.4)

where 𝑛 is the outer unit normal vector to the surface, and 𝑢, 𝑝 represent the velocity and the pressure in the
fluid.

2.2. Fluid model

We study micro-swimmers immersed in a Newtonian incompressible fluid, by writing the non-dimensional
formulation of the incompressible Navier–Stokes equation in a generic domain Ω, see [25], as

∇ · 𝑢 = 0 in Ω (2.5a)

Re
(︂

𝜎̄
𝜕𝑢

𝜕𝑡
+ (∇𝑢)𝑢

)︂
= ∆𝑢−∇𝑝 in Ω, (2.5b)
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where 𝑢, 𝑝 are non dimensional velocity and pressure and Re is the Reynolds number defined as

Re =
𝜌𝑈𝐿

𝜇
, (2.6)

while

𝜎̄ =
𝜔𝐿

𝑈
(2.7)

is the Womersley number. We consider the typical length, velocity and frequency for a micro-swimmer as
𝐿 = 10−5 m, 𝑈 = 10−5 m/s and 𝜔 = 102 Hz, we obtain Re = 10−4 and 𝜎̄Re = 10−2. Therefore the system of
equations governing the flow is the Stokes system,

∇ · 𝑢 = 0 in Ω (2.8a)
∆𝑢−∇𝑝 = 0 in Ω. (2.8b)

We identify the boundary of the fluid domain with the boundary of the swimmer 𝜕Ω = Γ, we write Dirichlet’s
boundary conditions for (2.8) as

𝑢 = 𝑢𝑠, (2.9)

where 𝑢𝑠 denotes the velocity of the swimmer on the boundary defined in (2.2). The system (2.8) with Dirichlet
boundary conditions is well posed and admits a unique solution (𝑢, 𝑝) ∈ ((𝐻1(Ω))3, 𝐿2

0(Ω)). Following [50] we
rewrite (2.8) using the fundamental solution to get the representation formula for the Stokes system

𝑢𝑖(𝑥)−
∫︁

Γ

𝑊𝑖𝑗𝑘(𝑥, 𝑦)𝑛𝑘(𝑦)𝑢𝑗(𝑦) d𝛾𝑦 =
∫︁

Γ

𝐺𝑖𝑗(𝑥, 𝑦)𝑓𝑗(𝑦) d𝛾𝑦 ∀𝑥 ∈ R𝑑 ∖ Γ, (2.10)

where 𝐺, 𝑊 are the first two fundamental solution for the Stokes system. We take the trace of (2.10) to obtain
the Boundary Integral Equation (BIE) of the Stokes system as

𝛼(𝑥)𝑢𝑖(𝑥)−
∫︁ 𝑃𝑉

Γ

𝑇𝑖𝑗𝑘(𝑥, 𝑦)𝑛𝑘(𝑦)𝑢𝑗(𝑦)d𝛾𝑦 =
∫︁

Γ

𝐺𝑖𝑗(𝑥, 𝑦)𝑓𝑗(𝑦)d𝛾𝑦 ∀𝑥 ∈ Γ, (2.11)

where the integral on the left is computed in the Cauchy principal value sense, and 𝛼 represents its Cauchy
principal value. We define the single and double layer operator 𝑉,𝐻 as

𝐻 :
(︁
𝐻

1
2 (Γ)

)︁3

→
(︁
𝐻

1
2 (Γ)

)︁3

, (2.12a)

𝑉 :
(︁
𝐻− 1

2 (Γ)
)︁3

→
(︁
𝐻

1
2 (Γ)

)︁3

, (2.12b)

where
(︁
𝐻

1
2 (Γ)

)︁3

represents the space of the traces of the functional (𝐻1(Ω))3 and
(︁
𝐻− 1

2 (Γ)
)︁3

is its dual space.
We rewrite (2.11) using the operators (2.12a) and (2.12b) as

[𝛼𝐼 −𝐻]𝑢 = −𝐾𝑢 = −𝑉 𝑓. (2.13)

We remark that we use the complete traction 𝑓 as given by (2.4). For this reason, differently from standard
Finite Element simulations of (2.5), we don’t need to solve for the pressure 𝑝 and the problem is not a saddle
point problem. The usage of the fundamental solutions 𝐺, 𝑇 guarantees that the velocity in the fluid domain is
automatically divergence free, see [61] for greater details. For these reasons operator 𝑉 is coercive, similarly to
what happens to the classic Stokes system (2.5) if we consider a functional space which is divergence free for
the velocity field.
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2.3. Numerical resolution of the swimming problem

To solve the swimming problem means to recover the translation 𝑞(𝑡) and rotation 𝑅(𝑡) given the history of
shape changes. For this purpose we use the numerical methodology presented and validated in [19] to discretize
(2.11) into a Boundary Element Method (BEM)1. We discretize both the geometry of the swimmer and the
unknowns 𝑓, 𝑢 using Lagrangian finite element and we apply a collocation method to derive the BEM linear
system

𝐾̂𝑢̂ = 𝑉 𝑓, (2.14)

where ˆ. . . represents the finite dimensional counterpart of the operators and functionals represented in (2.13).
Following [61] we express the tractions as a function of the velocity introducing the discretized Dirichlet to
Neumann map

𝑇 =
[︁
𝑉 −1𝐾̂

]︁
, (2.15)

so that 𝑓 = 𝑇 𝑢̂. We will drop the ˆ. . . in the rest of the paper for the sake of simplicity. Following [19] we rewrite
(2.2) using a suitable set of basis functions for the rigid velocity 𝑃 (𝑋, 𝑡) and introducing the shape velocity in
the swimmer body frame 𝑣(𝑋, 𝑡) = 𝑅(𝑡)𝑠̇(𝑋, 𝑡), as

𝑢𝑠 = 𝑞(𝑡) + 𝜔(𝑡) ∧𝑅(𝑡)𝑠(𝑋, 𝑡) + 𝑣(𝑋, 𝑡)

=
𝑁𝑟∑︁
𝑖=1

𝑝𝑖(𝑋, 𝑡)𝑝̇𝑖(𝑡) + 𝑣(𝑋, 𝑡)

= 𝑃 (𝑋, 𝑡)𝑝̇(𝑡) + 𝑣(𝑋, 𝑡).

(2.16)

We assume 𝑠̇(𝑋, 𝑡) to be known, so at time 𝑡, given 𝑅(𝑡), we compute 𝑣(𝑋, 𝑡) and we write

𝑓shape = 𝑇𝑣, (2.17a)

together with
𝐹rigid = 𝑇𝑃. (2.17b)

We obtain the rigid velocity coefficients 𝑝̇(𝑡) using (2.3) as

𝑃𝑇 𝑀𝐹rigid𝑝̇ + 𝑃𝑇 𝑀𝑓shape = 0, (2.18)

where 𝑀 is the mass matrix taking care of the surface integrals of (2.3). We then solve (2.18) to get

𝑝̇ = −
[︀
𝑃𝑇 𝑀𝐹rigid

]︀−1
𝑃𝑇 𝑀𝑓shape. (2.19)

We remark that
[︀
𝑃𝑇 𝑀𝐹rigid

]︀
is a symmetric negative definite matrix called grand resistive matrix, so its

inversion in (2.19) is legit. We call this resolution strategy, where we compute the tractions associated to any
possible velocity and then combine them, the split approach.

Another possible resolution strategy is the so-called monolithic approach [19, 48], which is based on a single
resolution to obtain the overall traction 𝑓 together with the rigid velocity coefficients. We write the discretized
BIE together with the constraint (2.18) as[︃

[𝑉 ] −[𝐾]𝑃

𝑃𝑇 [𝑀 ] 0

]︃[︂
𝑓

𝑝̇

]︂
=

[︂
[𝐾]𝑣

0

]︂
, (2.20)

the solution of (2.20) is equivalent to the split approach. The differences lie in the fact that the monolithic
approach only needs one resolution while the split needs seven. Moreover even the spectral properties of the

1In particular we use the open source software BEMStokes which is freely available under LGPL license v.2.1 on github [20]
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matrices change if we impose the constraint during the BEM resolution. We now apply ROM to both full order
approaches to highlight pros and cons of the two resolution strategies.

Standard numerical integration of 𝑝̇(𝑡) provides the rigid displacements and rotations. The BEMStokes library
efficiently combines several algorithms and ideas in a flexible, modular, and extendible way. It exploits distributed
memory parallelism (MPI) using an automatic splitting of the workload at algebraic level using on the graph
partitioning tool METIS [33], with the high performance computing libraries Trilinos [29], and deal.II [4],
used to tackle distributed linear algebra. A similar combination has been successfully applied to achieve high
computational efficiency in fluid dynamics, as demonstrated in ASPECT [36] and 𝜋-BEM [21].

3. Application: micro-swimmers test cases

We consider two models inspired directly from microswimmers found in nature. At the micron scale, there
exists a wide variety of organisms [5,24,28], which swim using the motion of flagella. The resulting flow can be
well modelled using Stokes inertia-free equations [31,40,51]. The mathematical model swimmers presented in this
section are inspired one from a bacterium and one from the Eukaryotic swimmer Chlamydomonas Reinhardtii.
The key difference lies in the motion of the flagellum: while bacteria, sketched in Figure 2 can only rotate the
root of the flagellum, which is otherwise a passive structure, see [58, 60], Eukaryotic swimmers can exploit a
more complex flagellar architecture, called axoneme, to control the shape of the flagellum [49]. We sketch these
different configuration in Figure 3.

In particular, for the bacterium presented in Section 3.1 we consider two geometrical parameters, the head
radius and the number of flagella windings. The Eukaryotic swimmer of Section 3.2 undergoes a complex flagella
movement in a parametrized time trajectory, i.e., a time-dependent boundary control is considered.

3.1. Bacterium-like microswimmer

Following [15, 47, 48, 59] we prescribe a robotic micro-swimmer to be composed by a rigid spherical head of
radius 𝑅 and a helical tail of width 𝑏 which is rotating with respect to the head with constant velocity 𝜔. The
centerline of the tail is given by

𝑟 = (𝑥, 𝑦, 𝑧) = (𝑥, 𝑏𝐸(𝑥) cos(𝑘𝑥− 𝜔𝑡), 𝑏𝐸(𝑥) sin(𝑘𝑥− 𝜔𝑡)), (3.1)

with
𝐸(𝑥) = 1− 𝑒−(𝑘𝐸𝑥)2 . (3.2)

Figure 2 depicts the micro-swimmer under consideration. Following [15] we assume the pitch of the helix 𝜆 =
2𝜋/𝑘, 𝑘𝐸 = 𝑘, the flagellum has a total number of turns of 𝑁𝜆 and the width of the flagellum is 𝑏 = 𝜆/(2𝜋).
The flagellum thickness is given by

𝑑 = 0.02
𝜋

4
𝑅. (3.3)

We discretize both the geometry and the unknown functional of (2.14) using linear Lagrangian finite elements
for an overall number of 𝑁𝛿 = 2430 degrees of freedom. We remark that we are considering organisms swimming
in free space, in this case a rotational symmetry exists during the stroke (the rotation of the tail w.r.t the head),
therefore we simulate the complete stroke of the bacterium-like model solving a single time instant and then we
rotate the corresponding instantaneous results to get the results of a complete stroke.

We consider a two-dimensional parameter domain, with varying number of helix turns 𝑁𝜆 ∈ [0.4, 4.0] and
head radius 𝑅head ∈ [0.4, 4.0], so the parameter domain is 𝒫 = [0.4, 4.0]2. Following [15] we use (3.3) to let the
thickness of the flagellum increase proportionally together with the head radius. We aim to use ROM to find
the optimal parameter set 𝜇 ∈ 𝒫 maximizing a chosen performance measure. Following [47, 52] we consider
an energetic efficiency, called Lighthill efficiency. Following [15] we compute the axial velocity 𝑈axial as the
projection of the velocity along the angular velocity of the tail, we write

𝑈axial = 𝑞 · 𝜔 − Ω
|𝜔 − Ω|

, (3.4)
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Figure 2. Sketch representing a simple robotic-like bacterium composed by a spherical head
of radius 𝑅 and a helical tail of pitch 𝜆 and amplitude 𝑏.

Figure 3. Sketch of an Eukaryotic swimmer representing Chlamydomonas Reinhardtii. We
consider 1200 frames to represent the complete stroke: on the left frame 0, on the center frame
400 and on the right frame 800.

where 𝑞, Ω are the rigid velocities of the swimmer and 𝜔 is the relative angular velocity between head and tail.
Using (3.4) we write the Lighthill efficiency as

𝜂Lighthill =
effective power

input power
=

𝐷head𝑈axial

𝑇motor𝜔
=

𝐾head𝑈2
axial

𝑇motor𝜔
, (3.5)

where 𝐾head is the drag coefficient for the head considered alone in free space. We highlight that (3.5) is the
ratio between the power expanded to move the payload (the head) and the overall power expanded by the
swimmer.

3.2. Eukaryotic-like microswimmer

To prove the versatility of our proposed methodology we apply reduced order modeling to a different kind
of swimmer, namely we consider an Eukaryotic swimmer mimicking a Chlamydomonas Reinhardtii specimen.
This organism has been extensively studied in recent years [13,14,17,24] and it is composed by two flagella and
a spherical cellular body. The flagella are activated in different ways thanks to the axoneme structure [39] and
we focus on the symmetric beating of the two cilia producing a “breast stroke” like movement in the swimmer.
We have interpolated the experimental observation of [24] using a standard cubic spline interpolation to obtain
a continuous synthetic stroke. For further details on the numerical procedure the reader is referred to [18]. We
parametrize the flagellum centerlines as two NURBS beating symmetrically with respect to the body centerline.
We represent the periodic stroke using 1200 equi-distanced frames 𝜑, we plot the numerical mesh at three
different times during the stroke in Figure 3. We consider a spherical cell body having diameter of 5 𝜇m with
two symmetrical beating flagella with length 8 𝜇m and thickness 0.1 𝜇m, we use standard linear Lagrangian
finite elements for an overall total of 𝑁𝛿 = 1902 degrees of freedom. This problem is a time-dependent boundary
control problem and we remark that since the equations of motion (2.11) do not have any time dependence we
can consider the frame number as a geometric parameter 𝜇, indexing the current shape. We aim to reconstruct
the complete history of rigid body velocities, and consequently the fluid flow around the swimmer, depending
on the shape changes, in an efficient and reliable way, exploiting a ROM built from the knowledge of a set of
frames. This is also a typical problem from an experimental point of view since the usual frame rates only allows
for the reconstruction a discrete subset of shape changes during the stroke.
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4. Reduced order models for microswimmers

A reduced order model (ROM) is a low-dimensional surrogate model, which approximates the original high-
dimensional model over a parameter range of interest. In the following, parameter-dependent quantities are
indicated with the parameter vector 𝜇. The ROMs are created by means of proper orthogonal decomposition
(POD) and reduced basis (RB) methods, see [55] for a general overview and [38] for an overview with a
focus on fluid dynamics. The computational speed-up is achieved through an offline-online decomposition, i.e.,
a compute-intensive offline phase generates a ROM, while a fast online phase is used for many-query ROM
evaluations for optimization purposes in a repetitive computational environment. A pre-requisite for the offline-
online decomposition is an affine parameter dependency. Since the parameter-dependencies considered here are
not affine, an affine parameter dependency is approximated by means of empirical interpolation method (EIM)
[6, 8]. A projection space is determined to project the high-dimensional equations onto the ROM. During the
online phase a low-order approximate solution is computed, independent of the high-order discretization size.
Two algorithms are used to compute the projection space: the POD and a residual-based greedy sampling. Both
approaches are established in the area of ROM for fluid-structure interactions, see [9, 37].

4.1. Offline-Online decomposition

Conceptually, reduced order modeling uses an offline-online decomposition, in which a compute-intensive
offline phase determines an accurate reduced order model (ROM), while the online phase performs fast eval-
uations. This is beneficial in a many-query or real-time context, since the ROM can be evaluated at low
computational cost and accurately recovers the high-dimensional solution.

After applying the empirical interpolation method in the geometry parameter, the parameter dependency
is cast in an affine form. Therefore, there exists an affine expansion of the matrices 𝑉 (𝜇) and 𝐾(𝜇) in the
parameter 𝜇. To achieve fast reduced order solves, the offline-online decomposition computes the parameter-
independent projections offline, which are stored as small-sized matrices of the order 𝑁 ×𝑁 , with 𝑁 depending
on the velocity and traction projection spaces. When solving for a new parameter online, the affine form (4.1)
is evaluated and the reduced order solution (4.4) computed.

In contrast to the typical ROM approach, the dependence on the high-order discretization size is not fully
removed in the online phase. The mesh points are generated for the full order problem at each new parameter
but only the mesh points relevant for the EIM are taken into account for further computations. This allows to
have a maximum of geometric flexibility, needed for these problems, as affinely parametrizing the mesh points
would be only possible for special cases of movement. Moreover we do not apply any reduction in the resolution
of the momentum balances (2.18) since the computation of the full order method is already efficient, therefore
we focus the reduction strategy on the discretization of the BIE (2.14).

4.2. Empirical interpolation method

Since parametric variations in geometry affect the BEM system (2.13) in a nonlinear way, empirical interpola-
tion method (EIM) [6,8] computes an approximate affine parameter dependency. The matrix discrete empirical
interpolation [43] computes the decompositions

𝑄𝑉∑︁
𝑖=1

Θ𝑖
𝑉 (𝜇)𝑉𝑖 ≈ 𝑉 (𝜇),

𝑄𝐾∑︁
𝑖=1

Θ𝑖
𝐾(𝜇)𝐾𝑖 ≈ 𝐾(𝜇). (4.1)

with scalar parameter-dependent coefficient functions Θ𝑖
𝑉 (𝜇) and Θ𝑖

𝐾(𝜇) and parameter-independent matrices
𝑉𝑖 and 𝐾𝑖. In particular, each coefficient function corresponds to a single matrix entry of 𝑉 or 𝐾, respectively.
Since the assembly of only a few (here 𝑄𝑎 < 260) matrix entries can be implemented efficiently, an approximation
of 𝑉 and 𝐾 is readily available for each new 𝜇. As in the determination of the projection spaces 𝑈𝑢, 𝑈𝑓 , at
least 99.99% of the POD energy is used to approximate the system matrices from the collected matrices during
snapshot computation. The EIM is performed for each of the two BEM matrices 𝑉,𝐾 and the reduced mode
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are stored considering the 6 sets of rigid velocities and the shape velocity for an overall total of 14 reduced
matrices. The affine expansions on the other hand, are the same for each rigid mode and the shape velocity.

4.3. Proper orthogonal decomposition

The POD samples uniformly distributed Stokes solutions 𝑢, 𝑓 over the parameter domain. The solutions are
often called snapshots in reduced order modeling. A singular value decomposition of the snapshots is computed
and the most dominant modes are chosen as the projection space. The most dominant modes corresponding to
at least, 99.99% of the POD energy form the projection matrix 𝑈 ∈ R𝑁𝛿×𝑁 and implicitly define the low-order
space 𝑉𝑁 = span(𝑈) and set the reduced model size 𝑁 . It is possible to use less than 99.99% of the POD energy,
which results in smaller ROMs, but less accurate ROM projections. When the POD energy threshold is too low,
then the POD projection error will become dominant over other error sources like the EIM. Choosing 99.99%
of the POD energy is usually sufficient for at least 5 digits of accuracy in the vast majority of applications.

4.4. Greedy sampling

The greedy sampling builds the projection space iteratively from snapshot solutions. The parameter location
of the next snapshot is chosen as the maximum of a residual-based error indicator, see [55] for details. In
particular we implement a classic residual-based error indicator to choose the snapshots for the force samples
selection, while we use a projection-based error indicator for the selection of the velocity samples. The choice
of different samples for all the possible snapshots allows for a greater accuracy and faster ROM computation.
The decay of the maximum residual over the iterations determines a stopping criterion of the greedy sampling.
As in the POD case, a projection matrix 𝑈 ∈ R𝑁𝛿×𝑁 is obtained after orthonormalizing the snapshots.

For the monolithic system the residual 𝑟(𝜇) is based on equation (2.20) by plugging in the low order solution
𝑓𝑁 and 𝑝̇𝑁 as

𝑟(𝜇) =

⃦⃦⃦⃦
⃦
[︃

[𝑉 ] −[𝐾]𝑃

𝑃𝑇 [𝑀 ] 0

]︃[︂
𝑓𝑁

𝑝̇𝑁

]︂
−

[︂
[𝐾]𝑣

0

]︂⃦⃦⃦⃦
⃦, (4.2)

while for the split approach, the total residual 𝑟(𝜇) is formed as the sum of the residual of the 6 rigid velocity
modes and the shape velocity, which is expressed using equation (2.17) as

𝑟(𝜇) =
⃦⃦⃦

[𝑉 ]𝑓 shape
𝑁 − [𝐾]𝑣

⃦⃦⃦
+

6∑︁
𝑖=1

⃦⃦
[𝑉 ]𝐹 𝑖

𝑁 − [𝐾]𝑃 𝑖
⃦⃦
, (4.3)

where 𝑓 shape
𝑁 and 𝐹 𝑖

𝑁 are the low order tractions associated with the shape velocity 𝑣 and the ith rigid mode
𝑃 𝑖.

Both residual computations equations (4.2) and (4.3) can be expanded in the parameter 𝜇 provided by the
affine decompostion from the EIM and the residual computations can be sped-up further by precomputing the
parameter-independent parts online, see [30,55].

4.5. Projection for the split approach

In fact, two projection spaces are built, namely 𝑈𝑢 from sampling 𝑢 in (2.14) and 𝑈𝑓 from sampling 𝑓 in
(2.17a). The large-scale system (2.14) is then projected onto the reduced order space:

𝑈𝑇
𝑓 [𝐾](𝜇)𝑈𝑢𝑈𝑇

𝑢 𝑢(𝜇) = 𝑈𝑇
𝑓 [𝑉 ](𝜇)𝑈𝑓𝑈𝑇

𝑓 𝑓(𝜇). (4.4)

The low order solutions 𝑢𝑁 (𝜇), 𝑓𝑁 (𝜇) approximates the large-scale solution as 𝑢(𝜇) ≈ 𝑈𝑢𝑢𝑁 (𝜇), 𝑓(𝜇) ≈
𝑈𝑓𝑓𝑁 (𝜇). In particular, the dimensions of the projection spaces 𝑈𝑢 and 𝑈𝑓 can be chosen independently from
each other for every momentum and rigid velocity leading to the creation of 7 different reduced order systems
as the one depicted in (4.4). Choosing them independently has two major advantages: in case of the greedy
sampling, less snapshot solutions need to be computed, and the evaluation of the ROM becomes faster since
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the ROM dimensions are smaller. Once we solve the 7 different ROM systems we can use (2.3) to obtain the six
rigid velocities, in particular we use the full order mass matrix 𝑀(𝜇) together with the rigid modes to obtain

𝑃𝑇 (𝜇)[𝑀(𝜇)]
[︀
𝑈1

𝑓 𝑓1
𝑁 (𝜇)| . . . |𝑈6

𝑓 𝑓6
𝑁 (𝜇)

]︀
𝑝(𝜇) = −𝑃𝑇 (𝜇)[𝑀(𝜇)]𝑈𝑠

𝑓 𝑓𝑠
𝑁 (𝜇) (4.5)

where 𝑃 (𝜇), 𝑀(𝜇) represent the full order rigid modes and mass matrix respectively. The assembling time of
the full order mass matrix is very fast given its sparsity with respect to the one required by the two BEM
operators, so we choose to use the full order operator to have the maximum possible accuracy.

4.6. Projection for the monolithic approach

The full order model presented in Section 2.3 is based on seven different application of the Dirichlet to
Neumann map 𝑇 to retrieve the stress fields associated to shape and rigid velocities and then combine them
to fulfill (2.3) and retrieve the actual rigid velocity coefficients. Alternatively, we use the “so-called” mono-
lithic approach [19, 48] that solves the Stokes system imposing the constraints specified by the momentum
balances (2.3) at the same time. We write the monolithic system as[︃

[𝑉 ](𝜇) −[𝐾](𝜇)𝑃 (𝜇)

𝑃𝑇 (𝜇)[𝑀 ](𝜇) 0

]︃[︂
𝑓(𝜇)
𝑝̇(𝜇)

]︂
=

[︂
[𝐾](𝜇)𝑣(𝜇)

0

]︂
, (4.6)

where [𝑉 ](𝜇), [𝐾](𝜇) are the Stokes operators defined in Section 2.3 and [𝑀 ](𝜇) is the Mass matrix that takes
care of the surface integration described in (2.3), 𝑓(𝜇) represents the tractions on the boundary of the swimmer,
𝑝̇(𝜇) are the rigid velocity coefficients while 𝑣(𝜇) is the shape velocity. We remark that the system (4.6) consists
of 𝑁𝛿 + 6 equation in 𝑁𝛿 + 6 unknowns. We repeat the procedure described in Section4.1 and we introduce the
projection spaces 𝑈𝑓 , 𝑈𝑢 obtaining[︃

𝑈𝑇
𝑓 [𝑉 ](𝜇)𝑈𝑓 −𝑈𝑇

𝑓 [𝐾](𝜇)𝑈𝑢𝑃𝑁 (𝜇)

𝑃𝑇 (𝜇)[𝑀 ](𝜇)𝑈𝑓 0

]︃[︃
𝑓(𝜇)
𝑝̇(𝜇)

]︃
=

[︃
𝑈𝑇

𝑓 [𝐾](𝜇)𝑈𝑢𝑣𝑁 ((𝜇))
0

]︃
, (4.7)

where 𝑓𝑁 (𝜇) = 𝑈𝑇
𝑓 𝑓(𝜇) is the reduced order representation of the tractions, 𝑃𝑁 (𝜇) = 𝑈𝑇

𝑢 𝑃 (𝜇) is the projection
of the rigid velocities and 𝑣𝑁 (𝜇) = 𝑈𝑇

𝑢 𝑣(𝜇) is the projection of the shape velocity. The system (4.7) consists
of 𝑁 + 6 equation in 𝑁 + 6 unknowns, we remark that [𝑉𝑁 ](𝜇) = 𝑈𝑇

𝑓 [𝑉 ](𝜇)𝑈𝑓 and [𝐾𝑁 ](𝜇) = 𝑈𝑇
𝑓 [𝐾](𝜇)𝑈𝑢

are computed using the empirical interpolation method described in Section 4.2. The spaces 𝑈𝑓 and 𝑈𝑢 are
obtained using a POD of samplings for traction and velocity field, the choice of the samplings has a key-role
in determining the stability of the reduced monolithic system. We do not address this issue in detail in the
present work, but, judging from our numerical experiments, we believe the best choice to be samplings of all
the possible tractions and velocities the system experiences, namely 𝑈𝑓 is obtained from the POD of the shape
traction 𝑓shape(𝜇) and the rigid tractions 𝐹rigid(𝜇) while 𝑈𝑢 comes from the sampling of both 𝑣(𝜇) and 𝑃 (𝜇).

4.7. Expected ROM accuracy

Since the modeling and meshing is performed with the software Blender v2.79 [7], the input data for numerical
simulation and ROM simulations are limited to single precision. We believe the choice of a wide-spread well
documented open-source software to be of capital importance in order to guarantee flexibility to the micro-
motility solver. It is expected that there is in each step of (i) empirical interpolation, (ii) projection and (iii)
solving in ROM space, a slight degradation in the accuracy. We thus expect an accuracy between ROM and
FOM of about four digits and an accuracy in an output quantity of about three to four digits. Typically, the
input data are double precision and a higher accuracy between ROM and FOM can be expected.
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4.8. Optimization using ROM, the coarse-fine approach

The task is to optimize the swimming performance 𝜂Lighthill using a reduced order model built considering
the head radius (𝑅head and number of windings 𝑁𝜆) over a two-dimensional parameter domain 𝒫. To obtain an
optimal speed-up, we propose a two-step method. In the first step, a coarse sampling of the parameter domain
is used to obtain the approximate location of the maximum swimming efficiency 𝜂Lighthill. In the second step,
a focused parameter domain 𝒫focus ⊂ 𝒫 is determined, where a fine sampling of the parameter domain is used
to obtain a highly accurate ROM solution. This could induce a further speed up with respect to the full order
model as the focused parameter domain may require less snapshot basis functions for an accurate ROM. A
reference solution is computed for the real maximum of 𝜂Lighthill using the full order BEM.

4.9. Stroke reconstruction

To reconstruct the motion of the swimmer, we need to solve the complete time-dependent stroke. Since the
equation of motion are time-independent in the low Reynolds number regime, the time is simply indexing the
geometrical variations 𝜇 for the shape changes. Time thus behaves as any physical parameter for the model
reduction purpose, which is in contrast to PDEs involving a time-derivative, where time is treated differently
than other parameters. We assume complete knowledge of the geometry of the swimmer at all time instances
and the solution of training snapshots at the sample points.

5. Numerical results

We present the numerical results obtained from coupling the boundary element method and reduced order
modeling. Firstly, we present the convergence of the ROM to the full order solution with increasing dimension
of the reduced model: the main focus is on the POD approximation [30], which is tested on both applications in
Section 5.1. In Section 5.2 we compare the POD and Greedy approach on the Eukaryotic-like swimmer, where
the POD approximation turns out to be less accurate. Then we present two applications: the shape optimization
of the bacterium-like swimmer, see Section 5.3, and the stroke reconstructions for the Eukaryotic-like swimmer,
see Section 5.4.

5.1. POD approximations of BEM solution

In Sections 4.5 and 4.6 we introduced the split approach and the monolithic approach for projection-based
ROMs for micro-swimmers. We compare the two approaches both for the bacterium-like and Eukaryotic-like
swimmer, we consider both convergence to the full order solutions and online timings required to reach a
prescribed accuracy. For this analysis we consider the maximum accuracy for the EIM and we let the number
of modes gradually increase to see the convergence of the ROMs. The split approach allows for 7 different
projection spaces for the different tractions, we report only the analysis for the traction associated to the shape
force 𝑓shape since it is the most demanding one in terms of accuracy and number of modes.

5.1.1. Robotic bacterium

We compare split and monolithic POD approaches on the robotic-like bacterium presented in Section 3.1.
Firstly we compare the convergence of the ROMs to the full order solution, in particular we analyze the errors
relative to the traction vector 𝑓 in the two different models. Figure 4 shows the convergence rate for the split
approach on the left and for the monolithic approach on the right, red, green and blue depicts minimum,
mean and maximum error computed over 10 randomly selected non training snapshots. We remark that the
monolithic approach is built considering all the possible 𝑁rigid + 1 tractions so this approach has an overall
number of modes that is 𝑁rigid + 1 times bigger than the split approach that requires 𝑁rigid + 1 expansions
instead. The convergence rates are very similar between the two different models, and they both reach a similar
maximum accuracy between 10−5 and 10−3. If we increase further the number of modes a clear plateau emerges
in the convergence and it is mainly due to the errors introduced by the EIM. We tested the convergence of the
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Figure 4. ROM convergence analysis for the robotic-like swimmer computed for 10 random
non training snapshots using POD. On the left the errors of the shape traction considering the
split approach, on the right the final traction errors using the monolithic approach. Red, green
and blue represent the minimum, mean and maximum error respectively.

Table 1. Summary of the ROM performance indicators for the POD approximations on the
bacterium-like test case. Shown are the smallest basis sizes, where a mean approximation error
below 5% and 0.5% is attained. The online timing is referred to the approximation needed to
have 0.5% accuracy.

Split mean Monol mean Split max Monol max

Err. less 5% 21 77 26 112
Err. less 0.5% 41 182 46 182
Online timing 1.322 1.446 1.371 1.446

ROM without considering the matrix approximations and we managed to achieve between four and five digits
of accuracy without such an evident plateau.

In Table 1 we compare the performances of the two POD models, we report the number of modes required
to reach a prescribed accuracy of 5% and 0.5% both for the mean and maximum error. The split approach
requires less number of modes than the monolithic one, however we remind that the latter approach requires
a single resolution to get the final solution while the split approach solves 7 different linear systems. From this
analysis we see that the split approach has a slight advantage with respect to the monolithic one. We believe
that this is due to a better memory handling of the split approach, in fact a deeper analysis reveals that the
monolithic approach requires more time to compute the BEM entries to be used in the EIM, see Section 4.2.
The two approaches require the same entries to be computed but the reduced number of modes of the split
approach makes available more memory to the BEM computation and this results in this slight speed up. Apart
this minor difference we believe the two approaches to be equivalent.

5.1.2. Eukaryotic swimmer

We compare the convergence to the full order model and the performances of the two POD approaches on
the Eukaryotic-like swimmer presented in Section 3.2. Figure 5 compares the convergence of the split approach
(on the left) and the monolithic approach (on the right). Red, green and red represent minimum, mean and
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Figure 5. ROM convergence analysis for the Eukaryotic-like swimmer computed for 10 random
non training snapshots using POD. On the left the errors of the shape traction considering the
split approach, on the right the final traction errors using the monolithic approach. Red, green
and blue represent the minimum, mean and maximum error respectively.

Table 2. Summary of the ROM performance indicators for the POD approximations for the
Eukaryotic-like swimmers. Shown are the smallest basis sizes, where a mean approximation error
below 5% and 0.7% is attained. The online timing is referred to the approximation needed to
have 0.7% accuracy.

Split mean Monol mean Split max Monol max

Err. less 5% 16 133 28 175
Err. less 0.7% 34 280 100 553
Online timing 0.6637 0.6631 0.6792 1.107

maximum errors computed on 10 randomly chosen non training snapshots. We see that the two ROMs present
the same convergence to the full order solution, the error in both cases converges between 10−3 and 10−2. We
don’t see any clear plateau in this test-case and this is due to the increase complexity in the geometry for the
Eukaryotic like movement we consider. For this reason the EIM plateau of Section 5.1.1 is not reached.

Table 2 compares the performances of the two approaches considering the number of modes required to reach
5% and 0.7% accuracy. As expected, the split approach requires less modes to reach the target accuracy but
we note again that the major part of the online time is required to reconstruct the matrices using EIM, and
specifically it is needed to compute the BEM entries. If the number of modes remains low the timings are the
same while for the last test case when we require 553 modes we notice a difference in the timings. We believe
that this phenomenon confirms our speculation about the worse memory handling of the code when the number
of modes increases leaving less memory available to the BEM computations. Apart from this non-linear minor
effect we see that the two methods are almost equivalent both in terms of convergence and performances.

5.2. Greedy and POD: comparison of approximation accuracy

In Section 5.1 we saw that the two POD approaches are mostly equivalent on both the test-cases presented in
Section 3. However we noticed that the geometry shape change of the Eukaryotic-like swimmer, represented in
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Figure 6. Comparison of ROM convergence for the Eukaryotic-like swimmer computed for 10
random non training snapshots using POD or Greedy approach. On the left the POD errors of
the shape traction, on the right the shape traction errors using Greedy. Red, green and blue
represent the minimum, mean and maximum error respectively.

Figure 3, is more complicated than the rotation of the bacterium-like one. This induces a worse convergence to
the full order solution. For this reason we compare the split POD approach to the Greedy approach introduced
in Section 4.4 on this test-case. Figure 6 compares the convergence of the POD approach (on the left) and the
Greedy approach (on the right), red, green and blue represent minimum, mean and maximum errors computed
on 10 randomly chosen non training snapshots. We see that the two approaches have a very similar convergence
to the exact solution, we notice that the POD approach is smoother but they both reach the same final
accuracy. Table 3 compares the performances of the two approaches and we see that the POD and the Greedy
are equivalent even from this point of view. To better understand the Greedy selection procedure we represent
in Figure 7 the first indices selected to approximate the shape velocity 𝑣 (on the left) and the corresponding
traction force 𝑓shape (on the right). The indices cluster around two different points: the first point is located
at 𝜑 ∼ 200 which corresponds to the transition between backward and forward motion, the second one is at
𝜑 ∼ 900 which corresponds to the two flagella moving very close to the body. Since inertia is negligible the
transition between backward and forward motion is immediate as soon as the flagellar beat allows it and the
Greedy procedure selects frame near the transition. When the flagella are close to the body there is a lot of
interaction between different body parts and the Greedy procedure selects frames in this region to have a better
approximation. To better understand this scenario we compare the magnitude of the traction when flagella
are very near the body in Figure 8. Even if the differences are moderate the solution with one quarter of the
possible Greedy modes depicted on the left is not able to recover the traction pattern of the reference solution
on the right. Consequently, the Greedy algorithm tries to increment the accuracy by selecting more modes for
this situation, the plot at the centre shows the most accurate possible solution which has a slight increase in
the traction representation.

From our analysis on the Eukaryotic-like swimmer we conclude that Greedy and POD have the same conver-
gence and timings. The results of Sections 5.1.1 and 5.1.2 show the same behavior for all the POD on both appli-
cation so we expect Greedy and POD to behave similarly with the monolithic approach and the bacterium-like
application. This grants flexibility for further use cases as either POD/Greedy and split/monolithic approaches
can achieve speed-ups of several magnitudes.



1166 N. GIULIANI ET AL.

Table 3. Summary of the ROM performance indicators for the POD and Greedy approxima-
tion on the Eukaryotic-like test-case. Shown are the smallest basis sizes, where a mean approxi-
mation error below 5% and 0.7% is attained. The online timing is referred to the approximation
needed to have 0.7% accuracy.

POD mean Greedy mean POD max Greedy max

Err. less 5% 16 22 28 25
Err. less 0.7% 34 40 100 109
Online timing 0.6637 0.6547 0.6792 0.6814

Figure 7. Greedy snapshot selection for shape velocity (on the left) and shape traction (on
the right) approximations. Red, Greed and blue shows the first 10, 30, 50 selected modes.

Figure 8. Comparison of the traction error magnitude for the Eukaryotic swimmer when the
flagella are very near the cell body. On the left the reconstructed solution using 25% of the
available modes, on the right the most accurate reduced order solution. The scale is the same
on the two plots and it is set so that 1 represent the maximum error of the two approximations.



REDUCED ORDER METHOD FOR MICRO-MOTILITY 1167

Figure 9. Lighthill efficiency (3.5) analysis 𝑁𝜆 = 0.4− 4.0, 𝑅head = 0.4− 4.0. AA on the left,
ROM on the right.

This procedure is not tied to the BEM discretization techniue. In fact, this ROM approach has proven to work
with finite element methods or finite volume methods in many application areas, see [30,55] and the references
therein.

5.3. Two step shape optimization of robotic bacterium

In this Section we study the actual shape optimization of the robotic micro-swimmer introduced in Section 3.1.
As performance measure we consider the energetic efficiency 𝜂Lighthill introduced in (3.5). We find the optimal
value of the parameter 𝜇 = (𝑁𝜆, 𝑅head) in the parameter domain 𝒫 = [0.4, 4.0]2. We only use one of the
possible ROMs we presented since they proved to have very similar accuracy and performances. A common
way to study and optimize the performance of the considered swimmer is to study the hydrodynamics of the
separate component (head and flagellum) to infer the swimming behavior of the complete swimmer [51,52]. For
a complete analysis of this “additive approach” (AA) the reader is referred to [19].

In Figure 9 we compare 𝜂Lighthill analysis using AA (on the left) and ROM (on the right) letting the radius
of the head 𝑅head to vary with a step of 0.2 and the number of turns for the tail with a step 0.02. AA shows
the optimum (𝜂Lighthill = 0.12138) for 𝑁𝜆 = 0.4, 𝑅 = 4.0. Considering the analysis of [19] we believe this
optimal value to be erroneous since a big head radius creates a considerable wake effect, which is completely
neglected by AA, worsening the performances of the real complete swimmer. ROM shows instead an optimum
(𝜂Lighthill = 0.008406) for 𝑁𝜆 = 2.36, 𝑅 = 0.8 and we see that also AA shows a local maximum close to 𝑁𝜆 = 2.4
and 𝑅 = 0.7. We compute the real maximum for 𝜂Lighthill using the full order BEM on the same parameter
space and we obtain the optimum at 𝑁𝜆 = 2.38, 𝑅 = 0.8 with a relative error for the efficiency of 1.41% for the
ROM.

To increase the accuracy of our predictions we apply a second optimization step using a ROM build considering
a parameter grid centered on the maximum value region 𝒫focus ⊂ 𝒫, namely we consider a new set of training
𝜇 = (𝑁𝜆, 𝑅head) in the parameter domain 𝒫focus = [0.6, 1.1]× [2.0, 2.6]. Figure 10 shows the results on the fine
grid both for AA (on the left) and ROM (on the right). AA predicts an optimum (𝜂Lighthill = 0.00684121) for
𝑁𝜆 = 2.4333, 𝑅head = 0.6833, ROM shows the optimum (𝜂Lighthill = 0.0085464) for 𝑁𝜆 = 2.42, 𝑅head = 0.7667,
while the full order BEM displays the optimum 𝜂Lighthill = 0.00854549) for 𝑁𝜆 = 2.4067, 𝑅head = 0.7667. The
simplified AA is not able to recover a good result, especially for what concerns the head radius, while a proper
ROM can be effectively used to compute a configuration which is very close to the optimal one for a robotic
micro-swimmer. Table 4 sums up the various predictions for the maximum 𝜂Lighthill for all the different scenarios
and we clearly see that the ROM is able to recover very good solutions for the optimal shape.
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Figure 10. Lighthill efficiency (3.5) analysis 𝑁𝜆 = 2.0 − 2.6, 𝑅head = 0.6 − 1.1. AA on the
left, ROM on the right.

Table 4. 𝜂Lighthill predictions and errors using both additive approach and ROM.

Method 𝑅head 𝑁turns 𝜂Lighthill Error

BEM coarse 0.8 2.38 0.008526
AA coarse 4.0 0.4 0.12138 1323%
ROM coarse 0.8 2.36 0.008406 1.41%
BEM fine 0.7667 2.4067 0.00854549
AA fine 0.6833 2.4333 0.00684121 19.94%
ROM fine 0.7667 2.42 0.0085464 0.0104%

5.4. Stroke reconstruction of a micro-swimmer

Another possible application of the ROM procedures described in this work is the reconstruction of the rigid
body velocities of the swimmer during the complete stroke starting from some precomputed snapshots. We
apply this procedure to the Eukaryotic-like swimmer presented in Section 3.2. We have already shown that all
the presented ROMs leads to very similar results, so in this Section we only use one of them, in particular we
use the POD split approach.

On the left of Figure 11 we use ROM to reconstruct the rigid velocities during the complete stroke starting
from the knowledge of the system at the training snapshots. The artificial stroke that we want to reconstruct
consists of 1200 different frames, we consider an increasing number of equi-spaced training snapshots (𝑁training =
6, 12, 40, 120) and we see that the solution converges to the full order solution increasing the complexity of the
ROM. ROM has proved to be an effective tool to reconstruct the complete stroke starting from a limited number
of training snapshots. The right plot of Figure 11 clearly shows the convergence of the stroke to the proper one
as we increase the number of training snapshots.

6. Conclusions

This work shows that ROM enhanced BEM simulations of microswimmers can achieve accurate results while
significantly reducing the runtime. The many-query setting, which is typical to ROM, also holds when resolving
models depending only on time as a single parameter. This is because inertia, i.e., a time-derivative, is not
present and the fluid “reaction” is quasi instantaneous. This widens the applicability of ROM methods to
microswimmers significantly, as each use-case can be treated separately in a ROM or several use-cases can be
further parametrized so that ROM can be applied to a whole family of microswimmers. Another feature of the
presented approach is the geometric flexibility, which applies EIM to online-generated mesh data. Using the
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Figure 11. Stroke reconstruction of an Eukaryotic-like swimmer. On the left we plot the veloc-
ity along the longitudinal axis. On the right we report the error of the ROM approximations
with respect to the full order model. Yellow, black, green and blue lines define ROM approx-
imations built considering an increasing number of training snapshots (6, 12, 40, 120), the red
line represents the reference solution obtained with the full order BEM.

high-order mesh generation in the online phase allows significantly more geometric flexibility than the restriction
to affine geometry transformations, and it allows to capture also large and non-linear deformations.

Both tested formalisms of the BEM systems (i.e., split and monolithic approach) and standard reduced basis
ROM algorithms (i.e., POD and greedy) are capable to mitigate the computational costs with an acceptable
approximation accuracy. Each approach reaches engineering standards of on average three digits of accuracy.
The methodology is applied on two different test-cases, and the maximum reduced order solution error is below
1% in both models, the robotic and eukaryotic.

To be able to further increase the accuracy of the presented methodology a meshing software which provides
more than single digit accuracy is necessary. With the presented approach of EIM, projection, solving the
reduced order system and approximating the output quantity, on average 3 to 4 digits of accuracy on the
output quantity can be achieved.
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[64] D. Walker, M. Kübler, K.I. Morozov, P. Fischer and A.M. Leshansky, Optimal length of low Reynolds number nanopropellers.
Nano Lett. 15 (2015) 4412–4416.

This journal is currently published in open access under a Subscribe-to-Open model (S2O). S2O is a transformative
model that aims to move subscription journals to open access. Open access is the free, immediate, online availability of
research articles combined with the rights to use these articles fully in the digital environment. We are thankful to our
subscribers and sponsors for making it possible to publish this journal in open access, free of charge for authors.

Please help to maintain this journal in open access!

Check that your library subscribes to the journal, or make a personal donation to the S2O programme, by contacting
subscribers@edpsciences.org

More information, including a list of sponsors and a financial transparency report, available at: https://www.
edpsciences.org/en/maths-s2o-programme

mailto:subscribers@edpsciences.org
https://www.edpsciences.org/en/maths-s2o-programme
https://www.edpsciences.org/en/maths-s2o-programme

	Introduction and motivation
	Problem description
	Swimming model
	Fluid model
	Numerical resolution of the swimming problem

	Application: micro-swimmers test cases
	Bacterium-like microswimmer
	Eukaryotic-like microswimmer

	Reduced order models for microswimmers
	Offline-Online decomposition
	Empirical interpolation method
	Proper orthogonal decomposition
	Greedy sampling
	Projection for the split approach
	Projection for the monolithic approach
	Expected ROM accuracy
	Optimization using ROM, the coarse-fine approach
	Stroke reconstruction

	Numerical results
	POD approximations of BEM solution
	Robotic bacterium
	Eukaryotic swimmer

	Greedy and POD: comparison of approximation accuracy
	Two step shape optimization of robotic bacterium
	Stroke reconstruction of a micro-swimmer

	Conclusions
	References

