Exact solution for Riemann problems of the shear shallow water model
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 4, pp. 1115-1150

The shear shallow water model is a higher order model for shallow flows which includes some shear effects that are neglected in the classical shallow models. The model is a non-conservative hyperbolic system which can admit shocks, rarefactions, shear and contact waves. The notion of weak solution is based on a path but the choice of the correct path is not known for this problem. In this paper, we construct exact solution for the Riemann problem assuming a linear path in the space of conserved variables, which is also used in approximate Riemann solvers. We compare the exact solutions with those obtained from a path conservative finite volume scheme on some representative test cases.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1051/m2an/2022032
Classification : 35L03, 65M08
Keywords: Shear shallow water model, non-conservative system, path conservative scheme, approximate Riemann solver, finite volume method
@article{M2AN_2022__56_4_1115_0,
     author = {Nkonga, Boniface and Chandrashekar, Praveen},
     title = {Exact solution for {Riemann} problems of the shear shallow water model},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1115--1150},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {4},
     doi = {10.1051/m2an/2022032},
     mrnumber = {4444532},
     zbl = {1536.35213},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2022032/}
}
TY  - JOUR
AU  - Nkonga, Boniface
AU  - Chandrashekar, Praveen
TI  - Exact solution for Riemann problems of the shear shallow water model
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2022
SP  - 1115
EP  - 1150
VL  - 56
IS  - 4
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2022032/
DO  - 10.1051/m2an/2022032
LA  - en
ID  - M2AN_2022__56_4_1115_0
ER  - 
%0 Journal Article
%A Nkonga, Boniface
%A Chandrashekar, Praveen
%T Exact solution for Riemann problems of the shear shallow water model
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2022
%P 1115-1150
%V 56
%N 4
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2022032/
%R 10.1051/m2an/2022032
%G en
%F M2AN_2022__56_4_1115_0
Nkonga, Boniface; Chandrashekar, Praveen. Exact solution for Riemann problems of the shear shallow water model. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 4, pp. 1115-1150. doi: 10.1051/m2an/2022032

[1] R. Abgrall and S. Karni, A comment on the computation of non-conservative products. J. Comput. Phys. 229 (2010) 2759–2763. | MR | Zbl

[2] C. Berthon, F. Coquel, J. Hérard and M. Uhlmann, An approximate solution of the Riemann problem for a realisable second-moment turbulent closure. Shock Waves 11 (2002) 245–269. | Zbl

[3] A. Bhole, B. Nkonga, S. Gavrilyuk and K. Ivanova, Fluctuation splitting Riemann solver for a non-conservative modeling of shear shallow water flow. J. Comput. Phys. 392 (2019) 205–226. | MR | Zbl

[4] S. Busto, M. Dumbser, S. Gavrilyuk and K. Ivanova, On thermodynamically compatible finite volume methods and path-conservative ADER discontinuous galerkin schemes for turbulent shallow water flows. J. Sci. Comput. 88 (2021) 28. | MR | Zbl

[5] M. J. Castro, P. G. Lefloch, M. L. Muñoz-Ruiz and C. Parés, Why many theories of shock waves are necessary: convergence error in formally path-consistent schemes. J. Comput. Phys. 227 (2008) 8107–8129. | MR | Zbl

[6] M. J. Castro, C. Parés, G. Puppo and G. Russo, Central schemes for nonconservative hyperbolic systems. SIAM J. Sci. Comput. 34 (2012) B523–B558. | MR | Zbl

[7] M. J. Castro Díaz, A. Kurganov and T. Morales De Luna, Path-conservative central-upwind schemes for nonconservative hyperbolic systems. ESAIM: M2AN 53 (2019) 959–985. | MR | Zbl | Numdam

[8] J. Cauret, J. Colombeau and A. Le Roux, Discontinuous generalized solutions of nonlinear nonconservative hyperbolic equations. J. Math. Anal. App. 139 (1989) 552–573. | MR | Zbl

[9] P. Chandrashekar, B. Nkonga, A. K. Meena and A. Bhole, A path conservative finite volume method for a shear shallow water model. J. Comput. Phys. 413 (2020) 109457. | MR | Zbl

[10] J. F. Colombeau and A. Y. Le Roux, Multiplications of distributions in elasticity and hydrodynamics. J. Math. Phys. 29 (1988) 315–319. | MR | Zbl

[11] G. Dal Maso, P. G. Lefloch and F. Murat, Definition and weak stability of nonconservative products. J. Math. Pures Appl. 74 (1995) 483–548. | MR | Zbl

[12] M. Dumbser and D. S. Balsara, A new efficient formulation of the HLLEM Riemann solver for general conservative and non-conservative hyperbolic systems. J. Comput. Phys. 304 (2016) 275–319. | MR | Zbl

[13] M. Dumbser, M. Castro, C. Parés and E. F. Toro, ADER schemes on unstructured meshes for nonconservative hyperbolic systems: Applications to geophysical flows. Comput. Fluids 38 (2009) 1731–1748. | MR | Zbl

[14] B. Einfeldt, On Godunov-type methods for gas dynamics. SIAM J. Numer. Anal. 25 (1988) 294–318. | MR | Zbl

[15] S. Gavrilyuk, K. Ivanova and N. Favrie, Multi-dimensional shear shallow water flows: problems and solutions. J. Comput. Phys. 366 (2018) 252–280. | MR | Zbl

[16] S. Gavrilyuk, B. Nkonga, K.-M. Shyue and L. Truskinovsky, Stationary shock-like transition fronts in dispersive systems. Nonlinearity 33 (2020) 5477–5509. | MR | Zbl

[17] E. Godlewski and P.-A. Raviart, Numerical Approximation of Hyperbolic Systems of Conservation Laws. Vol. 118 of Applied Mathematical Sciences. Springer, New York, New York, NY (1996). | MR | Zbl

[18] L. Gosse, A well-balanced scheme using non-conservative products designed for hyperbolic systems of conservation laws with source terms. Math. Models Methods Appl. Sci. 11 (2001) 339–365. | MR | Zbl

[19] K. Joseph and P. Sachdev, Exact solutions for some non-conservative hyperbolic systems. Int. J. Non-Linear Mech. 38 (2003) 1377–1386. | MR | Zbl

[20] P. Lax and B. Wendroff, Systems of conservation laws. Commun. Pure Appl. Math. 13 (1960) 217–237. | MR | Zbl

[21] C. D. Levermore, Moment closure hierarchies for kinetic theories. J. Stat. Phys. 83 (1996) 1021–1065. | MR | Zbl

[22] C. D. Levermore and W. J. Morokoff, The gaussian moment closure for gas dynamics. SIAM J. Appl. Math. 59 (1998) 72–96. | MR | Zbl

[23] C. Parés, Numerical methods for nonconservative hyperbolic systems: a theoretical framework. SIAM J. Numer. Anal. 44 (2006) 300–321. | MR | Zbl

[24] C. Parés and E. Pimentel, The Riemann problem for the shallow water equations with discontinuous topography: the wet – dry case. J. Comput. Phys. 378 (2019) 344–365. | MR | Zbl

[25] K. A. Schneider, J. M. Gallardo, D. S. Balsara, B. Nkonga and C. Parés, Multidimensional approximate Riemann solvers for hyperbolic nonconservative systems. Applications to shallow water systems. J. Comput. Phys. 444 (2021) 110547. | MR | Zbl

[26] V. M. Teshukov, Gas-dynamic analogy for vortex free-boundary flows. J. Appl. Mech. Tech. Phys. 48 (2007) 303–309. | MR | Zbl

[27] E. F. Toro, Shock-Capturing Methods for Free-Surface Shallow Flows. Wiley-Blackwell (2001). | Zbl

[28] I. Toumi, A weak formulation of roe’s approximate riemann solver. J. Comput. Phys. 102 (1992) 360–373. | MR | Zbl

[29] A. I. Volpert, The spaces BV and quasilinear equations. Math. USSR-Sbornik 2 (1967) 225–267. | MR | Zbl

Cité par Sources :