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EXACT SOLUTION FOR RIEMANN PROBLEMS OF THE SHEAR SHALLOW
WATER MODEL

Boniface Nkonga1 and Praveen Chandrashekar2,*

Abstract. The shear shallow water model is a higher order model for shallow flows which includes
some shear effects that are neglected in the classical shallow models. The model is a non-conservative
hyperbolic system which can admit shocks, rarefactions, shear and contact waves. The notion of weak
solution is based on a path but the choice of the correct path is not known for this problem. In this
paper, we construct exact solution for the Riemann problem assuming a linear path in the space of
conserved variables, which is also used in approximate Riemann solvers. We compare the exact solutions
with those obtained from a path conservative finite volume scheme on some representative test cases.
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1. Introduction

In the present paper we investigate the solutions of Riemann problems for a non-linear, non-conservative
hyperbolic system of equations arising in the modeling of shear shallow water (SSW) flows. In the framework
of non-conservative hyperbolic systems, the notion of weak solutions and associated jump conditions need
to be revisited. Indeed, in this context, we have to deal with non-classical multiplication of distributions that
prevent unique derivation of jump conditions. The path-conservative approach is now a useful tool for numerical
approximation of non-conservative hyperbolic systems. The main principle behind this approach is to define
the weak solution by assuming some path between two states and derive generalized jump conditions. The
paper Volpert [29] is the first to formulate a meaning to non-conservative products using Borel measures. In Dal
Maso et al. [11], the notion of path is introduced and generalizes the results of Volpert [29]. The first numerical
applications resulting from these theoretical analyses are realized in Toumi [28] in the context of Roe scheme for
real gases and two-phase flow model, and was generalized under the designation of “path conservative methods”
in Parés [23]. Since then, the “path conservative methods” have been widely applied for the numerical solution of
non-conservative hyperbolic problems [6,7,12,13,25]. Nevertheless, contrary to the Lax–Wendroff theorem [20]
for conservative hyperbolic systems, there is no adequate mathematical theory that can ensure the numerical
convergence for any non-conservative system. In the presence of discontinuities, numerical approximations may
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not converge to the specified entropic weak solution. The equivalent equation of a path conservative scheme
based on Lax–Friedrich scheme is examined in Castro et al. [5]. Quoting from Castro et al. [5], the difficulty
comes from the fact that, unlike the conservative case, the vanishing viscosity limits depend on the regularization
of the problem. Even if, for simplicity, we have only calculated the modified equations corresponding to the Lax–
Friedrichs scheme, the same difficulty would be present for any other scheme involving a numerical viscous term:
the numerical solutions approximate the vanishing viscosity limit of a modified equation whose regularization
terms depend both on the chosen family of paths and on the specific form of its viscous terms. Therefore, there
is always a doubt about the ability of numerical strategies to produce relevant numerical solutions that can
converge, by mesh refinement, towards a single limit solution. In Abgrall and Karni [1], the following question
was pointed out: once a path is specified and a consistent path-conservative scheme designed, does the numerical
solution converge to the assumed path. They also point out that in some contexts there is clearly a failure of
convergence upon grid refinement. In order to clarify the questions that arise in numerical simulations of non-
conservative hyperbolic problems, it is necessary to construct exact solutions for a fixed path. From there, we
can use the same path in a numerical approach and study if we have a convergence of the numerical solution to
the analytical solution. Let us note that attempts to answer these questions exist in the literature for a model of
elastodynamics described by a 2× 2 non-hyperbolic system. For this model, theoretical analyses and numerical
investigations are proposed [8, 10], and we even have exact solutions for the Riemann problem [19].

In this paper, we consider an example of a non-conservative hyperbolic system, the shear shallow water model,
for which approximate Riemann solver based methods have been developed in the literature [3, 9, 15] and for
which we construct the exact Riemann solution in this work. Riemann solvers are an important building block
of modern numerical schemes for hyperbolic systems. Therefore, there can be some confidence when using this
approach for more complex data setting [3,9,15]. In the coming sections we will first describe the equations for
shear shallow water flows written in a specific non-conservative form. This formulation uses the set of quasi-
conservative variables which is very similar to the 10-moment equations of gas dynamics [22], but the system is
genuinely non-conservative. Then the path-conservative jump conditions are recalled and used to derive an exact
solution of a Riemann problem. Finally, we discuss the convergence of the numerical solution obtained from a
path conservative approximate Riemann solver [9] toward the designed exact solution for some representative
test cases.

2. The SSW model

The system describing multi-dimensional shear shallow water flow was derived by Teshukov [26] by depth
averaging the incompressible Euler equations. This system of equations describes the evolution of the fluid depth
ℎ, the depth averaged horizontal velocity 𝑣 and the Reynolds tensor 𝒫, and can be written as [15]

𝜕ℎ

𝜕𝑡
+∇ · (ℎ𝑣) = 0

𝜕(ℎ𝑣)
𝜕𝑡

+∇ ·
(︂

ℎ𝑣 ⊗ 𝑣 +
1
2
𝑔ℎ2𝐼 + ℎ𝒫

)︂
= −𝑔ℎ∇b− 𝐶𝑓 |𝑣|𝑣 (2.1)

𝜕𝒫
𝜕𝑡

+ 𝑣 · ∇𝒫 + (∇𝑣)𝒫 + 𝒫(∇𝑣)⊤ = 𝒟.

The tensor 𝒫 is symmetric and positive definite; it measures the distortion of the instantaneous horizontal
velocity with respect to the depth average velocity 𝑣. The system derived in Teshukov [26] was non-dissipative
(𝐶𝑓 = 0, 𝒟 = 0); in Gavrilyuk et al. [15], the modeling of dissipation process was introduced for the evolution of
the momentum and the Reynolds stress tensor. The dissipation model provides a closure to the averaging process
and was designed such as to preserve the positive definite-ness of the tensor 𝒫. Recently [9], the dissipative
model proposed in Gavrilyuk et al. [15] has been reformulated for the evolution of the energy tensor 𝐸. In this
context, the SSW model can be written in an almost conservative form. To do this, we define the symmetric



RIEMANN PROBLEMS FOR SHEAR SHALLOW WATER MODEL 1117

tensors

ℛ𝑖𝑗 := ℎ𝒫𝑖𝑗 , ℰ𝑖𝑗 :=
1
2
ℛ𝑖𝑗 +

1
2
ℎ𝑣𝑖𝑣𝑗 , 1 ≤ 𝑖, 𝑗 ≤ 2.

Then, the set of equations for the SSW model (2.1) can be written as follows

𝜕𝑈

𝜕𝑡
+

𝜕𝐹1

𝜕𝑥1
+

𝜕𝐹2

𝜕𝑥2
+ 𝐵1

𝜕ℎ

𝜕𝑥1
+ 𝐵2

𝜕ℎ

𝜕𝑥2
= 𝑆 (2.2)

where

𝑈 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ℎ

ℎ𝑣1

ℎ𝑣2

ℰ11

ℰ12

ℰ22

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 𝐹1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ℎ𝑣1

ℛ11 + ℎ𝑣2
1 + 1

2𝑔ℎ2

ℛ12 + ℎ𝑣1𝑣2

(ℰ11 +ℛ11)𝑣1

ℰ12𝑣1 + 1
2 (ℛ11𝑣2 +ℛ12𝑣1)

ℰ22𝑣1 +ℛ12𝑣2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 𝐹2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ℎ𝑣2

ℛ12 + ℎ𝑣1𝑣2

ℛ22 + ℎ𝑣2
2 + 1

2𝑔ℎ2

ℰ11𝑣2 +ℛ12𝑣1

ℰ12𝑣2 + 1
2 (ℛ12𝑣2 +ℛ22𝑣1)

(ℰ22 +ℛ22)𝑣2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝐵1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

𝑔ℎ𝑣1

1
2𝑔ℎ𝑣2

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 𝐵2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0

1
2𝑔ℎ𝑣1

𝑔ℎ𝑣2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 𝑆 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

−𝑔ℎ 𝜕b
𝜕𝑥1

− 𝐶𝑓 |𝑣|𝑣1

−𝑔ℎ 𝜕b
𝜕𝑥2

− 𝐶𝑓 |𝑣|𝑣2

−𝑔ℎ𝑣1
𝜕b
𝜕𝑥1

+ 1
2ℎ𝒟11 − 𝐶𝑓 |𝑣|𝑣2

1

− 1
2𝑔ℎ𝑣2

𝜕b
𝜕𝑥1

− 1
2𝑔ℎ𝑣1

𝜕b
𝜕𝑥2

+ 1
2ℎ𝒟12 − 𝐶𝑓 |𝑣|𝑣1𝑣2

−𝑔ℎ𝑣2
𝜕b
𝜕𝑥2

+ 1
2ℎ𝒟22 − 𝐶𝑓 |𝑣|𝑣2

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

In the present work, we assume that the bottom topography b ≡ b(𝑥1, 𝑥2) is a given smooth function. The
solution must satisfy some positivity constraints which leads to the following solution space for physically
admissible solutions

𝒰ad =
{︀
𝑈 ∈ R6 : ℎ > 0, ℛ > 0

}︀
where ℛ > 0 means that the symmetric tensor ℛ must be positive definite. We next consider some properties
of this model.

2.1. Total energy equation

The additional conservation laws satisfied by the SSW model have been investigated in Gavrilyuk et al. [15].
The first one is related to the energy and can be derived as follows. Multiply ℎ equation by 𝑔(ℎ + b) and add
it to the ℰ11 and ℰ22 equations to obtain

𝜕𝐸

𝜕𝑡
+

𝜕

𝜕𝑥1

[︂(︂
𝐸 +ℛ11 +

1
2
𝑔ℎ2

)︂
𝑣1 +ℛ12𝑣2

]︂
+

𝜕

𝜕𝑥2

[︂(︂
𝐸 +ℛ22 +

1
2
𝑔ℎ2

)︂
𝑣2 +ℛ12𝑣1

]︂
= −𝐶𝑓 |𝑣|3 +

1
2
ℎ trace(𝒟)

(2.3)
where the total energy is defined as

𝐸 = ℰ11 + ℰ22 +
1
2
𝑔ℎ2 + 𝑔ℎb =

1
2

trace(ℛ) +
1
2
ℎ|𝑣|2 +

1
2
𝑔ℎ2 + 𝑔ℎb. (2.4)

The quantity 𝐸 = 𝐸(𝑈) is a convex function but it is not a strictly convex function since it has no dependence
on ℰ12, and so it cannot serve as an entropy function.
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2.2. Entropy equation

We can define the specific entropy

𝑠 =
det𝒫
ℎ2

(2.5)

which satisfies the equation ([15], Eq. (31))

𝜕𝑠

𝜕𝑡
+ 𝑣 · ∇𝑠 =

1
ℎ2

[trace(𝒫) trace(𝒟)− trace(𝒫𝒟)].

The above equation can be rewritten as an entropy balance law,

𝜕𝜂

𝜕𝑡
+∇ · (𝑣𝜂) = − 1

ℎ𝑠
[trace(𝒫) trace(𝒟)− trace(𝒫𝒟)]

where

𝜂 = 𝜂(𝑈) = −ℎ log 𝑠 = −ℎ log
(︂

det𝒫
ℎ2

)︂
is a convex function of 𝑈 [21]. Smooth solutions in the absence of dissipation 𝒟 satisfy the entropy conservation
law. In general, when the solution is not smooth, we require an entropy inequality

𝜕𝜂

𝜕𝑡
+∇ · (𝑣𝜂) ≤ 0

to hold in the sense of distributions. For a scalar problem, the entropy condition serves to enforce uniqueness
of weak solutions but this is an open problem for systems of conservation laws. However, it is important to
satisfy the entropy condition since it is a fundamental property of all natural systems. The availability of such
an entropy condition for the SSW model (2.2) indicates that it can serve as a useful mathematical form for the
construction of numerical schemes.

Remark 2.1. For a different but related PDE model for shear shallow flows, we refer the reader to Busto et al.
[4] where a new matrix variable 𝒬 is introduced such that 𝒫 = 𝒬𝒬⊤. Unlike 𝒫, the matrix 𝒬 is not assumed
to be symmetric which introduces an extra variable into the model. An equation for 𝒬 is derived under some
simplifying assumptions on the rotation of Reynolds tensor by friction forces, whose evolution ensures positivity
of 𝒫. The total energy 𝐸 becomes a convex function in terms of the new set of variables (ℎ, ℎ𝑣, ℎ𝒬), leading
to a thermodynamically consistent model. A numerical approach based on path conservative idea is developed,
which under the assumption of exact integration of some quantities, leads to a first order semi-discrete scheme
which is shown to conserve the total energy, is consistent with the entropy inequality and with the vanishing
viscosity limit of the model. In order to ensure the conservation of total energy in the inviscid case for the fully
discrete scheme, a scaling of the variable 𝒬 is performed after each time step.

2.3. Hyperbolicity

We will consider the 1-D SSW model which can be written as
𝜕𝑈

𝜕𝑡
+

𝜕𝐹 (𝑈)
𝜕𝑥

+ 𝐵(𝑚)
𝜕ℎ

𝜕𝑥
= 𝑆(𝑈) (2.6)

where 𝐹 = 𝐹1, 𝐵 = 𝐵1, 𝑚 = ℎ𝑣, and the source term is given by

𝑆 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

−𝑔ℎ𝜕b
𝜕𝑥 − 𝐶𝑓 |𝑣|𝑣1

−𝐶𝑓 |𝑣|𝑣2

−𝛼|𝑣|3𝒫11 − 𝑔ℎ𝑣1
𝜕b
𝜕𝑥 − 𝐶𝑓 |𝑣|𝑣2

1

−𝛼|𝑣|3𝒫12 − 1
2𝑔ℎ𝑣2

𝜕b
𝜕𝑥 − 𝐶𝑓 |𝑣|𝑣1𝑣2

−𝛼|𝑣|3𝒫22 − 𝐶𝑓 |𝑣|𝑣2
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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Ignoring the source term in (2.6) for the moment as they do not contain derivatives of 𝑈 , let us write the
non-conservative system (2.6) in quasi-linear form as

𝜕𝑈

𝜕𝑡
+ 𝐴(𝑈)

𝜕𝑈

𝜕𝑥
= 0, 𝐴 = 𝐹 ′(𝑈) +

⎡⎢⎢⎢⎢⎢⎣
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

𝑔ℎ𝑣1 0 0 0 0 0
1
2𝑔ℎ𝑣2 0 0 0 0 0

0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦. (2.7)

For simplicity of notation, we will sometimes write the velocity components as (𝑢, 𝑣) = (𝑣1, 𝑣2). The system of
equations (2.7) is a hyperbolic system with eigenvalues of 𝐴 being given by Gavrilyuk et al. [15] and Berthon
et al. [2]

𝜆1 = 𝑢−
√︀

𝑔ℎ + 3𝒫11, 𝜆2 = 𝑢−
√︀
𝒫11, 𝜆3 = 𝜆4 = 𝑢, 𝜆5 = 𝑢 +

√︀
𝒫11, 𝜆6 = 𝑢 +

√︀
𝑔ℎ + 3𝒫11.

The first and last eigenvalues correspond to genuinely non-linear characteristic fields in the sense of Lax [17],
while the remaining eigenvalues correspond to linearly degenerate characteristic fields [15]. Hence 𝜆1, 𝜆6 are
associated with shock/rarefaction waves while the remaining eigenvalues give rise to shear/contact waves. To
study the hyperbolicity, it is useful to transform the equations in terms of primitive variables

𝑄 = [ℎ, 𝑣1, 𝑣2, 𝒫11, 𝒫12, 𝒫22]

as the independent variables. Define

a =
√︀

𝑔ℎ + 3𝒫11, c =
√︀
𝒫11.

Then the eigenvectors in terms of the primitive variables are give as follows.
1-wave: shock/rarefaction: 𝜆1 = 𝑢− a

𝑟1 =
[︀
ℎ
(︀
a2 − c2

)︀
, −a

(︀
a2 − c2

)︀
, −2a𝒫12, 2c2

(︀
a2 − c2

)︀
,

(︀
a2 + c2

)︀
𝒫12, 4𝒫2

12

]︀
.

2-shear wave: 𝜆2 = 𝑢− c

𝑟2 =
[︀
0, 0, −c, 0, c2, 2𝒫12

]︀⊤
.

3,4-contact wave: 𝜆3 = 𝜆4 = 𝑢

𝑟3 = [0, 0, 0, 0, 0, 1]⊤

𝑟4 = [−ℎ, 0, 0, 𝑔ℎ + 𝒫11, 𝒫12, 0].

5-shear wave: 𝜆5 = 𝑢 + c

𝑟5 =
[︀
0, 0, c, 0, c2, 2𝒫12

]︀⊤
.

6-wave: shock/rarefaction: 𝜆6 = 𝑢 + a

𝑟6 =
[︀
ℎ
(︀
a2 − c2

)︀
, a

(︀
a2 − c2

)︀
, 2a𝒫12, 2c2

(︀
a2 − c2

)︀
,

(︀
a2 + c2

)︀
𝒫12, 4𝒫2

12

]︀
.

The waves and their ordering are illustrated in Figure 1. Note that, when 𝒫11 goes to zero, we have c → 0
and the system is no more hyperbolic. Indeed, the eigenvectors 𝑟2, 𝑟3 and 𝑟5 become dependent. Moreover,
even if for 𝒫11 = 𝒫12 = 𝒫22 = 0 the system (2.7) can be formally reduced to a conservative formulation, this
change in the nature of the model is accompanied here by an eigenvalue whose multiplicity becomes four but
asymptotically associated to only two independent eigenvectors.
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Figure 1. Shear shallow water model: Wave pattern for the 1-D Riemann problem. Plain lines
are used for discontinuities and dashed lines for rarefaction waves. For the first and the last
waves, we need to estimate whether it is a shock or a rarefaction wave. Waves speeds are defined
with the self-similar variable 𝜉 = 𝑥/𝑡.

3. Concept of weak solution

If we have discontinuous solutions for (2.7), then we have to give a proper mathematical meaning to the
spatial derivative term which is based on a weak formulation using integration by parts if 𝐴 is the gradient of a
flux function as in case of conservation laws. If 𝐴 is not the gradient of a flux, then the non-conservative product
is interpreted as a Borel measure [11]. This definition requires the choice of a smooth path Ψ : [0, 1]×𝒰ad×𝒰ad →
𝒰ad connecting the two states 𝑈l, 𝑈r across the jump discontinuity at 𝑥 = 𝑥0 such that

Ψ(0; 𝑈l, 𝑈r) = 𝑈l, Ψ(1; 𝑈l, 𝑈r) = 𝑈r

where 𝒰ad is the set of admissible states. Then the non-conservative product is defined as the Borel measure [11,
18]

𝜇(𝑥0) =
[︂∫︁ 1

0

𝐴(Ψ(𝜉; 𝑈l, 𝑈r))
dΨ
d𝜉

(𝜉; 𝑈l, 𝑈r)d𝜉

]︂
𝛿(𝑥0)

where 𝛿 is the Dirac delta function. The quantity inside the square brackets will be referred to as the fluctuation
and plays an important role in the construction of approximate Riemann solvers. This viewpoint is equivalent
to the definition of non-conservative product proposed by Volpert [29]. Using this notion, a theory of weak
solutions can be developed based on which the Riemann problem has usual structure as for conservative systems,
leading to shocks or rarefaction waves corresponding to genuinely non-linear characteristic fields and contact
waves corresponding to linearly degenerate fields. Across a point of discontinuity moving with speed 𝑆, a weak
solution has to satisfy the generalized Rankine–Hugoniot jump condition∫︁ 1

0

[𝐴(Ψ(𝜉; 𝑈l, 𝑈r))− 𝑆𝐼]
dΨ
d𝜉

(𝜉; 𝑈l, 𝑈r)d𝜉 = 0.

The choice of the correct path is a difficult question and has to be derived from a regularized model motivated
from the physical background of the problem. In many applications, the choice of the correct path is not known
and in practice, it is usual to consider the linear path in state space

Ψ(𝜉; 𝑈l, 𝑈r) = 𝑈l + 𝜉(𝑈r −𝑈l). (3.1)



RIEMANN PROBLEMS FOR SHEAR SHALLOW WATER MODEL 1121

Then the jump condition for our model (2.6) becomes∫︁ 1

0

𝐴(Ψ(𝜉; 𝑈l, 𝑈r))
dΨ
d𝜉

d𝜉 = 𝐹𝑅 − 𝐹𝐿 + 𝐵(𝑚𝐿, 𝑚𝑅)(ℎ𝑅 − ℎ𝐿) = 𝑆(𝑈r −𝑈l) (3.2)

where

𝐵(𝑚𝐿, 𝑚𝑅) = 𝐵

(︂
𝑚𝐿 + 𝑚𝑅

2

)︂
·

The source term 𝑆 does not make any contribution to the jump conditions since it does not contain derivative
of 𝑈 .

3.1. Rankine–Hugoniot jump conditions

In the following, we will assume that 𝑈l, 𝑈r are the left and right states in a Riemann problem. Let us define
the average and jump operators by

{{·}} =
(·)l + (·)r

2
, J·K = (·)r − (·)l.

Then the jump conditions (3.2) across a discontinuity moving with speed 𝑆 lead to the following set of generalized
Rankine–Hugoniot conditions.

Jℎ𝑢K = 𝑆JℎK (3.3a)
s
ℛ11 + ℎ𝑢2 +

1
2
𝑔ℎ2

{
= 𝑆Jℎ𝑢K (3.3b)

Jℛ12 + ℎ𝑢𝑣K = 𝑆Jℎ𝑣K (3.3c)
Jℰ11𝑢 +ℛ11𝑢K + 𝑔{{ℎ𝑢}}JℎK = 𝑆Jℰ11K (3.3d)

s
ℰ12𝑢 +

1
2

(ℛ11𝑣 +ℛ12𝑢)
{

+
1
2
𝑔{{ℎ𝑣}}JℎK = 𝑆Jℰ12K (3.3e)

Jℰ22𝑢 +ℛ12𝑣K = 𝑆Jℰ22K. (3.3f)

Moreover, the total energy equation (2.3) also has an associated jump condition.

Lemma 3.1. For the linear path (3.1), the jump conditions (3.3a)–(3.3f) are consistent with the jump conditions
of the total energy equation (2.3).

Proof. We will show that the jump conditions (3.3a)–(3.3f) imply that
s(︂

𝐸 +ℛ11 +
1
2
𝑔ℎ2

)︂
𝑢 +ℛ12𝑣

{
= 𝑆J𝐸K (3.4)

which is the jump condition for the total energy equation. Adding the jump conditions from ℰ11, ℰ22 equations

J(ℰ11 + ℰ22)𝑢 +ℛ11𝑢 +ℛ12𝑣K + 𝑔{{ℎ𝑢}}JℎK = 𝑆Jℰ11 + ℰ22K. (3.5)

Also
q(︀

𝑔ℎ2 + 𝑔ℎb
)︀
𝑢
y

= 𝑔{{ℎ𝑢}}JℎK + 𝑔{{ℎ}}Jℎ𝑢K + 𝑔bJℎ𝑢K
= 𝑔{{ℎ𝑢}}JℎK + 𝑆𝑔{{ℎ}}JℎK + 𝑆𝑔bJℎK, using (3.3a)

= 𝑔{{ℎ𝑢}}JℎK + 𝑆

s
1
2
𝑔ℎ2 + 𝑔ℎb

{
. (3.6)

Adding (3.5) and (3.6), we obtain (3.4). �
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4. Properties and structures of single waves

We will focus in this paper on the derivation of an exact solution for the Riemann problem associated to the
1-D SSW model where the source term is set to zero. The spectral analysis of this genuinely non-conservative
hyperbolic system was proposed in Gavrilyuk et al. [15]. Within the path conservative framework, generalized
jump conditions for this non-conservative system was derived in Chandrashekar et al. [9]. These results have
been recalled in the previous section. In order to define the strategy that will allow us to obtain the exact
solution of the Riemann problem, we first need to characterize the properties of waves associated with each
eigenvalue. The first and the sixth characteristic fields, respectively associated to 𝜆1 = 𝑢−a and 𝜆6 = 𝑢+a, are
genuinely non-linear and can develop either shock (discontinuous) or rarefaction (continuous) waves. The other
characteristic fields are associated to linearly degenerate waves. We will name contact wave the field associated
to the eigenvalue 𝜆3 = 𝜆4 = 𝑢 and shear waves the field associated to 𝜆2 = 𝑢−c and 𝜆5 = 𝑢+c. Asymptotically,
the contact and the shear waves will collapse to a single wave when c goes to zero, which will be the case when
the variable 𝒫11 goes to zero. Since the tensor 𝒫 is always symmetric and positive definite, there is a strict
ordering of the eigenvalues

𝑢− a < 𝑢− c < 𝑢 < 𝑢 + c < 𝑢 + a.

However, when approximations are applied with small values of 𝒫11, we can face some numerical inconsistencies.
Riemann invariants are constant across linearly degenerate waves and rarefaction waves, whereas for shock waves,
generalized jump conditions should be satisfied. In the subsequent subsections, we will derive the Riemann
invariants or the relations to be satisfied for each single wave connecting two different states: the state 𝑈l on
the left and 𝑈r on the right of the wave.

4.1. Rarefaction waves

The eigenvalues 𝜆1 = 𝑢− a and 𝜆6 = 𝑢 + a are genuinely non-linear and may give rise to rarefaction waves.

Theorem 4.1. For the 1-rarefaction wave, the Riemann invariants are given by

𝒫11

ℎ2
, 𝑢 + a(ℎ, 𝑐),

det(𝒫)
ℎ2

,
𝒫12

𝑔ℎ + 2𝒫11
, 𝑣 +

2𝒫12

𝑔ℎ + 2𝒫11
a(ℎ, 𝑐) (4.1)

and for the 6-rarefaction wave, the Riemann invariants are given by

𝒫11

ℎ2
, 𝑢− a(ℎ, 𝑐),

det(𝒫)
ℎ2

,
𝒫12

𝑔ℎ + 2𝒫11
, 𝑣 − 2𝒫12

𝑔ℎ + 2𝒫11
a(ℎ, 𝑐) (4.2)

where

a(ℎ, 𝑐) =
√︀

𝑔ℎ + 3𝑐ℎ2 +
𝑔√
3𝑐

sinh−1

√︃
3𝑐ℎ

𝑔
, 𝑐 =

𝒫11

ℎ2
· (4.3)

Proof. We find the Riemann invariants by analyzing the integrals curves of the eigenvector fields. The integral
curve corresponding to 𝑟1 satisfy the following set of equations

dℎ

ℎ(a2 − c2)
=

d𝑢

−a(a2 − c2)
=

d𝑣

−2a𝒫12
=

d𝒫11

2c2(a2 − c2)
=

d𝒫12

(a2 + c2)𝒫12
=

d𝒫22

4𝒫2
12

· (4.4)

Using the first and fourth terms in (4.4), we get

dℎ

ℎ
=

d𝒫11

2𝒫11
=⇒ 𝒫11

ℎ2
=
ℛ11

ℎ3
= constant = 𝑐
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which is the first invariant. Using the first and second terms in (4.4), we get

d𝑢 = −a

ℎ
dℎ = −

√︀
𝑔ℎ + 3𝑐ℎ2

ℎ
dℎ

where we used the first invariant. Integrating this, we obtain the second invariant 𝑢 + a(ℎ, 𝑐), with

a(ℎ, 𝑐) =
∫︁

1
ℎ

√︀
𝑔ℎ + 3𝑐ℎ2dℎ ≡

√︀
𝑔ℎ + 3𝑐ℎ2 +

𝑔√
3𝑐

sinh−1

√︃
3𝑐ℎ

𝑔
·

By definition of the determinant, we have det(𝒫) = 𝒫11𝒫22 − 𝒫2
12. Therefore,

d[det(𝒫)] = 𝒫22d𝒫11 + 𝒫11d𝒫22 − 2𝒫12d𝒫12

= 𝒫22
2c
ℎ

dℎ + 𝒫11
4𝒫2

12

ℎ(a2 − c2)
dℎ− 2𝒫12

(︀
a2 + c2

)︀
𝒫12

ℎ(a2 − c2)
dℎ = 2

det(𝒫)
ℎ

dℎ.

Hence, the enstrophy det(𝒫)
ℎ2 is conserved across rarefaction waves, which is the third Riemann invariant. From

the first and fifth terms in (4.4), we get

d ln𝒫12 =
1
ℎ

a2 + c2

a2 − c2
dℎ =

1
ℎ

𝑔ℎ + 4𝒫11

𝑔ℎ + 2𝒫11
dℎ =

𝑔 + 4𝑐ℎ

𝑔ℎ + 2𝑐ℎ2
dℎ = d ln(𝑔ℎ + 2𝑐ℎ2)

and we obtain the fourth invariant, for convenience denoted as 𝛽 = 𝒫12
𝑔ℎ+2𝑐ℎ2 .

Finally, from the first and third terms in (4.4), we get

d𝑣 = − 2a𝒫12

ℎ(a2 − c2)
dℎ = −2𝛽

√︀
𝑔ℎ + 3𝑐ℎ2

ℎ
dℎ

and integrating this we obtain the fifth invariant: 𝑣− 2𝛽a(ℎ, 𝑐). The proof for the 6-rarefaction is similar except
for some sign differences. �

The two states 𝑈l, 𝑈r can be connected by a rarefaction wave provided they satisfy the Lax condition; for a
1-rarefaction, they must satisfy

𝜆1(𝑈l) < 𝜆1(𝑈r) (4.5)

and a similar condition must be satisfied in case of a 6-rarefaction wave.

Lemma 4.2. The set of admissible left and right states 𝑈l, 𝑈r that can be connected by

(1) a 1-rarefaction must satisfy ℎr < ℎl.
(2) a 6-rarefaction must satisfy ℎl < ℎr.

Proof. (1) Using the Riemann invariants 𝑐 = 𝒫11
ℎ2 and 𝑢 + a(ℎ, 𝑐) the difference of the velocity can be written

as

𝑢l − 𝑢r = a(ℎr, 𝑐)− a(ℎl, 𝑐)

=
√︀

𝑔ℎr + 3𝒫r
11 −

√︀
𝑔ℎl + 3𝒫l

11 +
𝑔√
3𝑐

[︃
sinh−1

√︃
3𝑐ℎr

𝑔
− sinh−1

√︃
3𝑐ℎl

𝑔

]︃
·

For a 1-rarefaction wave, the characteristic speeds must satisfy the condition (4.5), which leads to

𝑢l −
√︀

𝑔ℎl + 3𝒫l
11 < 𝑢r −

√︀
𝑔ℎr + 3𝒫r

11 =⇒ 𝑢l − 𝑢r <
√︀

𝑔ℎl + 3𝒫l
11 −

√︀
𝑔ℎr + 3𝒫r

11.
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Combining the above two relations, we get

2
√︀

𝑔ℎr + 3𝑐ℎ2
r +

𝑔√
3𝑐

sinh−1

√︃
3𝑐ℎr

𝑔
≤ 2

√︀
𝑔ℎl + 3𝑐ℎ2

l +
𝑔√
3𝑐

sinh−1

√︃
3𝑐ℎl

𝑔
·

On the other hand, the function 𝑓(ℎ, 𝑐) = 2
√︀

𝑔ℎ + 3𝑐ℎ2 + 𝑔√
3𝑐

sinh−1
√︁

3𝑐ℎ
𝑔 is a increasing function of ℎ for

𝑐 fixed and 𝑔 > 0 a given constant. Therefore, the conditions on the characteristic speeds is satisfied if and
only if ℎr < ℎl. The proof is similar for the case of a 6-rarefaction wave.

�

4.2. Internal structure of 1-rarefaction

The solution inside the rarefaction is self-similar and depends only on the ratio 𝑥/𝑡. The slope of the charac-
teristics is

𝜉 =
𝑥

𝑡
= 𝑢− a =⇒ −a

ℎ
dℎ = d𝑢 = d𝜉 + da

where equation (4.4) has been used. From this we obtain the relation

d𝜉 = − 3𝑔 + 12𝑐ℎ

2
√︀

𝑔ℎ + 3𝑐ℎ2
dℎ where 𝑐 =

𝒫l
11

ℎ2
l

·

We can integrate this ODE with the initial condition: ℎ(𝜉l) = ℎl and 𝜉l = 𝑢l −
√︀

𝑔ℎl + 3𝒫l
11.

We then obtain

𝜉 − 𝜉l = −
(︁
b(ℎ)− b(ℎl)

)︁
with b(ℎ) = 2

√︀
𝑔ℎ + 3𝑐ℎ2 +

𝑔√
3𝑐

sinh−1

√︃
3𝑐ℎ

𝑔
·

This equation implicitly defines the function ℎ(𝜉) in the internal structure of the 1-rarefaction. Once ℎ = ℎ(𝜉)
is obtained, we can use the Riemann invariants to compute all the other variables inside the rarefaction wave
leading to the complete solution 𝑈(𝜉) for 𝑢l − al ≤ 𝜉 ≤ 𝑢r − ar.

4.3. Shear waves

The eigenvalues 𝜆2, 𝜆5 and the associated eigenvectors give rise to shear waves. Across a shear wave, the
water depth ℎ and normal velocity 𝑢 are continuous while the transverse velocity 𝑣 may have a jump as shown
by the Riemann invariants.

Theorem 4.3. For the 2-shear wave, the Riemann invariants are given by

ℎ, 𝑢, 𝒫11, 𝑣
√︀
𝒫11 + 𝒫12, det(𝒫)

while for the 5-shear wave, they are given by

ℎ, 𝑢, 𝒫11, 𝑣
√︀
𝒫11 − 𝒫12, det(𝒫).

Proof. The integral curve corresponding to the eigenvector 𝑟2 satisfies the equations

dℎ

0
=

d𝑢

0
=

d𝑣

−c
=

d𝒫11

0
=

d𝒫12

c2
=

d𝒫22

2𝒫12
·

We immediately see that ℎ, 𝑢,𝒫11 are invariants. From the third and fifth terms, we obtain

cd𝑣 + d𝒫12 = 0 =⇒ 𝑣
√︀
𝒫11 + 𝒫12 = constant.

Finally from the fifth and sixth terms, we obtain

−2𝒫12d𝒫12 + c2d𝒫22 = 0 =⇒ det(𝒫) = constant.

The proof for the 5-shear wave is similar. �
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Remark 4.4. Note that, as ℎ and 𝒫11 are Riemann invariants of shear waves, the total pressure p = 𝑔ℎ2

2 +ℛ11

is also invariant across shear waves. Moreover, across the 2-shear wave, the eigenvalue 𝜆2 = 𝑢 −
√
𝒫11 is an

invariant, and across the 5-shear wave, the eigenvalue 𝜆5 = 𝑢+
√
𝒫11 is an invariant. It can be checked that any

two states 𝑈l, 𝑈r which satisfy the Riemann invariants will satisfy all the jump conditions for the shear waves,
with the speed of the discontinuity being 𝜆2 or 𝜆5.

4.4. Contact waves

The eigenvalues 𝜆3, 𝜆4 and the corresponding eigenvectors give rise to contact waves. Across such a wave the
velocity is continuous but the water depth may possibly have a jump discontinuity.

Theorem 4.5. For the contact wave, the Riemann invariants are given by

𝑢, 𝑣, ℛ12 and p =
𝑔ℎ2

2
+ℛ11

where p is defined as the total pressure.

Proof. The contact wave is associated to the eigenvalue 𝑢 with a multiplicity of two with two linearly independent
eigenvectors. As the multiplicity is two, we cannot expect more than four Riemann invariants. Indeed, the
invariants should satisfy the following equations due to the two eigenvectors 𝑟3, 𝑟4,

dℎ

0
=

d𝑢

0
=

d𝑣

0
=

d𝒫11

0
=

d𝒫12

0
=

d𝒫22

1

and
dℎ

−ℎ
=

d𝑢

0
=

d𝑣

0
=

d𝒫11

𝑔ℎ + 𝒫11
=

d𝒫12

𝒫12
=

d𝒫22

0
·

As a consequence, the Riemann invariants for contact waves are defined by the following equalities

dℎ

−ℎ
=

d𝑢

0
=

d𝑣

0
=

d𝒫11

𝑔ℎ + 𝒫11
=

d𝒫12

𝒫12
·

From the second and the third terms of these equalities we obtain the invariants 𝑢 and 𝑣. Combining the first
and the fifth terms we find that ℛ12 is the third invariant. Finally, the first and the fourth terms give

𝑔ℎdℎ + 𝒫11dℎ + ℎd𝒫11 = 0 =⇒ d
(︂

𝑔
ℎ2

2
+ ℎ𝒫11

)︂
= 0

so that p = 𝑔ℎ2

2 +ℛ11 is the fourth invariant. �

Remark 4.6. By definition, the gradients of these Riemann invariants, with respect to the primitive variable
𝑄, are orthogonal to the plane spanned by eigenvectors 𝑟3 and 𝑟4,⎧⎪⎪⎨⎪⎪⎩

𝑟3 ·
𝜕𝑢

𝜕𝑄
= 0

𝑟4 ·
𝜕𝑢

𝜕𝑄
= 0

,

⎧⎪⎪⎨⎪⎪⎩
𝑟3 ·

𝜕𝑣

𝜕𝑄
= 0

𝑟4 ·
𝜕𝑣

𝜕𝑄
= 0

,

⎧⎪⎪⎨⎪⎪⎩
𝑟3 ·

𝜕ℛ12

𝜕𝑄
= 0

𝑟4 ·
𝜕ℛ12

𝜕𝑄
= 0

and

⎧⎪⎪⎨⎪⎪⎩
𝑟3 ·

𝜕p

𝜕𝑄
= 0

𝑟4 ·
𝜕p

𝜕𝑄
= 0

which can be verified. Moreover, we see that the eigenvalues 𝜆3 = 𝜆4 = 𝑢 is an invariant.

Remark 4.7. Let us examine the jump conditions for the contact wave. The speed of the contact wave is equal
to the common fluid velocity 𝑢l = 𝑢r = 𝑢 = 𝜆3 = 𝜆4 which are linearly degenerate. Then the jump conditions
lead to the following set of conditions

s
ℛ11 +

1
2
𝑔ℎ2

{
= 0, Jℛ12K = 0, Jℛ11𝑣K + 𝑔{{ℎ𝑣}}JℎK = 0, Jℛ12𝑣K = 0. (4.6)
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From the first condition, the total pressure p is constant across this wave. From the first and third conditions,
we obtain (︂

{{ℛ11}}+
1
4
𝑔JℎK2

)︂
J𝑣K = 0.

Since we ℛ11 must be strictly positive, the first factor cannot be zero and hence we require that J𝑣K = 0, so
that both velocity components are continuous across the contact wave. The second condition of (4.6) shows
that ℛ12 is also continuous across the middle wave. These results are consistent with the Riemann invariants
derived in the previous theorem.

4.5. Shock wave, Hugoniot curve and entropy condition

The states 𝑈l, 𝑈r can be connected by a shock wave only if they satisfy the Lax condition, i.e., the charac-
teristics must intersect into the shock wave. For the 1-shock, this condition is given by

𝜆1(𝑈l) > 𝑆 > 𝜆1(𝑈r) (4.7)

where 𝑆 is the shock speed, with a similar condition for the 6-shock wave. Before using this condition, we
derive the Hugoniot relation between the two states which follows from the generalized jump conditions after
eliminating the velocity.

Theorem 4.8. The set of states 𝑈l, 𝑈r which can be connected by a shock lie on the Hugoniot curve given by

3
2
J𝜏ℛ11K− {{𝜏}}Jℛ11K +

𝑔J𝜏K3

4𝜏2
l 𝜏2

r

= 0 with 𝜏 =
1
ℎ
· (4.8)

Proof. Let us change to a coordinate frame in which the shock is stationary. The jump conditions for the
continuity, 𝑥-momentum and 𝑥 component of energy equation are

Jℎ𝑢K = 0,

s
ℛ11 + ℎ𝑢2 +

1
2
𝑔ℎ2

{
= 0, J(ℰ11 +ℛ11)𝑢K + 𝑔{{ℎ𝑢}}JℎK = 0.

Let 𝑚 = ℎl𝑢l = ℎr𝑢r, then the second and third conditions can be written as

Jℛ11K + 𝑚J𝑢K + 𝑔{{ℎ}}JℎK = 0,
3
2
J𝒫11K + {{𝑢}}J𝑢K + 𝑔JℎK = 0.

Let 𝜏 = 1/ℎ; then

{{ℎ}} = {{1/𝜏}} =
1

𝜏l𝜏r
{{𝜏}}, JℎK = J1/𝜏K = − 1

𝜏l𝜏r
J𝜏K.

The two jump conditions become

Jℛ11K + 𝑚J𝑢K− 𝑔

𝜏2
l 𝜏2

r

{{𝜏}}J𝜏K = 0,
3
2
J𝜏ℛ11K + {{𝑢}}J𝑢K− 𝑔

𝜏l𝜏r
J𝜏K = 0.

Using the first equation, we eliminate J𝑢K from the second equation

3
2
J𝜏ℛ11K +

{{𝑢}}
𝑚

(︂
𝑔

𝜏2
l 𝜏2

r

{{𝜏}}J𝜏K− Jℛ11K
)︂
− 𝑔

𝜏l𝜏r
J𝜏K = 0.

But since {{𝑢}}/𝑚 = {{𝜏}}, we get

3
2
J𝜏ℛ11K− {{𝜏}}Jℛ11K +

𝑔

𝜏l𝜏r
J𝜏K

(︂
{{𝜏}}2

𝜏l𝜏r
− 1

)︂
= 0

which upon simplification of the last term yields the Hugoniot curve (4.8). �
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We now find some constraints on the two states imposed by the Lax entropy condition if they have to be
connected by a shock wave.

Theorem 4.9. Any given admissible left and right states 𝑈l, 𝑈r can be connected by a

– 1-shock wave if ℎr ∈ (ℎl, 2ℎl).
– 6-shock wave if ℎl ∈ (ℎr, 2ℎr).

Proof. Given the left state (𝜏l,ℛl
11) the Hugoniot curve gives the set of right states (𝜏r,ℛr

11) that can be
connected to it by a shock. Using the Hugoniot curve, we can obtain the stress component at the right state as

ℛr
11 =

1
2𝜏r − 𝜏l

[︃
(2𝜏l − 𝜏r)ℛl

11 −
𝑔J𝜏K3

2𝜏2
l 𝜏2

r

]︃
= 𝑅11(𝜏r; 𝜏l,ℛl

11)

where

ℛ11(𝜏 ; 𝜏l,ℛl
11) =

1
2𝜏 − 𝜏l

[︃
(2𝜏l − 𝜏)ℛl

11 −
𝑔(𝜏 − 𝜏l)

3

2𝜏2
l 𝜏2

]︃
· (4.9)

When 𝜏r = 1
2𝜏l we have ℛr

11 = ∞ and moreover ℛr
11 < 0 for 𝜏r < 1

2𝜏l. Hence from positivity requirement, the
admissible range of values for 𝜏r is such that 𝜏r > 1

2𝜏l.
The Lax entropy condition says that characteristics must enter into the shock curve which means that, if 𝑆

is the shock speed, we have
𝑢l −

√︀
𝑔ℎl + 3𝒫l

11 > 𝑆 > 𝑢r −
√︀

𝑔ℎr + 3𝒫r
11

from which we obtain two Lax inequalities

𝑢l − 𝑆 >
√︀

𝑔ℎl + 3𝒫l
11 > 0 and 𝑢r − 𝑆 <

√︀
𝑔ℎr + 3𝒫r

11.

The first Lax inequality shows that the left state is the pre-shock state, since the velocity relative to the shock
is positive. Using the jump condition of the continuity equation, ℎl(𝑢l − 𝑆) = ℎr(𝑢r − 𝑆), we get

𝑢r − 𝑆 >
ℎl

ℎr

√︀
𝑔ℎl + 3𝒫l

11.

Combining this with the second Lax inequality, we get

𝑔ℎ3
l + 3ℎlℛl

11 < 𝑔ℎ3
r + 3ℎrℛr

11 =⇒ ℛr
11 > ℛ⋆

11(𝜏r; 𝜏l,ℛl
11)

where the function ℛ⋆
11(𝜏 ; 𝜏l,ℛl

11) is defined by

ℛ⋆
11(𝜏 ; 𝜏l,ℛl

11) =
𝜏

3

[︂
𝑔

𝜏3
l

− 𝑔

𝜏3
+ 3

ℛl
11

𝜏l

]︂
·

The entropy condition (second Lax inequality) requires that

ℛr
11 = ℛ11(𝜏r; 𝜏l,ℛl

11) > ℛ𝑠
11(𝜏r; 𝜏l,ℛl

11).

Now1

d
d𝜏
ℛ11(𝜏 ; 𝜏l,ℛl

11) = −𝑔(𝜏 − 𝜏l)2(4𝜏 − 𝜏l) + 6𝜏4
lℛl

11

2𝜏3
l (2𝜏 − 𝜏l)2

< 0, 𝜏 >
1
2
𝜏l

and
d
d𝜏
ℛ⋆

11(𝜏 ; 𝜏l,ℛl
11) =

𝑔

3

(︂
2
𝜏3

+
1
𝜏3
l

)︂
+
ℛl

11

𝜏l
> 0, 𝜏 > 0.

1We are not interested in the case 𝜏 ≤ 1
2
𝜏l.
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This shows that for 𝜏 > 1
2𝜏l,ℛ11(𝜏 ; 𝜏l,ℛl

11) is a decreasing function andℛ⋆
11(𝜏 ; 𝜏l,ℛl

11) is an increasing function;
moreover ℛ11( 1

2𝜏l; 𝜏l,ℛl
11) = ∞ > ℛ⋆

11( 1
2𝜏l; 𝜏l,ℛl

11) and ℛ11(𝜏l; 𝜏l,ℛl
11) = ℛ⋆

11(𝜏l; 𝜏l,ℛl
11). Hence

ℛ11(𝜏 ; 𝜏l,ℛl
11) > ℛ⋆

11(𝜏 ; 𝜏l,ℛl
11), if and only if 𝜏 ∈

(︂
1
2
𝜏l, 𝜏l

)︂
.

The admissible range of values for 𝜏r is
(︀

1
2𝜏l, 𝜏l

)︀
and hence ℎr ∈ (ℎl, 2ℎl). Across a shock wave, the water depth

ℎ can at most increase by a factor of less than two.
The proof for the 6-shock case follows similarly. �

Lemma 4.10. (1) If the left and right states 𝑈l, 𝑈r are connected by a 1-shock, then: 𝑢r < 𝑢l and pr > pl.
(2) If the left and right states 𝑈l, 𝑈r are connected by a 6-shock, then: 𝑢l > 𝑢r and pl > pr.
(3) Moreover, in either case, we have

𝑢l − 𝑢r =

√︃
(ℎr − ℎl)(pr − pl)

ℎrℎl
· (4.10)

Proof. (1) The jump condition of the continuity equation, ℎl(𝑢l−𝑆) = ℎr(𝑢r−𝑆), when applied to the 1-wave,
gives

𝑢r =
ℎl

ℎr⏟ ⏞ 
∈( 1

2 ,1)

(𝑢l − 𝑆)⏟  ⏞  
>0

+𝑆 ≤ 𝑢l − 𝑆 + 𝑆 = 𝑢l.

Thus the post-shock velocity 𝑢r is smaller than the pre-shock velocity 𝑢l. The total pressure is defined as
p = ℛ11 + 1

2𝑔ℎ2. Then, using the Hugoniot curve, we have

pr − pl =
3(ℎr − ℎl)
2ℎl − ℎr

ℛl
11 +

1
2
𝑔
ℎl(ℎ2

r − 4ℎrℎl + 3ℎ2
l)

ℎr − 2ℎl

and since ℎr ∈ (ℎl, 2ℎl), both terms on the right of the above equation are positive, so that pr > pl.

(2) In the context of a 6-shock, we have

𝑢l =
ℎr

ℎl⏟ ⏞ 
∈( 1

2 ,1)

(𝑢r − 𝑆)⏟  ⏞  
<0

+𝑆 ≥ 𝑢r − 𝑆 + 𝑆 = 𝑢r.

In this context, “r” is pre-shock state and “l” is post-shock state. Similarly as for the 1-wave, we obtain
that 𝑢l < 𝑢r and pr > pl.

(3) Dividing the jump conditions for continuity and 𝑥-momentum equations, we get(︀
pr + ℎr𝑢

2
r − pl − ℎl𝑢

2
l

)︀
(ℎr − ℎl) = ℎ2

r𝑢
2
r + ℎ2

l𝑢
2
l − 2ℎlℎr𝑢l𝑢r.

Simplifying we obtain a quadratic equation

𝑢2
r − 2𝑢l𝑢r + 𝑢2

l −
(ℎr − ℎl)(pr − pl)

ℎrℎl
= 0

whose solution is

𝑢r = 𝑢l ±

√︃
(ℎr − ℎl)(pr − pl)

ℎrℎl
·

If we pick the minus sign, then we satisfy the conditions in part (1) and (2) of the lemma which yields (4.10).
�
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Figure 2. Shear Shallow Water (SSW) model: Wave structure of the 1-D Riemann problem.
Usefull set of variables in the intermediate states for the computation of the analytical solution.

5. Exact solution of 1-D Riemann problem

The Riemann problem is an initial value problem where the initial data is discontinuous at a single point.
The Riemann problem is to find 𝑈(𝑡, 𝑥) solution of the SSW system (2.6), with the following initial data

𝑈(𝑡 = 0, 𝑥) =

{︃
𝑈l if 𝑥 < 0

𝑈r if 𝑥 > 0.
(5.1)

Lemma 5.1. The solution of the Riemann problem with states 𝑈l, 𝑈r gives rise to four intermediate states
denoted by 𝑈*l, 𝑈**l, 𝑈**r, 𝑈*r which satisfy the following ten relations, see Figure 2.

𝑢*l = 𝑢**l = 𝑢**r = 𝑢*r, p*l = p**l = p**r = p*r

ℎ*l = ℎ**l, ℎ**r = ℎ*r, 𝑣**l = 𝑣**r, ℛ**l12 = ℛ**r12 .

Using the definition of the total pressure, a consequence the previous relations is that ℛ*l11 = ℛ**l11 and ℛ**r11 =
ℛ*r11.

The solution is obtained by using the constancy of total pressure (p*) and normal velocity (𝑢*) inside the
Riemann fan. If the 1-wave is a rarefaction, then ℎ*l ≤ ℎl while if it is a shock, then ℎ*l ∈ (ℎl, 2ℎl). Similarly,
if the 6-wave is a rarefaction then ℎ*r < ℎr, while if it is a shock, then ℎ*r ∈ (ℎr, 2ℎr). The total pressure in
the first intermediate state can be written as

p*l =

⎧⎪⎨⎪⎩
(︁

ℎ*l

ℎl

)︁3

ℛl
11 + 1

2𝑔ℎ2
*l for a 1-rarefaction : ℎ*l ≤ ℎl

1
2ℎl−ℎ*l

[︁
(2ℎ*l − ℎl)ℛl

11 −
𝑔(ℎl−ℎ*l)

3

2

]︁
+ 1

2𝑔ℎ2
*l for a 1-shock : ℎ*l > ℎl.

(5.2)
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The velocity is given by

𝑢*l =

⎧⎪⎨⎪⎩
𝑢l −

[︁
a(ℎ*l, 𝑐l)− a(ℎl, 𝑐l)

]︁
for a 1-rarefaction : ℎ*l ≤ ℎl

𝑢l −
√︁

(ℎ*l−ℎl)(𝑃*l−𝑃l)
ℎ*lℎl

for a 1-shock : ℎ*l > ℎl.

For the 6-wave, and given right state, we have

p*r =

⎧⎪⎨⎪⎩
(︁

ℎ*l

ℎr

)︁3

ℛr
11 + 1

2𝑔ℎ2
*r for a 6-rarefaction : ℎ*r ≤ ℎr

1
2ℎr−ℎ*r

[︁
(2ℎ*r − ℎr)ℛr

11 −
𝑔(ℎr−ℎ*r)

3

2

]︁
+ 1

2𝑔ℎ2
*r for a 6-shock : ℎ*r > ℎr

and

𝑢*r =

⎧⎪⎨⎪⎩
𝑢r +

[︁
a(ℎ*r, 𝑐r)− a(ℎr, 𝑐r)

]︁
for a 6-rarefaction : ℎ*r ≤ ℎr

𝑢r +
√︁

(ℎ*r−ℎr)(𝑃*r−𝑃r)
ℎ*rℎr

for a 6-shock : ℎ*r > ℎr.

We now want to determine 𝑧l = ℎ*l

ℎl
and 𝑧r = ℎ*r

ℎr
such that the total pressure and the velocity obtained from

the 1-wave matches with those obtained from the 6-wave:

p*l − p*r = 0 and 𝑢*l − 𝑢*r = 0.

We define the functions 𝑓(𝑧; ℎ,ℛ11) for the total pressure and 𝑔±(𝑧; ℎ, 𝑢,ℛ11) for the velocity as

𝑓(𝑧; ℎ,ℛ11) =

⎧⎨⎩
𝑧3ℛ11 + 1

2𝑔𝑧2ℎ2 0 < 𝑧 ≤ 1

2𝑧−1
2−𝑧 ℛ11 + 1

2𝑔ℎ2 (𝑧−1)3

2−𝑧 + 1
2𝑔𝑧2ℎ2 1 < 𝑧 < 2

and

𝑔±(𝑧; ℎ, 𝑢,ℛ11) =

⎧⎪⎨⎪⎩
𝑢± [a(𝑧ℎ, 𝑐)− a(ℎ, 𝑐)] 0 < 𝑧 ≤ 1

𝑢±
√︁

(𝑧−1)[𝑓(𝑧;ℎ,ℛ11)−ℛ11− 1
2 𝑔ℎ2]

𝑧ℎ 1 < 𝑧 < 2

where 𝑐 = ℛ11/ℎ3. The problem can now be stated as:

find 𝑧l, 𝑧r ∈ (0, 2) such that
{︂

𝐹 (𝑧l, 𝑧r) = 0
𝐺(𝑧l, 𝑧r) = 0 (5.3)

where
𝐹 (𝑧1, 𝑧2) =𝑓(𝑧1; ℎl,ℛl

11)− 𝑓(𝑧2; ℎr,ℛr
11)

𝐺(𝑧1, 𝑧2) =𝑔−(𝑧1; ℎl, 𝑢l,ℛl
11)− 𝑔+(𝑧2; ℎr, 𝑢r,ℛr

11).
(5.4)

If the solution is such that 𝑧l ∈ (0, 1) then the 1-wave is a rarefaction, and otherwise if 𝑧l ∈ (1, 2), then it
is a 1-shock. Similar interpretation applies to the 6-wave. The roots can be obtained by a Newton method as
described in Appendix A.

We can numerically investigate the above functions 𝐹,𝐺 by plotting contours of their level sets. For a given
Riemann data of dam break problem from Section 7.1, we plot contours of 𝐹,𝐺 and also plot their zero contour
lines. The solution is at the intersection of the zero contour lines of the two functions. In the Figure 3, the
bold solid lines are the zero level curves of 𝐹,𝐺 and we see that they intersect at a unique point, which is
approximately

𝑧l = 0.731428410320821, 𝑧r = 1.4177231168358784.

Hence the 1-wave is a 1-rarefaction and the 6-wave is a 6-shock. We observe that the level curves of 𝐹,𝐺 have
a monotonic behaviour which implies that they intersect at a unique point and we now prove this behaviour in
the general case.



RIEMANN PROBLEMS FOR SHEAR SHALLOW WATER MODEL 1131

Figure 3. Contours of 𝐹 (black) and 𝐺 (red) for dam break problem. Solid lines are where
the functions are zero. Intersection of the solid lines gives the desired 𝑧l and 𝑧r.

Theorem 5.2. Assume that the two states in the Riemann problem are positive (ℎl, ℎr > 0). If

𝑢r − 𝑢l < a(ℎl, 𝑐l) + a(ℎr, 𝑐r) (5.5)

where a(ℎ, 𝑐) is given by (4.3), then there exists a unique solution (𝑧l, 𝑧r) ∈ (0, 2)× (0, 2) such that

𝐹 (𝑧l, 𝑧r) = 0 and 𝐺(𝑧l, 𝑧r) = 0 (5.6)

where 𝐹,𝐺 are given by (5.4). In this context, the Riemann problem has a unique, positive solution.

Proof. We want to show that the set of equations (5.6) has a unique solution (𝑧l, 𝑧r) ∈ (0, 2)× (0, 2). Now

𝜕𝐹

𝜕𝑧l
=

𝜕

𝜕𝑧l
𝑓(𝑧l; ℎl,ℛl

11) =

{︃
3𝑧2

lℛl
11 + 𝑔𝑧lℎ

2
l , 0 < 𝑧l ≤ 1

3
(2−𝑧l)

2ℛl
11 + 1

2𝑔ℎ2
l

𝑧2
l−4𝑧l+5
(2−𝑧l)2

, 1 ≤ 𝑧l < 2.

Hence 𝑓(𝑧; ℎ,ℛ11) is an increasing function of 𝑧 ∈ (0, 2) with 𝑓(0; ℎ,ℛ11) = 0 and 𝑓(2; ℎ,ℛ11) = ∞. Thus given
any 𝑧l ∈ (0, 2), the equation 𝐹 (𝑧l, 𝑧r) = 0 has a unique solution 𝑧r ∈ (0, 2) Now, since

𝜕𝐹

𝜕𝑧l
> 0,

𝜕𝐹

𝜕𝑧r
< 0, 𝑧l, 𝑧r ∈ (0, 2)

then by implicit function theorem, we have a continuously differentiable function 𝑧r = 𝑧r(𝑧l), 𝑧l ∈ (0, 2) such
that 𝐹 (𝑧l, 𝑧r(𝑧l)) = 0. Moreover 𝐹 (0, 0) = 0 so that 𝑧r(0) = 0. Now

d𝑧r

d𝑧l
= −

𝜕𝐹
𝜕𝑧l

𝜕𝐹
𝜕𝑧r

> 0, 𝑧l ∈ (0, 2)

so that 𝑧r(𝑧l) is an increasing function. Now

d𝑧r

d𝑧l
(0) = lim

𝑧l→0

3𝑧2
lℛl

11 + 𝑔𝑧lℎ
2
l

3𝑧r(𝑧l)2ℛr
11 + 𝑔𝑧r(𝑧l)ℎ2

r
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which is of 0/0 form. Applying L’Hopital rule, we get

d𝑧r

d𝑧l
(0) = lim

𝑧l→0

6𝑧lℛl
11 + 𝑔ℎ2

l

6𝑧r(𝑧l)d𝑧r

d𝑧l
(𝑧l)ℛr

11 + 𝑔 d𝑧r

d𝑧l
(𝑧l)ℎ2

r

=
ℎ2

l

d𝑧r

d𝑧l
(0)ℎ2

r

=⇒ d𝑧r

d𝑧l
(0) =

ℎl

ℎr
> 0.

As 𝑧l → 2, the first term of 𝐹 in (5.4) which depends on 𝑧l goes to ∞ and this requires that 𝑧r → 2 also, i.e.,
𝑧r(𝑧l) → 2. Moreover, 𝑧r(𝑧l) ̸= 2 for 𝑧l ∈ (0, 2) since the second term in 𝐹 goes to ∞ as 𝑧r → 2. Hence the
curve (𝑧l, 𝑧r(𝑧l)) starts at (0, 0) and approaches (2, 2) in a monotonic way.

Now consider the function 𝐺 for which

𝜕𝐺

𝜕𝑧l
=

𝜕

𝜕𝑧l
𝑔−(𝑧l; ℎl, 𝑢l,ℛl

11) =

⎧⎪⎨⎪⎩
− 1

𝑧l

√︀
𝑔ℎl𝑧l + 3𝑧2

lℛl
11/ℎl 0 < 𝑧l ≤ 1

− 6ℛl
11+

1
2 𝑔ℎ2

l (𝑧3
l−3𝑧l+6)

2[𝑧l(2−𝑧l)]
3/2ℎ

1/2
l [3ℛl

11+
1
2 𝑔ℎ2

l (3−𝑧l)]1/2 1 ≤ 𝑧l < 2

with a similar expression for 𝜕𝐺
𝜕𝑧r

. Hence

𝜕𝐺

𝜕𝑧l
< 0,

𝜕𝐺

𝜕𝑧r
< 0, 𝑧l, 𝑧r ∈ (0, 2).

Thus 𝑔−(𝑧; ℎ, 𝑢,ℛ11) is a decreasing function and 𝑔+(𝑧; ℎ, 𝑢,ℛ11) is an increasing function in (0, 2), see Figure 4,
and moreover

𝑔−(0; ℎl, 𝑢l,ℛl
11) = 𝑢l + a(ℎl, 𝑐l), 𝑔−(2; ℎl, 𝑢l,ℛl

11) = −∞
𝑔+(0; ℎr, 𝑢r,ℛr

11) = 𝑢r − a(ℎr, 𝑐r), 𝑔+(2; ℎr, 𝑢r,ℛr
11) = +∞.

Under the assumption (5.5), we have 𝑔−(0; ℎl, 𝑢l,ℛl
11) > 𝑔+(0; ℎr, 𝑢r,ℛr

11), and the equation 𝐺(𝑧l, 𝑧r) = 0 has
a unique solution 𝑧r = 𝑧r(𝑧l) ∈ [0, 2) for all 𝑧l ∈ [0, 𝑧*l ] with 𝑧r(𝑧*l ) = 0 where 𝑧*l satisfies 𝑔−(𝑧*l ; ℎl, 𝑢l,ℛl

11) =
𝑔+(0; ℎr, 𝑢r,ℛr

11) = 𝑢r − a(ℎr, 𝑐r). By implicit function theorem, there is a continuously differentiable function
𝑧r = 𝑧r(𝑧l), 𝑧l ∈ [0, 𝑧*l ] such that 𝐺(𝑧l, 𝑧r(𝑧l)) = 0. Now

d𝑧r

d𝑧l
= −

𝜕𝐺
𝜕𝑧l

𝜕𝐺
𝜕𝑧r

< 0, 𝑧l ∈ [0, 𝑧*l ]

so that 𝑧r(𝑧l) is a decreasing function for 𝑧l ∈ [0, 𝑧*l ].
We have shown that 𝑧r : [0, 2) → [0, 2) is increasing function with 𝑧r(0) = 0, lim𝑧l→2 𝑧r(𝑧l) = 2, and

𝑧r : [0, 𝑧*l ] → [0, 2) is decreasing function with 𝑧r(0) ∈ (0, 2), 𝑧r(𝑧*l ) = 0, so they intersect at a unique point in
𝑧l ∈ (0, 2) which is the desired solution. �

5.1. Shock speed and jump conditions

Suppose that the 1-wave is a 1-shock; then ℎ*l = 𝑧lℎl and using (4.9)

ℛ*l11 = ℛ11(𝑧lℎl; ℎl,ℛl
11) =

2𝑧l − 1
2− 𝑧l

ℛl
11 +

1
2
𝑔ℎ2

l

(𝑧l − 1)3

2− 𝑧l
(5.7)

while (4.10) yields

𝑢* = 𝑢*l = 𝑢l −

√︃
(ℎ*l − ℎl)(p*l − pl)

ℎ*lℎl
· (5.8)

The 1-shock speed can be computed from the jump condition (3.3a)

𝑆l =
Jℎ𝑢K
JℎK

= {{𝑢}}+ {{ℎ}} J𝑢K
JℎK

=
𝑢l + 𝑢*

2
+

(︂
𝑧l + 1
𝑧l − 1

)︂
𝑢* − 𝑢l

2
· (5.9)
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Figure 4. Illustration of the functions 𝑔± under the condition (5.5).

The jump conditions (3.3a), (3.3b), (3.3d) have already been satisfied since they were used to determine the
Hugoniot curve. We can find 𝑣*l,ℛ*l12 from (3.3c), (3.3e) which is a linear system of equations{︃

ℎ*l(𝑢* − 𝑆l)𝑣*l +ℛ*l12 = 𝑎1(︀
1
2ℛ

*l
11 + 1

2ℎ*l𝑢*(𝑢* − 𝑆l) + 1
4𝑔ℎ*l(ℎ*l − ℎl)

)︀
𝑣*l +

(︀
𝑢* − 1

2𝑆l

)︀
ℛ*l12 = 𝑎2

(5.10)

where

𝑎1 = ℎl(𝑢l − 𝑆l)𝑣l +ℛl
12

𝑎2 = (𝑢l − 𝑆l)ℰl
12 +

1
2

(ℛl
11𝑣l +ℛl

12𝑢l)−
1
4
𝑔ℎl𝑣l(ℎ*l − ℎl).

The determinant of the 2× 2 matrix is

𝐷𝑒𝑡 = −1
2
ℛ*l11 +

1
2
ℎ*l(𝑢* − 𝑆l)

2 − 1
4
𝑔ℎ*l(ℎ*l − ℎl).

But using (5.9) and (5.8)

𝑢* − 𝑆l = −𝑢* − 𝑢l

𝑧l − 1
=

√︃
(p*l − pl)
(𝑧l − 1)ℎ*l

and hence, using (5.7), we get

𝐷𝑒𝑡 =
2− 𝑧l

2(𝑧l − 1)
ℛ*l11 −

ℛl
11

2(𝑧l − 1)
+

1
4
𝑔ℎ2

l(1 + 2𝑧l − 𝑧2
l ) = 𝑅l

11 +
1
2
𝑔ℎ2

l = pl > 0

and hence the 2 × 2 system has a unique solution. Once 𝑣*l,ℛ*l12 have been determined, we can compute ℛ*l22

from (3.3f)

ℰ*l22 =
1

𝑢* − 𝑆l
[(𝑢l − 𝑆l)ℰl

22 − (ℛ*l12𝑣*l −ℛl
12𝑣l)], ℛ*l22 = 2ℰ*l22 − ℎ*l𝑣

2
*l.

We have thus satisfied all the jump conditions and completely determined the 𝑈*l state. The jump conditions
for a 6-shock can be satisfied in a similar way to determine the 𝑈*r state.
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Shock speed. If the 1-wave is a shock, then 1 < 𝑧𝐿 < 2 and from (5.2)

p*l − pl =
𝑧l − 1
2− 𝑧l

[︂
3ℛl

11 +
1
2
𝑔ℎ2

l(3− 𝑧l)
]︂

(5.11)

and the shock speed is given by

𝑆l =
𝑧l𝑢* − 𝑢l

𝑧l − 1
from (5.9)

= 𝑢l −

√︃
𝑧l

2− 𝑧l

[︂
3𝒫l

11 +
1
2
𝑔ℎl(3− 𝑧l)

]︂
, from (5.8) and (5.11). (5.12)

Similarly, the speed of the 6-shock is given by

𝑆r = 𝑢r +

√︃
𝑧r

2− 𝑧r

[︂
3𝒫r

11 +
1
2
𝑔ℎr(3− 𝑧r)

]︂
.

Remark 5.3. In HLL-type solvers, it is necessary to have estimates of the slowest and fastest speeds arising
in the solution of the Riemann problem. If the 1-wave is a shock, then we would like a lower bound 𝑆l on this
speed

𝑆l ≥ 𝑆l := 𝑢l − sup
𝑧∈(1,2)

√︃
𝑧

2− 𝑧

[︂
3𝒫l

11 +
1
2
𝑔ℎl(3− 𝑧)

]︂
.

But the supremum is ∞ and we do not get a useful lower bound.

5.2. Resumed computation of the intermediate states.

For a Riemann problem, the left (𝑈l) and the right (𝑈r) states are input data.

– For given 𝑈l and 𝑈r, the system (5.3) is solved and 𝑧l, 𝑧r are obtained. Therefore,

ℎ*l = 𝑧lℎl,
ℎ*r = 𝑧rℎr,

𝑢* = 𝑔−(𝑧l; ℎl, 𝑢l,ℛl
11) = 𝑔+(𝑧r; ℎr, 𝑢r,ℛr

11),
p* = 𝑓(𝑧l; ℎl,ℛl

11) = 𝑓(𝑧r; ℎr,ℛr
11).

The variables ℎ and p are now defined for all intermediate states. Using the definition of the total pressure
p = 𝑔ℎ2

2 +ℛ11, we can get ℛ*l11 and ℛ*r11 .
– When 𝑧l ≤ 1 the 1-wave is a rarefaction. The associated Riemann invariants are used to compute 𝑣*l, ℛ*l12

and ℛ*l12. The internal structure of the rarefaction is obtained by integration of equations for the 1-wave
integral curve. Similarly, when 𝑧r ≤ 1, Riemann invariants for 6-rarefaction are used to compute 𝑣*r, ℛ*r12

and ℛ*r12 .
– When 𝑧l > 1 the 1-wave is a shock. Then, generalized jump conditions are used to compute 𝑆l, 𝑣*l, ℛ*l12 and
ℛ*l22. Similarly, when 𝑧r > 1, the generalized jump conditions are used to compute 𝑆r, 𝑣*r, ℛ*r12 and ℛ*r22 .

– At this step, 𝑈*l and 𝑈*r are defined. Using the appropriate Riemann invariants of the 2-wave, we get 𝑣**,
ℛ**12 and ℛ*l22. The invariants for the 5-wave give ℛ*r22 .

The computation of intermediate states is then completed.

5.3. Single shock solution

Given the left state (ℎl, 𝑢l, 𝑣l,𝒫l
11,𝒫l

12,𝒫l
22), let us find a right state that is connected by a 1-shock. We will

take a value of 𝑧 = ℎr/ℎl ∈ (1, 2). Then ℎr = 𝑧ℎl and from the Hugoniot curve, we obtain

ℛr
11 = (2ℎr − ℎl)ℛl

11/(2ℎl − ℎr)− 1
2
𝑔(ℎl − ℎr)3/(2ℎl − ℎr).
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Then the velocity and shock speed are given by (5.8), (5.12)

𝑢r = 𝑢l −

√︃
(ℎr − ℎl)(pr − pl)

ℎlℎr
, 𝑆 = 𝑢l −

√︃
𝑧

2− 𝑧

(︂
3𝒫l

11 +
1
2
𝑔ℎl(3− 𝑧)

)︂
where pl,pr are the total pressures. The remaining quantities can be computed using the procedure in
Section 5.1.

5.4. Vacuum states

A vacuum state refers to a zero value of water depth ℎ and is also called a dry state. For classical shallow
water model, Riemann problems with vacuum states can be solved with rarefaction waves [24,27]. The velocity
in the vacuum state is allowed to be non-zero which is not physically meaningful since there is no fluid in this
state, but we seek a mathematically correct solution. For the SSW model, let us consider a left non-vacuum state
(ℎl > 0, ℛl > 0) and a right vacuum state. In the vacuum state we also assume that the Reynolds tensor 𝒫r = 0
and hence also ℛr = 0. Let us first try to connect the states by a simple jump discontinuity moving at speed
𝑆. The jump condition of the ℎ equation yields 0− ℎl𝑢l = 𝑆(0− ℎl) so that the discontinuity speed is 𝑆 = 𝑢l.
From the jump condition of the 𝑥 momentum equation we get 0−

(︀
ℛl

11 + ℎl𝑢
2
l + 1

2𝑔ℎ2
l

)︀
= 𝑆(0−ℎl𝑢l) = −ℎl𝑢

2
l

so that ℛl
11 + 1

2𝑔ℎ2
l = 0, which implies that there is no solution.

We now try to connect the two states by a 1-rarefaction wave and make use of the invariants shown
in equation (4.1). The second invariant yields 𝑢r = 𝑢l + a(ℎl, 𝑐l) and the sixth invariant yields 𝑣r =
𝑣l + 2𝒫l

12
𝑔ℎl+2𝒫l

11
a(ℎl, 𝑐l). Similarly, if the left state is a vacuum state and the right state is a non-vacuum state,

they can be connected by a 6-rarefaction wave.
If an intermediate state is a vacuum state, say ℎ*l = 0 then necessarily all the intermediate states in Figure 2

must be vacuum states, i.e., ℎ*r = 0, since shear/contact waves cannot connect a vacuum state to a non-vacuum
state. The constancy of 𝑢 in the intermediate states means that

𝑢*l = 𝑢l + a(ℎl, 𝑐l) = 𝑢r − a(ℎr, 𝑐r) = 𝑢*r

i.e., we have equality in 5.5. The functions 𝑔± in this case are shown in Figure 5a which shows that the solution
of 𝐺(𝑧l, 𝑧r) = 0 is 𝑧l = 𝑧r = 0. On the other hand if 𝑢r − 𝑢l > a(ℎl, 𝑐l) + a(ℎr, 𝑐r) the functions 𝑔± are
shown in Figure 5b and there is no solution to 𝐺(𝑧l, 𝑧r) = 0. But we can still construct a solution with a
1-rarefaction and 6-rarefaction with an intermediate vacuum state, but it will not be possible to find a proper
solution that satisfies all the structure of the intermediate states as shown in Figure 2, since 𝑢*l ̸= 𝑢*r, see
Figure 6. However the momentum is constant and zero in the intermediate state which may be considered as
a solution that satisfies all the jump conditions, but the velocity in the intermediate states is not well defined.
In this sense, the solution of the Riemann problem can be extended to include vacuum states. We note that
the solutions described in the next Theorem are admissible weak solutions, since they are continuous in ℎ, ℎ𝑣,
𝐸𝑖𝑗 , variables and they reduce to smooth solutions in the intermediate regions (the 2 rarefaction waves and the
vacuum states). We summarise the solution with vacuum states in the following theorem.

Theorem 5.4. (1) If the left state is non-vacuum state and the right state is a vacuum state such that 𝑢l +
a(ℎl, 𝑐l) = 𝑢r and 𝑣r = 𝑣l + 2𝒫l

12
𝑔ℎl+2𝒫l

11
a(ℎl, 𝑐l), then they can be connected by a 1-rarefaction wave.

(2) If the left state is a vacuum state and the right state is a non-vacuum state such that 𝑢l = 𝑢r − a(ℎr, 𝑐r)
and 𝑣l = 𝑣r − 2𝒫r

12
𝑔ℎr+2𝒫r

11
a(ℎr, 𝑐r), then they can be connected by a 6-rarefaction wave.

(3) If 𝑢r−𝑢l = a(ℎl, 𝑐l)+a(ℎr, 𝑐r), then they can be connected with a 1-rarefaction and 6-rarefaction wave with
an intermediate vacuum state and velocity 𝑢* = 𝑢l + a(ℎl, 𝑐l) = 𝑢r − a(ℎr, 𝑐r). (4) If 𝑢r − 𝑢l > a(ℎl, 𝑐l) +
a(ℎr, 𝑐r), then they can be connected with a 1-rarefaction and 6-rarefaction wave with an intermediate
vacuum state, see Figure 6.
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Figure 5. Illustration of the functions 𝑔± leading to intermediate vacuum state in the Riemann
problem. (a) 𝑢r − 𝑢l = a(ℎl, 𝑐l) + a(ℎr, 𝑐r), (b) 𝑢r − 𝑢l > a(ℎl, 𝑐l) + a(ℎr, 𝑐r).

Figure 6. Shear Shallow Water (SSW) model: Wave structure of the 1-D Riemann problem
in presence of vacuum, when 𝑢r − 𝑢l ≥ a(ℎl, 𝑐l) + a(ℎr, 𝑐r). Formally, without giving it a
physical meaning because the depth and momentum are zero, we can define the velocities of
intermediate states as : 𝑢*l = 𝑢l + a(ℎl, 𝑐l), 𝑣*l = 𝑣l + 2𝒫l

12
𝑔ℎl+2𝒫l

11
a(ℎl, 𝑐l), 𝑢*r = 𝑢r − a(ℎr, 𝑐r)

and 𝑣*r = 𝑣r − 2𝒫r
12

𝑔ℎr+2𝒫r
11

a(ℎr, 𝑐r).

6. Brief description of path conservative schemes

We refer the reader to Parés [23] for a good general introduction to the concept of path conservative numerical
schemes for non-conservative systems, and to Chandrashekar et al. [9] for a discussion specific to the present
model. The Riemann problem is the building block of a finite volume method and this approach can be used
for non-conservative systems also [18,23]. The main idea is to split the fluctuation into two parts corresponding
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to left moving and right moving waves arising in the Riemann solution, where the fluctuation is defined as

𝐷(𝑈l, 𝑈r) =
∫︁ 1

0

𝐴(Ψ(𝜉; 𝑈l, 𝑈r))
dΨ
d𝜉

(𝜉; 𝑈l, 𝑈r)d𝜉 = 𝐷−(𝑈l, 𝑈r) + 𝐷+(𝑈l, 𝑈r).

The splitting of the fluctuation can be performed using a Roe-type Riemann solver or HLL-type Riemann
solver, the latter being the approach taken in the present work and following Chandrashekar et al. [9]. HLL-
type methods model the Riemann solution by simple waves and require estimation of the smallest and largest
wave speed arising in the Riemann problem. Assume that there are 𝑚 simple waves in the approximate Riemann
solution with 𝑚−1 intermediate states. Let us denote the wave speeds as 𝑆𝑗 , 𝑗 = 1, . . . ,𝑚 and the intermediate
states as 𝑈*

𝑗 , 𝑗 = 1, . . . ,𝑚− 1 with 𝑈*
0 = 𝑈l and 𝑈*

𝑚 = 𝑈r. The fluctuation splitting is given by

𝐷±(𝑈l, 𝑈r) =
𝑚∑︁

𝑗=1

𝑆±𝑗
(︀
𝑈*

𝑗+1 −𝑈*
𝑗

)︀
where

𝑆− = min(0, 𝑆), 𝑆+ = max(0, 𝑆).

The intermediate states are obtained by satisfying the Rankine–Hugoniot conditions across all the waves. The
approximate Riemann solvers of different complexity based on the number of waves including in the model can
be derived. In Chandrashekar et al. [9], two wave HLL solver, three wave HLLC3 solver and five wave HLLC5
approximate Riemann solvers have been constructed by using the generalized jump conditions. The HLL solver
contains only the slowest and fastest waves in its model; the HLLC3 solver also includes the contact wave while
the HLLC5 solver includes all five waves.

Let us consider a partition of the domain into disjoint cells of size ∆𝑥. Let 𝑈𝑛
𝑗 denote the approximation of

the cell average value in the 𝑗th cell at time 𝑡 = 𝑡𝑛. The first order scheme is given by

𝑈𝑛+1
𝑗 = 𝑈𝑛

𝑗 −
∆𝑡

∆𝑥

(︁
𝐷+,𝑛

𝑗− 1
2

+ 𝐷−,𝑛

𝑗+ 1
2

)︁
+ ∆𝑡𝑆

(︀
𝑈𝑛+𝜃

𝑗

)︀
, 𝐷±,𝑛

𝑗+ 1
2

= 𝐷±(︀
𝑈𝑛

𝑗 , 𝑈𝑛
𝑗+1

)︀
.

For 𝜃 = 0 we obtain an explicit scheme and for 𝜃 = 1 we obtain a semi-implicit scheme; however the coupling
in the semi-implicit scheme is only local to the cell. An exact solution process for the semi-implicit scheme is
explained in the Appendix of Chandrashekar et al. [9]. If the system is conservative, i.e., 𝐴 = 𝐹 ′(𝑈) for some
𝐹 , then the above scheme can be written in conservation form with some numerical flux function [23]. Such a
scheme can be made higher order accurate using a MUSCL-Hancock approach as in Chandrashekar et al. [9] or
using a method of lines approach combined with a high order Runge-Kutta scheme. The numerical computations
used in this work are based on a MUSCL-Hancock approach as explained in Chandrashekar et al. [9].

6.1. Estimation of wave speeds

The approximate Riemann solver requires an estimate of the slowest and fastest wave speeds which should
enclose the exact wave speeds in order for the entropy condition to be satisfied. One commonly used method to
estimate the wave speeds in the Riemann problem uses a combination of the left and right states and the Roe
average state [14]; following this idea we can use the following speed estimates

𝑆HLL
l = min

{︀
𝜆1(𝑄l), 𝜆1

(︀
𝑄̄

)︀}︀
, 𝑆HLL

r = max
{︀
𝜆6(𝑄r), 𝜆6

(︀
𝑄̄

)︀}︀
, 𝑄̄ =

1
2

(𝑄l + 𝑄r)

where 𝑄 represents the variables (ℎ, 𝑣,ℛ) and we use the arithmetic average instead of the Roe average. If 𝑆𝑒𝑥
l ,

𝑆𝑒𝑥
r denote the exact wave speeds, then we require that 𝑆HLL

l ≤ 𝑆𝑒𝑥
l and 𝑆HLL

r ≥ 𝑆𝑒𝑥
r , but this is not guaranteed

to hold with the above estimates. As an example, consider the dam break problem from Section 7.1 for which
the slowest and fastest speeds are

𝑆𝑒𝑥
l = −0.44328320518603004, 𝑆𝑒𝑥

r = 0.43554139386439333
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whereas the speed estimate obtained from the above formulae are

𝑆HLL
l = −0.44328320518603004, 𝑆HLL

r = 0.38399218742052554.

We see that fastest speed 𝑆r is very much under estimated and this may cause numerical problems like loss of
positivity and violation of entropy condition. How to obtain better estimates of the slowest and fastest speeds
without using the exact Riemann solution is an open question. In the present work we use a simple way to
over-estimate the speeds by using both the states to estimate the speeds as follows

𝑆HLL*

l = min
{︀
𝜆1(𝑄l), 𝜆1(𝑄r), 𝜆1

(︀
𝑄̄

)︀}︀
, 𝑆HLL*

r = max
{︀
𝜆6(𝑄l), 𝜆6(𝑄r), 𝜆6

(︀
𝑄̄

)︀}︀
. (6.1)

For the dam break problem, this yields

𝑆HLL*

l = −0.44328320518603004, 𝑆HLL*

r = 0.44328320518603004.

Now the fastest speeds is also estimated in such a way that the numerical Riemann fan bounds the exact
Riemann fan. We use the above estimate in all the approximate Riemann solvers used in this study.

7. Exact solutions compared with approximate Riemann solvers

In the next few sections, we compare the exact solutions with numerical solutions obtained with approximate
Riemann solvers using a second order accurate MUSCL-Hancock scheme [9]. Unless stated otherwise, we use
the speed estimates given by (6.1) in all the test cases. We show results obtained from second order numerical
scheme in most of the test cases since we do not observe any qualitative difference between first and second
order results, but in some test cases, where significant differences are found, we show first order results also. In
all the tests, the bottom topography is constant and the source term 𝑆 is absent, since we want to study the
purely hyperbolic problem.

7.1. Dam break problem

We consider here the test case used in Bhole et al. [3], Gavrilyuk et al. [15] and Chandrashekar et al. [9]. It
is a Riemann problem where, initially, the velocity is zero every where, the stress tensor is constant and only
the initial depth has a jump,

ℎ =

{︃
0.02, 𝑥 < 0.5

0.01, 𝑥 > 0.5
, 𝑢 = 0, 𝑣 = 0, 𝒫11 = 10−4, 𝒫12 = 0, 𝒫22 = 10−4.

For this Riemann data, we can compute the associated analytical solution. Numerical approximations are
performed with HLL and HLLC (3-waves and 5-waves) Riemann solvers (see [9] for details). Figure 7 shows
that the exact and the approximate solutions are almost comparable, except for the shock front. The HLL and
HLLC Riemann solvers are converging to the same limit. However, in accordance with Chandrashekar et al.
[9], the numerical limit does not match with the exact solution as seen in Figure 8. This is probably related
to the fact that 𝒫11 is too small; initially we have 𝒫11 = 10−4 and c =

√
𝒫11 = 10−2. Indeed, as c goes

to zero, the shear and the contact waves approach one another and they coincide in the limit of 𝒫11 = 0.
The Riemann solvers used here are not designed to get the proper behaviour at this asymptotic case. The
approximate Riemann solvers used here are not designed to strictly conserve the total energy (2.4). As shown
in Theorem 3.1, the jump condition of total energy equation is automatically satisfied by the jump conditions
of the SSW model. The approximate Riemann solver is based on satisfying these jump conditions and we can
expect approximate conservation in the numerical scheme also. To examine the conservation of total energy in
the domain, we plot it as a function of time in Figure 10, where the ratio of total energy at time 𝑡 to that at
initial time is shown. We see that it is not strictly conserved by the numerical scheme but there is a dissipation
of this energy, with the error at the final time being about 0.15% on the coarse mesh. At the PDE level, the
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Figure 7. Dam break test case with 200 cells and second order approximations. Comparison
between exact and numerical solutions obtained with HLL (left) and HLLC5 (right) schemes.

Figure 8. Dam break test case with 2000 cells and second order approximations. Comparison
between exact and numerical solutions obtained with HLL (left) and HLLC5 (right) schemes.

total energy is conserved for inviscid problems (𝒟 = 0). At the discrete level, this property is satisfied if we solve
the conservative form of the total energy, which is not the case here. Nevertheless, it is possible to strengthen
this conservation law, either by using an augmented system [15] or by redistributing the energy conservation
defect on the pressure tensor as done in Busto et al. [4].

A modified test case has been designed in order to keep 𝒫11 away from zero. The Riemann data is given by

ℎ =

{︃
0.02, 𝑥 < 0.5

0.01, 𝑥 > 0.5
, 𝑢 = 0, 𝑣 = 0, 𝒫11 = 4× 10−2, 𝒫12 = 0, 𝒫22 = 4× 10−2.

In this modified context the numerical solution does not contain any more defect in the shock front propagation
with respect to the exact solution, even at low numerical resolution as shown in Figure 9. The convergence to
the analytical solution is also observed in Figures 11 and 9. Thus it seems that we are facing here a lack of
asymptotic preserving property of the numerical schemes when 𝒫11 goes to zero. At this asymptotic, the shock
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Figure 9. Modified dam break test case with 200 cells and second order approximations.
Comparison between exact and numerical solutions obtained with HLL (left) and HLLC5 (right)
schemes.

Figure 10. Total energy in the domain as a function of time for dam break problem using
HLLC5 scheme.

front seems to be not accurately resolved with the current schemes, when compared with the designed exact
solution. Note that disagreement only occurs at the shock front and elsewhere the numerical approximations
converge to the analytical solution. The convergence is observed even at the shock front when the value of 𝒫11

is not too small. Similar convergence is also observed if we use 𝒫11 = 4× 10−2, 𝒫12 = 0 and 𝒫22 = 10−8.
We also test another variant of the modified dam break problem, where 𝒫12 is set to a small non zero value,

ℎ =

{︃
0.02, 𝑥 < 0.5

0.01, 𝑥 > 0.5
, 𝑢 = 0, 𝑣 = 0, 𝒫11 = 4× 10−2, 𝒫12 = 10−8, 𝒫22 = 4× 10−2.

The numerical approximation, even on a coarse mesh as shown in Figure 14, fit very well with the designed exact
solution. With this modification, the profile of 𝒫12 shows all the five waves of the SSW system. As expected,
the intermediate waves are better resolved by the HLLC schemes.
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Figure 11. Modified dam break test case with 2000 cells and second order approximations.
Comparison between exact and numerical solutions obtained with HLL (left) and HLLC5 (right)
schemes.

Figure 12. Converged solutions for dam break (left) and modified dam break (right) problems.
Numerical solutions are shown with 10 000 cells.

As shown in Figure 12, the mesh convergence is observed for the three Riemann solvers used, both for the
dam break and for the modified dam break problems. Indeed, the different numerical approaches converge
asymptotically to the same numerical solution, as the mesh becomes more and more refined. Nevertheless, for
the initial dam break problem, the numerical solutions converge to a different solution than the one obtained
analytically as seen in the left figure; with the HLL solution being slightly different from the HLLC solvers. On
the other hand, for the modified dam break problem shown on the right, where the determinant of 𝒫 is not as
close to zero, the numerical solutions overlap closely with the analytical solution. However, there is still a small
difference in the 𝒫11 values around the shock as shown in the inset figure. The convergence of the 𝐿1 errors with
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Figure 13. Convergence of 𝐿1 error norm for dambreak problems using HLLC5 scheme

Figure 14. Modified dam break with initially 𝒫12 = 10−8 in the entire domain. Mesh of
200 cells and second order approximations. Comparison between exact and numerical solutions
obtained with HLL (left) and HLLC5 (right) schemes.

respect to the exact solution are shown in Figure 13 where we see that both test cases converge to a solution
different from the exact solution. The modified dam break case converges to smaller errors but eventually the
convergence stalls, which is expected since we have already observed this in Figure 12.

7.2. Five waves dam break problem

The initial condition for the Riemann problem is given in the following table.

ℎ 𝑣1 𝑣2 𝒫11 𝒫12 𝒫22

𝑥 < 0.5 0.01 0.1 0.2 4× 10−2 10−8 4× 10−2

𝑥 > 0.5 0.02 0.1 −0.2 4× 10−2 10−8 4× 10−2
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Figure 15. Five waves dam break test case with 200 cells and second order approximations.
Comparison between exact and numerical solutions obtained with HLL (left) and HLLC (right)
schemes.

Figure 16. Five waves dam break test case with 2000 cells and second order approximations.
Comparison between exact and numerical solutions obtained with HLL (left) and HLLC (right)
schemes.

The initial data is like a dam break problem but with some initial shear 𝑣 and a non-zero normal velocity
𝑢. The results are shown in Figures 15 and 16 at time 𝑡 = 0.5 units. The solution shows five waves including
1-shock and 6-rarefaction wave. All the waves are captured by both Riemann solvers even on the coarse mesh
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Figure 17. Shear test case with 200 cells and second order approximations. Comparison
between exact and numerical solutions obtained with HLL (left) and HLLC5 (right) schemes.

Figure 18. Single moving shock test case on 2000 cells.

of 200 cells. The numerical solution and the location of the waves agrees well with the exact solution, and the
numerical results approach the exact solution on the finer mesh as seen in Figure 16. The values of 𝒫 used are
larger as in the case of the modified dam break problem and this leads to good agreement between the numerical
and exact solutions, which was observed in the previous dam break problem.

7.3. Shear waves problem

The initial condition for the Riemann problem is given in the following table.

ℎ 𝑣1 𝑣2 𝒫11 𝒫12 𝒫22

𝑥 < 0.5 0.01 0.0 0.2 10−4 0.0 10−4

𝑥 > 0.5 0.01 0.0 −0.2 10−4 0.0 10−4
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Figure 19. Single stationary shock test case on 2000 cells using approximate speed (left) and
exact speeds (right).

The result is shown in Figure 17 at time 𝑡 = 10 on a mesh of 200 cells, where we see two shear waves in
the solution. The numerical solution including the location of the waves agrees well with the exact solution.
The HLLC5 solver gives a better resolution of the shear waves since they are included in the approximate
wave model. However, there are spurious spikes found at the center in 𝒫22 where there is a stationary contact
discontinuity. This behavior is similar to what is usually observed with numerical solution of some Riemann
problems for the compressible Euler flows.

7.4. Single shock wave problem

In this test case, we use a Riemann data for which the exact solution consists of a single shock wave, as
described in Section 5.3. The initial condition is given by

ℎ 𝑣1 𝑣2 𝒫11 𝒫12 𝒫22

𝑥 < 0.5 0.02 0 0 10−4 0 10−4

𝑥 > 0.5 0.03 −0.22169799277395363 0 0.016616666666666658 0 10−4

Figure 18 shows the numerical solution obtained with the HLLC5 solver on a mesh of 2000 cells. While the
shock location matches closely, we see that the numerical solutions exhibit an extra contact wave which is not
present in the exact solution. All solvers exhibit this behavior and this is seen even under grid refinement. This
situation is similar to the dambreak problem where the solution of 𝒫11 does not agree with the exact solution.

We next consider the same problem but solve it in a frame where the exact shock is stationary. The corre-
sponding Riemann data is given by

ℎ 𝑣1 𝑣2 𝒫11 𝒫12 𝒫22

𝑥 < 0.5 0.02 0.6650939783218609 0 10−4 0 10−4

𝑥 > 0.5 0.03 0.44339598554790727 0 0.016616666666666658 0 10−4

We solve this problem using the speed estimates given in (6.1) and also using the exact speeds obtained from
the exact Riemann solver. Figure 19 shows the two sets of results on a mesh of 2000 cells; with the approximate
speeds, we see a similar wave pattern as in the moving shock case, but there are many dispersive waves seen
between the shock and the contact, as seen in the bottom figure which shows a zoomed view of 𝒫11. When the
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Figure 20. Single stationary shock test case on 10 000 cells using approximate speed (left) and
exact speeds (right).

exact speeds are used, as shown in the right of Figure 19, we see a better agreement with the exact solution but
there are still some extra waves present in the numerical solution. Figure 20 shows the results obtained with
a refined mesh of 10 000 cells. The numerical solver based on approximated wave speeds behaves almost as a
dispersive shock that is usually associated to modulated wave-train. It seems that, as soon as the shock cannot
be numerically resolved without any dissipation, the numerical solution can be different from the analytical
one. In other words, the shocks obtained with dissipative numerical schemes and those obtained analytically
with the same generalized jump conditions, do not perfectly coincide. This problem of convergence failure has
been analyzed in Castro et al. [5] using the modified equation. It was shown that this non-intuitive behavior
is due to numerical viscosity and/or numerical dispersion. Therefore, as far as the numerical scheme involves
some dissipation, they will converge to a solution that depend, not only on the chosen path family, but also and
especially on the specific form of its dissipation terms, whereas the analytical solution will be determined only
by the choice of the path family. This discrepancy between the numerical and analytical solutions is one of the
peculiarities of non-conservative systems. The results we obtain here, plotted for example on Figures 12, 19–21,
support the overall trend described in Castro et al. [5]. The two first order results obtained with approximate
and exact wave speeds almost coincide in Figure 21 and we cannot visually distinguish them. However, contrary
to the first order accurate scheme in Figure 21, when the second order method is used in Figures 19–21, we can
observe on the variable 𝒫11 a wave train, going to the right, generated at the location of the stationary shock.
The structure of this wave train is different depending on whether the wave velocities used in the Riemann
solver are exact or approximate. This suggests that, in this context, the numerical diffusion becomes residual
and we probably observe here a behavior specific to numerical schemes whose modified equations are dominated
by dispersion [16]. This trend will be analyzed and quantified in future work.

7.5. Single contact wave problem

The Riemann data for this problem is given by

ℎ 𝑣1 𝑣2 𝒫11 𝒫12 𝒫22

𝑥 < 0.5 0.02 0.1 0 10−4 0 10−4

𝑥 > 0.5 0.01 0.1 0 0.014735 0 2× 10−4
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Figure 21. Single stationary shock test case using 10 000 cells; first and second order schemes
using approximate and exact speeds.

which gives rise to a single contact wave in the exact solution. Since the water depth ℎ has a jump, the non-
conservative terms are non-zero in this case. Figure 22 shows the solution at time 𝑡 = 2.5 obtained using
the three approximate Riemann solvers on a mesh of 2000 cells. The solution and the location of the contact
wave is captured well by all the numerical schemes. The HLL solver introduces more numerical dissipation
since it does not explicitly model the contact wave, while both HLLC3 and HLLC5 solvers include this wave
in their model and give very similar results. Contrary to the simple shock case, the numerical and analytical
contact discontinuity coincide perfectly, despite the numerical approximation of the path (several points in the
numerical discontinuity). Indeed, the contact discontinuity is a linearly degenerate wave and its associated states
are defined by the Riemann invariants that we have obtained explicitly and independently of the path.
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Figure 22. Single contact test case on 2000 cells. Comparison of three different Riemann
solvers with the exact solution.

8. Summary and conclusions

We have derived the exact solution of the Riemann problem for the non-conservative model of shear shallow
water flows. The PDE is written in an almost conservative form that is very close to the 10-moment model
for gas dynamics and admits a convex entropy function. The notion of solution is based on path conservative
approach for which a path has to be assumed. In the numerical approaches, a linear path in the space of
conserved variables is usually assumed and we derive the exact solution for this linear path. Several test cases
are given and the numerical results are compared with the exact solution. In some problems as in dam break
case, we see that the numerical solution of 𝒫 does not agree with the exact solution, though wave locations
are predicted correctly. When the stress levels 𝒫 are not too small, the agreement is much better as seen in
the modified dam break problem. In the case of single shock problem, the numerical solutions produce an extra
contact wave; the solutions depend sensitively on the choice of the speed estimates used in the HLL solvers.
When the exact speeds are used for the stationary shock problem, there is better agreement but we observe
several other waves which may indicate that the numerical strategies in this context are, locally around the
shocks, dominated by dispersion rather than dissipation.

We must also remember that the exact solution depends on the choice of the path and even when the path
is fixed, the numerical shocks my be different to the exact one. Nevertheless, apart from the shocks profile for
which significant differences are observed, for all other waves (contact discontinuity, shear waves and rarefaction
waves) the numerical solution converges well to the exact solution. The difficulties observed for the shock waves
raise the problem of the stability of the shocks in the framework of non-conservative hyperbolic equations, for
a given path (approximated Rankine Hugoniot conditions). To give a solid explanation, it will probably be
necessary to carry out a thorough study of the stability of non-conservative shocks, which is beyond the scope
of this paper.

Appendix A. Numerical solution of root finding problem

The solution of (5.3) is obtained numerically by applying a Newton method. The algorithm for the Newton
method is as follows. Define 𝑧 = (𝑧l, 𝑧r) and 𝐻(𝑧) = [𝐹 (𝑧), 𝐺(𝑧)]⊤. Set the tolerance 𝜖 = 10−6. We start at the
point 𝑧 = (1, 1).
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(1) If |𝐹 (𝑧)| < 𝜖 and |𝐺(𝑧)| < 𝜖, then stop.
(2) Solve 𝐻 ′(𝑧)∆𝑧 = −𝐻(𝑧).
(3) Set 𝑧l = 𝑧l + 1

2𝑛 ∆𝑧l with smallest 𝑛 ∈ {0, 1, 2, . . .} such that 𝑧l ∈ (0, 2).
(4) Set 𝑧r = 𝑧r + 1

2𝑛 ∆𝑧r with smallest 𝑛 ∈ {0, 1, 2, . . .} such that 𝑧r ∈ (0, 2).
(5) Go to Step 1.
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