On Lyapunov stability of positive and conservative time integrators and application to second order modified Patankar–Runge–Kutta schemes
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 3, pp. 1053-1080

Since almost twenty years, modified Patankar–Runge–Kutta (MPRK) methods have proven to be efficient and robust numerical schemes that preserve positivity and conservativity of the production-destruction system irrespectively of the time step size chosen. Due to these advantageous properties they are used for a wide variety of applications. Nevertheless, until now, an analytic investigation of the stability of MPRK schemes is still missing, since the usual approach by means of Dahlquist’s equation is not feasible. Therefore, we consider a positive and conservative 2D test problem and provide statements usable for a stability analysis of general positive and conservative time integrator schemes based on the center manifold theory. We use this approach to investigate the Lyapunov stability of the second order MPRK22(α) and MPRK22ncs(α) schemes. We prove that MPRK22(α) schemes are unconditionally stable and derive the stability regions of MPRK22ncs(α) schemes. Finally, numerical experiments are presented, which confirm the theoretical results.

DOI : 10.1051/m2an/2022031
Classification : 65L05, 65L06, 65L20
Keywords: Modified Patankar–Runge–Kutta schemes, production-destruction systems, unconditionally positive and conservative schemes, Lyapunov stability analysis, center manifold theorem for maps
@article{M2AN_2022__56_3_1053_0,
     author = {Izgin, Thomas and Kopecz, Stefan and Meister, Andreas},
     title = {On {Lyapunov} stability of positive and conservative time integrators and application to second order modified {Patankar{\textendash}Runge{\textendash}Kutta} schemes},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1053--1080},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {3},
     doi = {10.1051/m2an/2022031},
     mrnumber = {4420893},
     zbl = {1492.65191},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2022031/}
}
TY  - JOUR
AU  - Izgin, Thomas
AU  - Kopecz, Stefan
AU  - Meister, Andreas
TI  - On Lyapunov stability of positive and conservative time integrators and application to second order modified Patankar–Runge–Kutta schemes
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2022
SP  - 1053
EP  - 1080
VL  - 56
IS  - 3
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2022031/
DO  - 10.1051/m2an/2022031
LA  - en
ID  - M2AN_2022__56_3_1053_0
ER  - 
%0 Journal Article
%A Izgin, Thomas
%A Kopecz, Stefan
%A Meister, Andreas
%T On Lyapunov stability of positive and conservative time integrators and application to second order modified Patankar–Runge–Kutta schemes
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2022
%P 1053-1080
%V 56
%N 3
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2022031/
%R 10.1051/m2an/2022031
%G en
%F M2AN_2022__56_3_1053_0
Izgin, Thomas; Kopecz, Stefan; Meister, Andreas. On Lyapunov stability of positive and conservative time integrators and application to second order modified Patankar–Runge–Kutta schemes. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 3, pp. 1053-1080. doi: 10.1051/m2an/2022031

[1] A. I. Ávila, S. Kopecz and A. Meister, A comprehensive theory on generalized BBKS schemes. Appl. Numer. Math. 157 (2020) 19–37. | MR | Zbl | DOI

[2] A. I. Ávila, G. J. González, S. Kopecz and A. Meister, Extension of modified Patankar-Runge-Kutta schemes to nonautonomous production-destruction systems based on Oliver’s approach. J. Comput. Appl. Math. 389 (2021) 113350. | MR | Zbl | DOI

[3] J. Benz, A. Meister and P. A. Zardo, A positive and conservative second order finite volume scheme applied to a phosphor cycle in canals with sediment. In: PAMM: Proceedings in Applied Mathematics and Mechanics. Vol 7. Wiley Online Library (2007) 2040045–2040046. | DOI

[4] J. Benz, A. Meister and P. A. Zardo, A conservative, positivity preserving scheme for advection-diffusion-reaction equations in biochemical applications. In: Hyperbolic Problems: Theory, Numerics and Applications. Vol. 67.2 of Proceedings of Symposia in Applied Mathematics, edited by E. Tadmor, J.-G. Liu and A. Tzavaras. American Mathematical Society, Providence, Rhode Island (2009) 399–408. | MR | Zbl

[5] S. Blanes, A. Iserles and S. Macnamara, Positivity-preserving methods for population models. Preprint (2021). | arXiv

[6] L. Bonaventura and A. Della Rocca, Unconditionally strong stability preserving extensions of the TR-BDF2 method. J. Sci. Comput. 70 (2017) 859–895. | MR | Zbl | DOI

[7] H. Burchard, E. Deleersnijder and A. Meister, A high-order conservative Patankar-type discretisation for stiff systems of production–destruction equations. Appl. Numer. Math. 47 (2003) 1–30. | MR | Zbl | DOI

[8] H. Burchard, E. Deleersnijder and A. Meister, Application of modified Patankar schemes to stiff biogeochemical models for the water column. Ocean Dyn. 55 (2005) 326–337. | DOI

[9] H. Burchard, K. Bolding, W. Kühn, A. Meister, T. Neumann and L. Umlauf, Description of a flexible and extendable physical–biogeochemical model system for the water column. J. Marine Syst. 61 (2006) 180–211. | DOI

[10] J. Carr, Applications of Centre Manifold Theory. Vol. 35 of Applied Mathematical Sciences. Springer-Verlag, New York-Berlin (1981). | MR | Zbl | DOI

[11] M. Ciallella, L. Micalizzi, P. Öffner and D. Torlo, An arbitrary high order and positivity preserving method for the shallow water equations. Preprint (2021). | arXiv | MR

[12] P. Deuflhard and F. Bornemann, Scientific Computing with Ordinary Differential Equations. Translated from the 1994 German original by Werner C. Rheinboldt. Vol. 42 of Texts in Applied Mathematics. Springer-Verlag, New York (2002) | MR | Zbl

[13] L. Formaggia and A. Scotti, Positivity and conservation properties of some integration schemes for mass action kinetics. SIAM J. Numer. Anal. 49 (2011) 1267–1288. | MR | Zbl | DOI

[14] O. Gressel, Toward realistic simulations of magneto-thermal winds from weakly-ionized protoplanetary disks. J. Phys. Conf. Ser. 837 (2017) 012008. | DOI

[15] I. Hense and A. Beckmann, The representation of cyanobacteria life cycle processes in aquatic ecosystem models. Ecol. Modell. 221 (2010) 2330–2338. | DOI

[16] I. Hense and H. Burchard, Modelling cyanobacteria in shallow coastal seas. Ecol. Modell. 221 (2010) 238–244. | DOI

[17] J. Huang and C.-W. Shu, Positivity-preserving time discretizations for production-destruction equations with applications to non-equilibrium flows. J. Sci. Comput. 78 (2019) 1811–1839. | MR | Zbl | DOI

[18] J. Huang, W. Zhao and C.-W. Shu, A third-order unconditionally positivity-preserving scheme for production-destruction equations with applications to non-equilibrium flows. J. Sci. Comput. 79 (2019) 1015–1056. | MR | Zbl | DOI

[19] G. Iooss, Bifurcation of Maps and Applications. Elsevier (1979). | MR | Zbl

[20] T. Izgin, S. Kopecz and A. Meister, Recent developments in the field of modified Patankar–Runge–Kutta–methods. In: PAMM: Proceedings in Applied Mathematics and Mechanics. Wiley Online Library (2021).

[21] J. S. Klar and J. P. Mücket, A detailed view of filaments and sheets in the warm-hot intergalactic medium. Astron. Astrophys. 522 (2010) A114. | Zbl | DOI

[22] S. Kopecz and A. Meister, On order conditions for modified Patankar–Runge–Kutta schemes. Appl. Numer. Math. 123 (2018) 159–179. | MR | Zbl | DOI

[23] S. Kopecz and A. Meister, Unconditionally positive and conservative third order modified Patankar–Runge–Kutta discretizations of production–destruction systems. BIT Numer. Math. 58 (2018) 691–728. | MR | Zbl | DOI

[24] S. Kopecz and A. Meister, On the existence of three-stage third-order modified Patankar–Runge–Kutta schemes. Numer. Algorithms 81 (2019) 1473–1484. | MR | Zbl | DOI

[25] J. E. Marsden and M. Mccracken, The Hopf Bifurcation and its Applications. Vol 19. Springer-Verlag (1976). | MR | Zbl | DOI

[26] A. Martiradonna, G. Colonna and F. Diele, GeCo: geometric conservative nonstandard schemes for biochemical systems. Appl. Numer. Math. 155 (2020) 38–57. | MR | Zbl | DOI

[27] A. Meister and J. Benz, Phosphorus Cycles in Lakes and Rivers: Modeling, Analysis, and Simulation. Springer Berlin Heidelberg, Berlin, Heidelberg (2010) 713–738. | Zbl

[28] K. S. Miller, On the inverse of the sum of matrices. Math. Mag. 54 (1981) 67–72. | MR | Zbl | DOI

[29] S. Nüßlein, H. Ranocha and D. I. Ketcheson, Positivity-preserving adaptive Runge-Kutta methods. Commun. Appl. Math. Compu. Sci. 16 (2021) 155–179. | MR | Zbl | DOI

[30] P. Öffner and D. Torlo, Arbitrary high-order, conservative and positivity preserving Patankar-type deferred correction schemes. Appl. Numer. Math. 153 (2020) 15–34. | MR | Zbl | DOI

[31] S. Ortleb and W. Hundsdorfer, Patankar-type Runge-Kutta schemes for linear PDEs. AIP Conf. Proc. 1863 (2017) 320008. | DOI

[32] G. Osipenko, Center Manifolds, chapter 5. Springer New York, New York, NY (2009) 936–951.

[33] B. Schippmann and H. Burchard, Rosenbrock methods in biogeochemical modelling – a comparison to Runge-Kutta methods and modified Patankar schemes. Ocean Model. 37 (2011) 112–121. | DOI

[34] K. Semeniuk and A. Dastoor, Development of a global ocean mercury model with a methylation cycle: outstanding issues. Global Biogeochem. Cycles 31 (2017) 400–433. | DOI

[35] A. Stuart and A. R. Humphries, Dynamical Systems and Numerical Analysis. Vol 2. Cambridge University Press (1998). | Zbl | MR

[36] A. Warns, I. Hense and A. Kremp, Modelling the life cycle of dinoflagellates: a case study with Biecheleria baltica. J. Plankton. Res. 35 (2013) 379–392. | DOI

[37] S. Wei and R. J. Spiteri, Qualitative property preservation of high-order operator splitting for the SIR model. Appl. Numer. Math. 172 (2022) 332–350. | MR | Zbl | DOI

Cité par Sources :