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ON LYAPUNOYV STABILITY OF POSITIVE AND CONSERVATIVE TIME
INTEGRATORS AND APPLICATION TO SECOND ORDER MODIFIED
PATANKAR-RUNGE-KUTTA SCHEMES

THOMAS I[ZGIN*®, STEFAN KOPECZ AND ANDREAS MEISTER

Abstract. Since almost twenty years, modified Patankar-Runge-Kutta (MPRK) methods have
proven to be efficient and robust numerical schemes that preserve positivity and conservativity of
the production-destruction system irrespectively of the time step size chosen. Due to these advanta-
geous properties they are used for a wide variety of applications. Nevertheless, until now, an analytic
investigation of the stability of MPRK schemes is still missing, since the usual approach by means of
Dahlquist’s equation is not feasible. Therefore, we consider a positive and conservative 2D test problem
and provide statements usable for a stability analysis of general positive and conservative time inte-
grator schemes based on the center manifold theory. We use this approach to investigate the Lyapunov
stability of the second order MPRK22(«r) and MPRK22ncs(a) schemes. We prove that MPRK22(«)
schemes are unconditionally stable and derive the stability regions of MPRK22ncs(«) schemes. Finally,
numerical experiments are presented, which confirm the theoretical results.

Mathematics Subject Classification. 65105, 65L06, 65L20.

Received November 22, 2021. Accepted March 22, 2022.

1. INTRODUCTION

In recent years, there has been a strong interest in the development of numerical schemes that preserve
properties of the solutions of differential equations. Modified Patankar-Runge-Kutta (MPRK) methods, see
[7,17,18,22,23,30], guarantee positivity and conservativity of the numerical solution of positive and conservative
production-destruction systems (PDS). For other recent approaches which facilitate positive and conservative
numerical approximations, we refer to [1,2,5,26,29].

A PDS

y =P(y) -D(y), y(0)=y"

with y = (y1,...,yn)T and P,D > 0, is called positive if y° > 0 implies y(¢) > 0 for all times ¢ > 0 and is
called conservative if Zfil yi(t) = Zf\]:l y? for all times ¢ > 0. Conditions which ensure the positivity of a PDS
are given in [13]. A conservative PDS can always be written in the form
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N
y; = Z(p” (y) —dij(y)) with pi;(y) =dj(y) and  pi;(y),dij(y) >0

forally > 0andi,j =1,..., N in which p;;(y) refers to a production term of the ith equation with correspond-
ing destruction term d;;(y) in the jth equation. Analogously, d;;(y) denotes a destruction term of equation 4
with associated production term pj;(y) in equation j. In summary, the solution of a positive and conservative
PDS remains positive for all times ¢ > 0 and the sum of the solutions components remains constant for all times
t>0.

Originally introduced in [7], there has been a considerable interest in the development of MPRK schemes
in recent years. In [22-24], MPRK schemes of second and third order were introduced. These were generalized
in the context of SSP Runge-Kutta methods in [17,18] and applied to solve reactive Euler equations. In [30],
the idea of [7] was used to develop mPDeC schemes, which are MPRK schemes of arbitrary order based on
deferred correction schemes. All these schemes are unconditionally positive and conservative and have proven
their efficiency and robustness while integrating stiff PDS.

MPRK schemes have been used in a wide range of applications. The first order modified Patankar—Fuler
scheme, introduced in [7], is used in a global ocean mercury model with a methylation cycle [34]. The second
order MPRK scheme of [7] is applied to an ecosystem model for the simulation of the cyanobacteria life cycle
[15,16] or that of dinoflagellates [36]. In [3,4,27], this scheme is also used to model the phosphorus cycle in
rivers and lakes. Moreover this scheme was found to be beneficial when applied to NPZD-models in [8] and is
also implemented in the General Ocean Turbulence Model (GOTM) [9]. Further applications can be found in
the context of magneto-thermal winds [14] or warm-hot intergalactic mediums [21].

Often MPRK schemes are used within a splitting ansatz as a time integrator for the reactive part of the
considered system of partial differential equations in order to avoid additional time step restrictions arising
from stiff reaction terms. In [11], mPDeC schemes are used as time integrators for the shallow water equations
to ensure unconditionally positivity of the water height. In [33], it was demonstrated that the second order
MPRK scheme of [7] surpasses standard Runge-Kutta and Rosenbrock methods for the solution of conservative
biochemical models in performance. This was also confirmed in [6] where the Brusselator PDS was solved with
different time integration methods. In [37], a third order MPRK scheme from [23] was successfully used in a
high-order operator-splitting method for the numerical solution of the SIR epidemic model.

To the authors knowledge, no general stability analysis of MPRK schemes has been carried out so far. There
are several reasons for the lack of such an analysis. First of all, unlike Runge-Kutta methods, MPRK schemes
cannot be applied to the scalar Dahlquist equation

Yy =Xy, MeC, (1.1)

since it is unclear how to treat the complex term Ay in the production-destruction setting. This issue can be
handled by choosing A € R~ and considering the system y; = Ay1, y5 = —Ay;. For this system the first order
MPRK scheme of [7] is equivalent to the L-stable backward Euler method. Also second order MPRK schemes
show an excellent stability behavior when applied to this system, as we show in Section 3.1. Unfortunately, this
stability behavior can only be observed for specific MPRK schemes in more general cases, which requires a more
detailed analysis.

The scalar Dahlquist equation is so valuable, since it makes a direct stability analysis of the linear system

y' = Ay (1.2)

with A € RV*N unnecessary. A Runge-Kutta method applied to (1.2) has the same stability properties as
applied to the N scalar equations (1.1) with A passing through the N eigenvalues of A, see for instance Chapter
6 of [12].

Since the direct application of MPRK schemes to (1.1) is not possible, stability should be investigated for
a linear system (1.2), where we also require the system to be positive and conservative. In [31], it is pointed
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out that the inherent nonlinear nature of MPRK schemes makes even a linear stability analysis difficult. To see

this, we follow [31] and consider the second order MPRK scheme of [7] applied to a conservative and positive
linear PDS of the form (1.2). The resulting scheme is given by

At
y(2) =y 4+ AtAy(Z), yn+1 =y"+ 7A(W" + I)yn+1

with a positive time step size At, W™ = diag (yln /yl@) and I denoting the identity matrix in RV*¥. Hence,
we find y"*! = R"y™ with

-1
R" = <I - %A(W” +I)> .

This shows that y"*! depends nonlinearly on y” even when a linear PDS is considered, which complicates the
analysis significantly.

The system matrix A = (a;;) € RV*Y of a positive and conservative linear PDS written in the form (1.2)
must satisfy ai; <0, a;; > 0 for ¢ # j and Zf\il a;; =0 for j =1,...,N. Hence, the system

y = Ay, A:<_Z _2), a,b>0, a+b>0 (1.3)

represents all positive and conservative linear PDS of size 2 x 2, except the case with a = b = 0, which needs
no stability analysis. In order to see that (1.3) is indeed a PDS, we set

p12(y) = da1(y) = bya, p21(y) = di2(y) = ayi, pii(y) = dii(y) =0, i € {1,2} (1.4)

and obtain y] = p12(y) — di2(y) and y5 = pa1(y) — d21(y). The eigenvalues of A are A = —(a +b) < 0 and 0.
Given an initial value y° = (y?, yg)T, the solution of the initial value problem associated with (1.3) is

W0 b\ a®—bd( 1\ 5, 1 [b+aeM b—ber)\ ,
y(t) = +——" )M = iy o |0 (1.5)
a+b \a a+b 1 a+b\la—ae a + be

Since A < 0 we have y(t) > 0 for t > 0 if y* > 0, which shows that the PDS (1.3) is positive. Moreover,
summation in (1.5) shows yi (t) +y2(t) = y{ + 49 for all t > 0, which confirms that the PDS is also conservative.

The system (1.3) is also considered in [20], where it is used to study a linearization of second order MPRK
schemes. Section 3 extends the results of [20] to the nonlinear case.

In the following, we introduce a framework to study the Lyapunov stability of positive and conservative
time integrators, when applied to (1.3). Within this framework we analyze the stability of the second order
MPRK22(a) and MPRK22ncs(a) schemes introduced in [22]. If we want to refer to both schemes we use
MPRK22 schemes as an abbreviation. The MPRK22 schemes are given by

OB (1.6a)

(2) (2)

N
y? =y + aAt E (1 =P (y ™M) + piy (y(l))%V —dy(y™") o | (1.6b)
j=1 Y; Y,
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N 1 1 yn+1
n+tl _ ,n § _ (v (v J
Y =y + At <<1 2a>p” Yy + 20zp” (y )) (21, (Dy—1
= (yj )@ (yj )T

_((1-L dis (1))+id..( 2)) i (1.6¢)
20) T 2a Y @y Oy | >

for i =1,...,N with a > . The methods with v = 1 in (1.6b) are called MPRK22(«t) schemes. With v = 0
they are named MPRK22ncs(a) schemes. For MPRK22(«v) schemes y(?) is also conservative, in the sense that
ZN y(2) = Zfil y?. This is not the case for MPRK22ncs(«) methods, where “ncs” is an abbreviation for

i=1Yi
“non-conservative stages”, and will result in inferior stability properties as shown in Section 3.

The outline of the paper is as follows. In Section 2, we summarize the center manifold theory and prove the
main theorem concerning the Lyapunov stability of general positive and conservative time integration schemes.
This theorem is used to analyze the local stability of the schemes (1.6) when applied to the positive and
conservative linear PDS (1.3) in Section 3. We prove that the MPRK22(«) methods are unconditionally stable.
Whereas, MPRK22ncs(«) is also unconditionally stable for v > 1 and requires time step restrictions in the case

a < 1. Finally, we provide numerical experiments confirming the theoretical results in Section 4.

2. CENTER MANIFOLD THEORY AND STABILITY OF POSITIVE AND CONSERVATIVE TIME
INTEGRATION SCHEMES

In this section we recall the definitions of stable and asymptotically stable steady state solutions of differential
equations and the corresponding definitions for fixed points of iteration schemes. We also recap theorems that
are helpful to identify the stability properties of a given fixed point. These show that for hyperbolic fixed points
stability is solely determined by the eigenvalues of the Jacobian of the underlying map, which is not true for
non-hyperbolic fixed points. The center manifold theory is an important tool to investigate the stability of non-
hyperbolic fixed points. Using this theory we present Theorem 2.9, which provides for the first time a criteria
to assess the stability of general positive and conservative schemes applied to (1.3).

In the following, we use || - || to represent an arbitrary norm in R! for [ € N and Df denotes the Jacobian of
a map f.

Definition 2.1. Let y* be a steady state solution of a differential equation y’ = f(y), that is f(y*) = 0.

(a) The steady state solution y* is called Lyapunov stable if, for any e > 0, there exists a § = §(e) > 0 such
that |ly(0) — y*|| < d implies |ly(t) — y*|| < € for all ¢ > 0.

(b) If in addition to (a), there exists a constant ¢ > 0 such that ||y(0) — y*|| < ¢ implies |y (¢t) —y*|| — 0 for
t — oo, we call the steady state solution y* asymptotically stable.

(c) A steady state solution that is not stable is said to be unstable.

The PDS (1.3) has infinitely many steady state solutions, since every y* in the nullspace of A, that is
y* = 0(b,a)” with § € R, is a steady state of (1.3). In geometrical terms, all steady states lie on the line
ayy — bys = 0 in the y;—ys-coordinate system. With respect to the asymptotic behavior of (1.5), we see

04,0 0 0 0.4 .0
. Yyi Ty (b cayr —byy (1, yitys (b
tEEOY() a+b ((z)_'—tggo a+b <1 ¢ a+b \a)’

since A < 0. Thereby, given an initial value y° = (y?, yg)T, the solution monotonically approaches the steady

state
g Wt (b
a+b \a
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along the line y; +y2 = y{ +%9 in the y;—yo-coordinate system. Hence, the steady state solutions of (1.3) cannot
be asymptotically stable, as there are infinitely many other steady state solutions in every neighborhood of a
steady state. But it can be shown that they are stable in the sense of Defintion 2.1 (a), see Theorem 3.23 of
[12].

When applied to a differential equation, a time integration scheme should preserve as many properties of the
differential equation as possible. In particular, the fixed points of the iteration scheme, should be the steady
state solutions of the differential equation with equal stability properties.

=g(y")

(a) The fixed point y* is called Lyapunov stable if, for any € > 0, there exists a § = §(e) > 0 such that
|l¥° — y*|| < 6 implies [|[y™ — y*|| < € for all n > 0.

(b) If in addition to (a), there exists a constant ¢ > 0 such that ||y® — y*|| < ¢ implies |ly" —y*| — 0 for
n — oo, the fixed point y* is called asymptotically stable.

(¢) A fixed point that is not stable is said to be unstable.

Definition 2.2. Let y* be a fixed point of an iteration scheme y"*! = g(y™), that is y*

In the following, we will also briefly speak of stability instead of Lyapunov stability.
Next, we summarize theorems which are helpful to investigate the stability of fixed points of iteration schemes.

Theorem 2.3 ([35], Thm. 1.3.7). Let y"*! = g(y™) be an iteration scheme with fived point y*. Then

(a) y* is asymptotically stable if |\| < 1 for all eigenvalues A of Dg(y™*).
(b) y* is unstable if |\| > 1 for one eigenvalue A of Dg(y™*).

*

The above theorem does not give any information if the spectral radius of Dg(y*) is equal to 1. Hence, it is
reasonable to introduce the following definition.

Definition 2.4 ([35], Def. 1.3.6). A fixed point y* of an iteration scheme y"*! = g(y™) is called hyperbolic if
|A| # 1 for all eigenvalues A of Dg(y*). If a fixed point is not hyperbolic, it is called non-hyperbolic.

A generalization of Theorem 2.3 is the Hartman—Grobman Theorem, which states that a nonlinear iteration
scheme and its linearization share the same behavior near hyperbolic fixed points, see Theorem 1.6.2 of [35] for
the precise statement. One can show, that for non-hyperbolic fixed points nonlinear terms have to be taken into
account in order to investigate the stability. Thereby, the theory of center manifolds is an important tool and
will be explained in the following section.

2.1. Center manifold theory

To study the stability of a non-hyperbolic fixed point y* of an iteration scheme with C2-map g, we make use
of an affine linear transformation® to obtain a C?>-map G: D — R, with D C R" being a neighborhood of the
origin, which has the form

(2.1)

cimm= (S )

Vwy + v(wy, ws)
with w; € R™, wy € R! and m + [ = N. The square matrices U € R™*™ and V € R"*! are such that |\| =1

for all eigenvalues A of U and |u| < 1 for all eigenvalues p of V. The functions u and v are in C? and u,v as
well as their first order derivatives vanish at the origin, that is

u(0,0) = 0, Du(0,0) = 0, v(0,0) = 0, Dv(0,0) = 0,

where 0 stands for the zero vector or matrix of appropriate size, respectively. In particular, the fixed point y*
of g is mapped to 0, which is a fixed point of G with equal stability properties as y*.

Hence, it is sufficient to study the stability of the origin with respect to G, which is a simplification due to
the existence of a center manifold.

13ce the proof of Theorem 2.9 for the details of this transformation.
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Theorem 2.5 (Center Manifold Theorem). Let G be defined as in (2.1) and

n+1 n n n 0
(Wl ) _ G(W?’Wg) _ (le + u(wlaWQ ))7 (W(1)> c R7n+l~ (22)

n+1 n n n
wh Vwh + v(w],wh) wy

(a) (Existence): there exists a center manifold for G, which is locally representable as the graph of a function
h: R™ — R!. This means, for some € > 0 there exists a C'-function h: R™ — R! with h(0) = 0 and
Dh(0) = 0 such that ||[w}|| < e and (w},w})T = G(w?, h(w?)) implies w) = h(w}).

(b) (Local Attractivity): let (wh,w2)", n € Ny represent the sequence generated by (2.2). If |w?|, w3 < €
for all n € Ny, then the distance of (W}, wY) to the center manifold tends to zero for n — oo, i.e.
[wg —h(wT)[| =0 for n — oo.

Proof. See Theorem 2.1 of [25], Theorem 6 of [10], Theorem 4 of [32] for existence and Theorem 2.1 of [25],
Chapter V, Theorem 2 of [19] for local attractivity. a

The existence of a center manifold allows the study of a system with reduced dimensionality to determine
the stability properties of the origin. Restricting the iteration (2.2) to the center manifold, i.e. w§ = h(w(l)),
gives

witt = G(wl), G(wy) = Uw; + u(wy, h(w;)) (2.3)
for |[w?]| < e. The next theorem states that stability of the origin with respect to G already implies stability of
the origin with respect to G.

Theorem 2.6 ([10], Thm. 8 (Stability)). Suppose the fized point 0 € R™ of G from (2.3) is stable, asymptotically
stable or unstable. Then the fized point 0 € RN of G from (2.2) is stable, asymptotically stable or unstable.

In summary, the stability of a non-hyperbolic fixed point y* € RY of a map g can be determined by
investigating the fixed point 0 € R™ of G, which has a lower complexity due to the reduced dimension m < N.
To actually calculate the center manifold we need to solve

(wh.h(w}))" = G(w).h(w))) =

which can be rewritten as
h(UW(l) + u(w(l)7 h(w(l)))) = Vh(w?) + v(w(l)7 h(w(l)))

: h(G (). h(w))),) = G(wl.h(w!)),,

The above invariance property offers a way to approximate the center manifold up to an arbitrary order.

Theorem 2.7 ([10], Thm. 7). Let h be a center manifold for G and ® € C'(R™,R') with ®(0) = 0 and
D®(0) = 0. If
B(G(w1, ®(W1));) — G(w1, B(W1)), = O(|lw1]*)

as w1 — 0 for some g > 1, then h(wy) = ®(w1) + O(]|w1]|?) as w; — 0.

Now, we consider a general positive and conservative iteration scheme y"™ = g(y™), i.e. y* > 0 for all
n € Nif y* > 0 and Hy”‘“H1 = |ly"|l;, in two dimensions. We further assume that all fixed points of the
iteration scheme are located on a line through the origin, which is the case for the steady states of (1.3). Under
these circumstances, Theorem 2.9 gives a sufficient condition for stability of the iteration scheme based on
the eigenvalues of the corresponding Jacobian Dg(y*). Furthermore, the theorem states that stability implies
convergence towards a fixed point with equal 1-norm.

The following lemma is used in the proof of Theorem 2.9.
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T
Lemma 2.8. Let y° = (49,48)" >0 and L ={y e RZ, | [lyll, = [|¥°||,}, then
L={yeR?|y=y"+sy, —yi <s<u3},

where y = (1,—1)T. If in addition, g: R%, — R, is a conservative map, i.e. |g(y)ll, = |lyl,, then for every
yY +ty > 0 with t € R, there exists a s(t) with —y? < s(t) < y3, such that

gy’ +ty) =y’ +s(t)y.

Proof. Let y°,y > 0, then the condition |ly||, = ||y°[|, is equivalent to y1 + y2 = y{ + y3. Geometrically, this
describes a line in the y;y2-coordinate system with normal vector (1,1)7. A parameter form of this line is given
by y = y° + s(t)y, s(t) € R. To ensure y > 0, we must have —39 < s(t) < ¢9.

Now, define w = g(y° + ty) with y° + ¢ty > 0. Since ||w|, = ||y° —|—t§f”1 = HyOH17 we have g(y° +ty) =
w =y’ + s(t)y with —y{ < s(t) < 93. O

Next, we present the main theorem of this section, which provides criteria to assess the stability of general
positive and conservative schemes. Application of a general positive and conservative scheme to (1.3) results
in a nonlinear iteration y"*! = g(y"), for which the steady states y* of (1.3) should be non-hyperbolic fixed
points of g. The theorem shows that even in this nonlinear case the investigation of the eigenvalues of the
Jacobian Dg(y*) is sufficient to analyze stability. To the authors knowledge there are no similar results focusing
on general positive and conservative schemes in the literature even though the statements are of fundamental
importance.

Theorem 2.9. Letg € C? (Rio) with fixed point y* > 0, such that all ry* are fized points of g for allT™ > 0. In
addition, let the iterates of the iteration scheme y" ™' = g(y™) satisfy Hy”“”1 = ||ly"||; for all n € Ny. Then,
the spectrum of the Jacobian Dg(y*) is o(Dg(y*)) = {1, R} with R € R, and the following statements apply. If
|R| < 1, then

*

(a) y* is stable.
(b) there exists a 6 > 0, such that HyOH1 = |ly*||; and Hyo — y*H < imply y" — y* as n — oo.

Proof. Throughout this proof, we use the notation y = (1,—1)7 and e; = (1,0)7, e2 = (0,1)7 to denote the
standard unit vectors.

First, we compute the eigenvalues and eigenvectors of Dg(y*). Since g is differentiable in y* the directional
derivatives d,g(y*) = Dg(y*)v exist for all directions v € R2. Hence,

Dg(y")y" = dy-g(y") = lim —(g(y" +hy") —g(y")) = lim - (g((L +h)y") —y7).
As ry* > 0 is a fixed point of g for all r > 0, we see
Dg(y*)y” = lim - (1 +h)y" —y*) =y".

Thus, y* is an eigenvector of Dg(y*) with associated eigenvalue 1. To compute the other eigenvalue and
eigenvector, we consider the directional derivative

*\ o= * . 1 * = *
Dg(y")y = Oyg(y”) = lim ~(g(y” +hy) — g(y")). (2.4)
Since [|g(y)|l; = |ly]l;, we can use Lemma 2.8 to see

gly" +hy)=y" +s(h)y,
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FIGURE 1. Visualisation of the affine transformation T. The red and green line segments are
mapped onto each other.

for sufficiently small h and some function s: R — R, h — s(h). Inserting this into (2.4) yields

Dg(y")y = lim

Lim %(y* +s(h)y —y") = <lim s(h)>y.

h—0 h

The above limit exists, since g is differentiable in y*. Setting R = limy_.q L:) € R, we see Dg(y*)y = Ry,
i.e. y is an eigenvalue of Dg(y*) with corresponding eigenvalue R. Hence, the spectrum of Dg(y*) is given by
o(Dg(y*)) = {1, R}. Introducing the matrix of eigenvectors

S = (v'9). (2.5)
which is invertible, since y cannot be a multiple of the positive vector y*, we obtain
S™'Dg(y*)S = diag(1, R), (2.6)

where diag(y) € R?*? denotes the diagonal matrix with (diag(y)):; = y; for i = 1,2.

(a) In this part we assume |R| < 1 and use the center manifold Theorem 2.5 (a) in combination with Theo-
rem 2.6 to conclude that this implies that y* is a stable fixed point. The theorem requires a map G of form
(2.1), which shall be obtained from g by means of an affine linear transformation.

We consider the affine transformation T: R? — R2 y — w = T(y) = S™!(y —y*), where S is
given in (2.5) and the inverse transformation T~! is given by T~!(w) = Sw + y*. By construc-
tion, the line segment of fixed points {y € ]R2>0 ly =ry*, r> 0} is mapped onto the wi-axes, as
T(ry*) = S7'(ry* —y*) = (r = 1)S7'y* = (r — 1)e1. The line segment {y € R%, | [ly[l, = [ly*[,} =
{y ER? |y=y*+sy, —y} <s< yg‘}, see Lemma 2.8, is mapped onto the wy-axes, since T(y* + sy) =
S H(y* + sy —y*) = sS™'y = se,. In particular, y* is mapped to the origin and parallel lines are mapped
onto parallel lines, since T is affine. See Figure 1 for a sketch of this situation.
Now we define

G: T(R%,) —» T(R,), G(w)=T(g(T"(w))) (2.7)

and observe that the origin is a fixed point of G. To represent G in the form (2.1), we write g as

g(y) =g(y") +Dg(y" )y —¥") + Qy(y) =y + Dg(y")(y —¥") + Qy=(¥), (2.8)

where the remainder Qy-(y) can be written in Lagrange form

Q- ), = 5 ~ ¥y Hly" +ely —y )y —y"), i=12 (29)
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with Hg; denoting the Hessian of ¢g; and ¢ € (0,1) depends on y and y*. This is possible because g is
assumed to be in C? on the convex set ]R2>0. In particular, we have

Qy-(y") =0, DQy-(y*)=0. (2.10)
By inserting (2.8) in (2.7) we obtain
G(w) =87 (Dg(y") (T~ (W) = ¥") + Qy- (T~ (w))) = S™'Dg(y")Sw + S7'Qy- (T~ (w))
and using (2.6), we see
G(w) = diag(1, R)w + S7'Qy- (T~ (w)). (2.11)

With w = (wy,w2)T this can be rewritten as

(2.12)

G(wy,ws) = (le * u(wl,w2)>

Vwsg + v(wy, ws)

where
U=1, V=R, u(w,wy)= (Sley*(Tfl(wl,wg)))l, v(wy, wy) = (Sley*(Tfl(wl,u@)))z. (2.13)

The eigenvalue of U has absolute value 1 and the eigenvalue of V satisfies |R| < 1. Furthermore, we
conclude from (2.10) that «(0,0) = v(0,0) = 0, since Qy~(y*) = 0, and Du(0,0) = Dv(0,0) = 0, since
DQy+(y*) = 0. Thus, (2.11) is of form (2.1).

Now, the center manifold Theorem 2.5 (a) states that for some € > 0 there exists a C! function h: R — R
with A(0) = 0 and A/(0) = 0 , such that (w%,w%)T = G(w?,h(w?)) and |w?| < € implies wj = h(w}).
Furthermore, € can be further reduced, if necessary, to guarantee (wi,h(w;)) € T(RZ,) for |wy| < € as
h is continuous with h(0) = 0. We know from Lemma 2.8, that for all y® > 0 the map g is invariant on
the line segment {y € RZ, | [lyll; = Hy0||1} ={yeR?|y=y"+sy, -y} <s<y3}. The transformation
T maps such a line segment onto a segment of a line parallel to the ws-axes, on which G must then be
invariant. To verify this, we use Lemma 2.8 and compute

G(w1,w2) = G(wier + wzeq) = T(g(Tfl(wlﬁ + w2e2))) = T(g(w1Se; +wzSez +y™))
= T(g((1 + w1)y" + w2y)) = T((1 + w1)y" + s(w2)y)

= S~ (wry* + s(ws)y) = wier + s(wa)ey = (wr, s(ws))"
for some suitable s = s(wz) € R. In particular, we have shown
G(wy,we)1 = wy. (2.14)
We can now consider the iteration scheme
wit™ = G(w), G(wr) = Uwi +u(wy, h(w:))

for |w}| < €, where U and u are given in (2.13). According to Theorem 2.6, the fixed point 0 € R? of G is
stable, if the fixed point 0 € R is a stable fixed point of G. From (2.12) and (2.14) we see

g(w1) = G(wl,h(wl))l = Wy,

which implies w} = Q(w’f_l) = w{ for all n € N and every w{ with |w(1)| < e. Consequently, for every € > 0

we define § = min(€, €) to obtain that ’w?’ < & implies |wi| = ’w?’ < & <€ Thus, 0 is a stable fixed point
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of G in the sense of Definition 2.2 (a). Furthermore, by Theorem 2.6 the fixed point 0 € R? of G is stable
as well.
As a last step, we show that the above implies that y* is a stable fixed point of g. We know that 0 is a

stable fixed point of the iteration scheme w"*! = G(w"), that is for every €, > 0 exists &,, > 0 such that
0

WP < by irnplieb ||W"|| < ew. Now, let € > 0, ¢, = €/||S|| and ¢ = 5w/||S’1H If ||y — y*|| < 4, then
= ||T || ||S (y —y*)H HS 1||||y -y || < ||S 1”5 = J, and consequently [|[w"| < €.
Furthermore w" = T(y") = S_l(y” — y*) is equivalent to Sw” = y” — y* and hence, ||y" —y*| <

ISIw™|| < [|S]|€w = €. Thus, we have shown that y* is a stable fixed point of the iteration y"+1 =g(y").
(b) In the following we use that the center manifold is given by { (w1, ws) € R? | wy =0, |w1| < €}, i.e. h(w;) =

0, for a sufficiently small € > 0. This can be shown with Theorem 2.7 as follows. The function ®: R — R,

®(wq) = 0 satisfies ®(0) = ®’(0) = 0. Furthermore, all points on the wi-axes are fixed points of G, since

G(w1,0) = G(wier) = T(g(T ' (wie1))) = T(g(wiSer +y*))
= T(g((1+w)y")) = T((1 +w1)y")
=S Hwiy*) = wie; = (wy,0)7T.

Hence, it follows that
(G(wr, ®(w1));) — Glwy, P(w1))y = —G(w1,0), = 0.

By Theorem 2.7 @ is an approximation of h for any order ¢ > 1. Thus, h(w;) = <I>(w1) =0 for |wy| < e.
Now, we prove that the iteration scheme y"*! = g(y") is locally convergent to y*, if the starting value y°
is sufficiently close to y* and satisfies Hy Hr = ||y*||;. Taking advantage of the transformation T, this is
equivalent to proving that w1 = G(w") is locally convergent to 0, if the starting value w? is sufficiently
close to 0 and satisfies w{ = 0. Moreover, since G leaves the first component of its argument fixed, see (2.14),
we only need to show wd — 0 for n — oo. According to Theorem 2.5 (b) the distance of (w},w%) € R?
to the center manifold tends to zero for n — oo, i.e. |[wh| — 0 for n — oo, if |w}|, |[w| < € for all n € Ny
and some sufficiently small ¢ > 0. Finally, since the origin is a stable fixed point of G, as shown in (a),
there exists § > 0 such that ||WOHOC < ¢ implies ||[w"||, = max{|w}|, [wy|} < € for all n € N. If necessary,
||WO||OO < € can be assured by choosing & < e. Altogether, this proves |[w"|| = max{|w}|, |wy|} < € for
all n € Ny and thus the assertion.

O

We like to highlight that Theorem 2.9 is valid for general positive and conservative schemes and not restricted
to MPRK schemes.

3. STABILITY OF MPRK22 SCHEMES

In this section we use Theorem 2.9 to examine the stability properties of MPRK22(a) and MPRK22ncs(«)
schemes. The main task is to express the schemes in the form y"*! = g(y™) and to compute the eigenvalues of
the Jacobian Dg(y*) for a given fixed point y*. We show that MPRK22(«) schemes for all permissible « and
MPRK22ncs(«) schemes with o > 1 are unconditionally stable. Hence, the iterates of these methods locally
converge towards a fixed point with equal 1-norm. Furthermore, for MPRK22ncs(«v) schemes with « < 1 time
step restrictions are necessary to achieve the same behavior.

To give a clear representation of the MPRK iterations in the form y = g(y™), we define some auxiliary
matrices and functions. First, we split the matrix A into a production part Ap and a destruction part Ap, i.e.

n+1

A=Ap—Ap, Ap=A—diag(A) = (2 g) Ap = —diag(A) = (g 2) (3.1)
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Based on this splitting we define the matrices

B, = y(I— aAtA) ' + (1 —7)(I+ aAtAp) (I + aAtAp) (3.2)

C, - (1 - 22)1 + <21a)137, (3.3)

where I € R2?*2 denotes the identity matrix. Furthermore, we need the nonlinear functions o(y) =
(01(y), o2(y)" and 7(y) = (71(y), 72(y))" with

and

oi(y) = (By)y () + (3.4)
and ( )
_ ~ (Cyy);
fori=1,2.

Proposition 3.1. The MPRK22 schemes (1.6) applied to the test equation (1.3), can be written in the form
y" T = g(y™), where the map g: R% ) — R2, is given by

At
gly) = (I T A an () + i)

Ading(r(») ). (36)

with T defined by (3.5).

Proof. We start with (1.6b) to express y(®) in terms of y”. Using (1.4) and (1.6a), the stage value (1.6b), when
applied to (1.3), is given by

w? =yl + aAt((l — )byl + bys? — “yf))’

(2) n n (2) (2) (3.7)
Yo =Yz + aAt((l —7)ayy +yay; — by, )
Incorporating the splitting (3.1), the linear system (3.7) becomes
y® =y"+ aAt((l —NApy" +~7Apy? — ADy(Z))
and solving for y® shows
y® = (1 —aAt(vAp — Ap)) (I + aAt(1 —~)Ap)y™.
In the case v = 1, we have
y? = (I-aAtA) 'y, (3.8)
and for v = 0, we get
y? = I+ aAtAp) ' (I+ aAtAp)y™. (3.9)

Using (3.2), the cases (3.8) and (3.9) can be combined to obtain

y® =B,y". (3.10)
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Next, we consider (1.6¢) to express y"*1 in terms of y™. With (1.4) and (3.4) the approximation step (1.6c)
reads

e (2o (N (- (2)00) 5
" . (3.11)
s o{ (o () (6 (o) 5
Here we note that y” > 0 implies y(?) > 0, see [22], and in addition
7y = By ) = (o) W) o (312

The system (3.11) can be written as

1

1
n+l _ _.n _ : n+1 : n\\—1.n
y'T =y + At((l 2a>AP diag(y"*') diag(a(y™)) " 'y" + <2a

)AP diag(yn+1) diag(a(y"))_ly@)
1

_ (1 _ 1)AD diag(y"*") diag(o(y"))~'y" — <2a

L ) ding(y" ) ding(o(y") ¥ ). (313

where diag(y) € R?*?2 denotes the diagonal matrix with (diag(y))i; = y; for i = 1,2. As diag(v)w = diag(w)v
and diag(v) diag(w) = diag(w) diag(v) for all v,w € R? as well as A = Ap — Ap, equation (3.13) can be
rewritten as

ytl = yn 4 At<<1 - ;a)Adiag(y”) diag(o(y™) ! + (21a) A diag(y®) diag(a(y"))1>Y"“~

Utilizing (3.10), this can be further simplified to
n+1 n 1 . n 1 . n . n\\—1. n+1
' =yt A AA{ (1= o ) diag(y") + { o ) diag(Byy") | diag(a(y")) "y
Using a diag(v) + (8 diag(w) = diag(av + fw) for all o, 8 € R and v, w € R? together with (3.3) we see

, 1\, (1 2 vy Lom
vt =yt seading((1- 50 )y (5o ) By ) dito )y

=y" + AtA diag(C,y") diag(o(y")) 'y
or equivalently
yn+1 _ M(yn)—lyn

where
M(y™) = I — AtA diag(C,y") diag(o(y™)) . (3.14)

Hence, we have

with
g(y) = M(y) 'y = (I - AtA diag(C,y) diag(o(y))™}) 'y
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Next, we want to find an explicit representation of M(y™)~!. The diagonal matrix diag(C,y") is nonsingular
for all y™ > 0, since

1 1 1 1
n _ - n - n _ . n - (2)
C,y (1 2a>y + <2a>va (1 2a>y + (2a>y >0 (3.15)

holds due to o > 1. This implies that the matrix A diag(C.,y™) diag(o(y™)) ! has rank one, just like A. Hence,
according to [28], the inverse of M(y™) is given by

M(y™")~' =TI+ (1 — trace(AtA diag(C,y™) diag(a(y”))_l))flAtA diag(C,y™) diag(a(y™)) " (3.16)

Using (3.5), we obtain
diag(C,y") diag(a(y")) " = diag(t(y"))-

and (3.16) becomes
At
M(y")"' =1+ A diag(t(y")).
") 1+ At(ari(y™) + br2(y™)) &(r(y"))

O

Remark 3.2. The representation of M(y™) in (3.14) is also valid for arbitrary linear positive and conservative
PDS y' = Ay with A € RVXN where the splitting is given by A = Ap — Ap with Ap = diag(A) and
Ap = A — Ap. The representation of the inverse M(y™)~! in (3.16) is based on the assumption that A has
rank one, which must not be satisfied for a general linear positive and conservative PDS.

Next, we verify that steady state solutions of (1.3) are indeed fixed points of the MPRK22 schemes. As
a consequence every y* = r(b,a)” with » > 0 is a fixed point of the MPRK22 schemes. This satisfies the
requirement of Theorem 2.9 to have fixed points on a line.

Lemma 3.3. Any steady state solution y* > 0 of (1.3) is a fized point of the MPRK22 schemes, i.e. a fized
point of the map g given in (3.6). Moreover, we have

B,y"=vy", Cy =y, oly) =y, n(y’) =7nl") =1

Proof. Let y* be a steady state solution of (1.3), i.e. Ay* = 0. At first we show, that y* is a fixed point
of B, defined in (3.2). Considering the first term in B, we find (I — aAtA)y* = y* and equivalently
vt = (1- ozAtA)fly*. Furthermore, 0 = Ay* = Apy* — Apy™ is equivalent to Apy* = Apy™*. Hence,
I+ aAtAp)y* = (14 aAtAp)y* or y* = (I+ aAtAp) ' (I+ aAtAp)y*. Altogether, we find

y? = B,y =y". (3.17)

As a direct consequence, it follows from (3.3) that
Cy =(1- )y 4+ (2 )By =y (3.18)
W= 2 )Y 2% )Y =Y ’
and in addition, we conclude from (3.4) that

o(y")=y", (3.19)

where we used y* > 0. Finally, this implies

_ =1, (3.20)
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for i = 1,2, and thus, according to (3.6),

-
1+ At(a+b)

At
1+ At(ari(y*) + bra(y*))

gly") = <I + Adiag(f(y*))>y* =y" Ay* =y".

O

Based on the knowledge that steady state solutions y* > 0 of (1.3) are fixed points of the MPRK schemes, it
is now necessary to compute the eigenvalues of the Jacobian Dg(y™*). Therefore we have to show that all partial
derivatives of g exist. The next lemma even states that g € C* (R2>0)7 so that all requirements of Theorem 2.9
are fulfilled.

Lemma 3.4. The elements g; of g from (3.6) satisfy g; € C*® (R2>0) forie {1,2}.
Proof. Recall from (3.5) and (3.6) that

At
14+ At(ar (y) + bra(y))

y) = (1+ Ading(r(y) )y

with 7;(y) = (Cyy),0i(y) ™" for i = 1,2. The functions o;(y) = (B,yy)?(yi)l’é and (C,y), are in C*(R2,).

Furthermore, we know o;(y) > 0 for y > 0 according to (3.12), which yields 7; € C>(R2) for i = 1,2 due to
the quotient rule. Also 7(y) > 0 for y > 0 holds because of (3.15). Thus, 1 + At(ar; (y™) + br2(y™)) is always
positive. Consequently even g; € C*> (R2>0) fori=1,2. ]

Next, we give an explicit representation of the Jacobian Dg(y*). As g is defined on R%, we have to ensure
y* > 0, which requires a,b > 0. The cases a = 0 or b = 0 are special, in that no steady states of (1.3) are
contained in R2>0. These cases will be discussed separately in Section 3.1.

Lemma 3.5. Let g be defined by (3.6) and y* > 0 a steady state of (1.3), i.e. Ay* = 0. Then, the Jacobian
Dg(y*) is given by

Dg(y") =1+ HA?MA(H 2104(1—37)) (3.21)

Proof. Setting

T(y) = L <Tl (‘V)yl> , d(y) =14 At(ari(y) + bra(y)),

the map g from (3.6) can be written as
g(y) =y + AtAT(y)

and consequently we have
Dg(y) =1+ AtADT(y). (3.22)

Making use of the notation 0; = % we obtain

P
Yi

(011 (¥)y1 + 11(y))d(y) — 71(y)y101d(y) ~ Oni(y)yd(y) — m1(y)y102d(y)

ani(y) = iy)? , OaTi(y) = iy)? .
O (y) = 31Tz(y)yzd(y;(;)gz Y)y201d(y) Do7(y) = (G272 (y)ys + T2(y£i)(§,()? — 72(y)y205d(y)
and thus

DF(y) = @(diagw)m(y) + diag(T(y))) - ﬁ diag(r(y))y (erad d(y))T.
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Inserting this into (3.22), the Jacobian of g in y* is given by
L Alding(y")D(y") + ding(r(y"))) — - A ding(r(y )y (arad d(y*)”
— A(diag(y*)D7(y iag(T(y*))) — —= .
d(y*) d(y)?
From (3.20) we know that diag(7(y*)) = I and together with Ay* = 0 we find

Dg(y*) =1+

A(diag(y*)D7(y*) + I).

At
Dg(y”) =
v d(y*)
To finish the proof, we have to show diag(y*)DT(y*) = i(I — B,). Therefore, we need to express the partial
derivatives of 7;(y) = (Cyy),04(y) ™" for i,j = 1,2 in terms of B, = (bj;)i.j=1,2. The partial derivatives of &
are

1 11,4 1-2 1 1 -1
0o1(y) = E(Bv}’h b1y, +Byy)i (1= = |y =,
1 1_ y 1—1
0201(y) = a(BWY)f“ bisyr
1 1_9q 1—1
O102(y) = a(BWY)QQ b1Yy
P T CEEARS
0202(y) = E(Bv}’)z baoys * +(Bry)s (11— o v

and as B,y* = y* we have

1 | 1
o1 (y ):ab¥1+1—a7 0201 (y ):asza
1 1 1
8 *) = *b’y 8 *) = —b’y 11— —.
1o2(y™) ek o2 (y") o 22 T o
Furthermore, due to (3.3) together with C,, = (cj;). i1 W see
v 1 Loy 5 Loy
61(07}’)1 =cp=|1- % + %bna 82(073’)1 = Cio = %bwa
v Loy v 1 Loy
N(Cyy)y =cg = %bzp D (Chy)y=cop=(1- % + %bm-

Now we are ready to compute the partial derivatives of 7, whereby we repeatedly use (3.18) and (3.19), i.e
C,y* =y* and o(y*) = y*, which yield

an(y’) = %1(Cry) 1Y) = (Cry), 0101 (y) _ (gt aebl)yi —wi (G0 +1-3) _ 1-6]
(o1(y))? y=y* (y7)? 2yt

827_1(},*) _ BQ(C’YY)l ( ) (nyy)1820'1 (y) _ ibrl‘{ny _ yféb’b _ brlyz
(o1(y))? Y=y ()2 20y}’

uma(y”) = 2UCY),02Y) = (Cry)ydionly) | =0y — il b

hd (o2(y))? i (y5)? 20y3’

Oama(y™) = 82(C’Yy>2 2(y) — (C’Yy)QaQO-Q(Y) _ (1 — i + %b%)yg _ y;(éng 1 é) _ 1 bgg.

(o2(y))? y=y* (y3)2 2ay;

Altogether we see
1 ..,
D7(y) = 5 diag(y") " (I~ Bs),

which completes the proof. O
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We are now in a position to compute the eigenvalues of Dg(y*), which are needed to evaluate the stability
of the fixed point y*.

Lemma 3.6. Every steady state y* > 0 of (1.3) is a non-hyperbolic fized point of the MPRK22 schemes. In
particular, we have

* *

Dg(y")y" =y
and
Dg(y")y = R,(—Ata, —Atb)y,
where y = (1, -1)T and
2 —2a(zq + 25) — (24 + 23)?
21 — (2 + 20))(1 — a2 + 21))

Ri(za,2) = (3.23a)

as well as

2 — (2a + 2) (—1_'2;2@ + 1_Z;;Zb>
2(1 = (20 + 2)) '

Ro (24, 2) = (3.23b)
Proof. From the proof of Theorem 2.9 we know that y* is an eigenvector of Dg(y*) with associated eigenvalue
1, which can be checked with the straightforward calculation

At

Dg(y")y" =y +1+At(a+b)A<I+2a(IB7)>y =Yy +1—|—T(a+b)Ay =y,
where we used (3.21) and (3.17). Hence, y* is a non-hyperbolic fixed point of g.
Furthermore, we know from the proof of Theorem 2.9 that ¥ = (1, —1)7 is another eigenvector of Dg(y*)
and we need to compute the associated eigenvalue.
First, we consider the case ¥ = 1. The vector y is an eigenvector of the matrix A from (1.3) with associated
eigenvalue A = —(a+b), i.e. Ay = A\y. If v = 1, B, from (3.2) becomes B; = (I—aAtA)~! and (I—aAtA)y =

¥ — aAtAy = (1 — aAt\)y implies B1y = (1 — aAt\)~1y. Hence, using (3.21), we see that

o B At B 1 _ At 1 1 S
Dg(y )yy+1_MA(y+2a(IB1)y> = <1+1—Au<1+2a(11—am)>)y'

Setting z = At\, we find that the eigenvalue associated with y for v = 1 is given by

14 z 1+i 1 1 - 2 — 20z — 22
1—z2 2a l—az)) 2(1-2)(1-az)

With z, = —Ata and z, = —Atb we get z = —At(a + b) = z, + 2 and thus

2 —2az — 22 _ 2 —2a(zq + 25) — (24 + 21)? Rz, %)
20— 2)(1—az) 201 — (za+ 2))(1 — 24 + 2)) 1hzar =bJ:

Next, we consider the case ¥ = 0 and compute ABgy. From (3.1), (3.2) and Ay = Ay = AIy we see

ABy = A(I+ AtaAp) ' (I+ AtaAp)y = A1+ AtaAp)”  (I+ Ata(A + Ap))y
= A(I+ AtaAp) I+ AtaAp + Atadl)y = A\y + aAIAA(I + AtaAp) 'y

Realizing that § = (1, —1)7 is an eigenvector of

_ a b
A+ AtaAp) ' = | THafaa  Taw
1+Ataa T 1+Atab
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with associated eigenvalue

a b
h= _<1+Ataa * 1+Atab)’
we obtain
ABoy = (A + aAt \p)y.

This together with (3.21) shows

At AtA AtA A+ aAEAAL
Dg(y*)y=<1+ (A—i— (A — ABO))> (1+ n _ahata ”)y

1— At) 1— At 2a(1 — At)) 2a(1 — At))
_ (14 At B aAt Aty 2 - At)\Atu
1-Atx  2a(1— AN )Y~ 20— At Y

Hence, using AtA = —At(a +b) = z, + 2 as well as Aty = —FEo— +

e the eigenvalue corresponding to ¥
fory=0is

laz

2_(Za+zb)(l azg +1—Z<;zb) R
2(1 = (24 + 2)) B

0(Za, 2p)-
O

Remark 3.7. The notation R, (24, 2,) for the eigenvalue in the above lemma was chosen on purpose. If the
above analysis is carried out for a Runge—Kutta scheme, the corresponding Jacobian will have the eigenvalues
1 and R(z, + 2), in which R denotes the stability function of the Runge-Kutta scheme. In this respect, the
function R, of the MPRK22 schemes plays the same role as the stability function R of a Runge-Kutta scheme.
In the following, we refer to R, as the stability function of the MPRK22 schemes.

To assess the stability of the non-hyperbolic fixed point y* we must investigate the absolute value of the
stability function R, from (3.23). Theorem 2.3 states that if |[R,(—Ata, —Atb)| > 1, the fixed point is unstable.
If however |R,(—Ata, —Atb)| < 1, we can use Theorem 2.9 to conclude the stability of y*.

Lemma 3.8. Let Ry be given by (3.23a), then the inequality | Ry (2q, 25)| < 1 holds for all zq, 2z < 0 and o > %

Proof. First, we realize that R;(z,, ) only depends on z, + 2, and hence can be written as Ry (z) = #&sz)
with z = z, + 2. To prove the lemma, we need to show |Ri(z)| < 1 for all z < 0 and a > 1. Using —2z > 0
and 2« > 1, this follows from

2 - 20z — 2% < 2(1 — az)| + |2*| = 2(1 — az) + 2°
<2(1 —az) +2a2? =22 =2(1—az) —2z(1 —az) =2(1 — 2)(1 — az) = [2(1 — 2)(1 — az)|.

O

The above lemma states that the stability function of an MPRK22(«) scheme has absolute value less than
one for all time step sizes At > 0 and matrix elements a,b > 0. This allows for the application of Theorem 2.9
to conclude that y* is indeed a stable fixed point of MPRK22(«) schemes.

Corollary 3.9. Let y* > 0 be an arbitrary steady state of (1.3).

(a) The MPRK22(a) schemes are unconditionally stable, in the sense that any y* is a stable fived point of the
MPRK22(«) schemes independent of the time step size At.

(b) For every MPRK22(av) scheme there exists a & > 0, such that [[y°|1 = |y*|l1 and |y® —y*| < & imply
y" — y* as n — oo independent of the time step size At.
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The situation is different for MPRK22ncs(a) schemes, for which the absolute value of the stability function
Ry may exceed 1, if & and At are not chosen properly.

Lemma 3.10. Let Ry be given by (3.23b). If a > 1 the inequality
|Ro(za,2p)] <1
is satisfied for all z,, zp < 0. If% < a <1, then
|Ro(za,20)| <1 forall z, <0 and f(z4) <2 <0

and
|Ro(2as20)| > 1 forall z4,2, <0 and 2z < f(zq4),

where [ is defined by

fle) = -1 [Py (3.21)

with
21~ 0€)(20+ (1 )¢ + 1) 21 ag)2 - &
2a—-1)1—-af)+af (2a —1)(1 — af) + af

Proof. First, we show that Ry is strictly increasing with respect to z, as well as z,. To see this, we consider the
partial derivative with respect to z,, which is given by

(3.25)

p() = - (&) =

_<1—z;za + 1—Z<})7zzb) - (Z“ +Zb)m i 2- (Z“ +Zb)(1 azg + 1— ozzb)
2(1 = (2a + 2)) 2(1 = (24 + 2))?
(2 2) + 2 ) (1= (za+ ) + 2 (20 + ) (2 + 27
2(1 — (24 + 2))?
Za z Za+2 (za+2 ) Za z (za+2b)(zat2—1)
. 7(1—(120, + 1—(1)742&) - (1—(;;:)2 + (1— zb)2 + 2 (1—(xza + 1—(137421)) + (f—aza)zb +2

2(1 — (24 + 2p))2 N 2(1 — (24 + 21))?

ORy
0z,

(Zm Zb) =

Since z4, 2z, < 0 and a > 0, we find aRU (24, 20) > 0, i.e. Ry is strictly increasing with respect to z,. In addition,
due to the symmetry Ry (zq,2p) = Ro(zb, Za), 1t is also strictly in increasing with respect to z.
Furthermore, we have

1 R ) 1 2_(2“”1’)(1 oz, 1 aZb)
im Za, 2p) = im =1
o B TolEm ) = lm 21— (24 + 20))

and due to the monotonicity Ro(zq,25) < 1 for all z,, 2z, < 0. To compute a lower bound for Ry, we rewrite Ry

in the form
21 — aza)(1 — azp) — (2o + 2) (20 (1 — azp) + 2(1 — @z,))

2(1 — (za + 2)) (1 — aza) (1 — azp) ’

Ro(2a, 20) = (3.26)

which can also be written as

(5~ ()0 o (o)

' —(—OéZa +1—az,) 1 — 20z,
lim  Ro(2a,2) = -
B o ) = ) 2a(l-az)

Now we see
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Za
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FIGURE 2. For each «a the grey area indicates the stability region S(«a) of the MPRK22ncs(«)
scheme for z,, zp € [—50,0). (A) a =0.5. (B) @ =0.8. (C) a =0.9. (D) a = 0.95.
and
1
1 -2z, = — 2« 1
lim lim Ry(z4,25) = lim - ——*—= lim ——22— — = ——.
Zq——00 2p——00 0(za 20) za—m—00 20l — zy) za——o0 204(Zi —a) «o
Since Ry is continuous, we even have lim(, ., (—oo,—o0) Ro(za,2) = —é and since Ry is strictly increasing

in z, and z,, we obtain —i < Ro(za, 2p). Altogether, we know —i < Ro(za,2) < 1 for all z4, 2z, < 0, which
implies

|Ro(za,z)| <1 forall 2z, 2, <0and a> 1.

However, if o < 1 then lim(., .,)—(—c0,00) B0(Za,26) = fé < —1 and hence there exist z, and z;, for which

|Ro(2as2p)| > 1.
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Due to the monotonicity and continuity of Ry there is exactly one z;, for a given z,, such that Ry(zq,25) = —1.
To find this 2z, we need to solve the equation Rg(zq,25) = —1 for z;,. According to (3.26), this is equivalent to

2(1 — azg)(1 — azp) — (24 + 25) (20 (1 — azp) + 2p(1 — azy))
2(1 — (24 + 20)) (1 — az) (1 — azp)

=-1

or
2(1 — azg)(1 — azp) — (za + 25) (2a(1 — azp) + 2p(1 — @za)) = =2(1 — (24 + 25) ) (1 — @z4) (1 — azp).

A technical computation reveals that this equation can be rewritten in the form
(2o — 1)(1 — azq) + aza)28 — (2(1 — aza) 2o+ (1 — @)zq + 1))z + 2(1 — @24)(2 — 24) — 22 =0

and solving for zj, shows z, = f(z,), with f defined in (3.24), (3.25). Due to the monotonicity of Ry, we have
Ro(2z4,25) < —1for all z, < 0and z, < f(z,) and —1 < Ro(zq,2p) < 1 for all z, < 0 and f(z,) < 2 < 0. Hence,
we have also proven the statement of the lemma for the case % <a<l. [l

An immediate consequence of the above lemma in combination with Theorems 2.3 and 2.9 is the following
corollary.

Corollary 3.11. Let y* > 0 be an arbitrary steady state of (1.3) and At} > 0 be the unique solution of
f(=Atra) = —AtLb, where f is defined in (3.24).

(a) If a > 1 or At < At then the MPRK22ncs(«) schemes are stable, in the sense that any y* is a stable
fized point of the MPRK22ncs(a) schemes.

(b) For every MPRK22ncs(a) scheme with o > 1 or At < At there exists a § > 0, such that ||y°|1 = [ly* |1
and ||yO — y*|| < imply y® — y* as n — co.

(c) If At > At} and 3 < a < 1, then the MPRK22ncs(o) schemes are unstable, in the sense that every steady
state y* of (1.3) is an unstable fived point of the MPRK22ncs(a) schemes.

According to part (a) of Corollary 3.11, we can define the stability regions for MPRK22ncs(a) schemes with
3 < o < 1 as the set of points S(a) C R~ x R~ lying above the graph of the function f from (3.24), see
Figure 2. We also want to pay attention to the fact that the MPRK22ncs(«) schemes are stable for o > 1,

which coincides with the expansion of the stability region S(«) for & — 1 that can be observed within Figure 2.

3.1. The casesa =0or b=0

As mentioned before, the cases a = 0 and b = 0 are special, in that no steady states of (1.3) are contained in
R2>0. In the following, we only discuss the case b =0, i.e.

Yy = —ay1, Y2 =ay, a>0, (3.27)

since interchanging the roles of y; and yy leads to the case ¢ = 0. This system (1.3) has the steady states
y* = (0,45) € R? with y5 > 0 and we show that the MPRK22 iterations with an arbitrary initial condition
yY > 0 converge to the steady state y* = (0,y? + 49), which is the steady state of the continuous problem, see
(1.5). Since the MPRK?22 schemes are conservative, it is sufficient to prove yJ* — 0 as n — o0, since this directly
implies y5 — 3 + 8 as n — oo.

Application of the MPRK22 schemes (1.6)—(3.27) results in

ygl) =7, (3.28a)

(2)

2
y§2) =yr — aAtay@% =yl — aAtay%Q), (3.28Db)
Y1
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0
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t

FIGURE 3. Exact solution (4.2) of the test problem (4.1).

1 1 n+1
2 2c ( (2)> a( (1)) >
Y Y1

We note that there is no dependence on v, hence, the following applies to both MPRK22(«) and MPRK22nes(«)

schemes. Solving (3.28b) for y?’ yields

O yr
! 1+ alAta
and inserting this into (3.28¢) shows
1 1 yp (1+ OzAta)é ytl
nt+l _ ,n _ At 1— — n . 1 . 1
el a(( 2a>yl T2 Tradte)  GpE o R
1 1 1
=9 — At 1-— = - )1 Ata) =y t!
h a<( 2a>+2a(1+aAta)>( +adta)eyy
w1+ (a- D),
- (1t alta)—= -

Solving for ¢! leads to

where R is defined by

R - (1_ 2(1_@_;2@)1: (1— az)i—t

(1- ozz)l_é —z(1-(a—1%)2) .

For z < 0 and o > % we have 1 — az > 0 and —z(l — (a - %)z) > 0, which implies 0 < R(z) < 1. Hence, the
MPRK22(«) and MPRK22ncs(«) schemes converge montonically towards the correct steady state along the
line 1 + yo = y? + 99, just like the solution of the continuous problem.

As we have seen, there is no difference between MPRK22(a) and MPRK22ncs(a) schemes in the cases a = 0
or b = 0, which might lead to the conclusion that both schemes have equal stability properties in general.
In particular, since (3.27) is a straightforward extension of Dahlquist’s equation to positive and conservative
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-= - - > D
0.4} 0.4
0.2} 0.2
0é , , , , , ,
0 10 20 30 40 0 200 400 600 800
t t
(a) (B)
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- = U == U
- = ¥ - = Y
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0.8} —6—yz num 0.8l —6—y, num
Yy; num Yy; num
0.6 4 0.6 p
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0.4F 4 0.4}
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0l , , 0é , ,
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t t
() (D)

FIGURE 4. Numerical approximations of (4.1). The dashed lines indicate the exact solution
(4.2). (A) MPRK22(1) with At = 4. (B) MPRK22ncs(1) with At = 4. (C) MPRK22(2) with
At = 20. (D) MPRK22ncs(2) with At = 20.

PDS. But the analysis on the general system (1.3) in Section 3 shows significant differences with respect to
the stability of MPRK22(«r) and MPRK22ncs(«) schemes. Hence, it is insufficient to use (3.27) to evaluate the
stability of schemes which do not belong to the class of general linear methods.

4. NUMERICAL EXPERIMENTS

In this section we perform numerical experiments to confirm the stability properties of both MPRK22(«)
and MPRK22ncs(«) schemes. For this purpose, we consider the test equation (1.3) for the case a = b = 25. In
particular, we consider the initial value problem

_9%5 25 . 0.998
y':< 25 —25>y with y? = (0.002)' (4.1)
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FIGURE 5. The marked points are z(At;) = —25(At;, +1071) (1, 1), 2(At}) = —25At5(1,1)
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and z(At;) = —25(At;, —1071)(1,1)T, which lie on the red line z, = z,. The grey areas
represent the stability regions for the MPRK22ncs(a) schemes with @ = 0.5 and o = 0.8
respectively, see also Figure 2. (A) a = 0.5 and At¥, = (v/17 + 3)/50 ~ 0.14. (B) @ = 0.8 and
At = (v/101 +9)/50 ~ 0.38.

The nonzero eigenvalue is A = —(a + b) = —50 and the analytic solution is given by

0 .0 0 0
_yitys (b ay; —byy (1) 11 LY 50
y(t) = - (a) + - (_1 =514 +0.498 e (4.2)

As depicted in Figure 3, it can be observed that the equilibrium state

c_ WY b _1(1
Y = "axb \a) 21

is approximately already reached at time ¢ = 0.1.

To verify the theoretical statements of Corollaries 3.9 and 3.11, we investigate at first the case of @ > 1, for
which we have proven that MPRK22(«) as well as MPRK22ncs(«r) schemes are stable and locally convergent to
the correct steady state of (1.3), irrespectively of the chosen time step size. To illustrate these positive properties
of the methods, we choose At = 4 and At = 20, in order to use very large time step sizes compared to the time
scale of the exact solution of 0.1 as mentioned above. Numerical approximations obtain with these time step
sizes can be seen in Figure 4. Thereby, the predicted stability of the schemes is clearly demonstrated. In the
case of At = 4, the iterates of both MPRK22(1) and MPRK22ncs(1) converge to the steady state of the exact
solution shown as a dashed lines. It is worth mentioning that the result of MPRK22(1) shows significantly less
oscillations compared to the result of MPRK22ncs(1) and is also very close to the steady state already for t =
30, while MPRK22ncs(1) requires much more iterations to approach the steady state. The same behavior can
be observed for At = 20, for which both schemes are stable and convergent to the steady state. Nevertheless,
even in this case the MPRK22(2) shows smaller amplitudes and less oscillation compared to MPRK22ncs(2). In
summary, the numerical experiments verify the theoretical results for both MPRK22(«) and MPRK22ncs(«)
schemes in the case of o« > 1.

The choice of parameters % < a < 1requires a more differentiated consideration since in this case MPRK22(«)
schemes are stable due to Corollary 3.9 while MPRK22ncs(«) schemes postulate stability conditions with respect
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FIGURE 6. Numerical approximations of (4.1). The dashed lines indicate the exact solution
(4.2). (A) MPRK22(0.5) with At; = At — 107! ~ 0.04. (B) MPRK22ncs(0.5) with At; =
Atr —1071 ~ 0.04. (C) PRK22(0.8) with At; = At} —10! ~ 0.28. (D) MPRK22ncs(0.8) with
Aty = Atr, — 1071 =~ 0.28.

to the time step size according to Corollary 3.11. In the following we focus on o« = 0.5 and o = 0.8. To
demonstrate the different stability behavior, we choose points of the form

_ (z(AY)) _ a 25
0 = (28) (s = (2)
inside and outside the stability domain. The location of the points z(At) is visualized for « = 0.5 as well
as a = 0.8 by a red line in Figure 5. Following Corollary 3.11 the point z(At}) lies on the boundary of the
stability region and straightforward calculations yield At} = (\/ﬁ + 3) /50 &~ 0.14 for & = 0.5 and At} =

(\/ 101 + 9) /50 & 0.38 for @ = 0.8, respectively. The two remaining points within the figures result in each case
from the choices At; = At — 107! and Aty = At? + 1071
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FIGURE 7. Numerical approximations of (4.1). The dashed lines indicate the exact solution
(4.2). (A) MPRK22(0.5) with At = At% + 107! ~ 0.24. (B) MPRK22ncs(0.5) with At =
Atr + 1071 &~ 0.24. (C) MPRK22(0.8) with At = At + 107! ~ 0.48. (D) MPRK22ncs(0.8)
with At = At + 107! ~ 0.48.

According to Corollary 3.11, the MPRK22ncs method can be expected to be stable for At; and unstable for
Ats. The first expectation is confirmed by Figure 6 and additionally MPRK22(«) is shown to be stable for both
time step sizes, which coincides with the statement of Corollary 3.9.

In accordance with the presented theory, one can observe the superior stability behavior of MPRK22(«) in
Figure 7 even in the case that the time step size is chosen larger then the critical step size for MPRK22ncs(«).
However, the instability of MPRK22ncs() for Aty = At¥ + 107! can only be guessed by the illustration in
Figure 7. To show the divergence of the method more clearly, we modify the initial condition within the initial
value problem. Therefore, we consider

o e a1 _ (0501
y =y +10 <—1> = (0.499>



1078 TH. IZGIN ET AL.
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FIGURE 8. Numerical approximation of (1.3) with y* = (y;+107%y3 —1073)" =

(0.5+107%,0.5 — 10‘3)T. The dashed lines indicate the exact solution (4.2). (A)
MPRK22ncs(0.5) with At = At* +1071 ~ 0.24. (B) MPRK22ncs(0.8) with At = At* +107! ~
0.48.

which is much closer to the steady state than the previously used value. The results shown in Figure 8 clearly
demonstrate the expected divergence from the steady state for a = 0.5 as well as a = 0.8.

5. SUMMARY AND OUTLOOK

In this paper a stability analysis for general positive and conservative time integration schemes based on the
center manifold theory for maps was presented for the first time. The theory shows that even for nonlinear
positive and conservative time integrators the investigation of the eigenvalues of the Jacobian is sufficient to
analyze stability. This novel theory was used to carry out a first stability analysis of MPRK schemes. Thereby, we
discovered that for @ > 1 both MPRK22(«) and MPRK22ncs(«) schemes possess stable fixed points irrespective
of the chosen time step size At. If o < 1, these stability properties are maintained by the MPRK22(«) schemes,
whereas the investigation of MPRK22ncs(«) revealed time step restrictions to ensure stability. We also computed
the corresponding stability regions for MPRK22ncs(«r) schemes.

Future research topics include the extension of the statement of Theorem 2.9 to higher dimensional linear
and nonlinear systems, which requires the consideration of additional linear invariants. Furthermore, global
stability properties are of interest. Also, due to the fact that Theorem 2.9 is applicable to general positive and
conservative schemes a stability analysis of the schemes presented in [1,2,17,18,23,26,30] is now possible for
the first time.

Acknowledgements. The author Th. Izgin gratefully acknowledges the financial support by the Deutsche Forschungsge-
meinschaft (DFG) through grant ME 1889/10-1.
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