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ON LYAPUNOV STABILITY OF POSITIVE AND CONSERVATIVE TIME
INTEGRATORS AND APPLICATION TO SECOND ORDER MODIFIED

PATANKAR–RUNGE–KUTTA SCHEMES

Thomas Izgin* , Stefan Kopecz and Andreas Meister

Abstract. Since almost twenty years, modified Patankar–Runge–Kutta (MPRK) methods have
proven to be efficient and robust numerical schemes that preserve positivity and conservativity of
the production-destruction system irrespectively of the time step size chosen. Due to these advanta-
geous properties they are used for a wide variety of applications. Nevertheless, until now, an analytic
investigation of the stability of MPRK schemes is still missing, since the usual approach by means of
Dahlquist’s equation is not feasible. Therefore, we consider a positive and conservative 2D test problem
and provide statements usable for a stability analysis of general positive and conservative time inte-
grator schemes based on the center manifold theory. We use this approach to investigate the Lyapunov
stability of the second order MPRK22(𝛼) and MPRK22ncs(𝛼) schemes. We prove that MPRK22(𝛼)
schemes are unconditionally stable and derive the stability regions of MPRK22ncs(𝛼) schemes. Finally,
numerical experiments are presented, which confirm the theoretical results.
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1. Introduction

In recent years, there has been a strong interest in the development of numerical schemes that preserve
properties of the solutions of differential equations. Modified Patankar–Runge–Kutta (MPRK) methods, see
[7,17,18,22,23,30], guarantee positivity and conservativity of the numerical solution of positive and conservative
production-destruction systems (PDS). For other recent approaches which facilitate positive and conservative
numerical approximations, we refer to [1, 2, 5, 26,29].

A PDS
y′ = P(y)−D(y), y(0) = y0,

with y = (𝑦1, . . . , 𝑦𝑁 )𝑇 and P,D ≥ 0, is called positive if y0 > 0 implies y(𝑡) > 0 for all times 𝑡 > 0 and is
called conservative if

∑︀𝑁
𝑖=1 𝑦𝑖(𝑡) =

∑︀𝑁
𝑖=1 𝑦0

𝑖 for all times 𝑡 > 0. Conditions which ensure the positivity of a PDS
are given in [13]. A conservative PDS can always be written in the form
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𝑦′𝑖 =
𝑁∑︁

𝑗=1

(𝑝𝑖𝑗(y)− 𝑑𝑖𝑗(y)) with 𝑝𝑖𝑗(y) = 𝑑𝑗𝑖(y) and 𝑝𝑖𝑗(y), 𝑑𝑖𝑗(y) ≥ 0

for all y ≥ 0 and 𝑖, 𝑗 = 1, . . . , 𝑁 in which 𝑝𝑖𝑗(y) refers to a production term of the 𝑖th equation with correspond-
ing destruction term 𝑑𝑗𝑖(y) in the 𝑗th equation. Analogously, 𝑑𝑖𝑗(y) denotes a destruction term of equation 𝑖
with associated production term 𝑝𝑗𝑖(y) in equation 𝑗. In summary, the solution of a positive and conservative
PDS remains positive for all times 𝑡 > 0 and the sum of the solutions components remains constant for all times
𝑡 > 0.

Originally introduced in [7], there has been a considerable interest in the development of MPRK schemes
in recent years. In [22–24], MPRK schemes of second and third order were introduced. These were generalized
in the context of SSP Runge–Kutta methods in [17, 18] and applied to solve reactive Euler equations. In [30],
the idea of [7] was used to develop mPDeC schemes, which are MPRK schemes of arbitrary order based on
deferred correction schemes. All these schemes are unconditionally positive and conservative and have proven
their efficiency and robustness while integrating stiff PDS.

MPRK schemes have been used in a wide range of applications. The first order modified Patankar–Euler
scheme, introduced in [7], is used in a global ocean mercury model with a methylation cycle [34]. The second
order MPRK scheme of [7] is applied to an ecosystem model for the simulation of the cyanobacteria life cycle
[15, 16] or that of dinoflagellates [36]. In [3, 4, 27], this scheme is also used to model the phosphorus cycle in
rivers and lakes. Moreover this scheme was found to be beneficial when applied to NPZD-models in [8] and is
also implemented in the General Ocean Turbulence Model (GOTM) [9]. Further applications can be found in
the context of magneto-thermal winds [14] or warm-hot intergalactic mediums [21].

Often MPRK schemes are used within a splitting ansatz as a time integrator for the reactive part of the
considered system of partial differential equations in order to avoid additional time step restrictions arising
from stiff reaction terms. In [11], mPDeC schemes are used as time integrators for the shallow water equations
to ensure unconditionally positivity of the water height. In [33], it was demonstrated that the second order
MPRK scheme of [7] surpasses standard Runge–Kutta and Rosenbrock methods for the solution of conservative
biochemical models in performance. This was also confirmed in [6] where the Brusselator PDS was solved with
different time integration methods. In [37], a third order MPRK scheme from [23] was successfully used in a
high-order operator-splitting method for the numerical solution of the SIR epidemic model.

To the authors knowledge, no general stability analysis of MPRK schemes has been carried out so far. There
are several reasons for the lack of such an analysis. First of all, unlike Runge–Kutta methods, MPRK schemes
cannot be applied to the scalar Dahlquist equation

𝑦′ = 𝜆𝑦, 𝜆 ∈ C−, (1.1)

since it is unclear how to treat the complex term 𝜆𝑦 in the production-destruction setting. This issue can be
handled by choosing 𝜆 ∈ R− and considering the system 𝑦′1 = 𝜆𝑦1, 𝑦′2 = −𝜆𝑦1. For this system the first order
MPRK scheme of [7] is equivalent to the L-stable backward Euler method. Also second order MPRK schemes
show an excellent stability behavior when applied to this system, as we show in Section 3.1. Unfortunately, this
stability behavior can only be observed for specific MPRK schemes in more general cases, which requires a more
detailed analysis.

The scalar Dahlquist equation is so valuable, since it makes a direct stability analysis of the linear system

y′ = Ay (1.2)

with A ∈ R𝑁×𝑁 unnecessary. A Runge–Kutta method applied to (1.2) has the same stability properties as
applied to the 𝑁 scalar equations (1.1) with 𝜆 passing through the 𝑁 eigenvalues of A, see for instance Chapter
6 of [12].

Since the direct application of MPRK schemes to (1.1) is not possible, stability should be investigated for
a linear system (1.2), where we also require the system to be positive and conservative. In [31], it is pointed
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out that the inherent nonlinear nature of MPRK schemes makes even a linear stability analysis difficult. To see
this, we follow [31] and consider the second order MPRK scheme of [7] applied to a conservative and positive
linear PDS of the form (1.2). The resulting scheme is given by

y(2) = y𝑛 + ∆𝑡Ay(2), y𝑛+1 = y𝑛 +
∆𝑡

2
A(W𝑛 + I)y𝑛+1

with a positive time step size ∆𝑡, W𝑛 = diag
(︁
𝑦𝑛

𝑖 /𝑦
(2)
𝑖

)︁
and I denoting the identity matrix in R𝑁×𝑁 . Hence,

we find y𝑛+1 = 𝑅𝑛y𝑛 with

𝑅𝑛 =
(︂
I− ∆𝑡

2
A(W𝑛 + I)

)︂−1

.

This shows that y𝑛+1 depends nonlinearly on y𝑛 even when a linear PDS is considered, which complicates the
analysis significantly.

The system matrix A = (𝑎𝑖𝑗) ∈ R𝑁×𝑁 of a positive and conservative linear PDS written in the form (1.2)
must satisfy 𝑎𝑖𝑖 ≤ 0, 𝑎𝑖𝑗 ≥ 0 for 𝑖 ̸= 𝑗 and

∑︀𝑁
𝑖=1 𝑎𝑖𝑗 = 0 for 𝑗 = 1, . . . , 𝑁 . Hence, the system

y′ = Ay, A =
(︂
−𝑎 𝑏

𝑎 −𝑏

)︂
, 𝑎, 𝑏 ≥ 0, 𝑎 + 𝑏 > 0 (1.3)

represents all positive and conservative linear PDS of size 2 × 2, except the case with 𝑎 = 𝑏 = 0, which needs
no stability analysis. In order to see that (1.3) is indeed a PDS, we set

𝑝12(y) = 𝑑21(y) = 𝑏𝑦2, 𝑝21(y) = 𝑑12(y) = 𝑎𝑦1, 𝑝𝑖𝑖(y) = 𝑑𝑖𝑖(y) = 0, 𝑖 ∈ {1, 2} (1.4)

and obtain 𝑦′1 = 𝑝12(y) − 𝑑12(y) and 𝑦′2 = 𝑝21(y) − 𝑑21(y). The eigenvalues of A are 𝜆 = −(𝑎 + 𝑏) < 0 and 0.
Given an initial value y0 =

(︀
𝑦0
1 , 𝑦0

2

)︀𝑇 , the solution of the initial value problem associated with (1.3) is

y(𝑡) =
𝑦0
1 + 𝑦0

2

𝑎 + 𝑏

(︂
𝑏
𝑎

)︂
+

𝑎𝑦0
1 − 𝑏𝑦0

2

𝑎 + 𝑏

(︃
1

−1

)︃
𝑒𝜆𝑡 =

1
𝑎 + 𝑏

(︃
𝑏 + 𝑎𝑒𝜆𝑡 𝑏− 𝑏𝑒𝜆𝑡

𝑎− 𝑎𝑒𝜆𝑡 𝑎 + 𝑏𝑒𝜆𝑡

)︃
y0. (1.5)

Since 𝜆 < 0 we have y(𝑡) > 0 for 𝑡 ≥ 0 if y0 > 0, which shows that the PDS (1.3) is positive. Moreover,
summation in (1.5) shows 𝑦1(𝑡) +𝑦2(𝑡) = 𝑦0

1 +𝑦0
2 for all 𝑡 ≥ 0, which confirms that the PDS is also conservative.

The system (1.3) is also considered in [20], where it is used to study a linearization of second order MPRK
schemes. Section 3 extends the results of [20] to the nonlinear case.

In the following, we introduce a framework to study the Lyapunov stability of positive and conservative
time integrators, when applied to (1.3). Within this framework we analyze the stability of the second order
MPRK22(𝛼) and MPRK22ncs(𝛼) schemes introduced in [22]. If we want to refer to both schemes we use
MPRK22 schemes as an abbreviation. The MPRK22 schemes are given by

𝑦
(1)
𝑖 = 𝑦𝑛

𝑖 , (1.6a)

𝑦
(2)
𝑖 = 𝑦𝑛

𝑖 + 𝛼∆𝑡

𝑁∑︁
𝑗=1

⎛⎜⎜⎝(1− 𝛾)𝑝𝑖𝑗(y(1)) + 𝑝𝑖𝑗(y(1))
𝑦
(2)
𝑗

𝑦
(1)
𝑗

𝛾 − 𝑑𝑖𝑗(y(1))
𝑦
(2)
𝑖

𝑦
(1)
𝑖

⎞⎟⎟⎠, (1.6b)
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𝑦𝑛+1
𝑖 = 𝑦𝑛

𝑖 + ∆𝑡

𝑁∑︁
𝑗=1

⎛⎜⎜⎝(︂(︂1− 1
2𝛼

)︂
𝑝𝑖𝑗(y(1)) +

1
2𝛼

𝑝𝑖𝑗(y(2))
)︂

𝑦𝑛+1
𝑗

(𝑦(2)
𝑗 )

1
𝛼 (𝑦(1)

𝑗 )1−
1
𝛼

−
(︂(︂

1− 1
2𝛼

)︂
𝑑𝑖𝑗(y(1)) +

1
2𝛼

𝑑𝑖𝑗(y(2))
)︂

𝑦𝑛+1
𝑖

(𝑦(2)
𝑖 )

1
𝛼 (𝑦(1)

𝑖 )1−
1
𝛼

⎞⎟⎟⎠, (1.6c)

for 𝑖 = 1, . . . , 𝑁 with 𝛼 ≥ 1
2 . The methods with 𝛾 = 1 in (1.6b) are called MPRK22(𝛼) schemes. With 𝛾 = 0

they are named MPRK22ncs(𝛼) schemes. For MPRK22(𝛼) schemes y(2) is also conservative, in the sense that∑︀𝑁
𝑖=1 𝑦

(2)
𝑖 =

∑︀𝑁
𝑖=1 𝑦0

𝑖 . This is not the case for MPRK22ncs(𝛼) methods, where “ncs” is an abbreviation for
“non-conservative stages”, and will result in inferior stability properties as shown in Section 3.

The outline of the paper is as follows. In Section 2, we summarize the center manifold theory and prove the
main theorem concerning the Lyapunov stability of general positive and conservative time integration schemes.
This theorem is used to analyze the local stability of the schemes (1.6) when applied to the positive and
conservative linear PDS (1.3) in Section 3. We prove that the MPRK22(𝛼) methods are unconditionally stable.
Whereas, MPRK22ncs(𝛼) is also unconditionally stable for 𝛼 ≥ 1 and requires time step restrictions in the case
𝛼 < 1. Finally, we provide numerical experiments confirming the theoretical results in Section 4.

2. Center manifold theory and stability of positive and conservative time
integration schemes

In this section we recall the definitions of stable and asymptotically stable steady state solutions of differential
equations and the corresponding definitions for fixed points of iteration schemes. We also recap theorems that
are helpful to identify the stability properties of a given fixed point. These show that for hyperbolic fixed points
stability is solely determined by the eigenvalues of the Jacobian of the underlying map, which is not true for
non-hyperbolic fixed points. The center manifold theory is an important tool to investigate the stability of non-
hyperbolic fixed points. Using this theory we present Theorem 2.9, which provides for the first time a criteria
to assess the stability of general positive and conservative schemes applied to (1.3).

In the following, we use ‖ · ‖ to represent an arbitrary norm in R𝑙 for 𝑙 ∈ N and Df denotes the Jacobian of
a map f .

Definition 2.1. Let y* be a steady state solution of a differential equation y′ = f(y), that is f(y*) = 0.
(a) The steady state solution y* is called Lyapunov stable if, for any 𝜖 > 0, there exists a 𝛿 = 𝛿(𝜖) > 0 such

that ‖y(0)− y*‖ < 𝛿 implies ‖y(𝑡)− y*‖ < 𝜖 for all 𝑡 ≥ 0.
(b) If in addition to (a), there exists a constant 𝑐 > 0 such that ‖y(0)− y*‖ < 𝑐 implies ‖y(𝑡)− y*‖ → 0 for

𝑡 →∞, we call the steady state solution y* asymptotically stable.
(c) A steady state solution that is not stable is said to be unstable.

The PDS (1.3) has infinitely many steady state solutions, since every y* in the nullspace of A, that is
y* = 𝜃(𝑏, 𝑎)𝑇 with 𝜃 ∈ R, is a steady state of (1.3). In geometrical terms, all steady states lie on the line
𝑎𝑦1 − 𝑏𝑦2 = 0 in the 𝑦1–𝑦2-coordinate system. With respect to the asymptotic behavior of (1.5), we see

lim
𝑡→∞

y(𝑡) =
𝑦0
1 + 𝑦0

2

𝑎 + 𝑏

(︃
𝑏

𝑎

)︃
+ lim

𝑡→∞

𝑎𝑦0
1 − 𝑏𝑦0

2

𝑎 + 𝑏

(︃
1

−1

)︃
𝑒𝜆𝑡 =

𝑦0
1 + 𝑦0

2

𝑎 + 𝑏

(︃
𝑏

𝑎

)︃
,

since 𝜆 < 0. Thereby, given an initial value y0 =
(︀
𝑦0
1 , 𝑦0

2

)︀𝑇 , the solution monotonically approaches the steady
state

y* =
𝑦0
1 + 𝑦0

2

𝑎 + 𝑏

(︃
𝑏

𝑎

)︃



ON LYAPUNOV STABILITY OF POSITIVE AND CONSERVATIVE TIME INTEGRATORS 1057

along the line 𝑦1 +𝑦2 = 𝑦0
1 +𝑦0

2 in the 𝑦1–𝑦2-coordinate system. Hence, the steady state solutions of (1.3) cannot
be asymptotically stable, as there are infinitely many other steady state solutions in every neighborhood of a
steady state. But it can be shown that they are stable in the sense of Defintion 2.1 (a), see Theorem 3.23 of
[12].

When applied to a differential equation, a time integration scheme should preserve as many properties of the
differential equation as possible. In particular, the fixed points of the iteration scheme, should be the steady
state solutions of the differential equation with equal stability properties.

Definition 2.2. Let y* be a fixed point of an iteration scheme y𝑛+1 = g(y𝑛), that is y* = g(y*).

(a) The fixed point y* is called Lyapunov stable if, for any 𝜖 > 0, there exists a 𝛿 = 𝛿(𝜖) > 0 such that⃦⃦
y0 − y*

⃦⃦
< 𝛿 implies ‖y𝑛 − y*‖ < 𝜖 for all 𝑛 ≥ 0.

(b) If in addition to (a), there exists a constant 𝑐 > 0 such that
⃦⃦
y0 − y*

⃦⃦
< 𝑐 implies ‖y𝑛 − y*‖ → 0 for

𝑛 →∞, the fixed point y* is called asymptotically stable.
(c) A fixed point that is not stable is said to be unstable.

In the following, we will also briefly speak of stability instead of Lyapunov stability.
Next, we summarize theorems which are helpful to investigate the stability of fixed points of iteration schemes.

Theorem 2.3 ([35], Thm. 1.3.7). Let y𝑛+1 = g(y𝑛) be an iteration scheme with fixed point y*. Then

(a) y* is asymptotically stable if |𝜆| < 1 for all eigenvalues 𝜆 of Dg(y*).
(b) y* is unstable if |𝜆| > 1 for one eigenvalue 𝜆 of Dg(y*).

The above theorem does not give any information if the spectral radius of Dg(y*) is equal to 1. Hence, it is
reasonable to introduce the following definition.

Definition 2.4 ([35], Def. 1.3.6). A fixed point y* of an iteration scheme y𝑛+1 = g(y𝑛) is called hyperbolic if
|𝜆| ≠ 1 for all eigenvalues 𝜆 of Dg(y*). If a fixed point is not hyperbolic, it is called non-hyperbolic.

A generalization of Theorem 2.3 is the Hartman–Grobman Theorem, which states that a nonlinear iteration
scheme and its linearization share the same behavior near hyperbolic fixed points, see Theorem 1.6.2 of [35] for
the precise statement. One can show, that for non-hyperbolic fixed points nonlinear terms have to be taken into
account in order to investigate the stability. Thereby, the theory of center manifolds is an important tool and
will be explained in the following section.

2.1. Center manifold theory

To study the stability of a non-hyperbolic fixed point y* of an iteration scheme with 𝒞2-map g, we make use
of an affine linear transformation1 to obtain a 𝒞2-map G : 𝐷 → R𝑁 , with 𝐷 ⊂ R𝑁 being a neighborhood of the
origin, which has the form

G(w1,w2) =

(︃
Uw1 + u(w1,w2)
Vw2 + v(w1,w2)

)︃
, (2.1)

with w1 ∈ R𝑚, w2 ∈ R𝑙 and 𝑚 + 𝑙 = 𝑁 . The square matrices U ∈ R𝑚×𝑚 and V ∈ R𝑙×𝑙 are such that |𝜆| = 1
for all eigenvalues 𝜆 of U and |𝜇| < 1 for all eigenvalues 𝜇 of V. The functions u and v are in 𝒞2 and u,v as
well as their first order derivatives vanish at the origin, that is

u(0,0) = 0, Du(0,0) = 0, v(0,0) = 0, Dv(0,0) = 0,

where 0 stands for the zero vector or matrix of appropriate size, respectively. In particular, the fixed point y*

of g is mapped to 0, which is a fixed point of G with equal stability properties as y*.
Hence, it is sufficient to study the stability of the origin with respect to G, which is a simplification due to

the existence of a center manifold.
1See the proof of Theorem 2.9 for the details of this transformation.
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Theorem 2.5 (Center Manifold Theorem). Let G be defined as in (2.1) and(︃
w𝑛+1

1

w𝑛+1
2

)︃
= G(w𝑛

1 ,w𝑛
2 ) =

(︃
Uw𝑛

1 + u(w𝑛
1 ,w𝑛

2 )
Vw𝑛

2 + v(w𝑛
1 ,w𝑛

2 )

)︃
,

(︃
w0

1

w0
2

)︃
∈ R𝑚+𝑙. (2.2)

(a) (Existence): there exists a center manifold for G, which is locally representable as the graph of a function
h : R𝑚 → R𝑙. This means, for some 𝜖 > 0 there exists a 𝒞1-function h : R𝑚 → R𝑙 with h(0) = 0 and
Dh(0) = 0 such that

⃦⃦
w0

1

⃦⃦
< 𝜖 and (w1

1,w
1
2)𝑇 = G

(︀
w0

1,h
(︀
w0

1

)︀)︀
implies w1

2 = h
(︀
w1

1

)︀
.

(b) (Local Attractivity): let (w𝑛
1 ,w𝑛

2 )𝑇 , 𝑛 ∈ N0 represent the sequence generated by (2.2). If ‖w𝑛
1 ‖, ‖w𝑛

2 ‖ < 𝜖
for all 𝑛 ∈ N0, then the distance of (w𝑛

1 ,w𝑛
2 ) to the center manifold tends to zero for 𝑛 → ∞, i.e.

‖w𝑛
2 − h(w𝑛

1 )‖ → 0 for 𝑛 →∞.

Proof. See Theorem 2.1 of [25], Theorem 6 of [10], Theorem 4 of [32] for existence and Theorem 2.1 of [25],
Chapter V, Theorem 2 of [19] for local attractivity. �

The existence of a center manifold allows the study of a system with reduced dimensionality to determine
the stability properties of the origin. Restricting the iteration (2.2) to the center manifold, i.e. w0

2 = h
(︀
w0

1

)︀
,

gives
w𝑛+1

1 = 𝒢(w𝑛
1 ), 𝒢(w1) = Uw1 + u(w1,h(w1)) (2.3)

for ‖w𝑛
1 ‖ < 𝜖. The next theorem states that stability of the origin with respect to 𝒢 already implies stability of

the origin with respect to G.

Theorem 2.6 ([10], Thm. 8 (Stability)). Suppose the fixed point 0 ∈ R𝑚 of 𝒢 from (2.3) is stable, asymptotically
stable or unstable. Then the fixed point 0 ∈ R𝑁 of G from (2.2) is stable, asymptotically stable or unstable.

In summary, the stability of a non-hyperbolic fixed point y* ∈ R𝑁 of a map g can be determined by
investigating the fixed point 0 ∈ R𝑚 of 𝒢, which has a lower complexity due to the reduced dimension 𝑚 < 𝑁 .

To actually calculate the center manifold we need to solve

(︀
w1

1,h
(︀
w1

1

)︀)︀𝑇
= G

(︀
w0

1,h
(︀
w0

1

)︀)︀
=

(︃
Uw0

1 + u
(︀
w0

1,h
(︀
w0

1

)︀)︀
Vh
(︀
w0

1

)︀
+ v

(︀
w0

1,h
(︀
w0

1

)︀)︀)︃,

which can be rewritten as

h
(︀
Uw0

1 + u
(︀
w0

1,h
(︀
w0

1

)︀)︀)︀
= Vh

(︀
w0

1

)︀
+ v

(︀
w0

1,h
(︀
w0

1

)︀)︀
or

h
(︀
G
(︀
w0

1,h
(︀
w0

1

)︀)︀
1

)︀
= G

(︀
w0

1,h
(︀
w0

1

)︀)︀
2
.

The above invariance property offers a way to approximate the center manifold up to an arbitrary order.

Theorem 2.7 ([10], Thm. 7). Let h be a center manifold for G and Φ ∈ 𝒞1
(︀
R𝑚, R𝑙

)︀
with Φ(0) = 0 and

DΦ(0) = 0. If
Φ(G(w1,Φ(w1))1)−G(w1,Φ(w1))2 = 𝒪(‖w1‖𝑞)

as w1 → 0 for some 𝑞 > 1, then h(w1) = Φ(w1) +𝒪(‖w1‖𝑞) as w1 → 0.

Now, we consider a general positive and conservative iteration scheme y𝑛+1 = g(y𝑛), i.e. y𝑛 > 0 for all
𝑛 ∈ N if y0 > 0 and

⃦⃦
y𝑛+1

⃦⃦
1

= ‖y𝑛‖1, in two dimensions. We further assume that all fixed points of the
iteration scheme are located on a line through the origin, which is the case for the steady states of (1.3). Under
these circumstances, Theorem 2.9 gives a sufficient condition for stability of the iteration scheme based on
the eigenvalues of the corresponding Jacobian Dg(y*). Furthermore, the theorem states that stability implies
convergence towards a fixed point with equal 1-norm.

The following lemma is used in the proof of Theorem 2.9.
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Lemma 2.8. Let y0 =
(︀
𝑦0
1 , 𝑦0

2

)︀𝑇
> 0 and 𝐿 =

{︀
y ∈ R2

>0 | ‖y‖1 =
⃦⃦
y0
⃦⃦

1

}︀
, then

𝐿 =
{︀
y ∈ R2 | y = y0 + 𝑠ȳ, −𝑦0

1 < 𝑠 < 𝑦0
2

}︀
,

where ȳ = (1,−1)𝑇 . If in addition, g : R2
>0 → R2

>0 is a conservative map, i.e. ‖g(y)‖1 = ‖y‖1, then for every
y0 + 𝑡ȳ > 0 with 𝑡 ∈ R, there exists a 𝑠(𝑡) with −𝑦0

1 < 𝑠(𝑡) < 𝑦0
2, such that

g
(︀
y0 + 𝑡ȳ

)︀
= y0 + 𝑠(𝑡)ȳ.

Proof. Let y0,y > 0, then the condition ‖y‖1 =
⃦⃦
y0
⃦⃦

1
is equivalent to 𝑦1 + 𝑦2 = 𝑦0

1 + 𝑦0
2 . Geometrically, this

describes a line in the 𝑦1–𝑦2-coordinate system with normal vector (1, 1)𝑇 . A parameter form of this line is given
by y = y0 + 𝑠(𝑡)ȳ, 𝑠(𝑡) ∈ R. To ensure y > 0, we must have −𝑦0

1 < 𝑠(𝑡) < 𝑦0
2 .

Now, define w = g
(︀
y0 + 𝑡ȳ

)︀
with y0 + 𝑡ȳ > 0. Since ‖w‖1 =

⃦⃦
y0 + 𝑡ȳ

⃦⃦
1

=
⃦⃦
y0
⃦⃦

1
, we have g

(︀
y0 + 𝑡ȳ

)︀
=

w = y0 + 𝑠(𝑡)ȳ with −𝑦0
1 < 𝑠(𝑡) < 𝑦0

2 . �

Next, we present the main theorem of this section, which provides criteria to assess the stability of general
positive and conservative schemes. Application of a general positive and conservative scheme to (1.3) results
in a nonlinear iteration y𝑛+1 = g(y𝑛), for which the steady states y* of (1.3) should be non-hyperbolic fixed
points of g. The theorem shows that even in this nonlinear case the investigation of the eigenvalues of the
Jacobian Dg(y*) is sufficient to analyze stability. To the authors knowledge there are no similar results focusing
on general positive and conservative schemes in the literature even though the statements are of fundamental
importance.

Theorem 2.9. Let g ∈ 𝒞2
(︀
R2

>0

)︀
with fixed point y* > 0, such that all 𝑟y* are fixed points of g for all 𝑟 > 0. In

addition, let the iterates of the iteration scheme y𝑛+1 = g(y𝑛) satisfy
⃦⃦
y𝑛+1

⃦⃦
1

= ‖y𝑛‖1 for all 𝑛 ∈ N0. Then,
the spectrum of the Jacobian Dg(y*) is 𝜎(Dg(y*)) = {1, 𝑅} with 𝑅 ∈ R, and the following statements apply. If
|𝑅| < 1, then

(a) y* is stable.
(b) there exists a 𝛿 > 0, such that

⃦⃦
y0
⃦⃦

1
= ‖y*‖1 and

⃦⃦
y0 − y*

⃦⃦
< 𝛿 imply y𝑛 → y* as 𝑛 →∞.

Proof. Throughout this proof, we use the notation ȳ = (1,−1)𝑇 and e1 = (1, 0)𝑇 , e2 = (0, 1)𝑇 to denote the
standard unit vectors.

First, we compute the eigenvalues and eigenvectors of Dg(y*). Since g is differentiable in y* the directional
derivatives 𝜕vg(y*) = Dg(y*)v exist for all directions v ∈ R2. Hence,

Dg(y*)y* = 𝜕y*g(y*) = lim
ℎ→0

1
ℎ

(g(y* + ℎy*)− g(y*)) = lim
ℎ→0

1
ℎ

(g((1 + ℎ)y*)− y*).

As 𝑟y* > 0 is a fixed point of g for all 𝑟 > 0, we see

Dg(y*)y* = lim
ℎ→0

1
ℎ

((1 + ℎ)y* − y*) = y*.

Thus, y* is an eigenvector of Dg(y*) with associated eigenvalue 1. To compute the other eigenvalue and
eigenvector, we consider the directional derivative

Dg(y*)ȳ = 𝜕ȳg(y*) = lim
ℎ→0

1
ℎ

(g(y* + ℎȳ)− g(y*)). (2.4)

Since ‖g(y)‖1 = ‖y‖1, we can use Lemma 2.8 to see

g(y* + ℎȳ) = y* + 𝑠(ℎ)ȳ,
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Figure 1. Visualisation of the affine transformation T. The red and green line segments are
mapped onto each other.

for sufficiently small ℎ and some function 𝑠 : R → R, ℎ ↦→ 𝑠(ℎ). Inserting this into (2.4) yields

Dg(y*)ȳ = lim
ℎ→0

1
ℎ

(y* + 𝑠(ℎ)ȳ − y*) =
(︂

lim
ℎ→0

𝑠(ℎ)
ℎ

)︂
ȳ.

The above limit exists, since g is differentiable in y*. Setting 𝑅 = limℎ→0
𝑠(ℎ)

ℎ ∈ R, we see Dg(y*)ȳ = 𝑅ȳ,
i.e. ȳ is an eigenvalue of Dg(y*) with corresponding eigenvalue 𝑅. Hence, the spectrum of Dg(y*) is given by
𝜎(Dg(y*)) = {1, 𝑅}. Introducing the matrix of eigenvectors

S = (y*ȳ), (2.5)

which is invertible, since ȳ cannot be a multiple of the positive vector y*, we obtain

S−1Dg(y*)S = diag(1, 𝑅), (2.6)

where diag(y) ∈ R2×2 denotes the diagonal matrix with (diag(y))𝑖𝑖 = 𝑦𝑖 for 𝑖 = 1, 2.

(a) In this part we assume |𝑅| < 1 and use the center manifold Theorem 2.5 (a) in combination with Theo-
rem 2.6 to conclude that this implies that y* is a stable fixed point. The theorem requires a map G of form
(2.1), which shall be obtained from g by means of an affine linear transformation.
We consider the affine transformation T : R2 → R2, y ↦→ w = T(y) = S−1(y − y*), where S is
given in (2.5) and the inverse transformation T−1 is given by T−1(w) = Sw + y*. By construc-
tion, the line segment of fixed points

{︀
y ∈ R2

>0 | y = 𝑟y*, 𝑟 > 0
}︀

is mapped onto the 𝑤1-axes, as
T(𝑟y*) = S−1(𝑟y* − y*) = (𝑟 − 1)S−1y* = (𝑟 − 1)e1. The line segment

{︀
y ∈ R2

>0 | ‖y‖1 = ‖y*‖1
}︀

={︀
y ∈ R2 | y = y* + 𝑠ȳ, −𝑦*1 < 𝑠 < 𝑦*2

}︀
, see Lemma 2.8, is mapped onto the 𝑤2-axes, since T(y* + 𝑠ȳ) =

S−1(y* + 𝑠ȳ − y*) = 𝑠S−1ȳ = 𝑠e2. In particular, y* is mapped to the origin and parallel lines are mapped
onto parallel lines, since T is affine. See Figure 1 for a sketch of this situation.
Now we define

G : T
(︀
R2

>0

)︀
→ T

(︀
R2

>0

)︀
, G(w) = T

(︀
g
(︀
T−1(w)

)︀)︀
(2.7)

and observe that the origin is a fixed point of G. To represent G in the form (2.1), we write g as

g(y) = g(y*) + Dg(y*)(y − y*) + Qy*(y) = y* + Dg(y*)(y − y*) + Qy*(y), (2.8)

where the remainder Qy*(y) can be written in Lagrange form

(Qy*(y))𝑖 =
1
2

(y − y*)𝑇 H𝑔𝑖(y* + 𝑐(y − y*))(y − y*), 𝑖 = 1, 2, (2.9)
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with H𝑔𝑖 denoting the Hessian of 𝑔𝑖 and 𝑐 ∈ (0, 1) depends on y and y*. This is possible because g is
assumed to be in 𝒞2 on the convex set R2

>0. In particular, we have

Qy*(y*) = 0, DQy*(y*) = 0. (2.10)

By inserting (2.8) in (2.7) we obtain

G(w) = S−1
(︀
Dg(y*)

(︀
T−1(w)− y*

)︀
+ Qy*

(︀
T−1(w)

)︀)︀
= S−1Dg(y*)Sw + S−1Qy*

(︀
T−1(w)

)︀
and using (2.6), we see

G(w) = diag(1, 𝑅)w + S−1Qy*
(︀
T−1(w)

)︀
. (2.11)

With w = (𝑤1, 𝑤2)𝑇 this can be rewritten as

G(𝑤1, 𝑤2) =

(︃
𝑈𝑤1 + 𝑢(𝑤1, 𝑤2)
𝑉 𝑤2 + 𝑣(𝑤1, 𝑤2)

)︃
(2.12)

where

𝑈 = 1, 𝑉 = 𝑅, 𝑢(𝑤1, 𝑤2) =
(︀
S−1Qy*(T−1(𝑤1, 𝑤2))

)︀
1
, 𝑣(𝑤1, 𝑤2) =

(︀
S−1Qy*(T−1(𝑤1, 𝑤2))

)︀
2
. (2.13)

The eigenvalue of 𝑈 has absolute value 1 and the eigenvalue of 𝑉 satisfies |𝑅| < 1. Furthermore, we
conclude from (2.10) that 𝑢(0, 0) = 𝑣(0, 0) = 0, since Qy*(y*) = 0, and D𝑢(0, 0) = D𝑣(0, 0) = 0, since
DQy*(y*) = 0. Thus, (2.11) is of form (2.1).
Now, the center manifold Theorem 2.5 (a) states that for some 𝜖 > 0 there exists a 𝒞1 function ℎ : R → R
with ℎ(0) = 0 and ℎ′(0) = 0 , such that

(︀
𝑤1

1, 𝑤
1
2

)︀𝑇 = G
(︀
𝑤0

1, ℎ
(︀
𝑤0

1

)︀)︀
and

⃒⃒
𝑤0

1

⃒⃒
< 𝜖 implies 𝑤1

2 = ℎ
(︀
𝑤1

1

)︀
.

Furthermore, 𝜖 can be further reduced, if necessary, to guarantee (𝑤1, ℎ(𝑤1)) ∈ T
(︀
R2

>0

)︀
for |𝑤1| < 𝜖 as

ℎ is continuous with ℎ(0) = 0. We know from Lemma 2.8, that for all y0 > 0 the map g is invariant on
the line segment

{︀
y ∈ R2

>0 | ‖y‖1 =
⃦⃦
y0
⃦⃦

1

}︀
=
{︀
y ∈ R2 | y = y0 + 𝑠ȳ, −𝑦0

1 < 𝑠 < 𝑦0
2

}︀
. The transformation

T maps such a line segment onto a segment of a line parallel to the 𝑤2-axes, on which G must then be
invariant. To verify this, we use Lemma 2.8 and compute

G(𝑤1, 𝑤2) = G(𝑤1e1 + 𝑤2e2) = T
(︀
g
(︀
T−1(𝑤1e1 + 𝑤2e2)

)︀)︀
= T(g(𝑤1Se1 + 𝑤2Se2 + y*))

= T(g((1 + 𝑤1)y* + 𝑤2ȳ)) = T((1 + 𝑤1)y* + 𝑠(𝑤2)ȳ)

= S−1(𝑤1y* + 𝑠(𝑤2)ȳ) = 𝑤1e1 + 𝑠(𝑤2)e2 = (𝑤1, 𝑠(𝑤2))𝑇

for some suitable 𝑠 = 𝑠(𝑤2) ∈ R. In particular, we have shown

G(𝑤1, 𝑤2)1 = 𝑤1. (2.14)

We can now consider the iteration scheme

𝑤𝑛+1
1 = 𝒢(𝑤𝑛

1 ), 𝒢(𝑤1) = 𝑈𝑤1 + 𝑢(𝑤1, ℎ(𝑤1))

for |𝑤𝑛
1 | < 𝜖, where 𝑈 and 𝑢 are given in (2.13). According to Theorem 2.6, the fixed point 0 ∈ R2 of G is

stable, if the fixed point 0 ∈ R is a stable fixed point of 𝒢. From (2.12) and (2.14) we see

𝒢(𝑤1) = G(𝑤1, ℎ(𝑤1))1 = 𝑤1,

which implies 𝑤𝑛
1 = 𝒢

(︀
𝑤𝑛−1

1

)︀
= 𝑤0

1 for all 𝑛 ∈ N and every 𝑤0
1 with

⃒⃒
𝑤0

1

⃒⃒
< 𝜖. Consequently, for every ̃︀𝜖 > 0

we define ̃︀𝛿 = min(̃︀𝜖, 𝜖) to obtain that
⃒⃒
𝑤0

1

⃒⃒
< ̃︀𝛿 implies |𝑤𝑛

1 | =
⃒⃒
𝑤0

1

⃒⃒
< ̃︀𝛿 ≤ ̃︀𝜖. Thus, 0 is a stable fixed point
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of 𝒢 in the sense of Definition 2.2 (a). Furthermore, by Theorem 2.6 the fixed point 0 ∈ R2 of G is stable
as well.
As a last step, we show that the above implies that y* is a stable fixed point of g. We know that 0 is a
stable fixed point of the iteration scheme w𝑛+1 = G(w𝑛), that is for every 𝜖𝑤 > 0 exists 𝛿𝑤 > 0 such that⃦⃦
w0
⃦⃦

< 𝛿𝑤 implies ‖w𝑛‖ < 𝜖𝑤. Now, let 𝜖 > 0, 𝜖𝑤 = 𝜖/‖S‖ and 𝛿 = 𝛿𝑤/
⃦⃦
S−1

⃦⃦
. If

⃦⃦
y0 − y*

⃦⃦
< 𝛿, then⃦⃦

w0
⃦⃦

=
⃦⃦
T(y0)

⃦⃦
=
⃦⃦
S−1(y0 − y*)

⃦⃦
≤
⃦⃦
S−1

⃦⃦⃦⃦
y0 − y*

⃦⃦
<
⃦⃦
S−1

⃦⃦
𝛿 = 𝛿𝑤 and consequently ‖w𝑛‖ < 𝜖𝑤.

Furthermore, w𝑛 = T(y𝑛) = S−1(y𝑛 − y*) is equivalent to Sw𝑛 = y𝑛 − y* and hence, ‖y𝑛 − y*‖ ≤
‖S‖‖w𝑛‖ < ‖S‖𝜖𝑤 = 𝜖. Thus, we have shown that y* is a stable fixed point of the iteration y𝑛+1 = g(y𝑛).

(b) In the following we use that the center manifold is given by
{︀

(𝑤1, 𝑤2) ∈ R2 | 𝑤2 = 0, |𝑤1| < 𝜖
}︀

, i.e. ℎ(𝑤1) =
0, for a sufficiently small 𝜖 > 0. This can be shown with Theorem 2.7 as follows. The function Φ: R → R,
Φ(𝑤1) = 0 satisfies Φ(0) = Φ′(0) = 0. Furthermore, all points on the 𝑤1-axes are fixed points of G, since

G(𝑤1, 0) = G(𝑤1e1) = T
(︀
g
(︀
T−1(𝑤1e1)

)︀)︀
= T(g(𝑤1Se1 + y*))

= T(g((1 + 𝑤1)y*)) = T((1 + 𝑤1)y*)

= S−1(𝑤1y*) = 𝑤1e1 = (𝑤1, 0)𝑇 .

Hence, it follows that

Φ(G(𝑤1, Φ(𝑤1))1)−G(𝑤1, Φ(𝑤1))2 = −G(𝑤1, 0)2 = 0.

By Theorem 2.7 Φ is an approximation of ℎ for any order 𝑞 > 1. Thus, ℎ(𝑤1) = Φ(𝑤1) = 0 for |𝑤1| < 𝜖.
Now, we prove that the iteration scheme y𝑛+1 = g(y𝑛) is locally convergent to y*, if the starting value y0

is sufficiently close to y* and satisfies
⃦⃦
y0
⃦⃦

1
= ‖y*‖1. Taking advantage of the transformation T, this is

equivalent to proving that w𝑛+1 = G(w𝑛) is locally convergent to 0, if the starting value w0 is sufficiently
close to 0 and satisfies 𝑤0

1 = 0. Moreover, since G leaves the first component of its argument fixed, see (2.14),
we only need to show 𝑤𝑛

2 → 0 for 𝑛 → ∞. According to Theorem 2.5 (b) the distance of (𝑤𝑛
1 , 𝑤𝑛

2 ) ∈ R2

to the center manifold tends to zero for 𝑛 → ∞, i.e. |𝑤𝑛
2 | → 0 for 𝑛 → ∞, if |𝑤𝑛

1 |, |𝑤𝑛
2 | < 𝜖 for all 𝑛 ∈ N0

and some sufficiently small 𝜖 > 0. Finally, since the origin is a stable fixed point of G, as shown in (a),
there exists 𝛿 > 0 such that

⃦⃦
w0
⃦⃦
∞ < 𝛿 implies ‖w𝑛‖∞ = max{|𝑤𝑛

1 |, |𝑤𝑛
2 |} < 𝜖 for all 𝑛 ∈ N. If necessary,⃦⃦

w0
⃦⃦
∞ < 𝜖 can be assured by choosing 𝛿 < 𝜖. Altogether, this proves ‖w𝑛‖∞ = max{|𝑤𝑛

1 |, |𝑤𝑛
2 |} < 𝜖 for

all 𝑛 ∈ N0 and thus the assertion.

�

We like to highlight that Theorem 2.9 is valid for general positive and conservative schemes and not restricted
to MPRK schemes.

3. Stability of MPRK22 schemes

In this section we use Theorem 2.9 to examine the stability properties of MPRK22(𝛼) and MPRK22ncs(𝛼)
schemes. The main task is to express the schemes in the form y𝑛+1 = g(y𝑛) and to compute the eigenvalues of
the Jacobian Dg(y*) for a given fixed point y*. We show that MPRK22(𝛼) schemes for all permissible 𝛼 and
MPRK22ncs(𝛼) schemes with 𝛼 ≥ 1 are unconditionally stable. Hence, the iterates of these methods locally
converge towards a fixed point with equal 1-norm. Furthermore, for MPRK22ncs(𝛼) schemes with 𝛼 < 1 time
step restrictions are necessary to achieve the same behavior.

To give a clear representation of the MPRK iterations in the form y𝑛+1 = g(y𝑛), we define some auxiliary
matrices and functions. First, we split the matrix A into a production part A𝑃 and a destruction part A𝐷, i.e.

A = A𝑃 −A𝐷, A𝑃 = A− diag(A) =

(︃
0 𝑏

𝑎 0

)︃
, A𝐷 = −diag(A) =

(︃
𝑎 0
0 𝑏

)︃
. (3.1)
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Based on this splitting we define the matrices

B𝛾 = 𝛾(I− 𝛼∆𝑡A)−1 + (1− 𝛾)(I + 𝛼∆𝑡A𝐷)−1(I + 𝛼∆𝑡A𝑃 ) (3.2)

and

C𝛾 =
(︂

1− 1
2𝛼

)︂
I +

(︂
1

2𝛼

)︂
B𝛾 , (3.3)

where I ∈ R2×2 denotes the identity matrix. Furthermore, we need the nonlinear functions 𝜎(y) =
(𝜎1(y), 𝜎2(y))𝑇 and 𝜏 (y) = (𝜏1(y), 𝜏2(y))𝑇 with

𝜎𝑖(y) = (B𝛾y)
1
𝛼
𝑖 (𝑦𝑖)1−

1
𝛼 (3.4)

and

𝜏𝑖(y) =
(C𝛾y)𝑖

𝜎𝑖(y)
(3.5)

for 𝑖 = 1, 2.

Proposition 3.1. The MPRK22 schemes (1.6) applied to the test equation (1.3), can be written in the form
y𝑛+1 = g(y𝑛), where the map g : R2

>0 → R2
>0 is given by

g(y) =
(︂
I +

∆𝑡

1 + ∆𝑡(𝑎𝜏1(y) + 𝑏𝜏2(y))
A diag(𝜏 (y))

)︂
y, (3.6)

with 𝜏 defined by (3.5).

Proof. We start with (1.6b) to express y(2) in terms of y𝑛. Using (1.4) and (1.6a), the stage value (1.6b), when
applied to (1.3), is given by

𝑦
(2)
1 = 𝑦𝑛

1 + 𝛼∆𝑡
(︁

(1− 𝛾)𝑏𝑦𝑛
2 + 𝛾𝑏𝑦

(2)
2 − 𝑎𝑦

(2)
1

)︁
,

𝑦
(2)
2 = 𝑦𝑛

2 + 𝛼∆𝑡
(︁

(1− 𝛾)𝑎𝑦𝑛
1 + 𝛾𝑎𝑦

(2)
1 − 𝑏𝑦

(2)
2

)︁
.

(3.7)

Incorporating the splitting (3.1), the linear system (3.7) becomes

y(2) = y𝑛 + 𝛼∆𝑡
(︁

(1− 𝛾)A𝑃 y𝑛 + 𝛾A𝑃 y(2) −A𝐷y(2)
)︁

and solving for y(2) shows

y(2) = (I− 𝛼∆𝑡(𝛾A𝑃 −A𝐷))−1(I + 𝛼∆𝑡(1− 𝛾)A𝑃 )y𝑛.

In the case 𝛾 = 1, we have
y(2) = (I− 𝛼∆𝑡A)−1y𝑛, (3.8)

and for 𝛾 = 0, we get
y(2) = (I + 𝛼∆𝑡A𝐷)−1(I + 𝛼∆𝑡A𝑃 )y𝑛. (3.9)

Using (3.2), the cases (3.8) and (3.9) can be combined to obtain

y(2) = B𝛾y𝑛. (3.10)
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Next, we consider (1.6c) to express y𝑛+1 in terms of y𝑛. With (1.4) and (3.4) the approximation step (1.6c)
reads

𝑦𝑛+1
1 = 𝑦𝑛

1 + ∆𝑡

⎛⎝(︂(︂1− 1
2𝛼

)︂
𝑏𝑦𝑛

2 +
(︂

1
2𝛼

)︂
𝑏𝑦

(2)
2

)︂
𝑦𝑛+1
2

𝜎2(y𝑛)
−
(︂(︂

1− 1
2𝛼

)︂
𝑎𝑦𝑛

1 +
(︂

1
2𝛼

)︂
𝑎𝑦

(2)
1

)︂
𝑦𝑛+1
1

𝜎1(y𝑛)

⎞⎠,

𝑦𝑛+1
2 = 𝑦𝑛

2 + ∆𝑡

⎛⎝(︂(︂1− 1
2𝛼

)︂
𝑎𝑦𝑛

1 +
(︂

1
2𝛼

)︂
𝑎𝑦

(2)
1

)︂
𝑦𝑛+1
1

𝜎1(y𝑛)
−
(︂(︂

1− 1
2𝛼

)︂
𝑏𝑦𝑛

2 +
(︂

1
2𝛼

)︂
𝑏𝑦

(2)
2

)︂
𝑦𝑛+1
2

𝜎2(y𝑛)

⎞⎠.

(3.11)

Here we note that y𝑛 > 0 implies y(2) > 0, see [22], and in addition

𝜎𝑖(y𝑛) = (B𝛾y𝑛)
1
𝛼
𝑖 (𝑦𝑛

𝑖 )1−
1
𝛼 =

(︁
𝑦
(2)
𝑖

)︁ 1
𝛼

(𝑦𝑛
𝑖 )1−

1
𝛼 > 0. (3.12)

The system (3.11) can be written as

y𝑛+1 = y𝑛 + ∆𝑡

(︂(︂
1− 1

2𝛼

)︂
A𝑃 diag

(︀
y𝑛+1

)︀
diag(𝜎(y𝑛))−1y𝑛 +

(︂
1

2𝛼

)︂
A𝑃 diag

(︀
y𝑛+1

)︀
diag(𝜎(y𝑛))−1y(2)

−
(︂

1− 1
2𝛼

)︂
A𝐷 diag

(︀
y𝑛+1

)︀
diag(𝜎(y𝑛))−1y𝑛 −

(︂
1

2𝛼

)︂
A𝐷 diag

(︀
y𝑛+1

)︀
diag(𝜎(y𝑛))−1y(2)

)︂
, (3.13)

where diag(y) ∈ R2×2 denotes the diagonal matrix with (diag(y))𝑖𝑖 = 𝑦𝑖 for 𝑖 = 1, 2. As diag(v)w = diag(w)v
and diag(v) diag(w) = diag(w) diag(v) for all v,w ∈ R2 as well as A = A𝑃 − A𝐷, equation (3.13) can be
rewritten as

y𝑛+1 = y𝑛 + ∆𝑡

(︂(︂
1− 1

2𝛼

)︂
A diag(y𝑛) diag(𝜎(y𝑛))−1 +

(︂
1

2𝛼

)︂
A diag(y(2)) diag(𝜎(y𝑛))−1

)︂
y𝑛+1.

Utilizing (3.10), this can be further simplified to

y𝑛+1 = y𝑛 + ∆𝑡A
(︂(︂

1− 1
2𝛼

)︂
diag(y𝑛) +

(︂
1

2𝛼

)︂
diag(B𝛾y𝑛)

)︂
diag(𝜎(y𝑛))−1y𝑛+1.

Using 𝛼 diag(v) + 𝛽 diag(w) = diag(𝛼v + 𝛽w) for all 𝛼, 𝛽 ∈ R and v,w ∈ R2 together with (3.3) we see

y𝑛+1 = y𝑛 + ∆𝑡A diag
(︂(︂

1− 1
2𝛼

)︂
y𝑛 +

(︂
1

2𝛼

)︂
B𝛾y𝑛

)︂
diag(𝜎(y𝑛))−1y𝑛+1

= y𝑛 + ∆𝑡A diag(C𝛾y𝑛) diag(𝜎(y𝑛))−1y𝑛+1

or equivalently
y𝑛+1 = M(y𝑛)−1y𝑛,

where
M(y𝑛) = I−∆𝑡A diag(C𝛾y𝑛) diag(𝜎(y𝑛))−1. (3.14)

Hence, we have
y𝑛+1 = g(y𝑛)

with
g(y) = M(y)−1y =

(︀
I−∆𝑡A diag(C𝛾y) diag(𝜎(y))−1

)︀−1
y.
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Next, we want to find an explicit representation of M(y𝑛)−1. The diagonal matrix diag(C𝛾y𝑛) is nonsingular
for all y𝑛 > 0, since

C𝛾y𝑛 =
(︂

1− 1
2𝛼

)︂
y𝑛 +

(︂
1

2𝛼

)︂
B𝛾y𝑛 =

(︂
1− 1

2𝛼

)︂
y𝑛 +

(︂
1

2𝛼

)︂
y(2) > 0 (3.15)

holds due to 𝛼 ≥ 1
2 . This implies that the matrix A diag(C𝛾y𝑛) diag(𝜎(y𝑛))−1 has rank one, just like A. Hence,

according to [28], the inverse of M(y𝑛) is given by

M(y𝑛)−1 = I +
(︀
1− trace

(︀
∆𝑡A diag(C𝛾y𝑛) diag(𝜎(y𝑛))−1

)︀)︀−1
∆𝑡A diag(C𝛾y𝑛) diag(𝜎(y𝑛))−1. (3.16)

Using (3.5), we obtain
diag(C𝛾y𝑛) diag(𝜎(y𝑛))−1 = diag(𝜏 (y𝑛)).

and (3.16) becomes

M(y𝑛)−1 = I +
∆𝑡

1 + ∆𝑡(𝑎𝜏1(y𝑛) + 𝑏𝜏2(y𝑛))
A diag(𝜏 (y𝑛)).

�

Remark 3.2. The representation of M(y𝑛) in (3.14) is also valid for arbitrary linear positive and conservative
PDS y′ = Ay with A ∈ R𝑁×𝑁 , where the splitting is given by A = A𝑃 − A𝐷 with A𝐷 = diag(A) and
A𝑃 = A −A𝐷. The representation of the inverse M(y𝑛)−1 in (3.16) is based on the assumption that A has
rank one, which must not be satisfied for a general linear positive and conservative PDS.

Next, we verify that steady state solutions of (1.3) are indeed fixed points of the MPRK22 schemes. As
a consequence every y* = 𝑟(𝑏, 𝑎)𝑇 with 𝑟 > 0 is a fixed point of the MPRK22 schemes. This satisfies the
requirement of Theorem 2.9 to have fixed points on a line.

Lemma 3.3. Any steady state solution y* > 0 of (1.3) is a fixed point of the MPRK22 schemes, i.e. a fixed
point of the map g given in (3.6). Moreover, we have

B𝛾y* = y*, C𝛾y* = y*, 𝜎(y*) = y*, 𝜏1(y*) = 𝜏2(y*) = 1.

Proof. Let y* be a steady state solution of (1.3), i.e. Ay* = 0. At first we show, that y* is a fixed point
of B𝛾 defined in (3.2). Considering the first term in B𝛾 we find (I − 𝛼∆𝑡A)y* = y* and equivalently
y* = (I− 𝛼∆𝑡A)−1y*. Furthermore, 0 = Ay* = A𝑃 y* − A𝐷y* is equivalent to A𝑃 y* = A𝐷y*. Hence,
(I + 𝛼∆𝑡A𝐷)y* = (I + 𝛼∆𝑡A𝑃 )y* or y* = (I + 𝛼∆𝑡A𝐷)−1(I + 𝛼∆𝑡A𝑃 )y*. Altogether, we find

y(2) = B𝛾y* = y*. (3.17)

As a direct consequence, it follows from (3.3) that

C𝛾y* =
(︂

1− 1
2𝛼

)︂
y* +

(︂
1

2𝛼

)︂
B𝛾y* = y* (3.18)

and in addition, we conclude from (3.4) that

𝜎(y*) = y*, (3.19)

where we used y* > 0. Finally, this implies

𝜏𝑖(y*) =
(C𝛾y*)𝑖

𝜎𝑖(y*)
= 1, (3.20)
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for 𝑖 = 1, 2, and thus, according to (3.6),

g(y*) =
(︂
I +

∆𝑡

1 + ∆𝑡(𝑎𝜏1(y*) + 𝑏𝜏2(y*))
A diag(𝜏 (y*))

)︂
y* = y* +

∆𝑡

1 + ∆𝑡(𝑎 + 𝑏)
Ay* = y*.

�

Based on the knowledge that steady state solutions y* > 0 of (1.3) are fixed points of the MPRK schemes, it
is now necessary to compute the eigenvalues of the Jacobian Dg(y*). Therefore we have to show that all partial
derivatives of g exist. The next lemma even states that g ∈ 𝒞∞

(︀
R2

>0

)︀
, so that all requirements of Theorem 2.9

are fulfilled.

Lemma 3.4. The elements 𝑔𝑖 of g from (3.6) satisfy 𝑔𝑖 ∈ 𝒞∞
(︀
R2

>0

)︀
for 𝑖 ∈ {1, 2}.

Proof. Recall from (3.5) and (3.6) that

g(y) =
(︂
I +

∆𝑡

1 + ∆𝑡(𝑎𝜏1(y) + 𝑏𝜏2(y))
A diag(𝜏 (y))

)︂
y,

with 𝜏𝑖(y) = (C𝛾y)𝑖𝜎𝑖(y)−1 for 𝑖 = 1, 2. The functions 𝜎𝑖(y) = (B𝛾y)
1
𝛼
𝑖 (𝑦𝑖)1−

1
𝛼 and (C𝛾y)𝑖 are in 𝒞∞

(︀
R2

>0

)︀
.

Furthermore, we know 𝜎𝑖(y) > 0 for y > 0 according to (3.12), which yields 𝜏𝑖 ∈ 𝒞∞
(︀
R2

>0

)︀
for 𝑖 = 1, 2 due to

the quotient rule. Also 𝜏 (y) > 0 for y > 0 holds because of (3.15). Thus, 1 + ∆𝑡(𝑎𝜏1(y𝑛) + 𝑏𝜏2(y𝑛)) is always
positive. Consequently even 𝑔𝑖 ∈ 𝒞∞

(︀
R2

>0

)︀
for 𝑖 = 1, 2. �

Next, we give an explicit representation of the Jacobian Dg(y*). As g is defined on R2
>0, we have to ensure

y* > 0, which requires 𝑎, 𝑏 > 0. The cases 𝑎 = 0 or 𝑏 = 0 are special, in that no steady states of (1.3) are
contained in R2

>0. These cases will be discussed separately in Section 3.1.

Lemma 3.5. Let g be defined by (3.6) and y* > 0 a steady state of (1.3), i.e. Ay* = 0. Then, the Jacobian
Dg(y*) is given by

Dg(y*) = I +
∆𝑡

1 + ∆𝑡(𝑎 + 𝑏)
A
(︂
I +

1
2𝛼

(I−B𝛾)
)︂

. (3.21)

Proof. Setting

̃︀𝜏 (y) =
1

𝑑(y)

(︃
𝜏1(y)𝑦1

𝜏2(y)𝑦2

)︃
, 𝑑(y) = 1 + ∆𝑡(𝑎𝜏1(y) + 𝑏𝜏2(y)),

the map g from (3.6) can be written as
g(y) = y + ∆𝑡Ã︀𝜏 (y)

and consequently we have
Dg(y) = I + ∆𝑡AD̃︀𝜏 (y). (3.22)

Making use of the notation 𝜕𝑖 = 𝜕
𝜕𝑦𝑖

, we obtain

𝜕1̃︀𝜏1(y) =
(𝜕1𝜏1(y)𝑦1 + 𝜏1(y))𝑑(y)− 𝜏1(y)𝑦1𝜕1𝑑(y)

𝑑(y)2
, 𝜕2̃︀𝜏1(y) =

𝜕2𝜏1(y)𝑦1𝑑(y)− 𝜏1(y)𝑦1𝜕2𝑑(y)
𝑑(y)2

,

𝜕1̃︀𝜏2(y) =
𝜕1𝜏2(y)𝑦2𝑑(y)− 𝜏2(y)𝑦2𝜕1𝑑(y)

𝑑(y)2
, 𝜕2̃︀𝜏2(y) =

(𝜕2𝜏2(y)𝑦2 + 𝜏2(y))𝑑(y)− 𝜏2(y)𝑦2𝜕2𝑑(y)
𝑑(y)2

and thus
D̃︀𝜏 (y) =

1
𝑑(y)

(diag(y)D𝜏 (y) + diag(𝜏 (y)))− 1
𝑑(y)2

diag(𝜏 (y))y(grad 𝑑(y))𝑇 .
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Inserting this into (3.22), the Jacobian of g in y* is given by

Dg(y*) = I +
∆𝑡

𝑑(y*)
A(diag(y*)D𝜏 (y*) + diag(𝜏 (y*)))− ∆𝑡

𝑑(y)2
A diag(𝜏 (y*))y*(grad 𝑑(y*))𝑇 .

From (3.20) we know that diag(𝜏 (y*)) = I and together with Ay* = 0 we find

Dg(y*) = I +
∆𝑡

𝑑(y*)
A(diag(y*)D𝜏 (y*) + I).

To finish the proof, we have to show diag(y*)D𝜏 (y*) = 1
2𝛼 (I−B𝛾). Therefore, we need to express the partial

derivatives of 𝜏𝑖(y) = (C𝛾y)𝑖𝜎𝑖(y)−1 for 𝑖, 𝑗 = 1, 2 in terms of B𝛾 = (𝑏𝛾
𝑖𝑗)𝑖,𝑗=1,2. The partial derivatives of 𝜎

are

𝜕1𝜎1(y) =
1
𝛼

(B𝛾y)
1
𝛼−1
1 𝑏𝛾

11𝑦
1− 1

𝛼
1 + (B𝛾y)

1
𝛼
1

(︂
1− 1

𝛼

)︂
𝑦
− 1

𝛼
1 ,

𝜕2𝜎1(y) =
1
𝛼

(B𝛾y)
1
𝛼−1
1 𝑏𝛾

12𝑦
1− 1

𝛼
1 ,

𝜕1𝜎2(y) =
1
𝛼

(B𝛾y)
1
𝛼−1
2 𝑏𝛾

21𝑦
1− 1

𝛼
2 ,

𝜕2𝜎2(y) =
1
𝛼

(B𝛾y)
1
𝛼−1
2 𝑏𝛾

22𝑦
1− 1

𝛼
2 + (B𝛾y)

1
𝛼
2

(︂
1− 1

𝛼

)︂
𝑦
− 1

𝛼
2

and as B𝛾y* = y* we have

𝜕1𝜎1(y*) =
1
𝛼

𝑏𝛾
11 + 1− 1

𝛼
, 𝜕2𝜎1(y*) =

1
𝛼

𝑏𝛾
12,

𝜕1𝜎2(y*) =
1
𝛼

𝑏𝛾
21, 𝜕2𝜎2(y*) =

1
𝛼

𝑏𝛾
22 + 1− 1

𝛼
·

Furthermore, due to (3.3) together with C𝛾 =
(︀
𝑐𝛾
𝑖𝑗

)︀
𝑖,𝑗=1,2

we see

𝜕1(C𝛾y)1 = 𝑐𝛾
11 =

(︂
1− 1

2𝛼

)︂
+

1
2𝛼

𝑏𝛾
11, 𝜕2(C𝛾y)1 = 𝑐𝛾

12 =
1

2𝛼
𝑏𝛾
12,

𝜕1(C𝛾y)2 = 𝑐𝛾
21 =

1
2𝛼

𝑏𝛾
21, 𝜕2(C𝛾y)2 = 𝑐𝛾

22 =
(︂

1− 1
2𝛼

)︂
+

1
2𝛼

𝑏𝛾
22.

Now we are ready to compute the partial derivatives of 𝜏 , whereby we repeatedly use (3.18) and (3.19), i.e.
C𝛾y* = y* and 𝜎(y*) = y*, which yield

𝜕1𝜏1(y*) =
𝜕1(C𝛾y)1𝜎1(y)− (C𝛾y)1𝜕1𝜎1(y)

(𝜎1(y))2

⃒⃒⃒⃒
y=y*

=

(︀
1− 1

2𝛼 + 1
2𝛼𝑏𝛾

11

)︀
𝑦*1 − 𝑦*1

(︀
1
𝛼𝑏𝛾

11 + 1− 1
𝛼

)︀
(𝑦*1)2

=
1− 𝑏𝛾

11

2𝛼𝑦*1
,

𝜕2𝜏1(y*) =
𝜕2(C𝛾y)1𝜎1(y)− (C𝛾y)1𝜕2𝜎1(y)

(𝜎1(y))2

⃒⃒⃒⃒
y=y*

=
1
2𝛼𝑏𝛾

12𝑦
*
1 − 𝑦*1

1
𝛼𝑏𝛾

12

(𝑦*1)2
= − 𝑏𝛾

12

2𝛼𝑦*1
,

𝜕1𝜏2(y*) =
𝜕1(C𝛾y)2𝜎2(y)− (C𝛾y)2𝜕1𝜎2(y)

(𝜎2(y))2

⃒⃒⃒⃒
⃒
y=y*

=
1
2𝛼𝑏𝛾

21𝑦
*
2 − 𝑦*2

1
𝛼𝑏𝛾

21

(𝑦*2)2
= − 𝑏𝛾

21

2𝛼𝑦*2
,

𝜕2𝜏2(y*) =
𝜕2(C𝛾y)2𝜎2(y)− (C𝛾y)2𝜕2𝜎2(y)

(𝜎2(y))2

⃒⃒⃒⃒
y=y*

=

(︀
1− 1

2𝛼 + 1
2𝛼𝑏𝛾

22

)︀
𝑦*2 − 𝑦*2

(︀
1
𝛼𝑏𝛾

22 + 1− 1
𝛼

)︀
(𝑦*2)2

=
1− 𝑏𝛾

22

2𝛼𝑦*2
·

Altogether we see

D𝜏 (y) =
1

2𝛼
diag(y*)−1(I−B𝛾),

which completes the proof. �
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We are now in a position to compute the eigenvalues of Dg(y*), which are needed to evaluate the stability
of the fixed point y*.

Lemma 3.6. Every steady state y* > 0 of (1.3) is a non-hyperbolic fixed point of the MPRK22 schemes. In
particular, we have

Dg(y*)y* = y*

and
Dg(y*)ȳ = 𝑅𝛾(−∆𝑡𝑎,−∆𝑡𝑏)ȳ,

where ȳ = (1,−1)𝑇 and

𝑅1(𝑧𝑎, 𝑧𝑏) =
2− 2𝛼(𝑧𝑎 + 𝑧𝑏)− (𝑧𝑎 + 𝑧𝑏)2

2(1− (𝑧𝑎 + 𝑧𝑏))(1− 𝛼(𝑧𝑎 + 𝑧𝑏))
(3.23a)

as well as

𝑅0(𝑧𝑎, 𝑧𝑏) =
2− (𝑧𝑎 + 𝑧𝑏)

(︁
𝑧𝑎

1−𝛼𝑧𝑎
+ 𝑧𝑏

1−𝛼𝑧𝑏

)︁
2(1− (𝑧𝑎 + 𝑧𝑏))

· (3.23b)

Proof. From the proof of Theorem 2.9 we know that y* is an eigenvector of Dg(y*) with associated eigenvalue
1, which can be checked with the straightforward calculation

Dg(y*)y* = y* +
∆𝑡

1 + ∆𝑡(𝑎 + 𝑏)
A
(︂
I +

1
2𝛼

(I−B𝛾)
)︂
y* = y* +

∆𝑡

1 + ∆𝑡(𝑎 + 𝑏)
Ay* = y*,

where we used (3.21) and (3.17). Hence, y* is a non-hyperbolic fixed point of g.
Furthermore, we know from the proof of Theorem 2.9 that ȳ = (1,−1)𝑇 is another eigenvector of Dg(y*)

and we need to compute the associated eigenvalue.
First, we consider the case 𝛾 = 1. The vector ȳ is an eigenvector of the matrix A from (1.3) with associated

eigenvalue 𝜆 = −(𝑎+𝑏), i.e. Aȳ = 𝜆ȳ. If 𝛾 = 1, B𝛾 from (3.2) becomes B1 = (I−𝛼∆𝑡A)−1 and (I−𝛼∆𝑡A)ȳ =
ȳ − 𝛼∆𝑡𝜆ȳ = (1− 𝛼∆𝑡𝜆)ȳ implies B1ȳ = (1− 𝛼∆𝑡𝜆)−1ȳ. Hence, using (3.21), we see that

Dg(y*)ȳ = ȳ +
∆𝑡

1−∆𝑡𝜆
A
(︂
ȳ +

1
2𝛼

(I−B1)ȳ
)︂

=
(︂

1 +
∆𝑡𝜆

1−∆𝑡𝜆

(︂
1 +

1
2𝛼

(︂
1− 1

1− 𝛼∆𝑡𝜆

)︂)︂)︂
ȳ.

Setting 𝑧 = ∆𝑡𝜆, we find that the eigenvalue associated with ȳ for 𝛾 = 1 is given by

1 +
𝑧

1− 𝑧

(︂
1 +

1
2𝛼

(︂
1− 1

1− 𝛼𝑧

)︂)︂
=

2− 2𝛼𝑧 − 𝑧2

2(1− 𝑧)(1− 𝛼𝑧)
·

With 𝑧𝑎 = −∆𝑡𝑎 and 𝑧𝑏 = −∆𝑡𝑏 we get 𝑧 = −∆𝑡(𝑎 + 𝑏) = 𝑧𝑎 + 𝑧𝑏 and thus

2− 2𝛼𝑧 − 𝑧2

2(1− 𝑧)(1− 𝛼𝑧)
=

2− 2𝛼(𝑧𝑎 + 𝑧𝑏)− (𝑧𝑎 + 𝑧𝑏)2

2(1− (𝑧𝑎 + 𝑧𝑏))(1− 𝛼(𝑧𝑎 + 𝑧𝑏))
= 𝑅1(𝑧𝑎, 𝑧𝑏).

Next, we consider the case 𝛾 = 0 and compute AB0ȳ. From (3.1), (3.2) and Aȳ = 𝜆ȳ = 𝜆Iȳ we see

AB0ȳ = A(I + ∆𝑡𝛼A𝐷)−1(I + ∆𝑡𝛼A𝑃 )ȳ = A(I + ∆𝑡𝛼A𝐷)−1(I + ∆𝑡𝛼(A + A𝐷))ȳ

= A(I + ∆𝑡𝛼A𝐷)−1(I + ∆𝑡𝛼A𝐷 + ∆𝑡𝛼𝜆I)ȳ = 𝜆ȳ + 𝛼∆𝑡𝜆A(I + ∆𝑡𝛼A𝐷)−1ȳ.

Realizing that ȳ = (1,−1)𝑇 is an eigenvector of

A(I + ∆𝑡𝛼A𝐷)−1 =

(︃
− 𝑎

1+Δ𝑡𝛼𝑎
𝑏

1+Δ𝑡𝛼𝑏
𝑎

1+Δ𝑡𝛼𝑎 − 𝑏
1+Δ𝑡𝛼𝑏

)︃
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with associated eigenvalue

𝜇 = −
(︂

𝑎

1 + ∆𝑡𝛼𝑎
+

𝑏

1 + ∆𝑡𝛼𝑏

)︂
,

we obtain
AB0ȳ = (𝜆 + 𝛼∆𝑡𝜆𝜇)ȳ.

This together with (3.21) shows

Dg(y*)ȳ =
(︂
I +

∆𝑡

1−∆𝑡𝜆

(︂
A +

1
2𝛼

(A−AB0)
)︂)︂

ȳ =
(︂

1 +
∆𝑡𝜆

1−∆𝑡𝜆
+

∆𝑡𝜆

2𝛼(1−∆𝑡𝜆)
− ∆𝑡𝜆 + 𝛼∆𝑡𝜆∆𝑡𝜇

2𝛼(1−∆𝑡𝜆)

)︂
ȳ

=
(︂

1 +
∆𝑡𝜆

1−∆𝑡𝜆
− 𝛼∆𝑡𝜆∆𝑡𝜇

2𝛼(1−∆𝑡𝜆)

)︂
ȳ =

2−∆𝑡𝜆∆𝑡𝜇

2(1−∆𝑡𝜆)
ȳ.

Hence, using ∆𝑡𝜆 = −∆𝑡(𝑎 + 𝑏) = 𝑧𝑎 + 𝑧𝑏 as well as ∆𝑡𝜇 = 𝑧𝑎

1−𝛼𝑧𝑎
+ 𝑧𝑏

1−𝛼𝑧𝑏
the eigenvalue corresponding to ȳ

for 𝛾 = 0 is
2− (𝑧𝑎 + 𝑧𝑏)

(︁
𝑧𝑎

1−𝛼𝑧𝑎
+ 𝑧𝑏

1−𝛼𝑧𝑏

)︁
2(1− (𝑧𝑎 + 𝑧𝑏))

= 𝑅0(𝑧𝑎, 𝑧𝑏).

�

Remark 3.7. The notation 𝑅𝛾(𝑧𝑎, 𝑧𝑏) for the eigenvalue in the above lemma was chosen on purpose. If the
above analysis is carried out for a Runge–Kutta scheme, the corresponding Jacobian will have the eigenvalues
1 and 𝑅(𝑧𝑎 + 𝑧𝑏), in which 𝑅 denotes the stability function of the Runge–Kutta scheme. In this respect, the
function 𝑅𝛾 of the MPRK22 schemes plays the same role as the stability function 𝑅 of a Runge–Kutta scheme.
In the following, we refer to 𝑅𝛾 as the stability function of the MPRK22 schemes.

To assess the stability of the non-hyperbolic fixed point y* we must investigate the absolute value of the
stability function 𝑅𝛾 from (3.23). Theorem 2.3 states that if |𝑅𝛾(−∆𝑡𝑎,−∆𝑡𝑏)| > 1, the fixed point is unstable.
If however |𝑅𝛾(−∆𝑡𝑎,−∆𝑡𝑏)| < 1, we can use Theorem 2.9 to conclude the stability of y*.

Lemma 3.8. Let 𝑅1 be given by (3.23a), then the inequality |𝑅1(𝑧𝑎, 𝑧𝑏)| < 1 holds for all 𝑧𝑎, 𝑧𝑏 < 0 and 𝛼 ≥ 1
2 .

Proof. First, we realize that 𝑅1(𝑧𝑎, 𝑧𝑏) only depends on 𝑧𝑎+𝑧𝑏 and hence can be written as 𝑅1(𝑧) = 2−2𝛼𝑧−𝑧2

2(1−𝑧)(1−𝛼𝑧)

with 𝑧 = 𝑧𝑎 + 𝑧𝑏. To prove the lemma, we need to show |𝑅1(𝑧)| < 1 for all 𝑧 < 0 and 𝛼 ≥ 1
2 . Using −2𝑧 > 0

and 2𝛼 ≥ 1, this follows from⃒⃒
2− 2𝛼𝑧 − 𝑧2

⃒⃒
≤ |2(1− 𝛼𝑧)|+

⃒⃒
𝑧2
⃒⃒

= 2(1− 𝛼𝑧) + 𝑧2

< 2(1− 𝛼𝑧) + 2𝛼𝑧2 − 2𝑧 = 2(1− 𝛼𝑧)− 2𝑧(1− 𝛼𝑧) = 2(1− 𝑧)(1− 𝛼𝑧) = |2(1− 𝑧)(1− 𝛼𝑧)|.

�

The above lemma states that the stability function of an MPRK22(𝛼) scheme has absolute value less than
one for all time step sizes ∆𝑡 > 0 and matrix elements 𝑎, 𝑏 > 0. This allows for the application of Theorem 2.9
to conclude that y* is indeed a stable fixed point of MPRK22(𝛼) schemes.

Corollary 3.9. Let y* > 0 be an arbitrary steady state of (1.3).

(a) The MPRK22(𝛼) schemes are unconditionally stable, in the sense that any y* is a stable fixed point of the
MPRK22(𝛼) schemes independent of the time step size ∆𝑡.

(b) For every MPRK22(𝛼) scheme there exists a 𝛿 > 0, such that ‖y0‖1 = ‖y*‖1 and
⃦⃦
y0 − y*

⃦⃦
< 𝛿 imply

y𝑛 → y* as 𝑛 →∞ independent of the time step size ∆𝑡.
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The situation is different for MPRK22ncs(𝛼) schemes, for which the absolute value of the stability function
𝑅0 may exceed 1, if 𝛼 and ∆𝑡 are not chosen properly.

Lemma 3.10. Let 𝑅0 be given by (3.23b). If 𝛼 ≥ 1 the inequality

|𝑅0(𝑧𝑎, 𝑧𝑏)| < 1

is satisfied for all 𝑧𝑎, 𝑧𝑏 < 0. If 1
2 ≤ 𝛼 < 1, then

|𝑅0(𝑧𝑎, 𝑧𝑏)| < 1 for all 𝑧𝑎 < 0 and 𝑓(𝑧𝑎) < 𝑧𝑏 < 0

and
|𝑅0(𝑧𝑎, 𝑧𝑏)| > 1 for all 𝑧𝑎, 𝑧𝑏 < 0 and 𝑧𝑏 < 𝑓(𝑧𝑎),

where 𝑓 is defined by

𝑓(𝜉) = −𝑝(𝜉)
2

−
√︂

𝑝(𝜉)2

4
− 𝑞(𝜉) (3.24)

with

𝑝(𝜉) = −2(1− 𝛼𝜉)(2𝛼 + (1− 𝛼)𝜉 + 1)
(2𝛼− 1)(1− 𝛼𝜉) + 𝛼𝜉

, 𝑞(𝜉) =
2(1− 𝛼𝜉)(2− 𝜉)− 𝜉2

(2𝛼− 1)(1− 𝛼𝜉) + 𝛼𝜉
· (3.25)

Proof. First, we show that 𝑅0 is strictly increasing with respect to 𝑧𝑎 as well as 𝑧𝑏. To see this, we consider the
partial derivative with respect to 𝑧𝑎, which is given by

𝜕𝑅0

𝜕𝑧𝑎
(𝑧𝑎, 𝑧𝑏) =

−
(︁

𝑧𝑎

1−𝛼𝑧𝑎
+ 𝑧𝑏

1−𝛼𝑧𝑏

)︁
− (𝑧𝑎 + 𝑧𝑏) 1

(1−𝛼𝑧𝑎)2

2(1− (𝑧𝑎 + 𝑧𝑏))
+

2− (𝑧𝑎 + 𝑧𝑏)
(︁

𝑧𝑎

1−𝛼𝑧𝑎
+ 𝑧𝑏

1−𝛼𝑧𝑏

)︁
2(1− (𝑧𝑎 + 𝑧𝑏))2

=
−
(︁(︁

𝑧𝑎

1−𝛼𝑧𝑎
+ 𝑧𝑏

1−𝛼𝑧𝑏

)︁
+ 𝑧𝑎+𝑧𝑏

(1−𝛼𝑧𝑎)2

)︁
(1− (𝑧𝑎 + 𝑧𝑏)) + 2− (𝑧𝑎 + 𝑧𝑏)

(︁
𝑧𝑎

1−𝛼𝑧𝑎
+ 𝑧𝑏

1−𝛼𝑧𝑏

)︁
2(1− (𝑧𝑎 + 𝑧𝑏))2

=
−
(︁

𝑧𝑎

1−𝛼𝑧𝑎
+ 𝑧𝑏

1−𝛼𝑧𝑏

)︁
− 𝑧𝑎+𝑧𝑏

(1−𝛼𝑧𝑎)2 + (𝑧𝑎+𝑧𝑏)
2

(1−𝛼𝑧𝑎)2 + 2

2(1− (𝑧𝑎 + 𝑧𝑏))2
=
−
(︁

𝑧𝑎

1−𝛼𝑧𝑎
+ 𝑧𝑏

1−𝛼𝑧𝑏

)︁
+ (𝑧𝑎+𝑧𝑏)(𝑧𝑎+𝑧𝑏−1)

(1−𝛼𝑧𝑎)2 + 2

2(1− (𝑧𝑎 + 𝑧𝑏))2
·

Since 𝑧𝑎, 𝑧𝑏 < 0 and 𝛼 > 0, we find 𝜕𝑅0
𝜕𝑧𝑎

(𝑧𝑎, 𝑧𝑏) > 0, i.e. 𝑅0 is strictly increasing with respect to 𝑧𝑎. In addition,
due to the symmetry 𝑅0(𝑧𝑎, 𝑧𝑏) = 𝑅0(𝑧𝑏, 𝑧𝑎), it is also strictly in increasing with respect to 𝑧𝑏.

Furthermore, we have

lim
(𝑧𝑎,𝑧𝑏)→(0,0)

𝑅0(𝑧𝑎, 𝑧𝑏) = lim
(𝑧𝑎,𝑧𝑏)→(0,0)

2− (𝑧𝑎 + 𝑧𝑏)
(︁

𝑧𝑎

1−𝛼𝑧𝑎
+ 𝑧𝑏

1−𝛼𝑧𝑏

)︁
2(1− (𝑧𝑎 + 𝑧𝑏))

= 1

and due to the monotonicity 𝑅0(𝑧𝑎, 𝑧𝑏) < 1 for all 𝑧𝑎, 𝑧𝑏 < 0. To compute a lower bound for 𝑅0, we rewrite 𝑅0

in the form

𝑅0(𝑧𝑎, 𝑧𝑏) =
2(1− 𝛼𝑧𝑎)(1− 𝛼𝑧𝑏)− (𝑧𝑎 + 𝑧𝑏)(𝑧𝑎(1− 𝛼𝑧𝑏) + 𝑧𝑏(1− 𝛼𝑧𝑎))

2(1− (𝑧𝑎 + 𝑧𝑏))(1− 𝛼𝑧𝑎)(1− 𝛼𝑧𝑏)
, (3.26)

which can also be written as

𝑅0(𝑧𝑎, 𝑧𝑏) =
2(1− 𝛼𝑧𝑎)

(︁
1
𝑧2

𝑏
− 𝛼

𝑧𝑏

)︁
−
(︁

𝑧𝑎

𝑧𝑏
+ 1
)︁(︁

𝑧𝑎

(︁
1
𝑧𝑏
− 𝛼

)︁
+ (1− 𝛼𝑧𝑎)

)︁
2
(︁

1
𝑧𝑏
−
(︁

𝑧𝑎

𝑧𝑏
+ 1
)︁)︁

(1− 𝛼𝑧𝑎)
(︁

1
𝑧𝑏
− 𝛼

)︁ ·

Now we see

lim
𝑧𝑏→−∞

𝑅0(𝑧𝑎, 𝑧𝑏) =
−(−𝛼𝑧𝑎 + 1− 𝛼𝑧𝑎)
−2(1− 𝛼𝑧𝑎)(−𝛼)

= − 1− 2𝛼𝑧𝑎

2𝛼(1− 𝛼𝑧𝑎)
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Figure 2. For each 𝛼 the grey area indicates the stability region 𝑆(𝛼) of the MPRK22ncs(𝛼)
scheme for 𝑧𝑎, 𝑧𝑏 ∈ [−50, 0). (A) 𝛼 = 0.5. (B) 𝛼 = 0.8. (C) 𝛼 = 0.9. (D) 𝛼 = 0.95.

and

lim
𝑧𝑎→−∞

lim
𝑧𝑏→−∞

𝑅0(𝑧𝑎, 𝑧𝑏) = lim
𝑧𝑎→−∞

− 1− 2𝛼𝑧𝑎

2𝛼(1− 𝛼𝑧𝑎)
= lim

𝑧𝑎→−∞
−

1
𝑧𝑎
− 2𝛼

2𝛼( 1
𝑧𝑎
− 𝛼)

= − 1
𝛼
·

Since 𝑅0 is continuous, we even have lim(𝑧𝑎,𝑧𝑏)→(−∞,−∞) 𝑅0(𝑧𝑎, 𝑧𝑏) = − 1
𝛼 and since 𝑅0 is strictly increasing

in 𝑧𝑎 and 𝑧𝑏, we obtain − 1
𝛼 < 𝑅0(𝑧𝑎, 𝑧𝑏). Altogether, we know − 1

𝛼 < 𝑅0(𝑧𝑎, 𝑧𝑏) < 1 for all 𝑧𝑎, 𝑧𝑏 < 0, which
implies

|𝑅0(𝑧𝑎, 𝑧𝑏)| < 1 for all 𝑧𝑎, 𝑧𝑏 < 0 and 𝛼 ≥ 1.

However, if 𝛼 < 1 then lim(𝑧𝑎,𝑧𝑏)→(−∞,∞) 𝑅0(𝑧𝑎, 𝑧𝑏) = − 1
𝛼 < −1 and hence there exist 𝑧𝑎 and 𝑧𝑏 for which

|𝑅0(𝑧𝑎, 𝑧𝑏)| > 1.
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Due to the monotonicity and continuity of 𝑅0 there is exactly one 𝑧𝑏 for a given 𝑧𝑎, such that 𝑅0(𝑧𝑎, 𝑧𝑏) = −1.
To find this 𝑧𝑏 we need to solve the equation 𝑅0(𝑧𝑎, 𝑧𝑏) = −1 for 𝑧𝑏. According to (3.26), this is equivalent to

2(1− 𝛼𝑧𝑎)(1− 𝛼𝑧𝑏)− (𝑧𝑎 + 𝑧𝑏)(𝑧𝑎(1− 𝛼𝑧𝑏) + 𝑧𝑏(1− 𝛼𝑧𝑎))
2(1− (𝑧𝑎 + 𝑧𝑏))(1− 𝛼𝑧𝑎)(1− 𝛼𝑧𝑏)

= −1

or

2(1− 𝛼𝑧𝑎)(1− 𝛼𝑧𝑏)− (𝑧𝑎 + 𝑧𝑏)(𝑧𝑎(1− 𝛼𝑧𝑏) + 𝑧𝑏(1− 𝛼𝑧𝑎)) = −2(1− (𝑧𝑎 + 𝑧𝑏))(1− 𝛼𝑧𝑎)(1− 𝛼𝑧𝑏).

A technical computation reveals that this equation can be rewritten in the form

((2𝛼− 1)(1− 𝛼𝑧𝑎) + 𝛼𝑧𝑎)𝑧2
𝑏 − (2(1− 𝛼𝑧𝑎)(2𝛼 + (1− 𝛼)𝑧𝑎 + 1))𝑧𝑏 + 2(1− 𝛼𝑧𝑎)(2− 𝑧𝑎)− 𝑧2

𝑎 = 0

and solving for 𝑧𝑏 shows 𝑧𝑏 = 𝑓(𝑧𝑎), with 𝑓 defined in (3.24), (3.25). Due to the monotonicity of 𝑅0, we have
𝑅0(𝑧𝑎, 𝑧𝑏) < −1 for all 𝑧𝑎 < 0 and 𝑧𝑏 < 𝑓(𝑧𝑎) and −1 < 𝑅0(𝑧𝑎, 𝑧𝑏) < 1 for all 𝑧𝑎 < 0 and 𝑓(𝑧𝑎) < 𝑧𝑏 < 0. Hence,
we have also proven the statement of the lemma for the case 1

2 ≤ 𝛼 < 1. �

An immediate consequence of the above lemma in combination with Theorems 2.3 and 2.9 is the following
corollary.

Corollary 3.11. Let y* > 0 be an arbitrary steady state of (1.3) and ∆𝑡*𝛼 > 0 be the unique solution of
𝑓(−∆𝑡*𝛼𝑎) = −∆𝑡*𝛼𝑏, where 𝑓 is defined in (3.24).

(a) If 𝛼 ≥ 1 or ∆𝑡 < ∆𝑡*𝛼, then the MPRK22ncs(𝛼) schemes are stable, in the sense that any y* is a stable
fixed point of the MPRK22ncs(𝛼) schemes.

(b) For every MPRK22ncs(𝛼) scheme with 𝛼 ≥ 1 or ∆𝑡 < ∆𝑡*𝛼 there exists a 𝛿 > 0, such that ‖y0‖1 = ‖y*‖1
and

⃦⃦
y0 − y*

⃦⃦
< 𝛿 imply y𝑛 → y* as 𝑛 →∞.

(c) If ∆𝑡 > ∆𝑡*𝛼 and 1
2 ≤ 𝛼 < 1, then the MPRK22ncs(𝛼) schemes are unstable, in the sense that every steady

state y* of (1.3) is an unstable fixed point of the MPRK22ncs(𝛼) schemes.

According to part (a) of Corollary 3.11, we can define the stability regions for MPRK22ncs(𝛼) schemes with
1
2 ≤ 𝛼 < 1 as the set of points 𝑆(𝛼) ⊂ R− × R− lying above the graph of the function 𝑓 from (3.24), see
Figure 2. We also want to pay attention to the fact that the MPRK22ncs(𝛼) schemes are stable for 𝛼 ≥ 1,
which coincides with the expansion of the stability region 𝑆(𝛼) for 𝛼 → 1 that can be observed within Figure 2.

3.1. The cases 𝑎 = 0 or 𝑏 = 0

As mentioned before, the cases 𝑎 = 0 and 𝑏 = 0 are special, in that no steady states of (1.3) are contained in
R2

>0. In the following, we only discuss the case 𝑏 = 0, i.e.

𝑦′1 = −𝑎𝑦1, 𝑦2 = 𝑎𝑦1, 𝑎 > 0, (3.27)

since interchanging the roles of 𝑦1 and 𝑦2 leads to the case 𝑎 = 0. This system (1.3) has the steady states
y* = (0, 𝑦*2) ∈ R2 with 𝑦*2 ≥ 0 and we show that the MPRK22 iterations with an arbitrary initial condition
y0 > 0 converge to the steady state y* = (0, 𝑦0

1 + 𝑦0
2), which is the steady state of the continuous problem, see

(1.5). Since the MPRK22 schemes are conservative, it is sufficient to prove 𝑦𝑛
1 → 0 as 𝑛 →∞, since this directly

implies 𝑦𝑛
2 → 𝑦0

1 + 𝑦0
2 as 𝑛 →∞.

Application of the MPRK22 schemes (1.6)–(3.27) results in

𝑦
(1)
1 = 𝑦𝑛

1 , (3.28a)

𝑦
(2)
1 = 𝑦𝑛

1 − 𝛼∆𝑡𝑎𝑦
(1)
1

𝑦
(2)
1

𝑦
(1)
1

= 𝑦𝑛
1 − 𝛼∆𝑡𝑎𝑦

(2)
1 , (3.28b)
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Figure 3. Exact solution (4.2) of the test problem (4.1).

𝑦𝑛+1
1 = 𝑦𝑛

1 −∆𝑡

(︂(︂
1− 1

2𝛼

)︂
𝑎𝑦

(1)
1 +

1
2𝛼

𝑎𝑦
(2)
1

)︂
𝑦𝑛+1
1(︁

𝑦
(2)
1

)︁ 1
𝛼
(︁
𝑦
(1)
1

)︁1− 1
𝛼

· (3.28c)

We note that there is no dependence on 𝛾, hence, the following applies to both MPRK22(𝛼) and MPRK22ncs(𝛼)
schemes. Solving (3.28b) for 𝑦

(2)
1 yields

𝑦
(2)
1 =

𝑦𝑛
1

1 + 𝛼∆𝑡𝑎
·

and inserting this into (3.28c) shows

𝑦𝑛+1
1 = 𝑦𝑛

1 −∆𝑡𝑎

(︂(︂
1− 1

2𝛼

)︂
𝑦𝑛
1 +

1
2𝛼

· 𝑦𝑛
1

1 + 𝛼∆𝑡𝑎

)︂
(1 + 𝛼∆𝑡𝑎)

1
𝛼

(𝑦𝑛
1 )

1
𝛼

· 𝑦𝑛+1
1

(𝑦𝑛
1 )1−

1
𝛼

= 𝑦𝑛
1 −∆𝑡𝑎

(︂(︂
1− 1

2𝛼

)︂
+

1
2𝛼(1 + 𝛼∆𝑡𝑎)

)︂
(1 + 𝛼∆𝑡𝑎)

1
𝛼 𝑦𝑛+1

1

= 𝑦𝑛
1 −

∆𝑡𝑎
(︀
1 +

(︀
𝛼− 1

2

)︀
∆𝑡𝑎

)︀
(1 + 𝛼∆𝑡𝑎)1−

1
𝛼

𝑦𝑛+1
1 .

Solving for 𝑦𝑛+1
1 leads to

𝑦𝑛+1
1 = 𝑅(−∆𝑡𝑎)𝑦𝑛

1 ,

where 𝑅 is defined by

𝑅(𝑧) =

(︃
1−

𝑧
(︀
1−

(︀
𝛼− 1

2

)︀
𝑧
)︀

(1− 𝛼𝑧)1−
1
𝛼

)︃−1

=
(1− 𝛼𝑧)1−

1
𝛼

(1− 𝛼𝑧)1−
1
𝛼 − 𝑧

(︀
1−

(︀
𝛼− 1

2

)︀
𝑧
)︀ ·

For 𝑧 < 0 and 𝛼 ≥ 1
2 we have 1 − 𝛼𝑧 > 0 and −𝑧

(︀
1−

(︀
𝛼− 1

2

)︀
𝑧
)︀

> 0, which implies 0 < 𝑅(𝑧) < 1. Hence, the
MPRK22(𝛼) and MPRK22ncs(𝛼) schemes converge montonically towards the correct steady state along the
line 𝑦1 + 𝑦2 = 𝑦0

1 + 𝑦0
2 , just like the solution of the continuous problem.

As we have seen, there is no difference between MPRK22(𝛼) and MPRK22ncs(𝛼) schemes in the cases 𝑎 = 0
or 𝑏 = 0, which might lead to the conclusion that both schemes have equal stability properties in general.
In particular, since (3.27) is a straightforward extension of Dahlquist’s equation to positive and conservative
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Figure 4. Numerical approximations of (4.1). The dashed lines indicate the exact solution
(4.2). (A) MPRK22(1) with ∆𝑡 = 4. (B) MPRK22ncs(1) with ∆𝑡 = 4. (C) MPRK22(2) with
∆𝑡 = 20. (D) MPRK22ncs(2) with ∆𝑡 = 20.

PDS. But the analysis on the general system (1.3) in Section 3 shows significant differences with respect to
the stability of MPRK22(𝛼) and MPRK22ncs(𝛼) schemes. Hence, it is insufficient to use (3.27) to evaluate the
stability of schemes which do not belong to the class of general linear methods.

4. Numerical experiments

In this section we perform numerical experiments to confirm the stability properties of both MPRK22(𝛼)
and MPRK22ncs(𝛼) schemes. For this purpose, we consider the test equation (1.3) for the case 𝑎 = 𝑏 = 25. In
particular, we consider the initial value problem

y′ =
(︂
−25 25

25 −25

)︂
y with y0 =

(︂
0.998
0.002

)︂
. (4.1)
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Figure 5. The marked points are 𝑧(∆𝑡2) = −25
(︀
∆𝑡*𝛼 + 10−1

)︀
(1, 1)𝑇 , 𝑧(∆𝑡*𝛼) = −25∆𝑡*𝛼(1, 1)𝑇

and 𝑧(∆𝑡1) = −25
(︀
∆𝑡*𝛼 − 10−1

)︀
(1, 1)𝑇 , which lie on the red line 𝑧𝑎 = 𝑧𝑏. The grey areas

represent the stability regions for the MPRK22ncs(𝛼) schemes with 𝛼 = 0.5 and 𝛼 = 0.8
respectively, see also Figure 2. (A) 𝛼 = 0.5 and ∆𝑡*𝛼 = (

√
17 + 3)/50 ≈ 0.14. (B) 𝛼 = 0.8 and

∆𝑡*𝛼 = (
√

101 + 9)/50 ≈ 0.38.

The nonzero eigenvalue is 𝜆 = −(𝑎 + 𝑏) = −50 and the analytic solution is given by

y(𝑡) =
𝑦0
1 + 𝑦0

2

𝑎 + 𝑏

(︂
𝑏
𝑎

)︂
+

𝑎𝑦0
1 − 𝑏𝑦0

2

𝑎 + 𝑏

(︃
1

−1

)︃
𝑒𝜆𝑡 =

1
2

(︃
1
1

)︃
+ 0.498

(︃
1

−1

)︃
𝑒−50𝑡. (4.2)

As depicted in Figure 3, it can be observed that the equilibrium state

y* =
𝑦0
1 + 𝑦0

2

𝑎 + 𝑏

(︂
𝑏
𝑎

)︂
=

1
2

(︂
1
1

)︂
is approximately already reached at time 𝑡 = 0.1.

To verify the theoretical statements of Corollaries 3.9 and 3.11, we investigate at first the case of 𝛼 ≥ 1, for
which we have proven that MPRK22(𝛼) as well as MPRK22ncs(𝛼) schemes are stable and locally convergent to
the correct steady state of (1.3), irrespectively of the chosen time step size. To illustrate these positive properties
of the methods, we choose ∆𝑡 = 4 and ∆𝑡 = 20, in order to use very large time step sizes compared to the time
scale of the exact solution of 0.1 as mentioned above. Numerical approximations obtain with these time step
sizes can be seen in Figure 4. Thereby, the predicted stability of the schemes is clearly demonstrated. In the
case of ∆𝑡 = 4, the iterates of both MPRK22(1) and MPRK22ncs(1) converge to the steady state of the exact
solution shown as a dashed lines. It is worth mentioning that the result of MPRK22(1) shows significantly less
oscillations compared to the result of MPRK22ncs(1) and is also very close to the steady state already for t =
30, while MPRK22ncs(1) requires much more iterations to approach the steady state. The same behavior can
be observed for ∆𝑡 = 20, for which both schemes are stable and convergent to the steady state. Nevertheless,
even in this case the MPRK22(2) shows smaller amplitudes and less oscillation compared to MPRK22ncs(2). In
summary, the numerical experiments verify the theoretical results for both MPRK22(𝛼) and MPRK22ncs(𝛼)
schemes in the case of 𝛼 ≥ 1.

The choice of parameters 1
2 ≤ 𝛼 < 1 requires a more differentiated consideration since in this case MPRK22(𝛼)

schemes are stable due to Corollary 3.9 while MPRK22ncs(𝛼) schemes postulate stability conditions with respect
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Figure 6. Numerical approximations of (4.1). The dashed lines indicate the exact solution
(4.2). (A) MPRK22(0.5) with ∆𝑡1 = ∆𝑡*𝛼 − 10−1 ≈ 0.04. (B) MPRK22ncs(0.5) with ∆𝑡1 =
∆𝑡*𝛼−10−1 ≈ 0.04. (C) PRK22(0.8) with ∆𝑡1 = ∆𝑡*𝛼−10−1 ≈ 0.28. (D) MPRK22ncs(0.8) with
∆𝑡1 = ∆𝑡*𝛼 − 10−1 ≈ 0.28.

to the time step size according to Corollary 3.11. In the following we focus on 𝛼 = 0.5 and 𝛼 = 0.8. To
demonstrate the different stability behavior, we choose points of the form

z(∆𝑡) =
(︂

𝑧𝑎(∆𝑡)
𝑧𝑏(∆𝑡)

)︂
= −∆𝑡

(︂
𝑎
𝑏

)︂
= −∆𝑡

(︂
25
25

)︂
inside and outside the stability domain. The location of the points z(∆𝑡) is visualized for 𝛼 = 0.5 as well
as 𝛼 = 0.8 by a red line in Figure 5. Following Corollary 3.11 the point z(∆𝑡*𝛼) lies on the boundary of the
stability region and straightforward calculations yield ∆𝑡*𝛼 =

(︀√
17 + 3

)︀
/50 ≈ 0.14 for 𝛼 = 0.5 and ∆𝑡*𝛼 =(︀√

101 + 9
)︀
/50 ≈ 0.38 for 𝛼 = 0.8, respectively. The two remaining points within the figures result in each case

from the choices ∆𝑡1 = ∆𝑡*𝛼 − 10−1 and ∆𝑡2 = ∆𝑡*𝛼 + 10−1.
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Figure 7. Numerical approximations of (4.1). The dashed lines indicate the exact solution
(4.2). (A) MPRK22(0.5) with ∆𝑡 = ∆𝑡*𝛼 + 10−1 ≈ 0.24. (B) MPRK22ncs(0.5) with ∆𝑡 =
∆𝑡*𝛼 + 10−1 ≈ 0.24. (C) MPRK22(0.8) with ∆𝑡 = ∆𝑡*𝛼 + 10−1 ≈ 0.48. (D) MPRK22ncs(0.8)
with ∆𝑡 = ∆𝑡*𝛼 + 10−1 ≈ 0.48.

According to Corollary 3.11, the MPRK22ncs method can be expected to be stable for ∆𝑡1 and unstable for
∆𝑡2. The first expectation is confirmed by Figure 6 and additionally MPRK22(𝛼) is shown to be stable for both
time step sizes, which coincides with the statement of Corollary 3.9.

In accordance with the presented theory, one can observe the superior stability behavior of MPRK22(𝛼) in
Figure 7 even in the case that the time step size is chosen larger then the critical step size for MPRK22ncs(𝛼).
However, the instability of MPRK22ncs(𝛼) for ∆𝑡2 = ∆𝑡*𝛼 + 10−1 can only be guessed by the illustration in
Figure 7. To show the divergence of the method more clearly, we modify the initial condition within the initial
value problem. Therefore, we consider

y0 = y* + 10−3

(︂
1
−1

)︂
=
(︂

0.501
0.499

)︂
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Figure 8. Numerical approximation of (1.3) with y0 =
(︀
𝑦*1 + 10−3, 𝑦*2 − 10−3

)︀𝑇 =(︀
0.5 + 10−3, 0.5− 10−3

)︀𝑇 . The dashed lines indicate the exact solution (4.2). (A)
MPRK22ncs(0.5) with ∆𝑡 = ∆𝑡*𝛼 +10−1 ≈ 0.24. (B) MPRK22ncs(0.8) with ∆𝑡 = ∆𝑡*𝛼 +10−1 ≈
0.48.

which is much closer to the steady state than the previously used value. The results shown in Figure 8 clearly
demonstrate the expected divergence from the steady state for 𝛼 = 0.5 as well as 𝛼 = 0.8.

5. Summary and outlook

In this paper a stability analysis for general positive and conservative time integration schemes based on the
center manifold theory for maps was presented for the first time. The theory shows that even for nonlinear
positive and conservative time integrators the investigation of the eigenvalues of the Jacobian is sufficient to
analyze stability. This novel theory was used to carry out a first stability analysis of MPRK schemes. Thereby, we
discovered that for 𝛼 ≥ 1 both MPRK22(𝛼) and MPRK22ncs(𝛼) schemes possess stable fixed points irrespective
of the chosen time step size ∆𝑡. If 𝛼 < 1, these stability properties are maintained by the MPRK22(𝛼) schemes,
whereas the investigation of MPRK22ncs(𝛼) revealed time step restrictions to ensure stability. We also computed
the corresponding stability regions for MPRK22ncs(𝛼) schemes.

Future research topics include the extension of the statement of Theorem 2.9 to higher dimensional linear
and nonlinear systems, which requires the consideration of additional linear invariants. Furthermore, global
stability properties are of interest. Also, due to the fact that Theorem 2.9 is applicable to general positive and
conservative schemes a stability analysis of the schemes presented in [1, 2, 17, 18, 23, 26, 30] is now possible for
the first time.

Acknowledgements. The author Th. Izgin gratefully acknowledges the financial support by the Deutsche Forschungsge-
meinschaft (DFG) through grant ME 1889/10-1.
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