A LWR model with constraints at moving interfaces
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 3, pp. 1081-1114

We propose a mathematical framework to the study of scalar conservation laws with moving interfaces. This framework is developed on a LWR model with constraint on the flux along these moving interfaces. Existence is proved by means of a finite volume scheme. The originality lies in the local modification of the mesh and in the treatment of the crossing points of the trajectories.

DOI : 10.1051/m2an/2022030
Classification : 35L65, 76A30, 65M08
Keywords: Hyperbolic scalar conservation laws, moving interfaces, flux constraints, finite volume scheme
@article{M2AN_2022__56_3_1081_0,
     author = {Sylla, Abraham},
     title = {A {LWR} model with constraints at moving interfaces},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1081--1114},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {3},
     doi = {10.1051/m2an/2022030},
     mrnumber = {4420891},
     zbl = {1492.35164},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2022030/}
}
TY  - JOUR
AU  - Sylla, Abraham
TI  - A LWR model with constraints at moving interfaces
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2022
SP  - 1081
EP  - 1114
VL  - 56
IS  - 3
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2022030/
DO  - 10.1051/m2an/2022030
LA  - en
ID  - M2AN_2022__56_3_1081_0
ER  - 
%0 Journal Article
%A Sylla, Abraham
%T A LWR model with constraints at moving interfaces
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2022
%P 1081-1114
%V 56
%N 3
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2022030/
%R 10.1051/m2an/2022030
%G en
%F M2AN_2022__56_3_1081_0
Sylla, Abraham. A LWR model with constraints at moving interfaces. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 3, pp. 1081-1114. doi: 10.1051/m2an/2022030

[1] B. Andreianov, New approaches to describing admissibility of solutions of scalar conservation laws with discontinuous flux. ESAIM: Proc. Surv. 50 (2015) 40–65. | MR | Zbl | DOI

[2] B. Andreianov and D. Mitrović, Entropy conditions for scalar conservation laws with discontinuous flux revisited. Ann. Inst. Henri Poincaré Anal. Non Linéaire 32 (2015) 1307–1335. | MR | Zbl | Numdam | DOI

[3] B. Andreianov and A. Sylla, A macroscopic model to reproduce self-organization at bottlenecks. In: International Conference on Finite Volumes for Complex Applications. Springer (2020) 243–254. | MR | Zbl

[4] B. Andreianov, P. Goatin and N. Seguin, Finite volume schemes for locally constrained conservation laws. Numer. Math. 115 (2010) 609–645. | MR | Zbl | DOI

[5] B. Andreianov, K. Karlsen and N. H. Risebro, A theory of L 1 -dissipative solvers for scalar conservation laws with discontinuous flux. Arch. Ration. Mech. Anal. 201 (2011) 27–86. | MR | Zbl | DOI

[6] A. Bressan, G. Guerra and W. Shen, Vanishing viscosity solutions for conservation laws with regulated flux. J. Differ. Equ. 266 (2019) 312–351. | MR | Zbl | DOI

[7] C. Cancès and T. Gallouët, On the time continuity of entropy solutions. J. Evol. Equ. 11 (2011) 43–55. | MR | Zbl | DOI

[8] C. Chalons, M. L. Delle Monache and P. Goatin, A conservative scheme for non-classical solutions to a strongly coupled PDE-ODE problem. Interfaces Free Boundaries 19 (2018) 553–570. | MR | Zbl | DOI

[9] R. M. Colombo and P. Goatin, A well posed conservation law with a variable unilateral constraint. J. Differ. Equ. 234 (2007) 654–675. | MR | Zbl | DOI

[10] R. M. Colombo, M. Mercier and M.D. Rosini, Stability and total variation estimates on general scalar balance laws. Commun. Math. Sci. 7 (2009) 37–65. | MR | Zbl | DOI

[11] M. L. Delle Monache and P. Goatin, Scalar conservation laws with moving constraints arising in traffic flow modeling: An existence result. J. Differ. Equ. 257 (2014) 4015–4029. | MR | Zbl | DOI

[12] M. L. Delle Monache and P. Goatin, A numerical scheme for moving bottlenecks in traffic flow. Bull. Braz. Math. Soc., New Ser. 47 (2016) 605–617. | MR | Zbl | DOI

[13] M. L. Delle Monache and P. Goatin, Stability estimates for scalar conservation laws with moving flux constraints. Netw. Heterogen. Media 12 (2017) 245–258. | MR | Zbl | DOI

[14] M. L. Delle Monache, T. Liard, B. Piccoli, R. Stern and D. Work, Traffic reconstruction using autonomous vehicles. SIAM J. Appl. Math. 79 (2019) 1748–1767. | MR | Zbl | DOI

[15] R. Eymard, T. Gallouët and R. Herbin, Finite Volume Methods. Vol . In: Handbook of Numerical Analysis. Vol. VII, North-Holland, Amsterdam (2000). | MR | Zbl

[16] A. Ferrara, P. Goatin and G. Piacentini, A macroscopic model for platooning in highway traffic. SIAM J. Appl. Math. 80 (2020) 639–656. | MR | Zbl | DOI

[17] M. Garavello, P. Goatin, T. Liard and B. Piccoli, A multiscale model for traffic regulation via autonomous vehicles. J. Differ. Equ. 269 (2020) 6088–6124. | MR | Zbl | DOI

[18] I. Gasser, C. Lattanzio and A. Maurizi, Vehicular traffic flow dynamics on a bus route. Multiscale Model. Simul. 11 (2013) 925–942. | MR | Zbl | DOI

[19] H. Holden and N. H. Risebro, Front Tracking for Hyperbolic Conservation Laws. In: Applied Mathematical Sciences. Vol. 152, Springer-Verlag, New York (2002). | MR | Zbl | DOI

[20] K. H. Karlsen and J. D. Towers, Convergence of the lax-friedrichs scheme and stability for conservation laws with a discontinuous space-time dependent flux. Chin. Ann. Math. 25 (2004) 287–318. | MR | Zbl | DOI

[21] S. N. Kruzhkov, First order quasilinear equations with several independent variables. Math. USSR-Sbornik 81 (1970) 228–255. | MR | Zbl

[22] N. Laurent-Brouty, G. Costeseque and P. Goatin, A macroscopic traffic flow model accounting for bounded acceleration. SIAM J. Appl. Math. 81 (2021) 173–189. | MR | Zbl | DOI

[23] A. Sylla, Heterogeneity in scalar conservation laws: Approximation and applications, Ph.D. thesis, University of Tours (2021).

[24] A. Sylla, Influence of a slow moving vehicle on traffic: Well-posedness and approximation for a mildly nonlocal model. Netw. Heterogen. Media 16 (2021) 221–256. | MR | Zbl | DOI

[25] J. D. Towers, Convergence via OSLC of the Godunov scheme for a scalar conservation law with time and space flux discontinuities. Numer. Math. 139 (2018) 939–969. | MR | Zbl | DOI

[26] J. D. Towers, An existence result for conservation laws having BV spatial flux heterogeneities-without concavity. J. Differ. Equ. 269 (2020) 5754–5764. | MR | Zbl | DOI

[27] A. I. Vol’Pert, The spaces BV and quasilinear equations. Mat. Sb. 115 (1967) 255–302. | Zbl

Cité par Sources :