Convergence analysis of a fully discrete finite element method for thermally coupled incompressible MHD problems with temperature-dependent coefficients
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 3, pp. 969-1005

In this paper, we study a fully discrete finite element scheme of thermally coupled incompressible magnetohydrodynamic with temperature-dependent coefficients in Lipschitz domain. The variable coefficients in the MHD system and possible nonconvex domain may cause nonsmooth solutions. We propose a fully discrete Euler semi-implicit scheme with the magnetic equation approximated by Nédélec edge elements to capture the physical solutions. The fully discrete scheme only needs to solve one linear system at each time step and is unconditionally stable. Utilizing the stability of the numerical scheme and the compactness method, the existence of weak solution to the thermally coupled MHD model in three dimensions is established. Furthermore, the uniqueness of weak solution and the convergence of the proposed numerical method are also rigorously derived. Under the hypothesis of a low regularity for the exact solution, we rigorously establish the error estimates for the velocity, temperature and magnetic induction unconditionally in the sense that the time step is independent of the spacial mesh size.

DOI : 10.1051/m2an/2022028
Classification : 65M60, 65M15, 76W05
Keywords: Magnetohydrodynamics, temperature-dependent coefficients, finite element method, well-posedness, convergence, error estimates
@article{M2AN_2022__56_3_969_0,
     author = {Ding, Qianqian and Long, Xiaonian and Mao, Shipeng},
     title = {Convergence analysis of a fully discrete finite element method for thermally coupled incompressible {MHD} problems with temperature-dependent coefficients},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {969--1005},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {3},
     doi = {10.1051/m2an/2022028},
     mrnumber = {4411486},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2022028/}
}
TY  - JOUR
AU  - Ding, Qianqian
AU  - Long, Xiaonian
AU  - Mao, Shipeng
TI  - Convergence analysis of a fully discrete finite element method for thermally coupled incompressible MHD problems with temperature-dependent coefficients
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2022
SP  - 969
EP  - 1005
VL  - 56
IS  - 3
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2022028/
DO  - 10.1051/m2an/2022028
LA  - en
ID  - M2AN_2022__56_3_969_0
ER  - 
%0 Journal Article
%A Ding, Qianqian
%A Long, Xiaonian
%A Mao, Shipeng
%T Convergence analysis of a fully discrete finite element method for thermally coupled incompressible MHD problems with temperature-dependent coefficients
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2022
%P 969-1005
%V 56
%N 3
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2022028/
%R 10.1051/m2an/2022028
%G en
%F M2AN_2022__56_3_969_0
Ding, Qianqian; Long, Xiaonian; Mao, Shipeng. Convergence analysis of a fully discrete finite element method for thermally coupled incompressible MHD problems with temperature-dependent coefficients. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 3, pp. 969-1005. doi: 10.1051/m2an/2022028

[1] A. Ait Ou Ammi and M. Marion, Nonlinear Galerkin methods and mixed finite elements: two-grid algorithms for the Navier-Stokes equations. Numer. Math. 68 (1994) 189–213. | MR | Zbl

[2] C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional non-smooth domains. Math. Methods Appl. Sci. 21 (1998) 823–864. | MR | Zbl

[3] D. A. Anderson, J. C. Tannehill and R. H. Pletcher, Computational Fluid Mechanics and Heat Transfer. Series in Computational Methods in Mechanics and Thermal Sciences. Hemisphere Publishing Corp, Washington, DC; McGraw-Hill Book Co., New York (1984). | MR | Zbl

[4] F. Armero and J. C. Simo, Long-term dissipativity of time-stepping algorithms for an abstract evolution equation with applications to the incompressible MHD and Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 131 (1996) 41–90. | MR | Zbl

[5] D. Boffi, Fortin operator and discrete compactness for edge elements. Numer. Math. 87 (2000) 229–246. | MR | Zbl

[6] D. Boffi, F. Brezzi and M. Fortin, Mixed Finite Element Methods and Applications. Vol. 44 of Springer Series in Computational Mathematics. Springer, Heidelberg (2013). | MR | Zbl

[7] J. H. Bramble, J. E. Pasciak and O. Steinbach, On the stability of the L 2 projection in H 1 ( Ω ) . Math. Comput. 71 (2002) 147–156. | MR | Zbl

[8] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. In: Vol. 15 of Springer Series in Computational Mathematics. Springer-Verlag, New York (1991). | MR | Zbl

[9] C. Carstensen, Merging the Bramble–Pasciak–Steinbach and the Crouzeix-Thomée criterion for H 1 -stability of the L 2 -projection onto finite element spaces. Math. Comput. 71 (2002) 157–163. | MR | Zbl

[10] Z. Cheng, N. Takahashi and B. Forghani, Electromagnetic and Thermal Field Modeling and Application in Electrical Engineering. Science Press, Beijing (2009).

[11] P. G. Ciarlet, The Finite Element Method for Elliptic Problems. Studies in Mathematics and its Applications. Vol. 4. North-Holland Publishing Co., Amsterdam-New York-Oxford (1978). | MR | Zbl

[12] M. Costabel and M. Dauge, Singularities of Maxwell’s equations on polyhedral domains. In: Analysis, Numerics and Applications of Differential and Integral Equations (Stuttgart, 1996). Vol. 379 of Pitman Res. Notes Math. Ser. Longman, Harlow (1998) 69–76. | MR | Zbl

[13] M. Costabel and M. Dauge, Singularities of electromagnetic fields in polyhedral domains. Arch. Ration. Mech. Anal. 151 (2000) 221–276. | MR | Zbl

[14] M. Costabel and M. Dauge, Weighted regularization of Maxwell equations in polyhedral domains. A rehabilitation of nodal finite elements. Numer. Math. 93 (2002) 239–277. | MR | Zbl

[15] M. Dauge, Singularities of corner problems and problems of corner singularities. In: Actes du 30ème Congrès d’Analyse Numérique: CANum ‘98 (Arles, 1998). Vol. 6 of ESAIM Proc. Soc. Math. Appl. Indust. Paris (1999) 19–40. | MR | Zbl

[16] P. A. Davidson, An Introduction to Magnetohydrodynamics. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2001). | MR | Zbl

[17] X. Dong and Y. He, Optimal convergence analysis of Crank-Nicolson extrapolation scheme for the three-dimensional incompressible magnetohydrodynamics. Comput. Math. Appl. 76 (2018) 2678–2700. | MR

[18] P. Fernandes and G. Gilardi, Magnetostatic and electrostatic problems in inhomogeneous anisotropic media with irregular boundary and mixed boundary conditions. Math. Models Methods Appl. Sci. 7 (1997) 957–991. | MR | Zbl

[19] H. Gao and W. Qiu, A semi-implicit energy conserving finite element method for the dynamical incompressible magnetohydrodynamics equations. Comput. Methods Appl. Mech. Eng. 346 (2019) 982–1001. | MR

[20] J.-F. Gerbeau and C. Le Bris, Comparison between two numerical methods for a magnetostatic problem. Calcolo 37 (2000) 1–20. | MR | Zbl

[21] J.-F. Gerbeau, C. Le Bris and T. Lelièvre, Mathematical Methods for the Magnetohydrodynamics of Liquid Metals. Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2006). | MR | Zbl

[22] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order. Reprint of the 1998 edition. Classics in Mathematics. Springer-Verlag, Berlin (2001). | MR | Zbl

[23] V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms. Vol. 5 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin (1986). | MR | Zbl

[24] C. Greif, D. Li, D. Schötzau and X. Wei, A mixed finite element method with exactly divergence-free velocities for incompressible magnetohydrodynamics. Comput. Methods Appl. Mech. Eng. 199 (2010) 2840–2855. | MR | Zbl

[25] J. L. Guermond and P. D. Minev, Mixed finite element approximation of an MHD problem involving conducting and insulating regions: the 3D case. Numer. Methods Part. Differ. Equ. 19 (2003) 709–731. | MR | Zbl

[26] M. D. Gunzburger, A. J. Meir and J. S. Peterson, On the existence, uniqueness, and finite element approximation of solutions of the equations of stationary, incompressible magnetohydrodynamics. Math. Comp. 56 (1991) 523–563. | MR | Zbl

[27] Y. He, Unconditional convergence of the Euler semi-implicit scheme for the three-dimensional incompressible MHD equations. IMA J. Numer. Anal. 35 (2015) 767–801. | MR

[28] J. G. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier-Stokes problem. I. Regularity of solutions and second-order error estimates for spatial discretization. SIAM J. Numer. Anal. 19 (1982) 275–311. | MR | Zbl

[29] J. G. Heywood and R. Rannacher, Finite-element approximation of the nonstationary Navier-Stokes problem. IV. Error analysis for second-order time discretization. SIAM J. Numer. Anal. 27 (1990) 353–384. | MR | Zbl

[30] R. Hiptmair, Finite elements in computational electromagnetism. Acta Numer. 11 (2002) 237–339. | MR | Zbl

[31] R. Hiptmair, L. Li, S. Mao and W. Zheng, A fully divergence-free finite element method for magnetohydrodynamic equations. Math. Models Methods Appl. Sci. 28 (2018) 659–695. | MR

[32] K. Hu, Y. Ma and J. Xu, Stable finite element methods preserving · B = 0 exactly for MHD models. Numer. Math. 135 (2017) 371–396. | MR

[33] B. Huang and Y. Liao, Global stability of combination of viscous contact wave with rarefaction wave for compressible Navier-Stokes equations with temperature-dependent viscosity. Math. Models Methods Appl. Sci. 27 (2017) 2321–2379. | MR

[34] H. Kurose, D. Miyagi, N. Takahashi, N. Uchida and K. Kawanaka, 3-d eddy current analysis of induction heating apparatus considering heat emission, heat conduction, and temperature dependence of magnetic characteristics. IEEE Trans. Magnetics 45 (2009) 1847–1850.

[35] W. Layton, H. Tran and C. Trenchea, Stability of partitioned methods for magnetohydrodynamics flows at small magnetic Reynolds number. In: Recent Advances in Scientific Computing and Applications. Vol. 586 of Contemp. Math. Amer. Math. Soc., Providence, RI (2013) 231–238. | MR | Zbl

[36] A. E. Lifschitz, Magnetohydrodynamics and Spectral Theory. Vol. 4 of Developments in Electromagnetic Theory and Applications. Kluwer Academic Publishers Group, Dordrecht (1989). | MR | Zbl

[37] S. A. Lorca and J. L. Boldrini, Stationary solutions for generalized Boussinesq models. J. Differ. Equ. 124 (1996) 389–406. | MR | Zbl

[38] S. A. Lorca and J. L. Boldrini, The initial value problem for a generalized Boussinesq model. Nonlinear Anal. 36 (1999) 457–480. | MR | Zbl

[39] A. J. Meir, Thermally coupled, stationary, incompressible MHD flow; existence, uniqueness, and finite element approximation. Numer. Methods Part. Differ. Equ. 11 (1995) 311–337. | MR | Zbl

[40] A. J. Meir and P. G. Schmidt, On electromagnetically and thermally driven liquid-metal flows. In: Proceedings of the Third World Congress of Nonlinear Analysts, Part 5 (Catania, 2000). Vol. 47 (2000) 3281–3294. | MR | Zbl

[41] P. Monk, Finite Element Methods for Maxwell’s Equations. Numerical Mathematics and Scientific Computation. Oxford University Press, New York (2003). | MR | Zbl

[42] R. Moreau, Magnetohydrodynamics. Vol. 3 of Fluid Mechanics and its Applications. Translated from the French by A. F. Wright. Kluwer Academic Publishers Group, Dordrecht (1990). | MR | Zbl

[43] S. Nadeem and N. S. Akbar, Effects of temperature dependent viscosity on peristaltic flow of a Jeffrey-six constant fluid in a non-uniform vertical tube. Commun. Nonlinear Sci. Numer. Simul. 15 (2010) 3950–3964. | MR | Zbl

[44] J.-C. Nédélec, Mixed finite elements in 𝐑 3 . Numer. Math. 35 (1980) 315–341. | MR | Zbl

[45] A. Prohl, Convergent finite element discretizations of the nonstationary incompressible magnetohydrodynamics system. ESAIM: M2AN 42 (2008) 1065–1087. | MR | Zbl | Numdam

[46] H. Qiu, Error analysis of euler semi-implicit scheme for the nonstationary magneto-hydrodynamics problem with temperature dependent parameters. J. Sci. Comput. 85 (2020) 1–26. | MR

[47] S. S. Ravindran, Partitioned time-stepping scheme for an MHD system with temperature-dependent coefficients. IMA J. Numer. Anal. 39 (2019) 1860–1887. | MR

[48] D. Schötzau, Mixed finite element methods for stationary incompressible magneto-hydrodynamics. Numer. Math. 96 (2004) 771–800. | MR | Zbl

[49] M. Sermange and R. Temam, Some mathematical questions related to the MHD equations. Comm. Pure Appl. Math. 36 (1983) 635–664. | MR | Zbl

[50] D. Shi and Z. Yu, Nonconforming mixed finite element methods for stationary incompressible magnetohydrodynamics. Int. J. Numer. Anal. Model. 10 (2013) 904–919. | MR | Zbl

[51] J. Simon, Compact sets in the space L p ( 0 , T ; B ) . Ann. Mat. Pura Appl. 146 (1987) 65–96. | MR | Zbl

[52] M. Tabata, Finite element approximation to infinite prandtl number boussinesq equations with temperature-dependent coefficients – thermal convection problems in a spherical shell. Future Generation Comput. Syst. 22 (2006) 521–531.

[53] M. Tabata and D. Tagami, Error estimates for finite element approximations of drag and lift in nonstationary Navier-Stokes flows. Japan J. Indust. Appl. Math. 17 (2000) 371–389. | MR | Zbl

[54] M. Tabata and D. Tagami, Error estimates of finite element methods for nonstationary thermal convection problems with temperature-dependent coefficients. Numer. Math. 100 (2005) 351–372. | MR | Zbl

[55] M. Wiedmer, Finite element approximation for equations of magnetohydrodynamics. Math. Comp. 69 (2000) 83–101. | MR | Zbl

[56] L.-B. Zhang, A parallel algorithm for adaptive local refinement of tetrahedral meshes using bisection. Numer. Math. Theory Methods Appl. 2 (2009) 65–89. | MR | Zbl

[57] L. Zhang, T. Cui and H. Liu, A set of symmetric quadrature rules on triangles and tetrahedra. J. Comput. Math. 27 (2009) 89–96. | MR | Zbl

[58] G.-D. Zhang, J. Yang and C. Bi, Second order unconditionally convergent and energy stable linearized scheme for MHD equations. Adv. Comput. Math. 44 (2018) 505–540. | MR | Zbl

Cité par Sources :