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CONVERGENCE ANALYSIS OF A FULLY DISCRETE FINITE ELEMENT
METHOD FOR THERMALLY COUPLED INCOMPRESSIBLE MHD PROBLEMS

WITH TEMPERATURE-DEPENDENT COEFFICIENTS

Qianqian Ding1, Xiaonian Long2 and Shipeng Mao3,*

Abstract. In this paper, we study a fully discrete finite element scheme of thermally coupled in-
compressible magnetohydrodynamic with temperature-dependent coefficients in Lipschitz domain. The
variable coefficients in the MHD system and possible nonconvex domain may cause nonsmooth solu-
tions. We propose a fully discrete Euler semi-implicit scheme with the magnetic equation approximated
by Nédélec edge elements to capture the physical solutions. The fully discrete scheme only needs to
solve one linear system at each time step and is unconditionally stable. Utilizing the stability of the
numerical scheme and the compactness method, the existence of weak solution to the thermally cou-
pled MHD model in three dimensions is established. Furthermore, the uniqueness of weak solution and
the convergence of the proposed numerical method are also rigorously derived. Under the hypothesis
of a low regularity for the exact solution, we rigorously establish the error estimates for the velocity,
temperature and magnetic induction unconditionally in the sense that the time step is independent of
the spacial mesh size.
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1. Introduction

Magnetohydrodynamic (MHD) is the theory of macroscopic interaction of conductive fluid and electromag-
netic induction. It consists of a viscous, incompressible fluid which has the property of electric current conduction
and interacting with electromagnetic inductions. There are lots of applications in astronomy and geophysics as
well as engineering problems, such as metallurgical engineering, electromagnetic pumping, stirring of liquid
metals, liquid metal cooling of nuclear reactors, refer to [16, 21, 36, 42], and the references therein. However, in
many cases, the effect of temperature can not be ignored. Especially, the change of temperature will cause the
change of fluid coefficients [52,54] as well as the magnetic field coefficients [10,34].
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In this work, we consider the following transient incompressible Navier–Stokes equations and Maxwell’s
equations coupled to the heat equation with temperature-dependent coefficients in R3 [3, 10,16,42] as follows,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑢𝑡 − div [𝜈(𝜃)∇𝑢] + (𝑢 · ∇)𝑢 +∇𝑝+ 𝜇𝐵 × curl𝐵 − 𝛽(𝜃)𝜃 = 𝑓 in 𝑄𝑇 , (1.1)
𝐵𝑡 + curl [𝜎(𝜃)curl𝐵]− curl (𝑢×𝐵) = 𝑔 in 𝑄𝑇 , (1.2)
𝜃𝑡 − div [𝜅(𝜃)∇𝜃] + 𝑢 · ∇𝜃 = 𝜓 in 𝑄𝑇 , (1.3)
div 𝑢 = 0 in 𝑄𝑇 , (1.4)
div 𝐵 = 0 in 𝑄𝑇 , (1.5)

where 𝑄𝑇 = Ω × (0, 𝑇 ), 𝑇 > 0 is a given finite final time, Ω is a bounded, simply-connected and Lipschitz
polyhedral domain. 𝑢 denotes the velocity field, 𝑝 the pressure, 𝐵 the magnetic induction, 𝜃 the temperature,
𝜈 the kinematic viscosity, 𝜎 the electric conductivity, 𝜇 the magnetic permeability, 𝜅 the thermal conductivity,
𝜓 a given heat source, 𝛽 the thermal expansion coefficient, 𝑓 a forcing term for the magnetic induction, 𝑔 the
known applied current with div 𝑔 = 0. The system is considered in conjunction with the following initial values
and boundary conditions,

𝑢(𝑥, 0) = 𝑢0, 𝐵(𝑥, 0) = 𝐵0, 𝜃(𝑥, 0) = 𝜃0 ∀𝑥 ∈ Ω, (1.6)
𝑢 = 𝑢𝐷, 𝜃 = 𝜃𝐷, 𝐵 × 𝑛 = 0 on 𝑆𝑇 , (1.7)

where 𝑆𝑇 = 𝜕Ω × (0, 𝑇 ), 𝑛 is the outer unit normal of 𝜕Ω and the initial magnetic induction 𝐵0 satisfies
div 𝐵0 = 0. Our results in this paper are also valid for another frequently used set of boundary conditions of
the magnetic induction 𝐵 for (1.1)–(1.5) given by

𝐵 · 𝑛 = 0, 𝑛× curl𝐵 = 0 on 𝑆𝑇 .

The velocity 𝑢, pressure 𝑝, temperature 𝜃 and magnetic induction 𝐵

(𝑢, 𝑝, 𝜃,𝐵) : 𝑄𝑇 → R3 × R× R× R3

are unknown functions. The following functions

(𝑓 , 𝜓, 𝑔) : 𝑄𝑇 → R3 × R× R3

are given functions. Those functions 𝜈, 𝛽, 𝜎 and 𝜅

(𝜈,𝛽, 𝜎, 𝜅) : 𝑄𝑇 × R → R+ × R3 × R+ × R+

are continuously differentiable functions in (𝑥, 𝑡, 𝜃).
In the last several decades, various finite element methods for MHD problems regardless of heat effects have

been extensively developed in the literature. Let us review the references and try to summarize them, which
is unlikely to be complete and accurate, of course. We can mainly classify them into two formulations based
on the chosen discrete finite element spaces. The first formulation was proposed by Gunzburger et al. [26]
and they made use of standard Lagrange 𝐻1 finite element spaces to approximate both the hydrodynamic
unknowns and the magnetic induction. It is therefore easy to implement and has been extensively employed in
computational MHD, see e.g. [20,25,35,55] for stationary models and [4,17,27,58] for time-dependent models.
However, it is known that the nodal finite element method discretizations of the magnetic operator cannot be
correctly approximated when the magnetic induction components may have regularity below 𝐻1(Ω), cf. [14,30],
which may be frequently encountered in non-convex polyhedral or with a non 𝐶1,1 boundary. A possible way to
overcome these difficulties was proposed in [48] by virtue of Nédélec finite elements for the magnetic induction
𝐵, which leads to another natural formulation and is valid for non-smooth magnetic solution. This variational
formulation seems to be attractive and has been employed in [19,24,45,50] and the references therein. We also
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mention the recent papers [31, 32], where different formulations were proposed to maintain the divergence free
magnetic solutions in the numerical schemes.

When buoyancy effects cannot be neglected in the momentum equation due to temperature differences in the
conductive flow, the incompressible MHD is usually coupled to the heat equation by the well-known Boussinesq
approximation. For instance, as a pioneer work, Lagrange continuous finite element methods for the station-
ary heat coupled MHD equations with constant coefficients had been studied in [39, 40]. On the other hand,
in many practical applications of MHD problems, the change of temperature will affect the coefficients in
the fluid field as well as the electromagnetic filed. It is of great significance to study reliable finite element
methods for the coupled MHD system with the coefficients depend on the temperature. The coupled fluid
systems or electromagnetic models with temperature-dependent coefficients are faced with nonlinear PDEs
with great mathematical challenges, which has attracted attention by both physicists and mathematicians, see
e.g. [10,33,43,54] and the references therein. As far as we know, the first work to study error estimates of finite
element methods for the thermally coupled MHD equations with temperature-dependent coefficients is given
in [47], where a fully discrete Crank–Nicolson scheme is proposed and investigated. More recently, the fully
discrete Euler semi-implicit scheme has been studied in [46]. The proposed schemes in the above two papers
are based on the magnetic induction approximated by Lagrange 𝐻1 finite element method and all the error
estimates are conducted under sufficiently smooth assumption on the exact solutions. However, in view of the
highly nonlinearity brought by the temperature-dependent coefficients and the Lorentz terms in the magnetic
equation, as well as a possible non-convex domain or a non 𝐶1,1 boundary, we can not expect to a smooth
solution for the magnetic induction belong to 𝐻1(Ω) in such situations (see [12,13]). Thus 𝐻(curl)-conforming
Nédélec edge element is a natural choice to approximate the magnetic equation in order to capture the physical
solutions. Furthermore, Nédélec finite elements seems to be a better choice since it can treat the boundary
conditions of magnetic induction easier than Lagrange finite element discretization.

In this work, we will give a rigorous convergence analysis and error estimates of a fully discrete finite ele-
ment method for the MHD system described by (1.1)–(1.7) based on the magnetic induction approximated by
𝐻(curl)-conforming Nédélec edge element. The time discretization is based on a backward Euler semi-implicit
scheme and the stable Taylor-Hood type finite elements are used to approximate the fluid field and Lagrange
finite element to approximate the heat equation. In the first half of the paper, we show that the numerical
solution converges to a weak solution of the continuous system without any further regularity assumption as
both meshwidth and timestep tend to zero. In fact, the first convergence result of finite element discretization
for MHD is attributed to [45], where some weak and strong convergence of the subsequence of discrete velocity
and magnetic field are proved by the standard compact argument. In this paper, we will extend the results to
MHD models with temperature-dependent coefficients. Strong convergence of all the discrete fields (velocity,
magnetic induction and heat) is proved rigorously. So the result of this paper is also an improvement of [31],
which has not proved any strong convergence of the discrete fields. Furthermore, we show the uniqueness of
weak solution for incompressible MHD models with temperature-dependent coefficients provided it satisfies a
smoother condition, which seems to be new in the literature. Then we can prove that the whole sequence of
the discrete solution converges (strongly) to the unique weak solution. In the second half of the paper, under
a weak regularity hypothesis on the exact solution, a rigorous error estimate of the velocity, temperature and
magnetic induction are established unconditionally in the sense that the timestep is independent on the spacial
meshwidth. In this paper, we will confront with two major difficulties in the analysis. The first difficulty arises
from the nonlinearity in the model caused by variable temperature-dependent coefficients, and the other is the
very low regularity of the exact solution caused by the nonlinearity structure or non-convex domain. In order
to deal with these difficult problems, some technical tools need to be developed in this paper.

A brief overview of this paper is provided as follows. In the next section, we describe the notations and some
preliminary knowledge to be used throughout the paper. In Section 3, we propose a fully finite element discrete
method with a backward Euler semi-implicit scheme for the system (1.1)–(1.7), and some basic lemmas and
theorems are recalled. In Section 4, the well-posedness and stability of the fully discrete scheme are presented.
We show that the fully discrete solution converges to a weak solution of the continuous problem as ∆𝑡 and ℎ
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tend to zero. The uniqueness of the continuous problem is also established under a slight smoother assumption
on the weak solution. In Section 5, we prove error estimates for all variables under a weak regularity assumption.
In Section 6, we present two numerical examples to illustrate our theoretical results. Finally, we close the paper
with some concluding remarks in Section 7.

2. Functional setting for the magneto-heat coupling model

For mathematical setting of problem (1.1)–(1.5) with the initial values and boundary conditions (1.6)–(1.7),
we first introduce some notations that will be used throughout the paper. For all 𝑚 ∈ N+, 1 ≤ 𝑝 ≤ ∞, let
𝑊𝑚,𝑝(Ω) denote the standard Sobolev space and it is written as 𝐻𝑚(Ω) when 𝑝 = 2. The norm in 𝑊𝑚,𝑝(Ω) is
defined by ‖·‖𝑚,𝑝 such that

‖𝑣‖𝑚,𝑝 =

⎛⎝ ∑︁
|𝛼|≤𝑚

‖𝐷𝛼𝑣‖𝑝
0,𝑝

⎞⎠1/𝑝

with ‖𝑣‖0,𝑝 =
(︂∫︁

Ω

|𝑣|𝑝 d𝑥
)︂1/𝑝

1 ≤ 𝑝 <∞,

‖𝑣‖𝑚,∞ = max
|𝛼|≤𝑚

‖𝐷𝛼𝑣‖0,∞ with ‖𝑣‖0,∞ = ess sup
𝑥∈Ω

|𝑣(𝑥)|,

where

𝐷𝛼 =
𝜕|𝛼|

𝜕𝑥𝛼1
1 𝜕𝑥𝛼2

2 𝜕𝑥𝛼3
3

,

for the multi-index 𝛼 = (𝛼1, 𝛼2, 𝛼3) and |𝛼| = 𝛼1 + 𝛼2 + 𝛼3, with 𝛼1, 𝛼2, 𝛼3 ≥ 0. For the function spaces
𝐿𝑝(0, 𝑇 ;𝑋), 1 ≤ 𝑝 ≤ ∞, the norms are denoted as

‖𝑣‖𝐿𝑝(0,𝑇 ;𝑋) =

(︃∫︁ 𝑇

0

‖𝑣(𝑡)‖𝑝
𝑋 d𝑡

)︃1/𝑝

for 1 ≤ 𝑝 < +∞,

‖𝑣‖𝐿∞(0,𝑇 ;𝑋) = ess sup
0≤𝑡≤𝑇

‖𝑣(𝑡)‖𝑋 ,

where 𝑋 is a real Banach space with the norm ‖·‖𝑋 . The inner product will be denoted by (·, ·), that is
(𝜑, 𝜓) =

∫︀
Ω
𝜑𝜓 d𝑥, the norm in 𝐿2(Ω) defined by ‖·‖0. ⟨·, ·⟩ is for the dual product between a Banach space

and the dual space. Vector-valued quantities will be denoted in boldface notations, such as 𝑢 = (𝑢1, 𝑢2, 𝑢3) and
𝐿2(Ω) =

(︀
𝐿2(Ω)

)︀3. We use 𝐶 and 𝑐, with or without subscripts, bars, tildes or hats, to denote generic positive
constants independent of the discretization parameters, which may take different values at different places.

We introduce the following classical Sobolev spaces:

𝑋 = 𝐻1(Ω), 𝑋0 =
{︀
𝑣 ∈ 𝐻1

0 (Ω),div 𝑣 = 0
}︀
, 𝑌 = 𝐻1(Ω), 𝑌0 = 𝐻1

0 (Ω),

𝑀 = 𝐿2(Ω), 𝑄 =
{︂
𝑞 ∈𝑀,

∫︁
Ω

𝑞(𝑥) d𝑥 = 0
}︂
,

𝑊 =
{︀
𝐶 ∈ 𝐿2(Ω), curl𝐶 ∈ 𝐿2(Ω)

}︀
, 𝑊0 = {𝐶 ∈ 𝑊 , 𝐶 × 𝑛|𝜕Ω = 0}.

Here and what in follows, we define the following norm

‖𝐶‖𝑊 = ‖𝐶‖𝐻(curl;Ω) =
(︁
‖𝐶‖20 + ‖curl𝐶‖20

)︁1/2

∀𝐶 ∈ 𝑊 .

We also need to define the following Sobolev spaces

𝐻(div; Ω) =
{︀
𝑏 ∈ 𝐿2(Ω),div 𝑏 ∈ 𝐿2(Ω)

}︀
, 𝐻

(︀
div0; Ω

)︀
= {𝑏 ∈ 𝐻(div; Ω),div 𝑏 = 0}
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and ℋ(Ω) = 𝑊0 ∩𝐻(div; Ω), which is equipped with the following norm

‖𝑣‖ℋ(Ω) =
(︁
‖curl𝑣‖20 + ‖div 𝑣‖20

)︁1/2

∀𝑣 ∈ ℋ(Ω).

We recall the following embedding result (see e.g., Prop. 3.7 of [2] or [23]) which is valid for a Lipschitz
polyhedron.

Lemma 2.1. There exists a parameter 𝛿1 = 𝛿1(Ω) > 0 such that the embedding ℋ(Ω) →˓ 𝐿3+𝛿1(Ω) is compact.

It is well known that the following Poincaré type and embedding inequalities are valid in bounded polyhedral
domains (see Chapter 3 of [41] for more details),

‖𝑣‖0,𝑚 ≤ 𝑐1‖∇𝑣‖0, 𝑚 ∈ [1, 6] ∀𝑣 ∈ 𝑋0, (2.1)

‖𝑣‖0 ≤ 𝑐2‖curl𝑣‖0 ∀𝑣 ∈ 𝑊0 ∩𝐻
(︀
div0; Ω

)︀
, (2.2)

‖𝑣‖0,∞ ≤ 𝑐3‖𝑣‖1+𝑙,2 ∀ 𝑙 > 1/2, (2.3)

‖𝑣‖1,3 ≤ 𝑐4‖𝑣‖1+𝑙,2, ‖curl𝑣‖0,3 ≤ 𝑐5‖curl𝑣‖𝑙,2 ∀ 𝑙 > 1/2. (2.4)

For every 𝜔 ∈ 𝐻 1
2 (𝜕Ω), let 𝑌0(𝜔) be an affine space of 𝑌 defined by

𝑌0(𝜔) ≡ {𝜉 ∈ 𝑌 ; 𝜉 − 𝜃𝜔 ∈ 𝑌0},

where 𝜃𝜔 ∈ 𝑌 is an extension of 𝜔. Similarly, let 𝑉 = 𝑋0, for every 𝑤 ∈ 𝐻
1
2 (𝜕Ω), let 𝑉 (𝑤) be an affine space

of 𝑋 defined by

𝑉 (𝑤) ≡ {𝑣 ∈ 𝑋; 𝑣 − 𝑢𝑤 ∈ 𝑉 },

where 𝑢𝑤 ∈ 𝑋 is an extension of 𝑤.
We denote by C 𝑚(Ω) the space of functions 𝑚 times continuously differentiable in Ω. The space C 𝑚

(︀
Ω
)︀

consists of functions in C 𝑚(Ω) bounded, and uniformly continuous in Ω with derivatives up to the 𝑚 th order.
The space C 𝑚,1

(︀
Ω
)︀

consists of functions in C 𝑚
(︀
Ω
)︀

that are Lipschitz continuous in Ω with derivatives up to
the 𝑚th order, refer to [23].

In order to describe our scheme concisely, for all (𝑢,𝑣,𝑤) ∈ (𝑋 ×𝑋 ×𝑋), (𝜃, 𝜙) ∈ (𝑌 × 𝑌 ), we denote the
trilinear terms as

𝒪1(𝑢,𝑣,𝑤) =
1
2

{︂∫︁
Ω

[(𝑢 · ∇)𝑣] 𝑤 d𝑥−
∫︁

Ω

[(𝑢 · ∇)𝑤] 𝑣 d𝑥
}︂
,

𝒪2(𝑢, 𝜃, 𝜙) =
1
2

{︂∫︁
Ω

(𝑢 · ∇𝜃)𝜙d𝑥−
∫︁

Ω

(𝑢 · ∇𝜙)𝜃 d𝑥
}︂
.

Now, we introduce the definition of weak solution to the heat coupled MHD system (1.1)–(1.7).

Definition 2.2. Suppose that

𝑓 ∈ 𝐿2
(︀
0, 𝑇 ; 𝐿2(Ω)

)︀
, 𝜓 ∈ 𝐿2

(︀
0, 𝑇 ;𝐿2(Ω)

)︀
, 𝑔 ∈ 𝐿2

(︀
0, 𝑇 ; 𝐿2(Ω)

)︀
, 𝐵0 ∈ 𝑊 ,

𝑢𝐷 ∈ 𝐻1
(︁

0, 𝑇 ; 𝐻
1
2 (𝜕Ω)

)︁
, 𝑢0 ∈ 𝑉 (𝑢𝐷(·, 0)), 𝜃𝐷 ∈ 𝐻1

(︁
0, 𝑇 ;𝐻

1
2 (𝜕Ω)

)︁
, 𝜃0 ∈ 𝑌0(𝜃𝐷(·, 0)).

We say that (𝑢, 𝑝, 𝜃,𝐵) is the weak solution of (1.1)–(1.7), if there holds (i)

𝑢 ∈ 𝐿∞
(︀
0, 𝑇 ; 𝐿2(Ω)

)︀
∩ 𝐿2(0, 𝑇 ; 𝑉 (𝑢𝐷)), 𝜃 ∈ 𝐿∞

(︀
0, 𝑇 ;𝐿2(Ω)

)︀
∩ 𝐿2(0, 𝑇 ;𝑌0(𝜃𝐷)),

𝐵 ∈ 𝐿∞
(︀
0, 𝑇 ; 𝐿2(Ω)

)︀
∩ 𝐿2(0, 𝑇 ; 𝑊0), 𝑝 ∈ 𝐿∞(0, 𝑇 ;𝑄).
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(ii) For any (𝑣, 𝑞, 𝜙,𝐶) ∈ (𝑋0 ×𝑄× 𝑌0 ×𝑊0), the weak formulation holds⎧⎪⎨⎪⎩
⟨𝑢𝑡,𝑣⟩+𝒜1(𝜈(𝜃),𝑢,𝑣) +𝒪1(𝑢,𝑢,𝑣) + 𝜇(𝐵 × curl𝐵,𝑣) + 𝑏(𝑣, 𝑝)− 𝑏(𝑢, 𝑞)− (𝛽(𝜃)𝜃,𝑣) = (𝑓 ,𝑣), (2.5)
⟨𝐵𝑡,𝐶⟩+ (𝜎(𝜃)curl𝐵, curl𝐶)− (𝑢×𝐵, curl𝐶) = (𝑔,𝐶), (2.6)
⟨𝜃𝑡, 𝜙⟩+𝒜2(𝜅(𝜃), 𝜃, 𝜙) +𝒪2(𝑢, 𝜃, 𝜙) = (𝜓,𝜙), (2.7)

where

𝒜1(𝜈(𝜃),𝑢,𝑣) =
∫︁

Ω

𝜈(𝜃)∇𝑢 : ∇𝑣 d𝑥, 𝑏(𝑣, 𝑞) = −
∫︁

Ω

𝑞 div 𝑣 d𝑥,

𝒜2(𝜅(𝜃), 𝜃, 𝜙) =
∫︁

Ω

𝜅(𝜃)∇𝜃 · ∇𝜙d𝑥.

(iii) For all 𝑡 ∈ [0, 𝑇 ], there holds

1
2

[︁
‖𝑢(𝑡, ·)‖20 + 𝜇‖𝐵(𝑡, ·)‖20 + 0‖𝜃(𝑡, ·)‖20

]︁
+
∫︁ 𝑇

0

[︂⃦⃦⃦√︀
𝜈(𝜃)∇𝑢

⃦⃦⃦2

0
+ 𝜇

⃦⃦⃦√︀
𝜎(𝜃)curl𝐵

⃦⃦⃦2

0
+
⃦⃦⃦√︀

𝜅(𝜃)∇𝜃
⃦⃦⃦2

0

]︂
d𝑡

=
1
2

[︁
‖𝑢(0)‖20 + 𝜇‖𝐵(0)‖20 + ‖𝜃(0)‖20

]︁
+
∫︁ 𝑇

0

[(𝑓 ,𝑢) + 𝜇(𝑔,𝐵) + (𝜓, 𝜃) + (𝛽(𝜃)𝜃,𝑢)]d𝑡.

Remark 2.3. Since ∇𝜑 ∈ 𝑊0 for all 𝜑 ∈ 𝐻1
0 (Ω), by choosing 𝐶 = ∇𝜑 in (2.6), we can deduce (𝐵𝑡,∇𝜑) = 0.

Due to the orthogonal decomposition 𝐿2(Ω) = 𝐻
(︀
div0 ; Ω

)︀
⊕ ∇𝐻1

0 (Ω), see [18, 41], it can be checked that
div 𝐵𝑡 = 0, together with div 𝐵0 = 0, then we are able to obtain that div 𝐵(𝑡) = 0, for all 𝑡 ∈ (0, 𝑇 ].

Remark 2.4. Under the external forces (𝑓 ,𝑢), (𝑔,𝐵) and (𝜓, 𝜃), the total energy includes the fluid kinetic
energy 1

2‖𝑢(𝑡)‖20, the magnetic energy 1
2𝜇‖𝐵(𝑡)‖20 and thermal energy 1

2‖𝜃(𝑡)‖
2
0, while the dissipation of energy

contains the friction losses
⃦⃦⃦√︀

𝜈(𝜃)∇𝑢
⃦⃦⃦2

0
, the Ohmic losses 𝜇

⃦⃦⃦√︀
𝜎(𝜃)curl𝐵

⃦⃦⃦2

0
and heat losses

⃦⃦⃦√︀
𝜅(𝜃)∇𝜃

⃦⃦⃦2

0
.

3. A fully discrete finite element method based on Euler scheme

In this section, we introduce a mixed finite element method which describes a spatial discretization of the
problem (2.5)–(2.7) based on the backward Euler scheme.

Let Ω be a polyhedral domain, and the domain is partitioned into a mesh 𝒯ℎ, where ℎ is the diameter of
the element. Each tetrahedron 𝐾 is supposed to be the image of a reference tetrahedron 𝐾̂ under an affine
map 𝐹𝐾 . The family of meshes {𝒯ℎ}ℎ>0 is assumed to be regular and quasi-uniform. Let 𝑃𝑘(𝐾) be the space of
polynomials of total degree at most 𝑘 ≥ 0 on 𝐾 and ̃︀𝑃𝑘(𝐾) the space of homogeneous polynomials 𝑘 on 𝐾. We
first introduce the generalized Taylor-Hood element

(︀
𝑋𝑘

ℎ , 𝑄
𝑘−1
ℎ

)︀
with 𝑘 ≥ 2, where 𝑋𝑘

ℎ is the 𝑘 order vectorial
Lagrange finite element subspace of 𝑋, 𝑄𝑘−1

ℎ is the 𝑘 − 1 order scalar Lagrange finite element subspace of 𝑄.
And 𝑌 𝑘

ℎ is the 𝑘 order scalar Lagrange finite element subspace of 𝑌 , refer to [6, 23]. For the case 𝑘 = 1, we use
the well-known stable mini-elements to approximate velocity and pressure, cf. [6, 8, 23].

The space 𝒟𝑘(𝐾) denotes the polynomials 𝑞 in ̃︀𝑃𝑘(𝐾) that satisfy 𝑞(𝑥) · 𝑥 = 0 on 𝐾. For 1 ≤ 𝑘, we define
the space

𝒩𝑘(𝐾) = 𝑃𝑘−1(𝐾)⊕𝒟𝑘(𝐾).

To approximate the magnetic induction, we use Nédélec 𝐻(curl)-conforming finite element space (see [41,44]),
which is defined by

𝑊 𝑘
ℎ = {𝐶 ∈ 𝑊0, 𝐶|𝐾 ∈ 𝒩𝑘(𝐾) ∀𝐾 ∈ 𝒯ℎ}.
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Note that the above definition is the first family 𝐻(curl)-conforming discrete space. We can also employ the
second family finite element spaces with 𝒩𝑘(𝐾) is chosen by 𝑃𝑘(𝐾).

Setting 𝑆ℎ =
{︀
𝐶 ∈ 𝐻1(Ω) ∩ 𝐿2

0(Ω), 𝐶 ∈ 𝑃𝑘(𝐾), ∀𝐾 ∈ 𝒯ℎ

}︀
, we introduce the discretely solenoidal function

space

𝑊 𝑘
0ℎ =

{︀
𝐶 ∈ 𝑊 𝑘

ℎ , (𝐶,∇𝑆) = 0 ∀𝑆 ∈ 𝑆ℎ

}︀
.

Furthermore, the space 𝑊 𝑘
0ℎ is known to satisfy the following discrete Poincaré-Friedrichs inequality (see [48]

or Thm. 4.7 of [30]),
‖𝑐ℎ‖0 ≤ 𝐶*‖curl 𝑐ℎ‖0 ∀ 𝑐ℎ ∈ 𝑊 𝑘

0ℎ, (3.1)

with a constant 𝐶* > 0 independent of the mesh-size ℎ.
The link between the spaces 𝑊 𝑘

0ℎ and 𝒲(Ω) is accomplished by the Hodge mapping 𝑍 : 𝐻(curl; Ω) → 𝒲(Ω),
refer to [30], where 𝒲(Ω) = {𝐶 ∈ ℋ(Ω), div 𝐶 = 0 in Ω} such that

curl𝑍(𝐶) = curl𝐶 ∀𝐶 ∈ 𝑊 .

Furthermore, the Hodge mapping satisfies the following approximation property, there exists 𝑙 = 𝑙(Ω) > 0,

‖𝐶ℎ − 𝑍(𝐶ℎ)‖0 ≤ 𝑐ℎ
1
2+𝑙‖curl𝐶ℎ‖0 ∀𝐶ℎ ∈ 𝑊 𝑘

0ℎ. (3.2)

We use 𝑄𝑘−1
ℎ to approximate the pressure 𝑝, and use a finite element affine space

𝑌 𝑘
0ℎ(𝜔) ≡

{︀
𝜉ℎ ∈ 𝑌 𝑘

ℎ ; 𝜉ℎ − 𝜋ℎ𝜃𝜔 ∈ 𝑌 𝑘
0ℎ

}︀
to find the temperature 𝜃, where 𝜋ℎ : L

(︀
𝑌, 𝑌 𝑘

ℎ

)︀
is the usual Lagrange interpolation operator and 𝑌 𝑘

0ℎ ⊂ 𝑌0. Let
𝑉 𝑘

ℎ = 𝑋𝑘
ℎ

⋂︀
𝐻1

0 (Ω), and we use the space

𝑉 𝑘
ℎ (𝑤) ≡

{︀
𝑣ℎ ∈ 𝑋𝑘

ℎ ; 𝑣ℎ −Πℎ𝑢𝑤 ∈ 𝑉 𝑘
ℎ

}︀
,

where Πℎ = 𝜋3
ℎ, to find the velocity 𝑢. Further, the discrete kernel space of the divergence operator can be

defined by

𝑋𝑘
0ℎ =

{︀
𝑣ℎ ∈ 𝑋𝑘

ℎ ; 𝑏(𝑣ℎ, 𝑞ℎ) = 0 ∀𝑞ℎ ∈ 𝑄𝑘−1
ℎ

}︀
.

We recall the following inverse estimate from Theorem 3.2.6 of [11]. On a quasi-uniform mesh there holds

‖𝑣ℎ‖𝑚,𝑞 ≤ 𝐶𝑖𝑛𝑣ℎ
𝚤−𝑚+3(1/𝑞−1/𝑝)‖𝑣ℎ‖𝚤,𝑝 ∀𝑣ℎ ∈ 𝑋𝑘

ℎ , (3.3)

where 𝐶𝑖𝑛𝑣 > 0 is a generic constant independent of the mesh-size ℎ, 𝚤 and 𝑚 are two real numbers with
0 ≤ 𝚤 ≤ 𝑚 ≤ 1, 𝑝 and 𝑞 are two integers with 1 ≤ 𝑝 ≤ 𝑞 ≤ ∞.

From the Fortin criterion, the following discrete inf-sup condition (see Chap. 2 of [8] or [30]) is established,

inf
0̸=𝑞ℎ∈𝑄𝑘−1

ℎ

sup
0 ̸=𝑣ℎ∈𝑉 𝑘

ℎ

(𝑞ℎ,div 𝑣ℎ)
‖𝑣ℎ‖1,2‖𝑞ℎ‖0

≥ 𝛽*, (3.4)

where 𝛽* is a generic positive constant depending on the domain Ω.
Let 𝑁 be a positive integer and 0 = 𝑡0 < 𝑡1 < . . . < 𝑡𝑁 = 𝑇 be a uniform partition of [0, 𝑇 ] with time step

∆𝑡 = 𝑇/𝑁 and 𝑡𝑛 = 𝑛∆𝑡, 0 ≤ 𝑛 ≤ 𝑁 . For any function 𝑤(𝑡), we write 𝑤𝑛 as the value of 𝑤 at 𝑡 = 𝑛∆𝑡. The
backward difference form is 𝑑𝑡𝑤

𝑛 =
(︀
𝑤𝑛 −𝑤𝑛−1

)︀
/∆𝑡 for any sequence {𝑤𝑛}. We set 𝜈𝑛(𝜃) = 𝜈(𝑥, 𝑡𝑛, 𝜃), and

𝜎𝑛(𝜃), 𝜅𝑛(𝜃) and 𝛽𝑛(𝜃) are defined similarly.
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Starting with the initial datum 𝜃0ℎ ∈ 𝑌 𝑘
0ℎ(𝜃𝐷), 𝐵0

ℎ ∈ 𝑊 𝑘
ℎ and 𝑢0

ℎ ∈ 𝑉 𝑘
ℎ (𝑢𝐷), with 𝑘 ≥

1, then our aim is to find
{︀

(𝑢𝑛
ℎ, 𝑝

𝑛
ℎ, 𝜃

𝑛
ℎ ,𝐵

𝑛
ℎ ) ∈ 𝑉 𝑘

ℎ (𝑢𝐷)×𝑄𝑘−1
ℎ × 𝑌 𝑘

0ℎ(𝜃𝐷)×𝑊 𝑘
ℎ ;𝑛 = 1, . . . , 𝑁

}︀
, for any{︀

(𝑣ℎ, 𝑞ℎ, 𝜙ℎ,𝐶ℎ) ∈ 𝑉 𝑘
ℎ ×𝑄𝑘−1

ℎ × 𝑌 𝑘
0ℎ ×𝑊 𝑘

ℎ

}︀
such that⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(𝑑𝑡𝑢
𝑛
ℎ,𝑣ℎ) +𝒜1

(︀
𝜈𝑛
(︀
𝜃𝑛−1

ℎ

)︀
,𝑢𝑛

ℎ,𝑣ℎ

)︀
+𝒪1

(︀
𝑢𝑛−1

ℎ ,𝑢𝑛
ℎ,𝑣ℎ

)︀
−
(︀
𝛽𝑛
(︀
𝜃𝑛−1

ℎ

)︀
𝜃𝑛

ℎ ,𝑣ℎ

)︀
+𝜇
(︀
𝐵𝑛−1

ℎ × curl𝐵𝑛
ℎ ,𝑣ℎ

)︀
+ 𝑏(𝑣ℎ, 𝑝

𝑛
ℎ) = (𝑓𝑛,𝑣ℎ), (3.5)

𝑏(𝑢𝑛
ℎ, 𝑞ℎ) = 0, (3.6)

(𝑑𝑡𝐵
𝑛
ℎ ,𝐶ℎ) +

(︀
𝜎𝑛
(︀
𝜃𝑛−1

ℎ

)︀
curl𝐵𝑛

ℎ , curl𝐶ℎ

)︀
−
(︀
𝑢𝑛

ℎ ×𝐵𝑛−1
ℎ , curl𝐶ℎ

)︀
= (𝑔𝑛,𝐶ℎ), (3.7)

(𝑑𝑡𝜃
𝑛
ℎ , 𝜙ℎ) +𝒜2

(︀
𝜅𝑛
(︀
𝜃𝑛−1

ℎ

)︀
, 𝜃𝑛

ℎ , 𝜙ℎ

)︀
+𝒪2

(︀
𝑢𝑛−1

ℎ , 𝜃𝑛
ℎ , 𝜙ℎ

)︀
= (𝜓𝑛, 𝜙ℎ), (3.8)

with the initial values satisfy 𝑢0
ℎ = 𝑃0ℎ𝑢0, 𝐵0

ℎ = 𝑃1ℎ𝐵0 and 𝜃0ℎ = 𝑃2ℎ𝜃
0, where 𝑃0ℎ𝑢0 ∈ 𝑉 𝑘

ℎ (𝑢𝐷), 𝑃1ℎ𝐵0 ∈ 𝑊 𝑘
ℎ

and 𝑃2ℎ𝜃
0 ∈ 𝑌 𝑘

0ℎ(𝜃𝐷) are corresponding 𝐿2 projection or interpolation functions which satisfy the following
estimates [1, 11,28]: ⃦⃦

𝑢0 − 𝑃0ℎ𝑢0
⃦⃦

0
≤ 𝐶ℎℓ+1

⃦⃦
𝑢0
⃦⃦

ℓ+1,2
,
⃦⃦
𝐵0 − 𝑃1ℎ𝐵0

⃦⃦
0
≤ 𝐶ℎℓ

⃦⃦
𝐵0
⃦⃦

ℓ,2
,⃦⃦

𝜃0 − 𝑃2ℎ𝜃
0
⃦⃦

0
≤ 𝐶ℎℓ+1

⃦⃦
𝜃0
⃦⃦

ℓ+1,2
,

(3.9)

with ℓ = min{𝑘, 𝑠}, where 𝑘 ≥ 1 is the order index of the finite element spaces, 𝑠 > 1/2 is the index of regularity
of the initial values.

Remark 3.1. The coefficients depend on the temperature will increase the nonlinearity of the model and make
the problem more intricate. The existence of solution to problem (3.5)–(3.8) will be proved in next section.
Furthermore, we will prove that the discrete solution converges to a weak solution of the continuous model as
∆𝑡 and ℎ tend to zero.

Remark 3.2. When Ω is a non-convex polyhedron, the difficulty comes from the fact that the magnetic induc-
tion is in general not in 𝐻1(Ω) (see Rem. 3.3.1 of [21] for an explanation). The approximation of the magnetic
induction with classical 𝐻1-conforming Lagrange finite elements can not capture the singularities and may
converge to a wrong solution, refer to [14, 15, 21], etc. This is the reason why we choose Nédélec edge element
to approximate the magnetic induction in (3.7).

Remark 3.3. In fact, the discrete solution for the magnetic induction still satisfies the weakly divergence
free property. For any 𝑠ℎ ∈ 𝑆ℎ, by choosing 𝐶ℎ = ∇𝑠ℎ in (3.7), we can obtain (𝑑𝑡𝐵

𝑛
ℎ ,∇𝑠ℎ) = 0, namely,(︀(︀

𝐵𝑛
ℎ −𝐵𝑛−1

ℎ

)︀
/∆𝑡,∇𝑠ℎ

)︀
= 0. Due to

(︀
𝐵0

ℎ,∇𝑠ℎ

)︀
= 0, it implies that (𝐵𝑛

ℎ ,∇𝑠ℎ) = 0, where 𝑛 = 0, 1, . . . , 𝑁 .
Thus there is no need to add a Lagrange multiplier in the magnetic equation as in [45].

The following result gives a maximum principle for strong solution of (1.1)–(1.5). The detailed proof can
follow the same line as Lemma 3.5 of [38] or Lemma 3.1 of [37].

Lemma 3.4. Let (𝑢,𝐵, 𝜃) be a strong solution of (1.1)–(1.5) for 𝑡 ∈ (0, 𝑇 ]. Then

𝜃(𝑥, 𝑡) ≤ 𝑒𝑡/2‖𝜓‖𝐿2(0,𝑡;𝐿2(Ω)) + max

{︃
sup
Ω

𝜃0, sup
(0,𝑇 ]×𝜕Ω

𝜃𝐷

}︃
, ∀(𝑥, 𝑡) ∈ 𝑄𝑇 . (3.10)

By the maximum principle (3.10), we know that temperature 𝜃 of (1.1)–(1.5) is uniformly bounded. Therefore,
we can assume the given functions 𝜈, 𝜅, 𝜎 ∈ C 0,1

(︀
Ω× [0, 𝑇 ]× R; R+

)︀
and 𝛽 ∈ C 0,1

(︀
Ω× [0, 𝑇 ]× R; R3

)︀
so as to

satisfy
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0 < 𝜎0 ≤ 𝜎(𝑥, 𝑡, 𝜀) ≤ 𝜎1, 0 < 𝜅0 ≤ 𝜅(𝑥, 𝑡, 𝜀) ≤ 𝜅1

|𝛽(𝑥, 𝑡, 𝜀)| ≤ 𝛽1, 0 < 𝜈0 ≤ 𝜈(𝑥, 𝑡, 𝜀) ≤ 𝜈1 for all 𝜀 ∈ R, (3.11)

with positive constants 𝜎0, 𝜎1, 𝜅0, 𝜅1, 𝜈0, 𝜈1 and 𝛽1.
We now show that the solution of (3.5)–(3.8) enjoys a stability property, which holds regardless of the sizes

of ℎ and ∆𝑡, and will play an important role in proving the convergence and well-posedness of the fully discrete
solution.

Lemma 3.5. Under the condition (3.11), for all 1 ≤ 𝑚 ≤ 𝑁 , the numerical solution (𝑢𝑛
ℎ, 𝑝

𝑛
ℎ, 𝜃

𝑛
ℎ ,𝐵

𝑛
ℎ ) of (3.5)–

(3.8) satisfies the following stability estimate,

‖𝑢𝑚
ℎ ‖

2
0 + 𝜇‖𝐵𝑚

ℎ ‖
2
0 + ‖𝜃𝑚

ℎ ‖
2
0 +

𝑚∑︁
𝑛=1

(︁⃦⃦
𝜃𝑛

ℎ − 𝜃𝑛−1
ℎ

⃦⃦2

0
+
⃦⃦
𝑢𝑛

ℎ − 𝑢𝑛−1
ℎ

⃦⃦2

0
+ 𝜇

⃦⃦
𝐵𝑛

ℎ −𝐵𝑛−1
ℎ

⃦⃦2

0

)︁
+ ∆𝑡

𝑚∑︁
𝑛=1

(︃⃦⃦⃦⃦√︁
𝜈𝑛
(︀
𝜃𝑛−1

ℎ

)︀
∇𝑢𝑛

ℎ

⃦⃦⃦⃦2

0

+ 𝜇

⃦⃦⃦⃦√︁
𝜎𝑛
(︀
𝜃𝑛−1

ℎ

)︀
curl𝐵𝑛

ℎ

⃦⃦⃦⃦2

0

+
⃦⃦⃦⃦√︁

𝜅𝑛
(︀
𝜃𝑛−1

ℎ

)︀
∇𝜃𝑛

ℎ

⃦⃦⃦⃦2

0

)︃
≤ 𝐶,

where 𝐶 is a generic constant depending on 𝑓 , 𝑔, 𝜓, 𝜇, 𝑢0, 𝐵0, 𝜃0, 𝜎, 𝜈,𝛽, 𝜅.

Proof. Choosing 𝜙ℎ = 2𝜃𝑛
ℎ in (3.8) and using 2(𝑎− 𝑏, 𝑎) = 𝑎2 − 𝑏2 + (𝑎− 𝑏)2, there holds

‖𝜃𝑛
ℎ‖

2
0 −

⃦⃦
𝜃𝑛−1

ℎ

⃦⃦2

0
+
⃦⃦
𝜃𝑛

ℎ − 𝜃𝑛−1
ℎ

⃦⃦2

0
+ 2∆𝑡

⃦⃦⃦⃦√︁
𝜅𝑛
(︀
𝜃𝑛−1

ℎ

)︀
∇𝜃𝑛

ℎ

⃦⃦⃦⃦2

0

= 2∆𝑡(𝜓𝑛, 𝜃𝑛
ℎ).

By virtue of the Young inequality and (2.1), summing up from 𝑛 = 1 to 𝑚, we deduce

‖𝜃𝑚
ℎ ‖

2
0 +

𝑚∑︁
𝑛=1

⃦⃦
𝜃𝑛

ℎ − 𝜃𝑛−1
ℎ

⃦⃦2

0
+ ∆𝑡

𝑚∑︁
𝑛=1

⃦⃦⃦⃦√︁
𝜅𝑛
(︀
𝜃𝑛−1

ℎ

)︀
∇𝜃𝑛

ℎ

⃦⃦⃦⃦2

0

≤
⃦⃦
𝜃0ℎ
⃦⃦2

0
+ ∆𝑡𝜅−1

0 𝑐21

𝑚∑︁
𝑛=1

‖𝜓𝑛‖20 ≤ 𝐶00.

(3.12)

Taking 𝑣ℎ = 2𝑢𝑛
ℎ in (3.5), 𝑞ℎ = −2𝑝𝑛

ℎ in (3.6), 𝐶ℎ = 2𝜇𝐵𝑛
ℎ ∈ 𝑊 𝑘

0ℎ in (3.7) and adding the three equations,
there holds

‖𝑢𝑛
ℎ‖

2
0 −

⃦⃦
𝑢𝑛−1

ℎ

⃦⃦2

0
+
⃦⃦
𝑢𝑛

ℎ − 𝑢𝑛−1
ℎ

⃦⃦2

0
+ 𝜇‖𝐵𝑛

ℎ‖
2
0 − 𝜇

⃦⃦
𝐵𝑛−1

ℎ

⃦⃦2

0

+ 𝜇
⃦⃦
𝐵𝑛

ℎ −𝐵𝑛−1
ℎ

⃦⃦2

0
+ 2∆𝑡

⃦⃦⃦⃦√︁
𝜈𝑛
(︀
𝜃𝑛−1

ℎ

)︀
∇𝑢𝑛

ℎ

⃦⃦⃦⃦2

0

+ 2∆𝑡𝜇
⃦⃦⃦⃦√︁

𝜎𝑛
(︀
𝜃𝑛−1

ℎ

)︀
curl𝐵𝑛

ℎ

⃦⃦⃦⃦2

0

= 2∆𝑡
(︀
𝛽𝑛
(︀
𝜃𝑛−1

ℎ

)︀
𝜃𝑛

ℎ ,𝑢
𝑛
ℎ

)︀
+ 2∆𝑡(𝑓𝑛,𝑢𝑛

ℎ) + 2𝜇∆𝑡(𝑔𝑛,𝐵𝑛
ℎ ).

(3.13)

By virtue of Young inequality, (2.1), (3.1) and (3.12), we have

2
⃒⃒(︀

𝛽𝑛
(︀
𝜃𝑛−1

ℎ

)︀
𝜃𝑛

ℎ ,𝑢
𝑛
ℎ

)︀⃒⃒
≤ 2𝜈−1

0 𝑐21‖𝛽𝑛‖2C(Ω̄×R;R3)‖𝜃
𝑛
ℎ‖

2
0 +

1
2

⃦⃦⃦⃦√︁
𝜈𝑛
(︀
𝜃𝑛−1

ℎ

)︀
∇𝑢𝑛

ℎ

⃦⃦⃦⃦2

0

≤ 2𝜈−1
0 𝑐21‖𝛽𝑛‖2C(Ω̄×R;R3)𝐶00 +

1
2

⃦⃦⃦⃦√︁
𝜈𝑛
(︀
𝜃𝑛−1

ℎ

)︀
∇𝑢𝑛

ℎ

⃦⃦⃦⃦2

0

,

2|(𝑓𝑛,𝑢𝑛
ℎ) + 𝜇(𝑔𝑛,𝐵𝑛

ℎ )| ≤ 2𝜈−1
0 𝑐21‖𝑓𝑛‖20 +

1
2

⃦⃦⃦⃦√︁
𝜈𝑛
(︀
𝜃𝑛−1

ℎ

)︀
∇𝑢𝑛

ℎ

⃦⃦⃦⃦2

0

+ 𝜇𝜎−1
0 𝐶2

*‖𝑔𝑛‖20 + 𝜇

⃦⃦⃦⃦√︁
𝜎𝑛
(︀
𝜃𝑛−1

ℎ

)︀
curl𝐵𝑛

ℎ

⃦⃦⃦⃦2

0

.

Inserting these inequalities into (3.13), and summing up from 𝑛 = 1 to 𝑚, there holds
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‖𝑢𝑚
ℎ ‖

2
0 + 𝜇‖𝐵𝑚

ℎ ‖
2
0 +

𝑚∑︁
𝑛=1

(︁⃦⃦
𝑢𝑛

ℎ − 𝑢𝑛−1
ℎ

⃦⃦2

0
+ 𝜇

⃦⃦
𝐵𝑛

ℎ −𝐵𝑛−1
ℎ

⃦⃦2

0

)︁
+ ∆𝑡

𝑚∑︁
𝑛=1

(︃⃦⃦⃦⃦√︁
𝜈𝑛
(︀
𝜃𝑛−1

ℎ

)︀
∇𝑢𝑛

ℎ

⃦⃦⃦⃦2

0

+ 𝜇

⃦⃦⃦⃦√︁
𝜎𝑛
(︀
𝜃𝑛−1

ℎ

)︀
curl𝐵𝑛

ℎ

⃦⃦⃦⃦2

0

)︃

≤
⃦⃦
𝑢0

ℎ

⃦⃦2

0
+ 𝜇

⃦⃦
𝐵0

ℎ

⃦⃦2

0
+ 𝐶∆𝑡

𝑚∑︁
𝑛=1

(︁
1 + ‖𝑓𝑛‖20 + ‖𝑔𝑛‖20

)︁
.

(3.14)

A combination of (3.12) and (3.14) , then we can obtain the desired conclusion. �

The following estimates for the trilinear term in Navier–Stokes equations can be referred to Lemma 4.5 of
[53].

Theorem 3.6. For 𝑖 = 1, 2, let 𝑢𝑖 be functions in 𝐿∞(Ω) ∩ 𝑊 1,3(Ω), and 𝑢𝑖
ℎ functions in 𝑋𝑘

ℎ . Then, for
𝑣 ∈ 𝐻1

0 (Ω), 𝑢̄𝑖 ∈
(︀
𝐿∞(Ω) ∩𝑊 1,3(Ω)

)︀
, 𝑤̄𝑖 ∈ 𝑋𝑘

ℎ , and (𝑝, 𝑞) = (0, 1) or (𝑝, 𝑞) = (1, 0), we have⃒⃒
𝒪1

(︀
𝑢1,𝑢2,𝑣

)︀
−𝒪1

(︀
𝑢1

ℎ,𝑢
2
ℎ,𝑣
)︀⃒⃒

≤ 𝐶

[︃
min

{︁⃦⃦
𝑢𝑖
⃦⃦

0,∞ +
⃦⃦
𝑢𝑖
⃦⃦

1,3
; 𝑖 = 1, 2

}︁
+

2∑︁
𝑖=1

(︁⃦⃦
𝑤̄𝑖

ℎ

⃦⃦
0,∞ +

⃦⃦
𝑤̄𝑖

ℎ

⃦⃦
1,3

)︁]︃

·
2∑︁

𝑖=1

(︁⃦⃦
𝑢𝑖 − 𝑢̄𝑖

⃦⃦
𝑝

+
⃦⃦
𝑢̄𝑖 − 𝑤̄𝑖

ℎ

⃦⃦
𝑝

+
⃦⃦
𝑤̄𝑖

ℎ − 𝑢𝑖
ℎ

⃦⃦
𝑝

)︁
‖𝑣‖𝑞 + |𝒪1

(︀
𝑤̄1

ℎ − 𝑢1
ℎ, 𝑤̄

2
ℎ − 𝑢2

ℎ,𝑣
)︀
|.

(3.15)

Moreover, if 𝑤̄2
ℎ − 𝑢2

ℎ ∈ 𝑋0, then we readily see⃒⃒
𝒪1

(︀
𝑢1,𝑢2, 𝑤̄2

ℎ − 𝑢2
ℎ

)︀
−𝒪1

(︀
𝑢1

ℎ,𝑢
2
ℎ, 𝑤̄

2
ℎ − 𝑢2

ℎ

)︀⃒⃒
≤ 𝐶

[︃
min

{︁⃦⃦
𝑢𝑖
⃦⃦

0,∞ +
⃦⃦
𝑢𝑖
⃦⃦

1,3
; 𝑖 = 1, 2

}︁
+

2∑︁
𝑖=1

(︁⃦⃦
𝑤̄𝑖

ℎ

⃦⃦
0,∞ +

⃦⃦
𝑤̄𝑖

ℎ

⃦⃦
1,3

)︁]︃

·
2∑︁

𝑖=1

(︁⃦⃦
𝑢𝑖 − 𝑢̄𝑖

⃦⃦
𝑝

+
⃦⃦
𝑢̄𝑖 − 𝑤̄𝑖

ℎ

⃦⃦
𝑝

+
⃦⃦
𝑤̄𝑖

ℎ − 𝑢𝑖
ℎ

⃦⃦
𝑝

)︁⃦⃦
𝑤̄2

ℎ − 𝑢2
ℎ

⃦⃦
𝑞
.

(3.16)

4. Well-posedness and convergence of the fully discrete solution

In this section, we will prove the well-posedness of the numerical solution to the problem (3.5)–(3.8) by using
the Lax–Milgram theorem (see [22] for more details). Utilizing the stability of the numerical scheme and the
compactness method, the existence of weak solution to the thermally coupled MHD model in three dimensions
is established. Furthermore, the uniqueness of weak solution and the convergence of the proposed numerical
method are also derived.

We first prove the well-posedness result for the discrete solution in the following theorem.

Theorem 4.1. Under the condition of Lemma 3.5, then there exists a unique solution (𝑢𝑛
ℎ, 𝜃

𝑛
ℎ ,𝐵

𝑛
ℎ ) to scheme

(3.5)–(3.8).

Proof. We divide this proof into two steps:

Step 1. For any 𝜙ℎ ∈ 𝑌 𝑘
0ℎ, given 𝜃𝑛−1

ℎ and 𝑢𝑛−1
ℎ , find 𝜃𝑛

ℎ ∈ 𝑌 𝑘
0ℎ(𝜃𝐷), we can rewrite (3.8) as

1
∆𝑡

(𝜃𝑛
ℎ , 𝜙ℎ) +𝒜2

(︀
𝜅𝑛
(︀
𝜃𝑛−1

ℎ

)︀
, 𝜃𝑛

ℎ , 𝜙ℎ

)︀
+𝒪2

(︀
𝑢𝑛−1

ℎ , 𝜃𝑛
ℎ , 𝜙ℎ

)︀
= (𝜓𝑛, 𝜙ℎ) +

1
∆𝑡
(︀
𝜃𝑛−1

ℎ , 𝜙ℎ

)︀
. (4.1)
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Let us define

𝐺(𝜃𝑛
ℎ , 𝜙ℎ) =

1
∆𝑡

(𝜃𝑛
ℎ , 𝜙ℎ) +𝒜2

(︀
𝜅𝑛
(︀
𝜃𝑛−1

ℎ

)︀
, 𝜃𝑛

ℎ , 𝜙ℎ

)︀
+𝒪2

(︀
𝑢𝑛−1

ℎ , 𝜃𝑛
ℎ , 𝜙ℎ

)︀
.

It is easy to verify that 𝐺(𝜃𝑛
ℎ , 𝜙ℎ) satisfies the ellipticity and boundedness. An application of the Lax–Milgram

theorem shows that problem (3.8) attains a unique solution 𝜃𝑛
ℎ .

Step 2. We prove the uniqueness of the solution of (3.5)–(3.7) based on a fixed 𝜃𝑛
ℎ . According to (3.5)–(3.7),

the solution (𝑢𝑛
ℎ,𝐵

𝑛
ℎ ) ∈

(︀
𝑋𝑘

0ℎ ×𝑊 𝑘
0ℎ

)︀
satisfy that for any (𝑣ℎ,𝐶ℎ) ∈

(︀
𝑋𝑘

0ℎ ×𝑊 𝑘
0ℎ

)︀
, there holds

1
∆𝑡

(𝑢𝑛
ℎ,𝑣ℎ) +

𝜇

∆𝑡
(𝐵𝑛

ℎ ,𝐶ℎ) +
(︀
𝜈𝑛
(︀
𝜃𝑛−1

ℎ

)︀
∇𝑢𝑛

ℎ,∇𝑣ℎ

)︀
+ 𝜇

(︀
𝜎𝑛
(︀
𝜃𝑛−1

ℎ

)︀
curl𝐵𝑛

ℎ , curl𝐶ℎ

)︀
+𝒪1

(︀
𝑢𝑛−1

ℎ ,𝑢𝑛
ℎ,𝑣ℎ

)︀
+ 𝜇

(︀
𝐵𝑛−1

ℎ × curl𝐵𝑛
ℎ ,𝑣ℎ

)︀
− 𝜇

(︀
𝑢𝑛

ℎ ×𝐵𝑛−1
ℎ , curl𝐶ℎ

)︀
=
(︀
𝑓𝑛 + 𝛽𝑛

(︀
𝜃𝑛−1

ℎ

)︀
𝜃𝑛

ℎ ,𝑣ℎ

)︀
+ 𝜇(𝑔𝑛,𝐶ℎ) +

(︂
1

∆𝑡
𝑢𝑛−1

ℎ ,𝑣ℎ

)︂
+
(︁ 𝜇

∆𝑡
𝐵𝑛−1

ℎ ,𝐶ℎ

)︁
.

(4.2)

Let U𝑛−1 =
(︀
𝑢𝑛−1

ℎ ,𝐵𝑛−1
ℎ

)︀
, U𝑛 = (𝑢𝑛

ℎ,𝐵
𝑛
ℎ ), Φ = (𝑣ℎ,𝐶ℎ), and it is easy to see that

|||U𝑛|||2 =
1

∆𝑡
‖𝑢𝑛

ℎ‖
2
0 +

𝜇

∆𝑡
‖𝐵𝑛

ℎ‖
2
0 +

⃦⃦⃦⃦√︁
𝜈𝑛
(︀
𝜃𝑛−1

ℎ

)︀
∇𝑢𝑛

ℎ

⃦⃦⃦⃦2

0

+ 𝜇

⃦⃦⃦⃦√︁
𝜎𝑛
(︀
𝜃𝑛−1

ℎ

)︀
curl𝐵𝑛

ℎ

⃦⃦⃦⃦2

0

provides a norm on 𝑋𝑘
0ℎ ×𝑊 𝑘

0ℎ. Define the left-hand side of (4.2) as 𝐼
(︀
U𝑛−1,U𝑛,Φ

)︀
, thus we can obtain

𝐼
(︀
U𝑛−1,U𝑛,U𝑛

)︀
≥ |||U𝑛|||2.

We choose 𝛿2 > 0 such that 1/(3 + 𝛿1) + 1/(6− 𝛿2) = 1/2 and 𝐻1(Ω) →˓→˓ 𝐿6−𝛿2(Ω), together with (3.2)
and (3.3), then we have the following estimate

𝜇
⃒⃒(︀

𝐵𝑛−1
ℎ × curl𝐵𝑛

ℎ ,𝑣ℎ

)︀⃒⃒
= 𝜇|

(︀[︀
𝐵𝑛−1

ℎ − 𝑍
(︀
𝐵𝑛−1

ℎ

)︀]︀
× curl𝐵𝑛

ℎ ,𝑣ℎ

)︀
+
(︀
𝑍
(︀
𝐵𝑛−1

ℎ

)︀
× curl𝐵𝑛

ℎ ,𝑣ℎ

)︀
|

≤ 𝐶ℎ𝑙+1/2
⃦⃦
curl𝐵𝑛−1

ℎ

⃦⃦
0
‖curl𝐵𝑛

ℎ‖0,3‖𝑣ℎ‖0,6 + 𝐶
⃦⃦
𝑍
(︀
𝐵𝑛−1

ℎ

)︀⃦⃦
0,3+𝛿1

‖curl𝐵𝑛
ℎ‖0‖𝑣ℎ‖0,6−𝛿2

≤ 𝐶ℎ𝑙
⃦⃦
curl𝐵𝑛−1

ℎ

⃦⃦
0
‖curl𝐵𝑛

ℎ‖0‖∇𝑣ℎ‖0 + 𝐶
⃦⃦
curl𝐵𝑛−1

ℎ

⃦⃦
0
‖curl𝐵𝑛

ℎ‖0‖∇𝑣ℎ‖0,

where we have used
⃦⃦
𝑍
(︀
𝐵𝑛−1

ℎ

)︀⃦⃦
0,3+𝛿1

≤ 𝐶
⃦⃦
curl𝑍

(︀
𝐵𝑛−1

ℎ

)︀⃦⃦
0

= 𝐶
⃦⃦
curl𝐵𝑛−1

ℎ

⃦⃦
0

according to Lemma 2.1.

Similarly, we have

𝜇
⃒⃒(︀

𝑢𝑛
ℎ ×𝐵𝑛−1

ℎ , curl𝐶ℎ

)︀⃒⃒
≤ 𝐶ℎ𝑙

⃦⃦
curl𝐵𝑛−1

ℎ

⃦⃦
0
‖curl𝐶ℎ‖0‖∇𝑢𝑛

ℎ‖0 + 𝐶
⃦⃦
curl𝐵𝑛−1

ℎ

⃦⃦
0
‖curl𝐶ℎ‖0‖∇𝑢𝑛

ℎ‖0.

This implies the continuity of 𝐼
(︀
U𝑛−1,U𝑛,Φ

)︀
, namely,

|𝐼
(︀
U𝑛−1,U𝑛,Φ

)︀
| ≤ 𝐶

(︁
1 +

⃦⃦
𝑢𝑛−1

ℎ

⃦⃦
1,2

+
(︀
ℎ𝑙 + 1

)︀⃦⃦
curl𝐵𝑛−1

ℎ

⃦⃦
0

)︁
|||U𝑛||||||Φ|||.

According to the Lax–Milgram theorem, we know that (3.5) and (3.7) admit a unique solution (𝑢𝑛
ℎ,𝐵

𝑛
ℎ ).

Combining Step 1 and Step 2, we have completed the proof of Theorem 4.1. �

Next, we will present the convergence analysis for the fully discrete solution to problem (3.5)–(3.8). To
this end, we introduce some interpolated functions over the temporal variable, which will be used below. Let
𝑢ℎΔ𝑡(·, 𝑡), 𝜃ℎΔ𝑡(·, 𝑡), 𝐵ℎΔ𝑡(·, 𝑡) be the piecewise linear continuous interpolation of the fully discrete solution
(𝑢𝑛

ℎ, 𝜃
𝑛
ℎ ,𝐵

𝑛
ℎ ), 𝑛 = 1, 2, . . . , 𝑁 on (𝑡𝑛−1, 𝑡𝑛], that is to say
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𝜑ℎΔ𝑡(·, 𝑡) :=
𝑡− 𝑡𝑛−1

∆𝑡
𝜑+

ℎ (·, 𝑡) +
𝑡𝑛 − 𝑡

∆𝑡
𝜑−ℎ (·, 𝑡),

where 𝜑+
ℎ = 𝜑𝑛

ℎ, 𝜑
−
ℎ = 𝜑𝑛−1

ℎ , with 𝜑 = 𝑢, 𝜃,𝐵.
Let 𝜃ℎΔ𝑡(𝑥, 𝑡), 𝑢̃ℎΔ𝑡(𝑥, 𝑡), 𝑝ℎΔ𝑡(𝑥, 𝑡), 𝐵̃ℎΔ𝑡(𝑥, 𝑡), 𝑢̂ℎΔ𝑡(𝑥, 𝑡), 𝜃ℎΔ𝑡(𝑥, 𝑡), 𝐵̂ℎΔ𝑡(𝑥, 𝑡), 𝑓Δ𝑡(𝑥, 𝑡), 𝑔Δ𝑡(𝑥, 𝑡),

𝜓Δ𝑡(𝑥, 𝑡), 𝜎̃Δ𝑡(𝑥, 𝑡), 𝜈Δ𝑡(𝑥, 𝑡), 𝛽Δ𝑡(𝑥, 𝑡) and 𝜅̃Δ𝑡(𝑥, 𝑡) be the piecewise constant extensions of {𝜃𝑛
ℎ}, {𝑢𝑛

ℎ}, {𝑝𝑛
ℎ},

{𝐵𝑛
ℎ},

{︀
𝑢𝑛−1

ℎ

}︀
,
{︀
𝜃𝑛−1

ℎ

}︀
,
{︀
𝐵𝑛−1

ℎ

}︀
, {𝑓𝑛}, {𝑔𝑛}, {𝜓𝑛}, {𝜎𝑛}, {𝜈𝑛}, {𝛽𝑛} and {𝜅𝑛}, 𝑛 = 1, 2, . . . , 𝑁 , respectively,

namely, for all 𝑡 ∈ (𝑡𝑛−1, 𝑡𝑛],

𝜃ℎΔ𝑡(·, 𝑡) = 𝜃𝑛
ℎ , 𝑢̃ℎΔ𝑡(·, 𝑡) = 𝑢𝑛

ℎ, 𝑝ℎΔ𝑡(·, 𝑡) = 𝑝𝑛
ℎ, 𝐵̃ℎΔ𝑡(·, 𝑡) = 𝐵𝑛

ℎ ,

𝑢̂ℎΔ𝑡(·, 𝑡) = 𝑢𝑛−1
ℎ , 𝜃ℎΔ𝑡(·, 𝑡) = 𝜃𝑛−1

ℎ , 𝐵̂ℎΔ𝑡(·, 𝑡) = 𝐵𝑛−1
ℎ , 𝑓Δ𝑡(·, 𝑡) = 𝑓𝑛,

𝑔Δ𝑡(·, 𝑡) = 𝑔𝑛, 𝜓Δ𝑡(·, 𝑡) = 𝜓𝑛, 𝜎̃Δ𝑡(·, 𝑡) = 𝜎𝑛, 𝜈Δ𝑡(·, 𝑡) = 𝜈𝑛,

𝛽Δ𝑡(·, 𝑡) = 𝛽𝑛, 𝜅̃Δ𝑡(·, 𝑡) = 𝜅𝑛.

With the above notations, we will prove the following priori stability estimates without any restrictions on ℎ
and ∆𝑡.

Lemma 4.2. For the sequences {(𝑢ℎΔ𝑡, 𝑝ℎΔ𝑡,𝐵ℎΔ𝑡, 𝜃ℎΔ𝑡)}, there exists a constant 𝐶 independent of the mesh-
size ℎ and the time-step ∆𝑡 such that

‖(𝑢ℎΔ𝑡)𝑡 +∇𝑝ℎΔ𝑡‖𝐿𝑟(0,𝑇 ;(𝑋∩𝐻1+𝑠(Ω))′) ≤ 𝐶, ‖(𝐵ℎΔ𝑡)𝑡‖𝐿𝑟(0,𝑇 ;(𝑊∩𝐻1+𝑠(Ω))′) ≤ 𝐶,

‖(𝜃ℎΔ𝑡)𝑡‖𝐿4/3(0,𝑇 ;(𝑌 ∩𝐻1+𝑠(Ω))′)
≤ 𝐶,

with 𝑟 = 2
2−𝜁 , 𝜁 = min

{︁
𝑙,
(︀

1
2 + 𝑙

)︀
2𝛿1

3(1+𝛿1)
, 2𝛿1

3(1+𝛿1)
, 1

2

}︁
and 𝑠 > 1

2 , where 𝛿1 is defined in Lemma 2.1 and 𝑙 is
defined in (3.2).

Proof. To validate the first assertion, we define the 𝐿2-orthogonal projection to 𝑉 𝑘
ℎ via Pℎ. Setting 1

𝑟 + 1
𝑟′ = 1

and 𝑟′ = 2
𝜁 , with 𝜁 = min

{︁
𝑙,
(︀

1
2 + 𝑙

)︀
2𝛿1

3(1+𝛿1)
, 2𝛿1

3(1+𝛿1)
, 1

2

}︁
, for any 𝑣 ∈ 𝐿𝑟′

(︀
0, 𝑇 ; 𝑋 ∩𝐻1+𝑠(Ω)

)︀
, by (3.5), we

have

((𝑢ℎΔ𝑡)𝑡,Pℎ𝑣) +
1
2

[((𝑢̂ℎΔ𝑡 · ∇)𝑢̃ℎΔ𝑡,Pℎ𝑣)− ((𝑢̂ℎΔ𝑡 · ∇)Pℎ𝑣, 𝑢̃ℎΔ𝑡)] + (∇𝑝ℎΔ𝑡,Pℎ𝑣)

+
(︁
𝜈Δ𝑡

(︁
𝜃ℎΔ𝑡

)︁
∇𝑢̃ℎΔ𝑡,∇Pℎ𝑣

)︁
+ 𝜇

(︁
𝐵̂ℎΔ𝑡 × curl 𝐵̃ℎΔ𝑡,Pℎ𝑣

)︁
−
(︁
𝛽Δ𝑡

(︁
𝜃ℎΔ𝑡

)︁
𝜃ℎΔ𝑡,Pℎ𝑣

)︁
=
(︁
𝑓Δ𝑡,Pℎ𝑣

)︁
.

(4.3)

By virtue of Lemma 3.5, the Cauchy–Schwarz inequality and the interpolation inequality

‖𝑢̂ℎΔ𝑡‖0,3 ≤ 𝐶‖𝑢̂ℎΔ𝑡‖1/2
0 ‖∇𝑢̂ℎΔ𝑡‖1/2

0 , (4.4)

thanks to 𝑟′ = 2
𝜁 , which implies that 𝑟′ > 4, we can derive that∫︁ 𝑇

0

⃒⃒⃒⃒
1
2

[((𝑢̂ℎΔ𝑡 · ∇)𝑢̃ℎΔ𝑡,Pℎ𝑣)− ((𝑢̂ℎΔ𝑡 · ∇)Pℎ𝑣, 𝑢̃ℎΔ𝑡)]
⃒⃒⃒⃒
d𝑡

≤ 𝐶‖𝑢̂ℎΔ𝑡‖0,3‖∇𝑢̃ℎΔ𝑡‖0‖Pℎ𝑣‖0,6 + 𝐶‖𝑢̂ℎΔ𝑡‖0,3‖𝑢̃ℎΔ𝑡‖0,6‖∇Pℎ𝑣‖0

≤ 𝐶

∫︁ 𝑇

0

[︁
‖𝑢̂ℎΔ𝑡‖1/2

0 ‖∇𝑢̂ℎΔ𝑡‖1/2
0 ‖∇𝑢̃ℎΔ𝑡‖0‖∇Pℎ𝑣‖0

]︁
d𝑡

≤ 𝐶‖∇𝑢̂ℎΔ𝑡‖1/2
𝐿2(0,𝑇 ;𝐿2(Ω))‖∇𝑢̃ℎΔ𝑡‖𝐿2(0,𝑇 ;𝐿2(Ω))‖∇Pℎ𝑣‖𝐿4(0,𝑇 ;𝐿2(Ω)) ≤ 𝐶‖∇Pℎ𝑣‖𝐿𝑟′ (0,𝑇 ;𝐿2(Ω)).

It can be checked that 1 < 𝑟 < 2, then we obtain
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0

⃒⃒⃒(︁
𝜈Δ𝑡

(︁
𝜃ℎΔ𝑡

)︁
∇𝑢̃ℎΔ𝑡,∇Pℎ𝑣

)︁⃒⃒⃒
d𝑡

≤ 𝐶‖𝜈Δ𝑡‖C(Ω̄×R;R+)‖∇𝑢̃ℎΔ𝑡‖𝐿2(0,𝑇 ;𝐿2(Ω))‖∇Pℎ𝑣‖𝐿𝑟′ (0,𝑇 ;𝐿2(Ω)) ≤ 𝐶‖∇Pℎ𝑣‖𝐿𝑟′ (0,𝑇 ;𝐿2(Ω)).

By using of Lemma 2.1, (3.2), (3.3), (2.1), there holds∫︁ 𝑇

0

⃒⃒⃒
𝜇
(︁
𝐵̂ℎΔ𝑡 × curl 𝐵̃ℎΔ𝑡,Pℎ𝑣

)︁⃒⃒⃒
d𝑡

=
∫︁ 𝑇

0

⃒⃒⃒
𝜇
(︁[︁

𝐵̂ℎΔ𝑡 − 𝑍
(︁
𝐵̂ℎΔ𝑡

)︁
+ 𝑍

(︁
𝐵̂ℎΔ𝑡

)︁]︁
× curl 𝐵̃ℎΔ𝑡,Pℎ𝑣

)︁⃒⃒⃒
d𝑡

(3.2)

≤
∫︁ 𝑇

0

⃒⃒⃒
𝜇𝐶𝑖𝑛𝑣ℎ

𝑙
⃦⃦⃦
curl 𝐵̂ℎΔ𝑡

⃦⃦⃦
0

⃦⃦⃦
curl 𝐵̃ℎΔ𝑡

⃦⃦⃦
0
‖Pℎ𝑣‖0,6

+ 𝜇
⃦⃦⃦
𝑍
(︁
𝐵̂ℎΔ𝑡

)︁⃦⃦⃦
0,3

⃦⃦⃦
curl 𝐵̃ℎΔ𝑡

⃦⃦⃦
0
‖Pℎ𝑣‖0,6

⃒⃒⃒⃒
d𝑡

Lemma 2.1
≤ 𝐶

∫︁ 𝑇

0

⃒⃒⃒
𝜇𝐶𝑖𝑛𝑣ℎ

𝑙
⃦⃦⃦
curl 𝐵̂ℎΔ𝑡

⃦⃦⃦
0

⃦⃦⃦
curl 𝐵̃ℎΔ𝑡

⃦⃦⃦
0
‖∇Pℎ𝑣‖0

+ 𝜇
⃦⃦⃦
𝑍
(︁
𝐵̂ℎΔ𝑡

)︁⃦⃦⃦ 2𝛿1
3(1+𝛿1)

0

⃦⃦⃦
𝑍
(︁
𝐵̂ℎΔ𝑡

)︁⃦⃦⃦ 𝛿1+3
3(1+𝛿1)

0,3+𝛿1

⃦⃦⃦
curl 𝐵̃ℎΔ𝑡

⃦⃦⃦
0
‖∇Pℎ𝑣‖0

⃒⃒⃒⃒
⃒d𝑡 =: 𝐶

∫︁ 𝑇

0

|𝐼1 + 𝐼2|d𝑡,

where we have used the interpolation inequality⃦⃦⃦
𝑍
(︁
𝐵̂ℎΔ𝑡

)︁⃦⃦⃦
0,3
≤
⃦⃦⃦
𝑍
(︁
𝐵̂ℎΔ𝑡

)︁⃦⃦⃦ 2𝛿1
3(1+𝛿1)

0

⃦⃦⃦
𝑍
(︁
𝐵̂ℎΔ𝑡

)︁⃦⃦⃦ 𝛿1+3
3(1+𝛿1)

0,3+𝛿1

. (4.5)

By virtue of (3.3) and Lemma 3.5, we obtain∫︁ 𝑇

0

|𝐼1|d𝑡 ≤
∫︁ 𝑇

0

⃒⃒⃒⃒
𝜇𝐶𝑖𝑛𝑣ℎ

𝑙
⃦⃦⃦
curl 𝐵̂ℎΔ𝑡

⃦⃦⃦𝑙

0

⃦⃦⃦
curl 𝐵̂ℎΔ𝑡

⃦⃦⃦1−𝑙

0

⃦⃦⃦
curl 𝐵̃ℎΔ𝑡

⃦⃦⃦
0
‖∇Pℎ𝑣‖0

⃒⃒⃒⃒
d𝑡

(3.3)

≤
∫︁ 𝑇

0

⃒⃒⃒⃒
𝜇𝐶𝑖𝑛𝑣𝐶

𝑙
𝑖𝑛𝑣

⃦⃦⃦
𝐵̂ℎΔ𝑡

⃦⃦⃦𝑙

0

⃦⃦⃦
curl 𝐵̂ℎΔ𝑡

⃦⃦⃦1−𝑙

0

⃦⃦⃦
curl 𝐵̃ℎΔ𝑡

⃦⃦⃦
0
‖∇Pℎ𝑣‖0

⃒⃒⃒⃒
d𝑡

≤ 𝐶
⃦⃦⃦
𝐵̂ℎΔ𝑡

⃦⃦⃦𝑙

𝐿∞(0,𝑇 ;𝐿2(Ω))

⃦⃦⃦
curl 𝐵̂ℎΔ𝑡

⃦⃦⃦1−𝑙

𝐿2(0,𝑇 ;𝐿2(Ω))

⃦⃦⃦
curl 𝐵̃ℎΔ𝑡

⃦⃦⃦
𝐿2(0,𝑇 ;𝐿2(Ω))

‖∇Pℎ𝑣‖
𝐿

2
𝑙 (0,𝑇 ;𝐿2(Ω))

Lemma 3.5
≤ 𝐶‖∇Pℎ𝑣‖

𝐿
2
𝑙 (0,𝑇 ;𝐿2(Ω))

≤ 𝐶‖∇Pℎ𝑣‖𝐿𝑟′ (0,𝑇 ;𝐿2(Ω)).

Concerning the other term, it can be decomposed as∫︁ 𝑇

0

|𝐼2|d𝑡 ≤
∫︁ 𝑇

0

⃒⃒⃒⃒
⃒𝜇⃦⃦⃦𝑍(︁𝐵̂ℎΔ𝑡

)︁
− 𝐵̂ℎΔ𝑡 + 𝐵̂ℎΔ𝑡

⃦⃦⃦ 2𝛿1
3(1+𝛿1)

0

⃦⃦⃦
𝑍
(︁
𝐵̂ℎΔ𝑡

)︁⃦⃦⃦ 𝛿1+3
3(1+𝛿1)

0,3+𝛿1

⃦⃦⃦
curl 𝐵̃ℎΔ𝑡

⃦⃦⃦
0
‖∇Pℎ𝑣‖0

⃒⃒⃒⃒
⃒ d𝑡

≤
∫︁ 𝑇

0

⃒⃒⃒⃒
⃒𝜇⃦⃦⃦𝑍(︁𝐵̂ℎΔ𝑡

)︁
− 𝐵̂ℎΔ𝑡

⃦⃦⃦ 2𝛿1
3(1+𝛿1)

0

⃦⃦⃦
𝑍
(︁
𝐵̂ℎΔ𝑡

)︁⃦⃦⃦ 𝛿1+3
3(1+𝛿1)

0,3+𝛿1

⃦⃦⃦
curl 𝐵̃ℎΔ𝑡

⃦⃦⃦
0
‖∇Pℎ𝑣‖0

⃒⃒⃒⃒
⃒ d𝑡

+
∫︁ 𝑇

0

⃒⃒⃒⃒
⃒𝜇⃦⃦⃦𝐵̂ℎΔ𝑡

⃦⃦⃦ 2𝛿1
3(1+𝛿1)

0

⃦⃦⃦
𝑍
(︁
𝐵̂ℎΔ𝑡

)︁⃦⃦⃦ 𝛿1+3
3(1+𝛿1)

0,3+𝛿1

⃦⃦⃦
curl 𝐵̃ℎΔ𝑡

⃦⃦⃦
0
‖∇Pℎ𝑣‖0

⃒⃒⃒⃒
⃒d𝑡

=:
∫︁ 𝑇

0

|𝐼21|d𝑡+
∫︁ 𝑇

0

|𝐼22|d𝑡.
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With the help of (3.3), Lemmas 2.1, 3.5 and the interpolation inequality (4.5), we continue to deduce∫︁ 𝑇

0

|𝐼21|d𝑡

≤
∫︁ 𝑇

0

⃒⃒⃒⃒
⃒𝐶ℎ( 1

2+𝑙)
(︁

2𝛿1
3(1+𝛿1)

)︁⃦⃦⃦
curl 𝐵̂ℎΔ𝑡

⃦⃦⃦ 2𝛿1
3(1+𝛿1)

0

⃦⃦⃦
𝑍
(︁
𝐵̂ℎΔ𝑡

)︁⃦⃦⃦ 𝛿1+3
3(1+𝛿1)

0,3+𝛿1

⃦⃦⃦
curl 𝐵̃ℎΔ𝑡

⃦⃦⃦
0
‖∇Pℎ𝑣‖0

⃒⃒⃒⃒
⃒d𝑡

Lemma 2.1
≤

∫︁ 𝑇

0

⃒⃒⃒⃒
𝐶ℎ( 1

2+𝑙)
(︁

2𝛿1
3(1+𝛿1)

)︁⃦⃦⃦
curl 𝐵̂ℎΔ𝑡

⃦⃦⃦
0

⃦⃦⃦
curl 𝐵̃ℎΔ𝑡

⃦⃦⃦
0
‖∇Pℎ𝑣‖0

⃒⃒⃒⃒
d𝑡

≤
∫︁ 𝑇

0

⃒⃒⃒⃒
⃒𝐶ℎ( 1

2+𝑙)
(︁

2𝛿1
3(1+𝛿1)

)︁⃦⃦⃦
curl 𝐵̂ℎΔ𝑡

⃦⃦⃦( 1
2+𝑙)

(︁
2𝛿1

3(1+𝛿1)

)︁

0

⃦⃦⃦
curl 𝐵̂ℎΔ𝑡

⃦⃦⃦1−( 1
2+𝑙)

(︁
2𝛿1

3(1+𝛿1)

)︁

0

⃦⃦⃦
curl 𝐵̃ℎΔ𝑡

⃦⃦⃦
0
‖∇Pℎ𝑣‖0

⃒⃒⃒⃒
⃒ d𝑡

(3.3)

≤
∫︁ 𝑇

0

⃒⃒⃒⃒
⃒𝐶𝐶( 1

2+𝑙)
(︁

2𝛿1
3(1+𝛿1)

)︁

𝑖𝑛𝑣

⃦⃦⃦
𝐵̂ℎΔ𝑡

⃦⃦⃦( 1
2+𝑙)

(︁
2𝛿1

3(1+𝛿1)

)︁

0

⃦⃦⃦
curl 𝐵̂ℎΔ𝑡

⃦⃦⃦1−( 1
2+𝑙)

(︁
2𝛿1

3(1+𝛿1)

)︁

0

⃦⃦⃦
curl 𝐵̃ℎΔ𝑡

⃦⃦⃦
0
‖∇Pℎ𝑣‖0

⃒⃒⃒⃒
⃒d𝑡

≤ 𝐶
⃦⃦⃦
𝐵̂ℎΔ𝑡

⃦⃦⃦( 1
2+𝑙)

(︁
2𝛿1

3(1+𝛿1)

)︁

𝐿∞(0,𝑇 ;𝐿2(Ω))

⃦⃦⃦
curl 𝐵̂ℎΔ𝑡

⃦⃦⃦1−( 1
2+𝑙)

(︁
2𝛿1

3(1+𝛿1)

)︁

𝐿2(0,𝑇 ;𝐿2(Ω))

⃦⃦⃦
curl 𝐵̃ℎΔ𝑡

⃦⃦⃦
𝐿2(0,𝑇 ;𝐿2(Ω))

× ‖∇Pℎ𝑣‖
𝐿

2

( 1
2 +𝑙)

(︂
2𝛿1

3(1+𝛿1)

)︂

(0,𝑇 ;𝐿2(Ω))

Lemma 3.5
≤ 𝐶‖∇Pℎ𝑣‖

𝐿

2

( 1
2 +𝑙)

(︂
2𝛿1

3(1+𝛿1)

)︂

(0,𝑇 ;𝐿2(Ω))

≤ 𝐶‖∇Pℎ𝑣‖𝐿𝑟′ (0,𝑇 ;𝐿2(Ω)),

and ∫︁ 𝑇

0

|𝐼22|d𝑡 ≤
∫︁ 𝑇

0

⃒⃒⃒⃒
⃒𝜇⃦⃦⃦𝐵̂ℎΔ𝑡

⃦⃦⃦ 2𝛿1
3(1+𝛿1)

0

⃦⃦⃦
curl 𝐵̂ℎΔ𝑡

⃦⃦⃦ 𝛿1+3
3(1+𝛿1)

0

⃦⃦⃦
curl 𝐵̃ℎΔ𝑡

⃦⃦⃦
0
‖∇Pℎ𝑣‖0

⃒⃒⃒⃒
⃒d𝑡

≤ 𝐶
⃦⃦⃦
𝐵̂ℎΔ𝑡

⃦⃦⃦ 2𝛿1
3(1+𝛿1)

𝐿∞(0,𝑇 ;𝐿2(Ω))

⃦⃦⃦
curl 𝐵̂ℎΔ𝑡

⃦⃦⃦ 𝛿1+3
3(1+𝛿1)

𝐿2(0,𝑇 ;𝐿2(Ω))

×
⃦⃦⃦
curl 𝐵̃ℎΔ𝑡

⃦⃦⃦
𝐿2(0,𝑇 ;𝐿2(Ω))

‖∇Pℎ𝑣‖
𝐿

2(︂
2𝛿1

3(1+𝛿1)

)︂

(0,𝑇 ;𝐿2(Ω))

≤ 𝐶‖∇Pℎ𝑣‖
𝐿

2(︂
2𝛿1

3(1+𝛿1)

)︂

(0,𝑇 ;𝐿2(Ω))

≤ 𝐶‖∇Pℎ𝑣‖𝐿𝑟′ (0,𝑇 ;𝐿2(Ω)).

Combined with these estimates, we get the following conclusion∫︁ 𝑇

0

⃒⃒⃒
𝜇
(︁
𝐵̂ℎΔ𝑡 × curl 𝐵̃ℎΔ𝑡,Pℎ𝑣

)︁⃒⃒⃒
d𝑡 ≤ 𝐶‖∇Pℎ𝑣‖𝐿𝑟′ (0,𝑇 ;𝐿2(Ω)). (4.6)

Due to 1 < 𝑟 < 2, we have∫︁ 𝑇

0

⃒⃒⃒(︁
𝛽Δ𝑡

(︁
𝜃ℎΔ𝑡

)︁
𝜃ℎΔ𝑡,Pℎ𝑣

)︁⃒⃒⃒
d𝑡 ≤ 𝐶‖∇Pℎ𝑣‖𝐿𝑟′ (0,𝑇 ;𝐿2(Ω)).

Combining these inequalities with (4.3), we have∫︁ 𝑇

0

|((𝑢ℎΔ𝑡)𝑡 +∇𝑝ℎΔ𝑡,𝑣)|d𝑡 ≤ 𝐶‖∇Pℎ𝑣‖𝐿𝑟′ (0,𝑇 ;𝐿2(Ω)) ≤ 𝐶‖∇𝑣‖𝐿𝑟′ (0,𝑇 ;𝐿2(Ω)) +𝐶ℎ𝑠‖∇𝑣‖𝐿𝑟′ (0,𝑇 ;𝐻𝑠(Ω)), (4.7)

where we have used the properties of 𝐿2-orthogonal projection ((𝑢ℎΔ𝑡)𝑡,𝑣) = ((𝑢ℎΔ𝑡)𝑡,Pℎ𝑣) and (see (2.7) of
[45])

‖∇Pℎ𝑣‖0 ≤ ‖∇𝑣‖0 + ‖∇(Pℎ𝑣 − 𝑣)‖0 ≤ 𝐶‖∇𝑣‖0 + 𝐶ℎ𝑠‖∇𝑣‖𝑠,2.
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Thus it yields that

‖(𝑢ℎΔ𝑡)𝑡 +∇𝑝ℎΔ𝑡‖𝐿𝑟(0,𝑇 ;(𝑋∩𝐻1+𝑠(Ω))′)
≤𝐶. (4.8)

To validate the second assertion, we define the 𝐿2-orthogonal projection to 𝑊 𝑘
0ℎ via Qℎ. From (3.7), we know

that (𝑢ℎΔ𝑡,𝐵ℎΔ𝑡) satisfy:

((𝐵ℎΔ𝑡)𝑡,Qℎ𝐶) +
(︁
𝜎̃Δ𝑡

(︁
𝜃ℎΔ𝑡

)︁
curl 𝐵̃ℎΔ𝑡, curlQℎ𝐶

)︁
−
(︁
𝑢̃ℎΔ𝑡 × 𝐵̂ℎΔ𝑡, curlQℎ𝐶

)︁
= (𝑔Δ𝑡,Qℎ𝐶). (4.9)

For any 𝐶 ∈ 𝐿𝑟′
(︀
0, 𝑇 ; 𝑊 ∩𝐻1+𝑠(Ω)

)︀
, by virtue of Lemma 3.5 and the Cauchy–Schwarz inequality, there holds∫︁ 𝑇

0

⃒⃒⃒(︁
𝜎̃Δ𝑡

(︁
𝜃ℎΔ𝑡

)︁
curl 𝐵̃ℎΔ𝑡, curlQℎ𝐶

)︁⃒⃒⃒
d𝑡 ≤ 𝐶‖curlQℎ𝐶‖𝐿𝑟′ (0,𝑇 ;𝐿2(Ω)).

Adopting the same techniques as (4.6), applying Schwarz’s inequality, equations (3.2), (3.3), Lemmas 3.5, 2.1
and the interpolation inequality (4.5), we readily see∫︁ 𝑇

0

⃒⃒⃒(︁
𝑢̃ℎΔ𝑡 × 𝐵̂ℎΔ𝑡, curlQℎ𝐶

)︁⃒⃒⃒
d𝑡 =

∫︁ 𝑇

0

⃒⃒⃒(︁
𝑢̃ℎΔ𝑡 ×

(︁
𝐵̂ℎΔ𝑡 − 𝑍

(︁
𝐵̂ℎΔ𝑡

)︁
+ 𝑍

(︁
𝐵̂ℎΔ𝑡

)︁)︁
, curlQℎ𝐶

)︁⃒⃒⃒
d𝑡

≤
∫︁ 𝑇

0

⃒⃒⃒⃒
‖𝑢̃ℎΔ𝑡‖0,∞

⃦⃦⃦
𝐵̂ℎΔ𝑡 − 𝑍

(︁
𝐵̂ℎΔ𝑡

)︁⃦⃦⃦
0
‖curlQℎ𝐶‖0 + ‖𝑢̃ℎΔ𝑡‖0,6

⃦⃦⃦
𝑍
(︁
𝐵̂ℎΔ𝑡

)︁⃦⃦⃦
0,3
‖curlQℎ𝐶‖0

⃒⃒⃒⃒
d𝑡

≤
∫︁ 𝑇

0

⃒⃒⃒
𝐶𝑖𝑛𝑣ℎ

𝑙‖∇𝑢̃ℎΔ𝑡‖0
⃦⃦⃦
curl 𝐵̂ℎΔ𝑡

⃦⃦⃦
0
‖curlQℎ𝐶‖0

+ 𝐶‖∇𝑢̃ℎΔ𝑡‖0
⃦⃦⃦
𝑍
(︁
𝐵̂ℎΔ𝑡

)︁⃦⃦⃦ 2𝛿1
3(1+𝛿1)

0

⃦⃦⃦
𝑍
(︁
𝐵̂ℎΔ𝑡

)︁⃦⃦⃦ 𝛿1+3
3(1+𝛿1)

0,3+𝛿1

‖curlQℎ𝐶‖0

⃒⃒⃒⃒
⃒ d𝑡

≤
∫︁ 𝑇

0

⃒⃒⃒⃒
𝐶𝑖𝑛𝑣𝐶

𝑙
𝑖𝑛𝑣‖∇𝑢̃ℎΔ𝑡‖0

⃦⃦⃦
𝐵̂ℎΔ𝑡

⃦⃦⃦𝑙

0

⃦⃦⃦
curl 𝐵̂ℎΔ𝑡

⃦⃦⃦1−𝑙

0
‖curlQℎ𝐶‖0

+ 𝐶‖∇𝑢̃ℎΔ𝑡‖0
⃦⃦⃦
𝑍
(︁
𝐵̂ℎΔ𝑡

)︁
− 𝐵̂ℎΔ𝑡

⃦⃦⃦ 2𝛿1
3(1+𝛿1)

0

⃦⃦⃦
𝑍
(︁
𝐵̂ℎΔ𝑡

)︁⃦⃦⃦ 𝛿1+3
3(1+𝛿1)

0,3+𝛿1

‖curlQℎ𝐶‖0

+ 𝐶‖∇𝑢̃ℎΔ𝑡‖0
⃦⃦⃦
𝐵̂ℎΔ𝑡

⃦⃦⃦ 2𝛿1
3(1+𝛿1)

0

⃦⃦⃦
𝑍
(︁
𝐵̂ℎΔ𝑡

)︁⃦⃦⃦ 𝛿1+3
3(1+𝛿1)

0,3+𝛿1

‖curlQℎ𝐶‖0

⃒⃒⃒⃒
⃒d𝑡

≤ 𝐶
⃦⃦⃦
𝐵̂ℎΔ𝑡

⃦⃦⃦𝑙

𝐿∞(0,𝑇 ;𝐿2(Ω))

⃦⃦⃦
curl 𝐵̂ℎΔ𝑡

⃦⃦⃦1−𝑙

𝐿2(0,𝑇 ;𝐿2(Ω))
‖∇𝑢̃ℎΔ𝑡‖𝐿2(0,𝑇 ;𝐿2(Ω))‖curlQℎ𝐶‖

𝐿
2
𝑙 (0,𝑇 ;𝐿2(Ω))

+ 𝐶
⃦⃦⃦
𝐵̂ℎΔ𝑡

⃦⃦⃦( 1
2+𝑙)

(︁
2𝛿1

3(1+𝛿1)

)︁

𝐿∞(0,𝑇 ;𝐿2(Ω))

⃦⃦⃦
curl 𝐵̂ℎΔ𝑡

⃦⃦⃦1−( 1
2+𝑙)

(︁
2𝛿1

3(1+𝛿1)

)︁

𝐿2(0,𝑇 ;𝐿2(Ω))
‖∇𝑢̃ℎΔ𝑡‖𝐿2(0,𝑇 ;𝐿2(Ω))

× ‖curlQℎ𝐶‖
𝐿

2

( 1
2 +𝑙)

(︂
2𝛿1

3(1+𝛿1)

)︂

(0,𝑇 ;𝐿2(Ω))

+ 𝐶
⃦⃦⃦
𝐵̂ℎΔ𝑡

⃦⃦⃦ 2𝛿1
3(1+𝛿1)

𝐿∞(0,𝑇 ;𝐿2(Ω))

⃦⃦⃦
curl 𝐵̂ℎΔ𝑡

⃦⃦⃦ 𝛿1+3
3(1+𝛿1)

𝐿2(0,𝑇 ;𝐿2(Ω))

× ‖∇𝑢̃ℎΔ𝑡‖𝐿2(0,𝑇 ;𝐿2(Ω))‖curlQℎ𝐶‖
𝐿

2(︂
2𝛿1

3(1+𝛿1)

)︂

(0,𝑇 ;𝐿2(Ω))

≤ 𝐶‖curlQℎ𝐶‖𝐿𝑟′ (0,𝑇 ;𝐿2(Ω)).

Combining these inequalities with (4.9), we obtain∫︁ 𝑇

0

|((𝐵ℎΔ𝑡)𝑡,𝐶)|d𝑡 ≤ 𝐶‖curlQℎ𝐶‖𝐿𝑟′ (0,𝑇 ;𝐿2(Ω)). (4.10)
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Here, we need to introduce H(curl)-orthogonal projections to 𝑊 𝑘
0ℎ via Q𝑐𝑢𝑟𝑙

ℎ (see (2.12) of [45]), then we can
deduce

‖curlQℎ𝐶‖0 ≤
⃦⃦
curlQℎ𝐶 − curlQ𝑐𝑢𝑟𝑙

ℎ 𝐶
⃦⃦

0
+
⃦⃦
curlQ𝑐𝑢𝑟𝑙

ℎ 𝐶 − curl𝐶
⃦⃦

0
+ ‖curl𝐶‖0

≤ 𝐶𝑖𝑛𝑣ℎ
−1
⃦⃦
Qℎ𝐶 −𝐶 + 𝐶 −Q𝑐𝑢𝑟𝑙

ℎ 𝐶
⃦⃦

0
+ 𝐶ℎ𝑠‖curl𝐶‖𝑠,2 + ‖curl𝐶‖0

≤ 𝐶ℎ𝑠‖𝐶‖1+𝑠,2 + 𝐶‖curl𝐶‖0.

Thus it yields that

‖(𝐵ℎΔ𝑡)𝑡‖𝐿𝑟(0,𝑇 ;(𝑊∩𝐻1+𝑠(Ω))′)
≤𝐶. (4.11)

Similarly, we define the 𝐿2 projection to 𝑌 𝑘
0ℎ via Rℎ. By (3.8), we know that (𝑢ℎΔ𝑡, 𝜃ℎΔ𝑡) satisfy:

((𝜃ℎΔ𝑡)𝑡,Rℎ𝜙) +
(︁
𝜅̃Δ𝑡

(︁
𝜃ℎΔ𝑡

)︁
∇𝜃ℎΔ𝑡,∇Rℎ𝜙

)︁
+𝒪2

(︁
𝑢̂ℎΔ𝑡, 𝜃ℎΔ𝑡,Rℎ𝜙

)︁
=
(︁
𝜓Δ𝑡,Rℎ𝜙

)︁
. (4.12)

For any 𝜙 ∈ 𝐿4
(︀
0, 𝑇 ;𝑌0 ∩𝐻1+𝑠(Ω)

)︀
, by virtue of Lemma 3.5, the Cauchy–Schwarz inequality and the interpo-

lation inequality (4.4), there holds∫︁ 𝑇

0

⃒⃒⃒⃒
1
2

[︁(︁
𝑢̂ℎΔ𝑡 · ∇𝜃ℎΔ𝑡,Rℎ𝜙

)︁
−
(︁
𝑢̂ℎΔ𝑡 · ∇Rℎ𝜙, 𝜃ℎΔ𝑡

)︁]︁⃒⃒⃒⃒
d𝑡

≤ 𝐶

∫︁ 𝑇

0

[︁
‖𝑢̂ℎΔ𝑡‖1/2

0 ‖∇𝑢̂ℎΔ𝑡‖1/2
0

⃦⃦⃦
∇𝜃ℎΔ𝑡

⃦⃦⃦
0
‖∇Rℎ𝜙‖0

]︁
d𝑡

≤ 𝐶‖∇𝑢̂ℎΔ𝑡‖1/2
𝐿2(0,𝑇 ;𝐿2(Ω))

⃦⃦⃦
∇𝜃ℎΔ𝑡

⃦⃦⃦
𝐿2(0,𝑇 ;𝐿2(Ω))

‖∇Rℎ𝜙‖𝐿4(0,𝑇 ;𝐿2(Ω)) ≤ 𝐶‖∇Rℎ𝜙‖𝐿4(0,𝑇 ;𝐿2(Ω))

and ∫︁ 𝑇

0

⃒⃒⃒(︁
𝜅̃Δ𝑡

(︁
𝜃ℎΔ𝑡

)︁
∇𝜃ℎΔ𝑡,∇Rℎ𝜙

)︁⃒⃒⃒
d𝑡 ≤ 𝐶‖∇Rℎ𝜙‖𝐿2(0,𝑇 ;𝐿2(Ω)).

Combining these inequalities with (4.12), applying the properties of 𝐿2-orthogonal projection, then we can
arrive at ∫︁ 𝑇

0

|((𝜃ℎΔ𝑡)𝑡, 𝜙)|d𝑡 ≤ 𝐶‖∇Rℎ𝜙‖𝐿4(0,𝑇 ;𝐿2(Ω)), (4.13)

using the same techniques as demonstrated in (4.8), which implies that

‖(𝜃ℎΔ𝑡)𝑡‖𝐿4/3(0,𝑇 ;(𝑌 ∩𝐻1+𝑠(Ω))′)
≤𝐶, (4.14)

then the results now follows. �

Remark 4.3. A priori stability estimate of the above time derivatives for discrete finite element solution plays
a key role in the subsequent strong convergence of the scheme. Such type of estimate for MHD model was first
developed in [45]. The proof therein seems to be not complete and there are some minor gaps in the bounds
on the important Lorentz force terms (e.g., the estimates in line 19 and line 20 of page 1073 are not valid and
similar problem arises in line 2-3 of page 1074). Here we give a rigorous proof with a different index 𝑟.

Concerning the discrete pressure solution, it enjoys the following stability estimate without any restrictions
on ℎ and ∆𝑡.
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Lemma 4.4. For the sequence {𝑢ℎΔ𝑡, 𝑝ℎΔ𝑡}, we have

‖(𝑢ℎΔ𝑡)𝑡‖𝐿𝑟(0,𝑇 ;(𝑋∩𝐻1+𝑠(Ω))′)
≤ 𝐶, ‖𝑝ℎΔ𝑡‖𝐿𝑟(0,𝑇 ;𝐿2(Ω)∩𝐻−𝑠,2(Ω)) ≤ 𝐶. (4.15)

Proof. For any 𝑣 ∈ 𝐿𝑟′
(︀
0, 𝑇 ; 𝑉 ∩𝐻1+𝑠(Ω)

)︀
, by (4.3), we have

((𝑢ℎΔ𝑡)𝑡,Pℎ𝑣) +
1
2

[((𝑢̂ℎΔ𝑡 · ∇)𝑢̃ℎΔ𝑡,Pℎ𝑣)− ((𝑢̂ℎΔ𝑡 · ∇)Pℎ𝑣, 𝑢̃ℎΔ𝑡)] +
(︁
𝜈Δ𝑡

(︁
𝜃ℎΔ𝑡

)︁
∇𝑢̃ℎΔ𝑡,∇Pℎ𝑣

)︁
+ 𝜇

(︁
𝐵̂ℎΔ𝑡 × curl 𝐵̃ℎΔ𝑡,Pℎ𝑣

)︁
−
(︁
𝛽Δ𝑡

(︁
𝜃ℎΔ𝑡

)︁
𝜃ℎΔ𝑡,Pℎ𝑣

)︁
=
(︁
𝑓Δ𝑡,Pℎ𝑣

)︁
.

(4.16)

Using the similar method as in the proof of Lemma 4.2, we can obtain∫︁ 𝑇

0

|((𝑢ℎΔ𝑡)𝑡,𝑣)|d𝑡 ≤ 𝐶‖∇𝑣‖𝐿𝑟′ (0,𝑇 ;𝐿2(Ω)) + 𝐶ℎ𝑠‖∇𝑣‖𝐿𝑟′ (0,𝑇 ;𝐻𝑠(Ω)). (4.17)

For all 𝑣 ∈ 𝐿𝑟′
(︀
0, 𝑇 ; 𝑋 ∩𝐻1+𝑠(Ω)

)︀
, by virtue of (4.7), (4.17) and Lemma 4.2, there holds∫︁ 𝑇

0

|(∇𝑝ℎΔ𝑡,Pℎ𝑣)|d𝑡 =
∫︁ 𝑇

0

|(∇𝑝ℎΔ𝑡,𝑣)|d𝑡 ≤
∫︁ 𝑇

0

|(∇𝑝ℎΔ𝑡 + (𝑢ℎΔ𝑡)𝑡,𝑣)|d𝑡+
∫︁ 𝑇

0

|((𝑢ℎΔ𝑡)𝑡,𝑣)|d𝑡

≤ 𝐶‖∇𝑣‖𝐿𝑟′ (0,𝑇 ;𝐿2(Ω)) + 𝐶ℎ𝑠‖∇𝑣‖𝐿𝑟′ (0,𝑇 ;𝐻𝑠(Ω)),

which implies that

‖∇𝑝ℎΔ𝑡‖𝐿𝑟(0,𝑇 ;𝐻−1(Ω)∩𝐻−1−𝑠,2(Ω)) ≤ 𝐶. (4.18)

Then we can obtain ‖(𝑢ℎΔ𝑡)𝑡‖𝐿𝑟(0,𝑇 ;(𝑋∩𝐻1+𝑠(Ω))′)
≤ 𝐶 by using Lemma 4.2. Thanks to the Poincaré type

inequality (Cor. 2.1 of [23]), we find that

‖𝑝ℎΔ𝑡‖𝐿𝑟(0,𝑇 ;𝐿2(Ω)∩𝐻−𝑠,2(Ω)) ≤ ‖∇𝑝ℎΔ𝑡‖𝐿𝑟(0,𝑇 ;𝐻−1(Ω)∩𝐻−1−𝑠,2(Ω)) ≤ 𝐶, (4.19)

then the conclusion now follows. �

We also need to recall the Aubin-Lions’ compactness result for Bochner spaces (refer to Lem. 2.8 of [21]).

Lemma 4.5. Let 𝐹 be a Banach space, 𝐹0 and 𝐹1 be two reflexive Banach spaces. Assume 𝐹0 b 𝐹 with compact
injection, 𝐹 ⊂ 𝐹1 with continuous injection. Then the space{︂

𝑤
⃒⃒⃒
𝑤 ∈ 𝐿𝑝0(0, 𝑇 ;𝐹0),

𝜕𝑤

𝜕𝑡
∈ 𝐿𝑝1(0, 𝑇 ;𝐹1)

}︂
b 𝐿𝑝0(0, 𝑇 ;𝐹 )

with 1 < 𝑝0 < +∞, 1 < 𝑝1 < +∞.

Next, we present some basic convergence results for the fully discrete solution in the following theorem.

Theorem 4.6. There exist functions 𝑢 ∈ 𝐿∞
(︀
0, 𝑇 ; 𝐿2(Ω)

)︀
∩ 𝐿2

(︀
0, 𝑇 ; 𝐻1

0 (Ω)
)︀
,𝐵 ∈ 𝐿∞

(︀
0, 𝑇 ; 𝐿2(Ω)

)︀
∩

𝐿2(0, 𝑇 ; 𝑊 ), 𝑝 ∈ 𝐿𝑟
(︀
0, 𝑇 ;𝐿2(Ω)

)︀
, 𝜃 ∈ 𝐿∞

(︀
0, 𝑇 ;𝐿2(Ω)

)︀
∩ 𝐿2

(︀
0, 𝑇 ;𝐻1

0 (Ω)
)︀
, such that, as ℎ,∆𝑡→ 0,

𝑢̃ℎΔ𝑡, 𝑢̂ℎΔ𝑡, 𝑢ℎΔ𝑡 ⇀ 𝑢 weakly* in 𝐿∞
(︀
0, 𝑇 ; 𝐿2(Ω)

)︀
,

𝐵̃ℎΔ𝑡, 𝐵̂ℎΔ𝑡, 𝐵ℎΔ𝑡 ⇀ 𝐵 weakly* in 𝐿∞
(︀
0, 𝑇 ; 𝐿2(Ω)

)︀
,

𝜃ℎΔ𝑡, 𝜃ℎΔ𝑡, 𝜃ℎΔ𝑡 ⇀ 𝜃 weakly* in 𝐿∞
(︀
0, 𝑇 ;𝐿2(Ω)

)︀
,

𝑢̃ℎΔ𝑡, 𝑢̂ℎΔ𝑡, 𝑢ℎΔ𝑡 ⇀ 𝑢 weakly in 𝐿2
(︀
0, 𝑇 ; 𝐻1

0 (Ω)
)︀
,
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𝐵̃ℎΔ𝑡, 𝐵̂ℎΔ𝑡, 𝐵ℎΔ𝑡 ⇀ 𝐵 weakly in 𝐿2(0, 𝑇 ; 𝑊 ),

𝜃ℎΔ𝑡, 𝜃ℎΔ𝑡, 𝜃ℎΔ𝑡 ⇀ 𝜃 weakly in 𝐿2
(︀
0, 𝑇 ;𝐻1

0 (Ω)
)︀
,

𝑝ℎΔ𝑡 ⇀ 𝑝 weakly in 𝐿𝑟
(︀
0, 𝑇 ;𝐿2(Ω) ∩𝐻−𝑠,2(Ω)

)︀
,

(𝑢ℎΔ𝑡)𝑡 ⇀ 𝑢𝑡 weakly in 𝐿𝑟
(︁

0, 𝑇 ;
(︀
𝑋 ∩𝐻1+𝑠(Ω)

)︀′)︁
,

(𝐵ℎΔ𝑡)𝑡 ⇀ 𝐵𝑡 weakly in 𝐿𝑟
(︁

0, 𝑇 ;
(︀
𝑊 ∩𝐻1+𝑠(Ω)

)︀′)︁
,

(𝜃ℎΔ𝑡)𝑡 ⇀ 𝜃𝑡 weakly in 𝐿4/3
(︁

0, 𝑇 ;
(︀
𝑌 ∩𝐻1+𝑠(Ω)

)︀′)︁
,

𝑢̃ℎΔ𝑡, 𝑢̂ℎΔ𝑡, 𝑢ℎΔ𝑡 → 𝑢 in 𝐿2(0, 𝑇 ; 𝐿𝑞(Ω)),

𝜃ℎΔ𝑡, 𝜃ℎΔ𝑡, 𝜃ℎΔ𝑡 → 𝜃 in 𝐿2(0, 𝑇 ;𝐿𝑞(Ω)),

𝐵̃ℎΔ𝑡, 𝐵̂ℎΔ𝑡, 𝐵ℎΔ𝑡 → 𝐵 in 𝐿2
(︀
0, 𝑇 ; 𝐿2(Ω)

)︀
,

with 1 ≤ 𝑞 < 6, where → means strong convergence, ⇀ means weak convergence.

Proof. The statements of Lemma 3.5 can imply that
{︁(︁

𝑢̃ℎΔ𝑡, 𝑝ℎΔ𝑡, 𝐵̃ℎΔ𝑡, 𝜃ℎΔ𝑡

)︁}︁
,
{︁(︁

𝑢̂ℎΔ𝑡, 𝐵̂ℎΔ𝑡, 𝜃ℎΔ𝑡

)︁}︁
and

{(𝑢ℎΔ𝑡,𝐵ℎΔ𝑡, 𝜃ℎΔ𝑡)} are all bounded sequences and thus have the corresponding weak convergent subsequence
(see e.g. [51]). The other weak convergence results can be deduced by the statements of Lemmas 4.2 and 4.4.
We say that the above three subsequences (still denoted by the same notations) enjoy the same accumulation
function (𝑢,𝐵, 𝜃). In fact, applying the interpolation inequality, Hölder inequality and Lemma 3.5, we have⃦⃦⃦

𝜃ℎΔ𝑡 − 𝜃ℎΔ𝑡

⃦⃦⃦2

𝐿2(0,𝑇 ;𝐿𝑞(Ω))
=

∆𝑡
3

𝑚∑︁
𝑛=1

⃦⃦
𝜃𝑛

ℎ − 𝜃𝑛−1
ℎ

⃦⃦2

𝐿𝑞(Ω)

≤ ∆𝑡
3

𝑚∑︁
𝑛=1

⃦⃦
𝜃𝑛

ℎ − 𝜃𝑛−1
ℎ

⃦⃦2𝛼

𝐿1(Ω)

⃦⃦
𝜃𝑛

ℎ − 𝜃𝑛−1
ℎ

⃦⃦2−2𝛼

𝐿6(Ω)

≤ 𝐶

(︃
𝑚∑︁

𝑛=1

∆𝑡
⃦⃦
𝜃𝑛

ℎ − 𝜃𝑛−1
ℎ

⃦⃦2

𝐿1(Ω)

)︃𝛼(︃ 𝑚∑︁
𝑛=1

∆𝑡
⃦⃦
𝜃𝑛

ℎ − 𝜃𝑛−1
ℎ

⃦⃦2

𝐿6(Ω)

)︃1−𝛼

≤ 𝐶(∆𝑡)𝛼

(︃
𝑚∑︁

𝑛=1

⃦⃦
𝜃𝑛

ℎ − 𝜃𝑛−1
ℎ

⃦⃦2

𝐿2(Ω)

)︃𝛼(︃ 𝑚∑︁
𝑛=1

∆𝑡
⃦⃦
𝜃𝑛

ℎ − 𝜃𝑛−1
ℎ

⃦⃦2

𝐿6(Ω)

)︃1−𝛼

Δ𝑡→0−−−−→ 0,

with 𝛼 = 6−𝑞
5𝑞 , and we continue to obtain⃦⃦⃦

𝜃ℎΔ𝑡 − 𝜃ℎΔ𝑡

⃦⃦⃦2

𝐿2(0,𝑇 ;𝐿𝑞(Ω))

Δ𝑡→0−−−−→ 0,

which implies {𝜃ℎΔ𝑡},
{︁
𝜃ℎΔ𝑡

}︁
and

{︁
𝜃ℎΔ𝑡

}︁
converge to the same limit 𝜃, as ℎ,∆𝑡 → 0. Furthermore, they

converge strongly to 𝜃 in 𝐿2(0, 𝑇 ;𝐿𝑞(Ω)) by a combination of Lemmas 4.2 and 4.5. Similarly, we can show
that {𝑢ℎΔ𝑡}, {𝑢̃ℎΔ𝑡} and {𝑢̂ℎΔ𝑡} converge strongly to 𝑢 in 𝐿2(0, 𝑇 ; 𝐿𝑞(Ω)) and {𝐵ℎΔ𝑡},

{︁
𝐵̃ℎΔ𝑡

}︁
and

{︁
𝐵̂ℎΔ𝑡

}︁
converge strongly to 𝐵 in 𝐿2

(︀
0, 𝑇 ; 𝐿2(Ω)

)︀
as ℎ,∆𝑡→ 0. The proof is completed. �

Considering that the viscosity coefficients 𝜈(·), 𝜎(·), 𝜅(·) and 𝛽(·) are assumed to be in C 0,1
(︀
Ω̄× R; R

)︀
, here

we may define | · |C 0,1(Ω̄×R;R) by

|𝜆|C 0,1(Ω̄×R;R) = sup
{︂
|𝜆(𝑥, 𝜃)− 𝜆(𝑦, 𝜒)|
|(𝑥, 𝜃)− (𝑦, 𝜒)|

; (𝑥, 𝜃), (𝑦, 𝜒) ∈ Ω̄× R
}︂
, (4.20)
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where 𝜆 can be taken as 𝜈, 𝜎, 𝜅 and 𝛽.
Now, we will prove that the accumulation function (𝑢,𝐵, 𝜃) is indeed a weak solution to (2.5)–(2.7), which

provides a numerical version of the existence analysis of the thermally coupled incompressible MHD problems
with temperature-dependent coefficients.

Theorem 4.7. Suppose that the initial values satisfy 𝑢(0) = 𝑢0, 𝐵(0) = 𝐵0, 𝜃(0) = 𝜃0, and
limΔ𝑡→0

⃦⃦⃦
𝑓Δ𝑡 − 𝑓

⃦⃦⃦
𝐿2(0,𝑇 ;𝐿2(Ω))

= 0, limΔ𝑡→0‖𝑔Δ𝑡 − 𝑔‖𝐿2(0,𝑇 ;𝐿2(Ω)) = 0, limΔ𝑡→0

⃦⃦⃦
𝜓Δ𝑡 − 𝜓

⃦⃦⃦
𝐿2(0,𝑇 ;𝐿2(Ω))

= 0.

Then there exists a subsequence of {𝑢̃ℎΔ𝑡},
{︁

𝐵̃ℎΔ𝑡

}︁
,
{︁
𝜃ℎΔ𝑡

}︁
and {𝑝ℎΔ𝑡} converges to (𝑢,𝐵, 𝜃, 𝑝), which is a

weak solution of (2.5)–(2.7) as ℎ,∆𝑡→ 0.

Proof. According to the approximation properties of finite element space, for any 𝑣 ∈ C∞
0 (Ω) ∩𝐻1

0 (Ω), there
exists a function 𝑣ℎ = 𝐻ℎ𝑣 ∈ 𝑉 𝑘

ℎ such that

𝑣ℎ
ℎ→0−−−→ 𝑣 in 𝐻1

0 (Ω),

where 𝐻ℎ is the 𝐻1-orthogonal projection operator to 𝑉 𝑘
ℎ (see [7, 9]). For any 𝛿(𝑡) ∈ C∞([0, 𝑇 ]), by virtue of

the Young inequality, Lemma 3.5, (4.20) and Theorem 4.6, we can verify the estimates one by one,⃒⃒⃒⃒
⃒
∫︁ 𝑇

0

[︁(︁
𝜈Δ𝑡

(︁
𝜃ℎΔ𝑡

)︁
∇𝑢̃ℎΔ𝑡,∇𝑣ℎ

)︁
− (𝜈(𝜃)∇𝑢,∇𝑣)

]︁
𝛿(𝑡) d𝑡

⃒⃒⃒⃒
⃒

≤ 𝐶
⃦⃦⃦

(𝜈Δ𝑡 − 𝜈)
(︁
𝜃ℎΔ𝑡

)︁⃦⃦⃦
𝐿2(0,𝑇 ;𝐿4(Ω))

‖∇𝑢̃ℎΔ𝑡‖𝐿2(0,𝑇 ;𝐿2(Ω))‖∇𝑣ℎ 𝛿(𝑡)‖𝐿∞(0,𝑇 ;𝐿4(Ω))

+ 𝐶|𝜈|C 0,1(Ω̄×R;R)

⃦⃦⃦
𝜃ℎΔ𝑡 − 𝜃

⃦⃦⃦
𝐿2(0,𝑇 ;𝐿4(Ω))

‖∇𝑢̃ℎΔ𝑡‖𝐿2(0,𝑇 ;𝐿2(Ω))‖∇𝑣ℎ 𝛿(𝑡)‖𝐿∞(0,𝑇 ;𝐿4(Ω))

+ 𝐶‖𝜈‖C(Ω̄×R;R+)‖∇𝑢‖𝐿2(0,𝑇 ;𝐿2(Ω))‖[∇𝑣ℎ −∇𝑣]𝛿(𝑡)‖𝐿2(0,𝑇 ;𝐿2(Ω))

+ 𝐶‖𝜈‖C(Ω̄×R;R+)

⃒⃒⃒⃒
⃒
∫︁ 𝑇

0

(∇𝑢̃ℎΔ𝑡 −∇𝑢,∇𝑣ℎ) 𝛿(𝑡) d𝑡

⃒⃒⃒⃒
⃒ ℎ,Δ𝑡→0−−−−−→ 0,

and ⃒⃒⃒⃒
⃒
∫︁ 𝑇

0

[𝒪1(𝑢̂ℎΔ𝑡, 𝑢̃ℎΔ𝑡,𝑣ℎ)−𝒪1(𝑢,𝑢,𝑣)]𝛿(𝑡) d𝑡

⃒⃒⃒⃒
⃒

≤ 𝐶‖𝑢̂ℎΔ𝑡 − 𝑢‖𝐿2(0,𝑇 ;𝐿4(Ω))‖∇𝑢̃ℎΔ𝑡‖𝐿2(0,𝑇 ;𝐿2(Ω))‖𝑣ℎ𝛿(𝑡)‖𝐿∞(0,𝑇 ;𝐿4(Ω))

+ 𝐶‖𝑢‖𝐿2(0,𝑇 ;𝐿4(Ω))‖∇𝑢‖𝐿2(0,𝑇 ;𝐿2(Ω))‖(𝑣ℎ − 𝑣)𝛿(𝑡)‖𝐿∞(0,𝑇 ;𝐿4(Ω))

+ 𝐶‖𝑢̂ℎΔ𝑡 − 𝑢‖𝐿2(0,𝑇 ;𝐿4(Ω))‖∇𝑣ℎ𝛿(𝑡)‖𝐿∞(0,𝑇 ;𝐿2(Ω))‖𝑢̃ℎΔ𝑡‖𝐿2(0,𝑇 ;𝐿4(Ω))

+ 𝐶‖𝑢‖𝐿2(0,𝑇 ;𝐿4(Ω))‖∇𝑣ℎ𝛿(𝑡)‖𝐿∞(0,𝑇 ;𝐿2(Ω))‖𝑢̃ℎΔ𝑡 − 𝑢‖𝐿2(0,𝑇 ;𝐿4(Ω))

+ 𝐶‖𝑢‖𝐿2(0,𝑇 ;𝐿4(Ω))‖∇(𝑣ℎ − 𝑣)𝛿(𝑡)‖𝐿∞(0,𝑇 ;𝐿2(Ω))‖𝑢‖𝐿2(0,𝑇 ;𝐿4(Ω))

+ 𝐶

⃒⃒⃒⃒
⃒
∫︁ 𝑇

0

((𝑢 · ∇)(𝑢̃ℎΔ𝑡 − 𝑢),𝑣ℎ) 𝛿(𝑡) d𝑡

⃒⃒⃒⃒
⃒ ℎ,Δ𝑡→0−−−−−→ 0.

On the other hand, by applying (3.2), inverse inequality (3.3) and Lemma 3.5, we derive⃒⃒⃒⃒
⃒
∫︁ 𝑇

0

[︁
𝜇
(︁
𝐵̂ℎΔ𝑡 × curl 𝐵̃ℎΔ𝑡,𝑣ℎ

)︁
− 𝜇(𝐵 × curl𝐵,𝑣)

]︁
𝛿(𝑡) d𝑡

⃒⃒⃒⃒
⃒
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=

⃒⃒⃒⃒
⃒
∫︁ 𝑇

0

[︁
𝜇
(︁[︁

𝐵̂ℎΔ𝑡 − 𝑍
(︁
𝐵̂ℎΔ𝑡

)︁]︁
× curl 𝐵̃ℎΔ𝑡,𝑣ℎ

)︁
+ 𝜇

(︁
𝑍
(︁
𝐵̂ℎΔ𝑡

)︁
× curl 𝐵̃ℎΔ𝑡,𝑣ℎ

)︁
− 𝜇(𝐵 × curl𝐵,𝑣)

]︁
𝛿(𝑡) d𝑡

⃒⃒⃒
≤ 𝐶ℎ𝑙+ 1

2

⃦⃦⃦
curl 𝐵̂ℎΔ𝑡

⃦⃦⃦
𝐿2(0,𝑇 ;𝐿2(Ω))

⃦⃦⃦
curl 𝐵̃ℎΔ𝑡

⃦⃦⃦
𝐿2(0,𝑇 ;𝐿3(Ω))

‖𝑣ℎ𝛿(𝑡)‖𝐿∞(0,𝑇 ;𝐿6(Ω))

+

⃒⃒⃒⃒
⃒
∫︁ 𝑇

0

[︁
𝜇
(︁
𝑍
(︁
𝐵̂ℎΔ𝑡

)︁
× curl 𝐵̃ℎΔ𝑡,𝑣ℎ

)︁
− 𝜇(𝐵 × curl𝐵,𝑣)

]︁
𝛿(𝑡) d𝑡

⃒⃒⃒⃒
⃒

≤ 𝐶ℎ𝑙
⃦⃦⃦
curl 𝐵̂ℎΔ𝑡

⃦⃦⃦
𝐿2(0,𝑇 ;𝐿2(Ω))

⃦⃦⃦
curl 𝐵̃ℎΔ𝑡

⃦⃦⃦
𝐿2(0,𝑇 ;𝐿2(Ω))

‖𝑣ℎ 𝛿(𝑡)‖𝐿∞(0,𝑇 ;𝐿6(Ω))

+

⃒⃒⃒⃒
⃒
∫︁ 𝑇

0

[︁
𝜇
(︁
𝑍
(︁
𝐵̂ℎΔ𝑡

)︁
× curl 𝐵̃ℎΔ𝑡,𝑣ℎ

)︁
− 𝜇(𝐵 × curl𝐵,𝑣)

]︁
𝛿(𝑡) d𝑡

⃒⃒⃒⃒
⃒

=: 𝐹1 + |𝐹2|

as ℎ → 0, it can be clearly deduced 𝐹1 = 𝐶ℎ𝑙
⃦⃦⃦
curl 𝐵̂ℎΔ𝑡

⃦⃦⃦
𝐿2(0,𝑇 ;𝐿2(Ω))

⃦⃦⃦
curl 𝐵̃ℎΔ𝑡

⃦⃦⃦
𝐿2(0,𝑇 ;𝐿2(Ω))

‖𝑣ℎ 𝛿(𝑡)‖𝐿∞(0,𝑇 ;𝐿6(Ω)) → 0. Next, we just need to show |𝐹2| → 0 when ℎ,∆𝑡→ 0.

From Lemma 3.5, we know that
⃦⃦⃦
curl 𝐵̂ℎΔ𝑡

⃦⃦⃦
𝐿2(0,𝑇 ;𝐿2(Ω))

≤ 𝐶. Thanks to div𝑍
(︁
𝐵̂ℎΔ𝑡

)︁
= 0, we can derive⃦⃦⃦

𝑍
(︁
𝐵̂ℎΔ𝑡

)︁⃦⃦⃦
𝐿2(0,𝑇 ;ℋ(Ω))

=
⃦⃦⃦
curl𝑍

(︁
𝐵̂ℎΔ𝑡

)︁⃦⃦⃦
𝐿2(0,𝑇 ;𝐿2(Ω))

=
⃦⃦⃦
curl 𝐵̂ℎΔ𝑡

⃦⃦⃦
𝐿2(0,𝑇 ;𝐿2(Ω))

≤ 𝐶.
(4.21)

Noticing that ℋ(Ω) →˓→˓ 𝐻𝑠(Ω) →˓→˓ 𝐿3(Ω), where →˓→˓ means the compact imbedding, 𝑠 > 1/2 is a
constant depending on Ω (cf. [48]). We can choose 𝛿2 > 0 such that 1/(3 + 𝛿1) + 1/(6− 𝛿2) = 1/2 and
𝐻1(Ω) →˓→˓ 𝐿6−𝛿2(Ω), together with the fact that 𝐵̃ℎΔ𝑡 converges to 𝐵 in the sense of weak convergence
in 𝐿2(0, 𝑇 ; 𝐻(curl; Ω)) according to Theorem 4.6, then we have

|𝐹2| =

⃒⃒⃒⃒
⃒
∫︁ 𝑇

0

[︁
𝜇
(︁
𝑍
(︁
𝐵̂ℎΔ𝑡

)︁
× curl 𝐵̃ℎΔ𝑡,𝑣ℎ

)︁
− 𝜇(𝐵 × curl𝐵,𝑣)

]︁
𝛿(𝑡) d𝑡

⃒⃒⃒⃒
⃒

≤ 𝐶𝜇
⃦⃦⃦
𝑍
(︁
𝐵̂ℎΔ𝑡

)︁
−𝐵

⃦⃦⃦
𝐿2(0,𝑇 ;𝐿3(Ω))

‖curl𝐵‖𝐿2(0,𝑇 ;𝐿2(Ω))‖𝑣ℎ𝛿(𝑡)‖𝐿∞(0,𝑇 ;𝐿6(Ω))

+ 𝐶𝜇‖𝐵‖𝐿2(0,𝑇 ;ℋ(Ω))‖curl𝐵‖𝐿2(0,𝑇 ;𝐿2(Ω))‖(𝑣ℎ − 𝑣)𝛿(𝑡)‖𝐿∞(0,𝑇 ;𝐿6−𝛿2 (Ω))

+ 𝐶𝜇

⃒⃒⃒⃒
⃒
∫︁ 𝑇

0

(︁
𝑍
(︁
𝐵̂ℎΔ𝑡

)︁
×
(︁
curl 𝐵̃ℎΔ𝑡 − curl𝐵

)︁
,𝑣ℎ

)︁
𝛿(𝑡) d𝑡

⃒⃒⃒⃒
⃒ ℎ,Δ𝑡→0−−−−−→ 0,

where we have used the fact that⃦⃦⃦
𝑍
(︁
𝐵̂ℎΔ𝑡

)︁
−𝐵

⃦⃦⃦
𝐿2(0,𝑇 ;𝐿3(Ω))

≤
⃦⃦⃦
𝑍
(︁
𝐵̂ℎΔ𝑡

)︁
−𝐵

⃦⃦⃦ 2𝛿1
3(1+𝛿1)

𝐿2(0,𝑇 ;𝐿2(Ω))

⃦⃦⃦
𝑍
(︁
𝐵̂ℎΔ𝑡

)︁
−𝐵

⃦⃦⃦ 3+𝛿1
3(1+𝛿1)

𝐿2(0,𝑇 ;𝐿3+𝛿1 (Ω))

≤ 𝐶
⃦⃦⃦
𝑍
(︁
𝐵̂ℎΔ𝑡

)︁
−𝐵

⃦⃦⃦ 2𝛿1
3(1+𝛿1)

𝐿2(0,𝑇 ;𝐿2(Ω))

⃦⃦⃦
curl 𝐵̂ℎΔ𝑡 − curl𝐵

⃦⃦⃦ 3+𝛿1
3(1+𝛿1)

𝐿2(0,𝑇 ;𝐿2(Ω))

and ⃦⃦⃦
𝑍
(︁
𝐵̂ℎΔ𝑡

)︁
−𝐵

⃦⃦⃦ 2𝛿1
3(1+𝛿1)

𝐿2(0,𝑇 ;𝐿2(Ω))
≤
(︂⃦⃦⃦
𝑍
(︁
𝐵̂ℎΔ𝑡

)︁
− 𝐵̂ℎΔ𝑡

⃦⃦⃦
𝐿2(0,𝑇 ;𝐿2(Ω))

+
⃦⃦⃦
𝐵̂ℎΔ𝑡 −𝐵

⃦⃦⃦
𝐿2(0,𝑇 ;𝐿2(Ω))

)︂ 2𝛿1
3(1+𝛿1)
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≤
(︂
𝐶ℎ(𝑙+ 1

2 )
⃦⃦⃦
curl 𝐵̂ℎΔ𝑡

⃦⃦⃦
𝐿2(0,𝑇 ;𝐿2(Ω))

+
⃦⃦⃦
𝐵̂ℎΔ𝑡 −𝐵

⃦⃦⃦
𝐿2(0,𝑇 ;𝐿2(Ω))

)︂ 2𝛿1
3(1+𝛿1)

ℎ,Δ𝑡→0−−−−−→ 0.

Based on Theorem 4.6 and the definition of weak convergence, there hold∫︁ 𝑇

0

(div 𝑣ℎ, 𝑝ℎΔ𝑡) 𝛿(𝑡) d𝑡
ℎ,Δ𝑡→0−−−−−→

∫︁ 𝑇

0

(div 𝑣, 𝑝) 𝛿(𝑡) d𝑡,
∫︁ 𝑇

0

(div 𝑢̃ℎΔ𝑡, 𝑞ℎ) 𝛿(𝑡) d𝑡
ℎ,Δ𝑡→0−−−−−→

∫︁ 𝑇

0

(div 𝑢, 𝑞) 𝛿(𝑡) d𝑡.

By using Lemma 4.4, so we can extract a subsequence of {(𝑢ℎΔ𝑡)𝑡}, which has common subscript and is denoted
by the same notation such that ⃒⃒⃒⃒

⃒
∫︁ 𝑇

0

[((𝑢ℎΔ𝑡)𝑡,𝑣ℎ)− (𝜕𝑡𝑢,𝑣)]𝛿(𝑡) d𝑡

⃒⃒⃒⃒
⃒ ℎ,Δ𝑡→0−−−−−→ 0.

Hence it yields that∫︁ 𝑇

0

[(𝑢𝑡,𝑣) + (𝜈(𝜃)∇𝑢,∇𝑣) +𝒪1(𝑢,𝑢,𝑣) + 𝜇(𝐵 × curl𝐵,𝑣)− (𝛽(𝜃)𝜃,𝑣)

− (div 𝑣, 𝑝) + (div 𝑢, 𝑞)]𝛿(𝑡) d𝑡 =
∫︁ 𝑇

0

(𝑓 ,𝑣)𝛿(𝑡) d𝑡.

(4.22)

In the next step, for any 𝐶 ∈ C∞
0 (Ω) ∩𝑊0, there exists 𝐶ℎ = 𝑂ℎ𝐶 ∈ 𝑊 𝑘

0ℎ such that

𝐶ℎ
ℎ→0−−−→ 𝐶 in 𝑊0,

where 𝑂ℎ is the 𝐻(curl)-orthogonal projection operator to 𝑊 𝑘
0ℎ. Making use of Young’s inequality, Lemma 3.5,

(4.20) and Theorem 4.6, there holds⃒⃒⃒⃒
⃒
∫︁ 𝑇

0

[︁(︁
𝜎̃Δ𝑡

(︁
𝜃ℎΔ𝑡

)︁
curl 𝐵̃ℎΔ𝑡, curl𝐶ℎ

)︁
− (𝜎(𝜃)curl𝐵, curl𝐶)

]︁
𝛿(𝑡) d𝑡

⃒⃒⃒⃒
⃒

≤ 𝐶
⃦⃦⃦

(𝜎̃Δ𝑡 − 𝜎)
(︁
𝜃ℎΔ𝑡

)︁⃦⃦⃦
𝐿2(0,𝑇 ;𝐿6(Ω))

⃦⃦⃦
curl 𝐵̃ℎΔ𝑡

⃦⃦⃦
𝐿2(0,𝑇 ;𝐿2(Ω))

‖curl𝐶ℎ𝛿(𝑡)‖𝐿∞(0,𝑇 ;𝐿3(Ω))

+ 𝐶|𝜎|C 0,1(Ω̄×R;R)

⃦⃦⃦
𝜃ℎΔ𝑡 − 𝜃

⃦⃦⃦
𝐿2(0,𝑇 ;𝐿6−𝛿2 (Ω))

⃦⃦⃦
curl 𝐵̃ℎΔ𝑡

⃦⃦⃦
𝐿2(0,𝑇 ;𝐿2(Ω))

‖curl𝐶ℎ𝛿(𝑡)‖𝐿∞(0,𝑇 ;𝐿3+𝛿1 (Ω))

+ 𝐶‖𝜎‖C(Ω̄×R;R+)‖curl𝐵‖𝐿2(0,𝑇 ;𝐿2(Ω))‖[curl𝐶ℎ − curl𝐶]𝛿(𝑡)‖𝐿2(0,𝑇 ;𝐿2(Ω))

+ 𝐶‖𝜎‖C(Ω̄×R;R+)

⃒⃒⃒⃒
⃒
∫︁ 𝑇

0

(︁
curl 𝐵̃ℎΔ𝑡 − curl𝐵, curl𝐶ℎ

)︁
𝛿(𝑡) d𝑡

⃒⃒⃒⃒
⃒ ℎ,Δ𝑡→0−−−−−→ 0.

In addition, by applying Lemma 3.5, we deduce that⃒⃒⃒⃒
⃒
∫︁ 𝑇

0

[︁(︁
𝑢̃ℎΔ𝑡 × 𝐵̂ℎΔ𝑡, curl𝐶ℎ

)︁
− (𝑢×𝐵, curl𝐶)

]︁
𝛿(𝑡) d𝑡

⃒⃒⃒⃒
⃒

≤ 𝐶ℎ𝑙
⃦⃦⃦
curl 𝐵̂ℎΔ𝑡

⃦⃦⃦
𝐿2(0,𝑇 ;𝐿2(Ω))

‖curl𝐶ℎ 𝛿(𝑡)‖𝐿∞(0,𝑇 ;𝐿2(Ω))‖𝑢̃ℎΔ𝑡‖𝐿2(0,𝑇 ;𝐿6(Ω))

+

⃒⃒⃒⃒
⃒
∫︁ 𝑇

0

[︁(︁
𝑢̃ℎΔ𝑡 × 𝑍

(︁
𝐵̂ℎΔ𝑡

)︁
, curl𝐶ℎ

)︁
− (𝑢×𝐵, curl𝐶)

]︁
𝛿(𝑡) d𝑡

⃒⃒⃒⃒
⃒
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=: 𝐸1 + |𝐸2|,

as ℎ → 0, it can be clearly derived 𝐸1 = 𝐶ℎ𝑙
⃦⃦⃦
curl 𝐵̂ℎΔ𝑡

⃦⃦⃦
𝐿2(0,𝑇 ;𝐿2(Ω))

‖curl𝐶ℎ 𝛿(𝑡)‖𝐿∞(0,𝑇 ;𝐿2(Ω))

‖𝑢̃ℎΔ𝑡‖𝐿2(0,𝑇 ;𝐿6(Ω)) → 0. Next, we just need to show |𝐸2| → 0 when ℎ,∆𝑡→ 0. By using of Young’s inequality,
Theorem 4.6, (4.21), Lemmas 2.1 and 3.5, we continue to derive

|𝐸2| =

⃒⃒⃒⃒
⃒
∫︁ 𝑇

0

[︁(︁
𝑢̃ℎΔ𝑡 × 𝑍

(︁
𝐵̂ℎΔ𝑡

)︁
, curl𝐶ℎ

)︁
− (𝑢×𝐵, curl𝐶)

]︁
𝛿(𝑡) d𝑡

⃒⃒⃒⃒
⃒

≤ 𝐶‖𝑢̃ℎΔ𝑡 − 𝑢‖𝐿2(0,𝑇 ;𝐿6−𝛿2 (Ω))

⃦⃦⃦
𝑍
(︁
𝐵̂ℎΔ𝑡

)︁⃦⃦⃦
𝐿2(0,𝑇 ;ℋ(Ω))

‖curl𝐶ℎ 𝛿(𝑡)‖𝐿∞(0,𝑇 ;𝐿2(Ω))

+ 𝐶‖𝑢‖𝐿2(0,𝑇 ;𝐿6(Ω))

⃦⃦⃦
𝑍
(︁
𝐵̂ℎΔ𝑡

)︁
−𝐵

⃦⃦⃦
𝐿2(0,𝑇 ;𝐿3(Ω))

‖curl𝐶ℎ 𝛿(𝑡)‖𝐿∞(0,𝑇 ;𝐿2(Ω))

+ 𝐶‖𝑢‖𝐿∞(0,𝑇 ;𝐿6−𝛿2 (Ω))‖𝐵‖𝐿2(0,𝑇 ;ℋ(Ω))‖(curl𝐶ℎ − curl𝐶)𝛿(𝑡)‖𝐿∞(0,𝑇 ;𝐿2(Ω))

ℎ,Δ𝑡→0−−−−−→ 0,

where we have used the fact that 1/(3 + 𝛿1) + 1/(6− 𝛿2) + 1/2 = 1 and
⃦⃦⃦
𝑍
(︁
𝐵̂ℎΔ𝑡

)︁⃦⃦⃦
𝐿2(0,𝑇 ;𝐿3+𝛿1 (Ω))

≤

𝐶
⃦⃦⃦
𝑍
(︁
𝐵̂ℎΔ𝑡

)︁⃦⃦⃦
𝐿2(0,𝑇 ;ℋ(Ω))

. Collecting these results yield that

∫︁ 𝑇

0

[(𝐵𝑡,𝐶) + (𝜎(𝜃)curl𝐵, curl𝐶) + (𝑢×𝐵, curl𝐶)]𝛿(𝑡) d𝑡 =
∫︁ 𝑇

0

(𝑔,𝐶)𝛿(𝑡) d𝑡. (4.23)

Finally, for any 𝜙 ∈ C∞
0 (Ω) ∩ 𝑌0, there exists 𝜙ℎ = 𝐴ℎ𝜙 ∈ 𝑌 𝑘

0ℎ such that

𝜙ℎ
ℎ→0−−−→ 𝜙 in 𝑌0,

where 𝐴ℎ is the 𝐻1-orthogonal projection operator to 𝑌 𝑘
0ℎ. In a similar argument, there holds⃒⃒⃒⃒

⃒
∫︁ 𝑇

0

[︁(︁
𝜅̃Δ𝑡

(︁
𝜃ℎΔ𝑡

)︁
∇𝜃ℎΔ𝑡,∇𝜙ℎ

)︁
− (𝜅(𝜃)∇𝜃,∇𝜙)

]︁
𝛿(𝑡) d𝑡

⃒⃒⃒⃒
⃒

≤ 𝐶
⃦⃦⃦

(𝜅̃Δ𝑡 − 𝜅)
(︁
𝜃ℎΔ𝑡

)︁⃦⃦⃦
𝐿2(0,𝑇 ;𝐿4(Ω))

⃦⃦⃦
∇𝜃ℎΔ𝑡

⃦⃦⃦
𝐿2(0,𝑇 ;𝐿2(Ω))

‖∇𝜙ℎ 𝛿(𝑡)‖𝐿∞(0,𝑇 ;𝐿4(Ω))

+ 𝐶|𝜅|C 0,1(Ω̄×R;R)

⃦⃦⃦
𝜃ℎΔ𝑡 − 𝜃

⃦⃦⃦
𝐿2(0,𝑇 ;𝐿4(Ω))

⃦⃦⃦
∇𝜃ℎΔ𝑡

⃦⃦⃦
𝐿2(0,𝑇 ;𝐿2(Ω))

‖∇𝜙ℎ 𝛿(𝑡)‖𝐿∞(0,𝑇 ;𝐿4(Ω))

+ 𝐶‖𝜅‖C(Ω̄×R;R+)‖∇𝜃‖𝐿2(0,𝑇 ;𝐿2(Ω))‖(∇𝜙ℎ −∇𝜙) 𝛿(𝑡)‖𝐿2(0,𝑇 ;𝐿2(Ω))

+ 𝐶‖𝜅‖C(Ω̄×R;R+)

⃒⃒⃒⃒
⃒
∫︁ 𝑇

0

(︁
∇𝜃ℎΔ𝑡 −∇𝜃,∇𝜙ℎ

)︁
𝛿(𝑡) d𝑡

⃒⃒⃒⃒
⃒ ℎ,Δ𝑡→0−−−−−→ 0,

and ⃒⃒⃒⃒
⃒
∫︁ 𝑇

0

[︁
𝒪2

(︁
𝑢̂ℎΔ𝑡, 𝜃ℎΔ𝑡, 𝜙ℎ

)︁
−𝒪2(𝑢, 𝜃, 𝜙)

]︁
𝛿(𝑡) d𝑡

⃒⃒⃒⃒
⃒

≤ 𝐶‖𝑢̂ℎΔ𝑡 − 𝑢‖𝐿2(0,𝑇 ;𝐿4(Ω))

⃦⃦⃦
∇𝜃ℎΔ𝑡

⃦⃦⃦
𝐿2(0,𝑇 ;𝐿2(Ω))

‖𝜙ℎ𝛿(𝑡)‖𝐿∞(0,𝑇 ;𝐿4(Ω))

+ 𝐶‖𝑢‖𝐿2(0,𝑇 ;𝐿4(Ω))‖∇𝜃‖𝐿2(0,𝑇 ;𝐿2(Ω))‖(𝜙ℎ − 𝜙)𝛿(𝑡)‖𝐿∞(0,𝑇 ;𝐿4(Ω))

+ 𝐶‖𝑢̂ℎΔ𝑡 − 𝑢‖𝐿2(0,𝑇 ;𝐿4(Ω))‖∇𝜙ℎ𝛿(𝑡)‖𝐿∞(0,𝑇 ;𝐿2(Ω))

⃦⃦⃦
𝜃ℎΔ𝑡

⃦⃦⃦
𝐿2(0,𝑇 ;𝐿4(Ω))
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+ 𝐶‖𝑢‖𝐿2(0,𝑇 ;𝐿4(Ω))‖∇𝜙ℎ 𝛿(𝑡)‖𝐿∞(0,𝑇 ;𝐿2(Ω))

⃦⃦⃦
𝜃ℎΔ𝑡 − 𝜃

⃦⃦⃦
𝐿2(0,𝑇 ;𝐿4(Ω))

+ 𝐶‖𝑢‖𝐿2(0,𝑇 ;𝐿4(Ω))‖∇(𝜙ℎ − 𝜙)𝛿(𝑡)‖𝐿∞(0,𝑇 ;𝐿2(Ω))‖𝜃‖𝐿2(0,𝑇 ;𝐿4(Ω))

+ 𝐶

⃒⃒⃒⃒
⃒
∫︁ 𝑇

0

(︁
𝑢 · ∇

(︁
𝜃ℎΔ𝑡 −∇𝜃

)︁
, 𝜙ℎ

)︁
𝛿(𝑡) d𝑡

⃒⃒⃒⃒
⃒ ℎ,Δ𝑡→0−−−−−→ 0.

Hence it yields that ∫︁ 𝑇

0

[(𝜃𝑡, 𝜙) + (𝜅(𝜃)∇𝜃,∇𝜙) +𝒪2(𝑢, 𝜃, 𝜙)]𝛿(𝑡) d𝑡 =
∫︁ 𝑇

0

(𝜓,𝜙)𝛿(𝑡) d𝑡. (4.24)

Since C∞
0 (Ω)∩𝐻1

0 (Ω) is dense in 𝐻1
0 (Ω), C∞

0 (Ω)∩𝑊0 is dense in 𝑊0, C∞
0 (Ω)∩𝑌0 is dense in 𝑌0 and C∞([0, 𝑇 ])

is dense in 𝐿𝑞([0, 𝑇 ]) with 1 ≤ 𝑞 < ∞, the proof of Theorem 4.7 can be completed by combining with (4.22),
(4.23) and (4.24) in the distribute sense, as ℎ,∆𝑡→ 0. �

Remark 4.8. The first convergence result of finite element discretization for MHD with constant coefficients
is given in Theorem 3.1 of [45], which gives the proof idea without going through all the details. Here we extend
to the temperature dependent coefficients case with the details to show the techniques to treat these nonlinear
terms.

We will also show the continuous system (2.5)–(2.7) has a unique solution. To this end, let us recall the
Gronwall lemma in differential form.

Lemma 4.9 (Gronwall lemma). If 𝜂(·) is continuous differentiable function, and it is non-negative such that

𝜂′(𝑡) ≤ 𝜑(𝑡)𝜂(𝑡) + 𝜙0(𝑡) 𝑡 ∈ [0, 𝑇 ], (4.25)

where 𝜑(𝑡) and 𝜙0(𝑡) are non-negative integrable functions, then there holds

𝜂(𝑡) ≤ 𝑒
∫︀ 𝑡
0 𝜑(𝑠) d𝑠

[︂
𝜂(0) +

∫︁ 𝑡

0

𝜙0(𝑠) d𝑠
]︂

∀ 𝑡 ∈ [0, 𝑇 ]. (4.26)

We will prove the uniqueness of the continuous system (2.5)–(2.7), provided that the exact solution is under
a slight smooth assumption. More precisely, we need to make a smoother assumption on the weak solution for
the magneto-thermal coupling model with temperature-dependent coefficients.

Theorem 4.10. Let (𝑢,𝐵, 𝜃, 𝑝) be the weak solution of the continuous system (2.5)–(2.7) and assume that 𝑢 ∈
𝐿2
(︀
0, 𝑇 ; 𝐻1+𝑠(Ω)

)︀
∩𝐿4

(︀
0, 𝑇 ; 𝑊 1,6(Ω)

)︀
, curl𝐵 ∈ 𝐿2(0, 𝑇 ; 𝐻𝑠(Ω)) ∩𝐿4

(︀
0, 𝑇 ; 𝐿6(Ω)

)︀
, 𝜃 ∈ 𝐿2

(︀
0, 𝑇 ;𝐻1+𝑠(Ω)

)︀
∩

𝐿4
(︀
0, 𝑇 ;𝑊 1,6(Ω)

)︀
with 𝑠 > 1/2. Then (𝑢,𝐵, 𝜃, 𝑝) is the unique weak solution for system (2.5)–(2.7).

Proof. Assume that problem (2.5)–(2.7) has two different weak solutions (𝑢1,𝐵1, 𝜃1, 𝑝1) and (𝑢2,𝐵2, 𝜃2, 𝑝2). Let
𝑢 = 𝑢1−𝑢2, 𝐵 = 𝐵1−𝐵2, 𝜃 = 𝜃1−𝜃2 and 𝑝 = 𝑝1−𝑝2 in (2.5)–(2.7), for any (𝑣,𝐶, 𝜙, 𝑞) ∈ (𝑋0 ×𝑊0 × 𝑌0 ×𝑄),
there holds⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⟨𝑢𝑡,𝑣⟩+ (𝜈(𝜃1)∇𝑢,∇𝑣) + ([𝜈(𝜃1)− 𝜈(𝜃2)]∇𝑢2,∇𝑣) + ((𝑢1 · ∇)𝑢,𝑣) + ((𝑢 · ∇)𝑢2,𝑣)− (div 𝑣, 𝑝)
+(div 𝑢, 𝑞) + 𝜇(𝐵 × curl𝐵1,𝑣) + 𝜇(𝐵2 × curl𝐵,𝑣)− ([𝛽(𝜃1)− 𝛽(𝜃2)]𝜃1,𝑣)− (𝛽(𝜃2)𝜃,𝑣) = 0, (4.27)
⟨𝐵𝑡,𝐶⟩+ ([𝜎(𝜃1)− 𝜎(𝜃2)]curl𝐵1, curl𝐶) + (𝜎(𝜃2)curl𝐵, curl𝐶)
−(𝑢×𝐵1, curl𝐶)− (𝑢2 ×𝐵, curl𝐶) = 0, (4.28)
⟨𝜃𝑡, 𝜙⟩+ ([𝜅(𝜃1)− 𝜅(𝜃2)]∇𝜃1,∇𝜙) + (𝜅(𝜃2)∇𝜃,∇𝜙) + (𝑢 · ∇𝜃1, 𝜙) + (𝑢2 · ∇𝜃, 𝜙) = 0. (4.29)
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Choosing 𝑣 = 𝑢, 𝑞 = 𝑝 in (4.27), 𝐶 = 𝜇𝐵 in (4.28), 𝜙 = 𝜃 in (4.29) and adding the three equations, we have

1
2
𝜕

𝜕𝑡

(︁
‖𝑢‖20 + 𝜇‖𝐵‖20 + ‖𝜃‖20

)︁
+
⃦⃦⃦√︀

𝜈(𝜃1)∇𝑢
⃦⃦⃦2

0
+ 𝜇

⃦⃦⃦√︀
𝜎(𝜃2)curl𝐵

⃦⃦⃦2

0
+
⃦⃦⃦√︀

𝜅(𝜃2)∇𝜃
⃦⃦⃦2

0

= −([𝜈(𝜃1)− 𝜈(𝜃2)]∇𝑢2,∇𝑢)− ((𝑢 · ∇)𝑢2,𝑢) + (𝛽(𝜃2)𝜃,𝑢)
+ ([𝛽(𝜃1)− 𝛽(𝜃2)]𝜃1,𝑢)− 𝜇(𝐵 × curl𝐵1,𝑢) + 𝜇(𝑢1 ×𝐵, curl𝐵)
− 𝜇([𝜎(𝜃1)− 𝜎(𝜃2)]curl𝐵1, curl𝐵)− ([𝜅(𝜃1)− 𝜅(𝜃2)]∇𝜃1,∇𝜃)− (𝑢 · ∇𝜃1, 𝜃).

(4.30)

By using the Young’s inequalities, Sobolev inequalities (2.1)–(2.4), (4.20) and the interpolation inequalities, we
find

|((𝜈(𝜃1)− 𝜈(𝜃2))∇𝑢2,∇𝑢)| ≤ |𝜈|C 0,1(Ω̄×R;R)‖𝜃‖0,3‖∇𝑢2‖0,6‖∇𝑢‖0

≤ 1
6

⃦⃦⃦√︀
𝜈(𝜃1)∇𝑢

⃦⃦⃦2

0
+ 6𝜈−1

0 |𝜈|2
C 0,1(Ω̄×R;R)‖∇𝑢2‖20,6‖𝜃‖

2
0,3

≤ 1
6

⃦⃦⃦√︀
𝜈(𝜃1)∇𝑢

⃦⃦⃦2

0
+ 6𝜈−1

0 |𝜈|2
C 0,1(Ω̄×R;R)‖∇𝑢2‖20,6‖𝜃‖0‖𝜃‖0,6

≤ 1
6

⃦⃦⃦√︀
𝜈(𝜃1)∇𝑢

⃦⃦⃦2

0
+ 4𝜅−1

0

(︁
𝑐1 6𝜈−1

0 |𝜈|2
C 0,1(Ω̄×R;R)‖∇𝑢2‖20,6

)︁2

‖𝜃‖20+
1
4

⃦⃦⃦√︀
𝜅(𝜃2)∇𝜃

⃦⃦⃦2

0
,

and

|((𝑢 · ∇)𝑢2,𝑢)| ≤ 1
6

⃦⃦⃦√︀
𝜈(𝜃1)∇𝑢

⃦⃦⃦2

0
+ 6𝜈−1

0 𝑐21‖∇𝑢2‖20,3‖𝑢‖
2
0, 𝜇|(𝐵 × curl𝐵1,𝑢)− (𝑢1 ×𝐵, curl𝐵)|

≤ 𝜇‖𝐵‖0‖curl𝐵1‖0,3‖𝑢‖0,6 + 𝜇‖𝑢1‖0,∞‖𝐵‖0‖curl𝐵‖0

≤ 1
6

⃦⃦⃦√︀
𝜈(𝜃1)∇𝑢

⃦⃦⃦2

0
+ 6𝜈−1

0 𝑐21𝜇
2‖curl𝐵1‖20,3‖𝐵‖

2
0 +

𝜇

2

⃦⃦⃦√︀
𝜎(𝜃2)curl𝐵

⃦⃦⃦2

0
+ 2𝜎−1

0 𝜇‖𝑢1‖20,∞‖𝐵‖
2
0.

Similarly, we can deduce

|([𝛽(𝜃1)− 𝛽(𝜃2)]𝜃1,𝑢) + (𝛽(𝜃2)𝜃,𝑢)− 𝜇([𝜎(𝜃1)− 𝜎(𝜃2)]curl𝐵1, curl𝐵)|
≤ |𝛽|C 0,1(Ω̄×R;R)‖𝜃‖0‖𝜃1‖0,6‖𝑢‖0,3 + ‖𝛽‖C(Ω̄×R;R3)‖𝜃‖0‖𝑢‖0

+ |𝜎|C 0,1(Ω̄×R;R)𝜇‖𝜃‖0,3‖curl𝐵1‖0,6‖curl𝐵‖0

≤ 2
6

⃦⃦⃦√︀
𝜈(𝜃1)∇𝑢

⃦⃦⃦2

0
+
(︁

6𝜈−1
0 |𝛽|2C 0,1(Ω̄×R;R)𝑐

2
1‖𝜃1‖

2
0,6 + 6𝜈−1

0 ‖𝛽‖2C(Ω̄×R;R3)𝑐
2
1

)︁
‖𝜃‖20

+ 4𝜅−1
0

(︁
𝑐1 2𝜎−1

0 |𝜎|2
C 0,1(Ω̄×R;R)𝜇‖curl𝐵1‖20,6

)︁2

‖𝜃‖20 +
1
4

⃦⃦⃦√︀
𝜅(𝜃2)∇𝜃

⃦⃦⃦2

0
+
𝜇

2

⃦⃦⃦√︀
𝜎(𝜃2)curl𝐵

⃦⃦⃦2

0
,

and

|([𝜅(𝜃1)− 𝜅(𝜃2)]∇𝜃1,∇𝜃) + (𝑢 · ∇𝜃1, 𝜃)| ≤ |𝜅|C 0,1(Ω̄×R;R)‖𝜃‖0,3‖∇𝜃1‖0,6‖∇𝜃‖0 + ‖𝜃‖0‖∇𝜃1‖0,3‖𝑢‖0,6

≤ 2
4

⃦⃦⃦√︀
𝜅(𝜃2)∇𝜃

⃦⃦⃦2

0
+ 4𝜅−1

0

(︁
𝑐1 4𝜅−1

0 |𝜅|2
C 0,1(Ω̄×R;R)‖∇𝜃1‖

2
0,6

)︁2

‖𝜃‖20 +
1
6

⃦⃦⃦√︀
𝜈(𝜃1)∇𝑢

⃦⃦⃦2

0
+ 6𝜈−1

0 𝑐21‖∇𝜃1‖
2
0,3‖𝜃‖

2
0.

Combining these inequalities with (4.30), then we come to

𝜕

𝜕𝑡

(︁
‖𝑢‖20 + 𝜇‖𝐵‖20 + ‖𝜃‖20

)︁
≤ 𝐶

[︁
1 + ‖∇𝑢2‖40,6 + ‖∇𝑢2‖20,3 + ‖∇𝜃1‖20,3 + ‖curl𝐵1‖20,3 + ‖𝑢1‖20,∞

+ ‖curl𝐵1‖40,6 + ‖∇𝜃1‖40,6

]︁(︁
‖𝑢‖20 + 𝜇‖𝐵‖20 + ‖𝜃‖20

)︁
.

(4.31)

Applying Lemma 4.9, by using 𝑢(0) = 0, 𝐵(0) = 0, 𝜃(0) = 0, we deduce that 𝑢 = 0, 𝐵 = 0 and 𝜃 = 0.
Consequently, equation (4.27) is simplified as (𝑝,div 𝑣) = 0, for any 𝑣 ∈ 𝐻1

0 (Ω). Combining with the inf-sup
condition with continuous form, then we deduce 𝑝 = 0, which brings the proof to an end. �
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Theorem 4.11. Under the same conditions of Theorems 4.7 and 4.10, then the whole sequence of {𝑢̃ℎΔ𝑡},{︁
𝐵̃ℎΔ𝑡

}︁
,
{︁
𝜃ℎΔ𝑡

}︁
and {𝑝ℎΔ𝑡} converges to the unique weak solution (𝑢,𝐵, 𝜃, 𝑝).

Proof. Based on Theorems 4.7 and 4.10, we know that each subsequence of {𝑢̃ℎΔ𝑡},
{︁

𝐵̃ℎΔ𝑡

}︁
,
{︁
𝜃ℎΔ𝑡

}︁
and

{𝑝ℎΔ𝑡} has the same limit (𝑢,𝐵, 𝜃, 𝑝), which is the unique weak solution to the system (2.5)–(2.7). Thus the
whole sequence of {𝑢̃ℎΔ𝑡},

{︁
𝐵̃ℎΔ𝑡

}︁
,
{︁
𝜃ℎΔ𝑡

}︁
and {𝑝ℎΔ𝑡} converges to the unique weak solution (𝑢,𝐵, 𝜃, 𝑝). �

5. Error estimates for the magneto-heat coupling model with
temperature-dependent coefficients

In this section, we mainly consider the error estimates of the fully discrete finite element method for the
MHD system coupled the thermal equation with temperature-dependent coefficients. Under the hypothesis of
a low regularity for the exact solution, we rigorously establish the error estimates for the velocity, temperature
and magnetic induction unconditionally in the sense that the time step is restricted but is independent of the
spacial mesh size. We also prove a sub-optimal error estimate for the pressure as a supplementary result, which
is consistent with the pioneering work [54].

We first recall a discrete version of the Gronwall inequality in a slightly more general form than usually found
in the literature, and this detailed proof can be found in [29].

Lemma 5.1. Let 𝐶*,∆𝑡, 𝑎𝑛, 𝑏𝑛, 𝑐𝑛 and 𝑑𝑛 be non-negative numbers with 𝑛 ≥ 0 such that

𝑎𝑚 + ∆𝑡
𝑚∑︁

𝑛=0

𝑏𝑛 ≤ ∆𝑡
𝑚∑︁

𝑛=0

𝑑𝑛𝑎𝑛 + ∆𝑡
𝑚∑︁

𝑛=0

𝑐𝑛 + 𝐶* ∀𝑚 ≥ 0.

Suppose that ∆𝑡𝑑𝑛 < 1, for all 𝑛, and set 𝜆𝑛 = (1−∆𝑡𝑑𝑛)−1. Then

𝑎𝑚 + ∆𝑡
𝑚∑︁

𝑛=0

𝑏𝑛 ≤ exp

(︃
∆𝑡

𝑚∑︁
𝑛=0

𝜆𝑛𝑑𝑛

)︃{︃
∆𝑡

𝑚∑︁
𝑛=0

𝑐𝑛 + 𝐶*

}︃
∀𝑚 ≥ 0.

Before proceeding, we need to make a regularity assumption for the weak solution of (2.5)–(2.7), which will
be helpful for the error analysis of the numerical solution.

Assumption 5.2. Suppose that the weak solution (𝑢, 𝑝,𝐵, 𝜃) satisfies the following regularity,

𝑢 ∈ 𝐿∞
(︀
0, 𝑇 ; 𝐻𝑠+1(Ω)

)︀
, 𝑝 ∈ 𝐿∞(0, 𝑇 ;𝐻𝑠(Ω)), 𝜃 ∈ 𝐿∞

(︀
0, 𝑇 ;𝐻1+𝑠(Ω)

)︀
, 𝐵 ∈ 𝐿∞(0, 𝑇 ; 𝐻𝑠(Ω)),

curl𝐵 ∈ 𝐿∞(0, 𝑇 ; 𝐻𝑠(Ω)), 𝑢𝑡 ∈ 𝐿2
(︀
0, 𝑇 ; 𝐿2(Ω)

)︀
, 𝐵𝑡 ∈ 𝐿2

(︀
0, 𝑇 ; 𝐿2(Ω)

)︀
, 𝜃𝑡 ∈ 𝐿2

(︀
0, 𝑇 ;𝐻1(Ω)

)︀
,

𝑢𝑡𝑡 ∈ 𝐿2
(︀
0, 𝑇 ; 𝐿2(Ω)

)︀
, 𝐵𝑡𝑡 ∈ 𝐿2

(︀
0, 𝑇 ; 𝐿2(Ω)

)︀
, 𝜃𝑡𝑡 ∈ 𝐿2

(︀
0, 𝑇 ;𝐿2(Ω)

)︀
,

where the exponent 𝑠 > 1/2 depends on Ω.

Remark 5.3. The above regularity assumption for the solution (𝑢, 𝑝,𝐵, 𝜃) is even weaker than most of the
hypotheses in the literature, see, e.g. [27,29,38,49,54]. We hope it is a reasonable assumption and may be valid
for a general polyhedral with Lipschitz boundary. In fact, it is enough to facilitate the subsequent error analysis
of the magneto-thermal coupling model with temperature-dependent coefficients.

We next define some useful Galerkin and Ritz projections: given (𝑢, 𝑝, 𝜃) ∈ (𝑋0 ×𝑄× 𝑌0), find 𝒫ℎ𝑢 ∈
𝑉 𝑘

ℎ (𝑢𝐷), 𝒬ℎ𝑝 ∈ 𝑄𝑘−1
ℎ and ℛℎ𝜃 ∈ 𝑌 𝑘

0ℎ(𝜃𝐷), for any (𝑣ℎ, 𝑞ℎ, 𝜙ℎ) ∈
(︀
𝑉 𝑘

ℎ ×𝑄𝑘−1
ℎ × 𝑌 𝑘

0ℎ

)︀
, such that

(𝜈(𝜃)∇𝒫ℎ𝑢,∇𝑣ℎ) + 𝑏(𝑣ℎ,𝒬ℎ𝑝)− 𝑏(𝒫ℎ𝑢, 𝑞ℎ) = (𝜈(𝜃)∇𝑢,∇𝑣ℎ) + 𝑏(𝑣ℎ, 𝑝)− 𝑏(𝑢, 𝑞ℎ),
(𝜅(𝜃)∇ℛℎ𝜃,∇𝜙ℎ) = (𝜅(𝜃)∇𝜃,∇𝜙ℎ).

(5.1)
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We define the Fortin operator ℱℎ from 𝑊0 to 𝑊 𝑘
ℎ : given 𝐵 ∈ 𝑊0, find ℱℎ𝐵 ∈ 𝑊 𝑘

ℎ , for any 𝐶ℎ ∈ 𝑊 𝑘
ℎ and

𝜓ℎ ∈ 𝑆ℎ such that

(𝜎(𝜃)curlℱℎ𝐵, curl𝐶ℎ) = (𝜎(𝜃)curl𝐵, curl𝐶ℎ), (ℱℎ𝐵,∇𝜓ℎ) = (𝐵,∇𝜓ℎ). (5.2)

By a similar argument to the constant coefficients case as [5,23,28] and the temperature-dependent coefficients
case [54] (refer to Lem. 1 for more details), we can prove the following approximation properties

‖𝑢− 𝒫ℎ𝑢‖0 + ℎ‖∇(𝑢− 𝒫ℎ𝑢)‖0 + ℎ‖𝑝−𝒬ℎ𝑝‖0 ≤ 𝐶𝑒ℎ
1+ℓ‖𝑢‖1+ℓ,2 + 𝐶𝑒ℎ

1+ℓ‖𝑝‖ℓ,2,

‖𝐵 −ℱℎ𝐵‖0 + ‖curl (𝐵 −ℱℎ𝐵)‖0 ≤ 𝐶𝑒ℎ
ℓ
(︁
‖𝐵‖ℓ,2 + ‖curl𝐵‖ℓ,2

)︁
,

‖𝜃 −ℛℎ𝜃‖1,2 ≤ 𝐶𝑒ℎ
ℓ‖𝜃‖ℓ+1,2

(5.3)

with ℓ = min{𝑘, 𝑠}, where 𝑘 ≥ 1 is the order index of the finite element spaces, 𝑠 > 1/2 is the index of regularity
of the exact solution.

By virtue of the properties of projection, we present that the solution to (2.5)–(2.7) has the following estimates,
which hold regardless of the sizes ℎ and ∆𝑡. Moreover, the stability property is beneficial to the subsequent
error analysis in full discretization.

Lemma 5.4. Suppose Assumption 5.2 holds. Let (𝑢, 𝜃,𝐵) be the unique solution of (2.5)–(2.7), then the fol-
lowing estimates are established,

‖𝑢− 𝒫ℎ𝑢‖0,∞ + ‖∇(𝑢− 𝒫ℎ𝑢)‖0,3 + ‖curl (𝐵 −ℱℎ𝐵)‖0,3 + ‖𝜃 −ℛℎ𝜃‖0,∞ + ‖∇(𝜃 −ℛℎ𝜃)‖0,3 ≤ 𝐶𝑟, (5.4)

where 𝐶𝑟 is a generic constant depending on the regularity of the domain Ω.

Proof. Let 𝑈 = 𝐼ℎ𝑢 ∈ 𝑋𝑘
ℎ , with 𝑈 is the standard Lagrange nodal interpolant. By using the finite element

approximations, including (5.3), inverse inequality (3.3), Sobolev’s embedding theorem and Assumption 5.2, we
directly see

‖∇𝒫ℎ𝑢‖0,3 = ‖∇(𝒫ℎ𝑢−𝑈 + 𝑈 − 𝑢 + 𝑢)‖0,3 ≤ ‖∇(𝒫ℎ𝑢−𝑈)‖0,3 + ‖∇(𝑈 − 𝑢)‖0,3 + ‖∇𝑢‖0,3

≤ 𝐶𝑖𝑛𝑣ℎ
−1/2[‖∇(𝒫ℎ𝑢− 𝑢)‖0 + ‖∇(𝑢−𝑈)‖0] + ‖∇(𝑈 − 𝑢)‖0,3 + ‖∇𝑢‖0,3

≤ ‖∇𝑢‖0,3 + 𝐶ℎℓ−1/2
[︁
‖𝑢‖1+ℓ,2 + ‖𝑝‖ℓ,2

]︁
≤ 𝐶𝑟.

We can verify that other terms are bounded in a similar way, this bring the proof to an end. �

Let (𝑒𝑛
1ℎ, 𝑒

𝑛
2ℎ, 𝑒

𝑛
3ℎ, 𝑒

𝑛
4ℎ) = (𝑢𝑛

ℎ − 𝒫ℎ𝑢𝑛, 𝑝𝑛
ℎ −𝒬ℎ𝑝

𝑛, 𝜃𝑛
ℎ −ℛℎ𝜃

𝑛,𝐵𝑛
ℎ −ℱℎ𝐵𝑛). A combination of (2.5)–(2.7),

(3.5)–(3.8) and (5.1), (5.2) yields the following truncation error equations:⎧⎪⎪⎪⎨⎪⎪⎪⎩
(𝑑𝑡𝑒

𝑛
1ℎ,𝑣ℎ) +𝒜1

(︀
𝜈𝑛
(︀
𝜃𝑛−1

ℎ

)︀
, 𝑒𝑛

1ℎ,𝑣ℎ

)︀
+ 𝑏(𝑣ℎ, 𝑒

𝑛
2ℎ) = ⟨𝑅𝑛

𝐿1ℎ +𝑅𝑛
𝑁1ℎ,𝑣ℎ⟩, (5.5)

𝑏(𝑒𝑛
1ℎ, 𝑞ℎ) = 0, (5.6)

(𝑑𝑡𝑒
𝑛
3ℎ, 𝜙ℎ) +𝒜2

(︀
𝜅𝑛
(︀
𝜃𝑛−1

ℎ

)︀
, 𝑒𝑛

3ℎ, 𝜙ℎ

)︀
= ⟨𝑅𝑛

𝐿2ℎ, 𝜙ℎ⟩+ ⟨𝑅𝑛
𝑁2ℎ, 𝜙ℎ⟩, (5.7)

(𝑑𝑡𝑒
𝑛
4ℎ,𝐶ℎ) +

(︀
𝜎𝑛
(︀
𝜃𝑛−1

ℎ

)︀
curl 𝑒𝑛

4ℎ, curl𝐶ℎ

)︀
= ⟨𝑅𝑛

𝐿3ℎ +𝑅𝑛
𝑁3ℎ,𝐶ℎ⟩, (5.8)

where

⟨𝑅𝑛
𝐿1ℎ,𝑣ℎ⟩ = ⟨𝜕𝑡𝑢

𝑛 − 𝑑𝑡𝒫ℎ𝑢𝑛,𝑣ℎ⟩,
⟨𝑅𝑛

𝑁1ℎ,𝑣ℎ⟩ = ⟨𝑅𝑛
𝐷1ℎ +𝑅𝑛

𝐶1ℎ +𝑅𝑛
𝐵ℎ +𝑅𝑛

𝐴1ℎ,𝑣ℎ⟩
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=
{︀
𝒜1(𝜈𝑛(𝜃𝑛),𝑢𝑛,𝑣ℎ)−𝒜1

(︀
𝜈𝑛
(︀
𝜃𝑛−1

ℎ

)︀
,𝑢𝑛,𝑣ℎ

)︀}︀
+
{︀
𝒪1(𝑢𝑛,𝑢𝑛,𝑣ℎ)−𝒪1

(︀
𝑢𝑛−1

ℎ ,𝑢𝑛
ℎ,𝑣ℎ

)︀}︀
+
{︀(︀

𝛽𝑛
(︀
𝜃𝑛−1

ℎ

)︀
𝜃𝑛

ℎ ,𝑣ℎ

)︀
− (𝛽𝑛(𝜃𝑛)𝜃𝑛,𝑣ℎ)

}︀
+
{︀
𝜇(𝐵𝑛 × curl𝐵𝑛,𝑣ℎ)− 𝜇

(︀
𝐵𝑛−1

ℎ × curl𝐵𝑛
ℎ ,𝑣ℎ

)︀}︀
,

and

⟨𝑅𝑛
𝐿2ℎ, 𝜙ℎ⟩ = ⟨𝜕𝑡𝜃

𝑛 − 𝑑𝑡ℛℎ𝜃
𝑛, 𝜙ℎ⟩,

⟨𝑅𝑛
𝑁2ℎ, 𝜙ℎ⟩ = ⟨𝑅𝑛

𝐷2ℎ +𝑅𝑛
𝐶2ℎ, 𝜙ℎ⟩

=
{︀
𝒜2(𝜅𝑛(𝜃𝑛), 𝜃𝑛, 𝜙ℎ)−𝒜2

(︀
𝜅𝑛
(︀
𝜃𝑛−1

ℎ

)︀
, 𝜃𝑛, 𝜙ℎ

)︀}︀
+
{︀
𝒪2(𝑢𝑛, 𝜃𝑛, 𝜙ℎ)−𝒪2

(︀
𝑢𝑛−1

ℎ , 𝜃𝑛
ℎ , 𝜙ℎ

)︀}︀
,

⟨𝑅𝑛
𝐿3ℎ,𝐶ℎ⟩ = ⟨𝜕𝑡𝐵

𝑛 − 𝑑𝑡ℱℎ𝐵𝑛,𝐶ℎ⟩,
⟨𝑅𝑛

𝑁3ℎ,𝐶ℎ⟩ = ⟨𝑅𝑛
𝐴2ℎ +𝑅𝑛

𝐸1ℎ,𝐶ℎ⟩
=
{︀(︀

𝑢𝑛
ℎ ×𝐵𝑛−1

ℎ , curl𝐶ℎ

)︀
− (𝑢𝑛 ×𝐵𝑛, curl𝐶ℎ)

}︀
+
{︀

(𝜎𝑛(𝜃𝑛)curl𝐵𝑛, curl𝐶ℎ)−
(︀
𝜎𝑛
(︀
𝜃𝑛−1

ℎ

)︀
curl𝐵𝑛, curl𝐶ℎ

)︀}︀
.

The following lemma can be referred to Lemma 2 of [54].

Lemma 5.5. Let 𝜑𝑖, 𝜃𝑖, 𝑖 = 1, 2, and 𝜒 be functions in 𝐿2(Ω), and 𝜆 a function in C 0,1
(︀
Ω̄× R; R

)︀
. Then for

any 𝜑 ∈ 𝐿𝑝0(Ω), where 𝑝0 ≤ ∞, it holds that⃒⃒⃒⃒∫︁
Ω

𝜆(·, 𝜃1)𝜑1 𝜒d𝑥−
∫︁

Ω

𝜆(·, 𝜃2)𝜑2 𝜒d𝑥
⃒⃒⃒⃒

≤ max
{︁
‖𝜆‖C(Ω̄×R;R),

⃦⃦
𝜑
⃦⃦

0,𝑝0
|𝜆|C 0,1(Ω̄×R;R)

}︁(︁
‖𝜃1 − 𝜃2‖0,𝑞0

+
⃦⃦
𝜑1 − 𝜑

⃦⃦
0,𝑞0

+
⃦⃦
𝜑− 𝜑2

⃦⃦
0,𝑞0

)︁
‖𝜒‖0,𝑟0

,

(5.9)

where 1/𝑝0 + 1/𝑞0 + 1/𝑟0 = 1, and |𝜆|C 0,1(Ω̄×R;R) is defined in (4.20).

With the above preparations, we can now establish the following error estimates for the velocity, temperature
and magnetic induction.

Theorem 5.6. Suppose Assumption 5.2 holds, and the initial approximations 𝑢0
ℎ, 𝜃0ℎ, 𝐵0

ℎ satisfy⃦⃦
𝑢0 − 𝑢0

ℎ

⃦⃦
0
,
⃦⃦
𝜃0 − 𝜃0ℎ

⃦⃦
0
,
⃦⃦
𝐵0 −𝐵0

ℎ

⃦⃦
0
≤ 𝐶*ℎℓ

with ℓ = min{𝑘, 𝑠}. Then there exists a positive constant ∆𝑡0 such that when ∆𝑡 ≤ ∆𝑡0, the continuous problem
(2.5)–(2.7) and the finite element system (3.5)–(3.8) admits a unique solution (𝑢𝑛, 𝜃𝑛,𝐵𝑛) and (𝑢𝑛

ℎ, 𝜃
𝑛
ℎ ,𝐵

𝑛
ℎ ),

respectively, which satisfies

‖𝑢𝑚 − 𝑢𝑚
ℎ ‖

2
0 + ‖𝜃𝑚 − 𝜃𝑚

ℎ ‖
2
0 + 𝜇‖𝐵𝑚 −𝐵𝑚

ℎ ‖
2
0 + ∆𝑡

𝑚∑︁
𝑛=1

[︁
𝜈0‖∇(𝑢𝑛 − 𝑢𝑛

ℎ)‖20

+ 𝜅0‖∇(𝜃𝑛 − 𝜃𝑛
ℎ)‖20 + 𝜇𝜎0‖curl (𝐵𝑛 −𝐵𝑛

ℎ )‖20
]︁
≤ 𝐶*

(︁
(∆𝑡)2 + ℎ2ℓ

)︁
.

Proof. Substituting (𝑒𝑛
1ℎ, 𝑒

𝑛
2ℎ, 𝑒

𝑛
3ℎ, 𝜇𝑒

𝑛
4ℎ) into (𝑣ℎ, 𝑞ℎ, 𝜙ℎ,𝐶ℎ) in (5.5)–(5.8), there holds⎧⎪⎨⎪⎩

(𝑑𝑡𝑒
𝑛
1ℎ, 𝑒

𝑛
1ℎ) +𝒜1

(︀
𝜈𝑛
(︀
𝜃𝑛−1

ℎ

)︀
, 𝑒𝑛

1ℎ, 𝑒
𝑛
1ℎ

)︀
= ⟨𝑅𝑛

𝐿1ℎ +𝑅𝑛
𝑁1ℎ, 𝑒

𝑛
1ℎ⟩, (5.10)

(𝑑𝑡𝑒
𝑛
3ℎ, 𝑒

𝑛
3ℎ) +𝒜2

(︀
𝜅𝑛
(︀
𝜃𝑛−1

ℎ

)︀
, 𝑒𝑛

3ℎ, 𝑒
𝑛
3ℎ

)︀
= ⟨𝑅𝑛

𝐿2ℎ +𝑅𝑛
𝑁2ℎ, 𝑒

𝑛
3ℎ⟩, (5.11)

𝜇(𝑑𝑡𝑒
𝑛
4ℎ, 𝑒

𝑛
4ℎ) + 𝜇

(︀
𝜎𝑛
(︀
𝜃𝑛−1

ℎ

)︀
curl 𝑒𝑛

4ℎ, curl 𝑒𝑛
4ℎ

)︀
= 𝜇⟨𝑅𝑛

𝐿3ℎ +𝑅𝑛
𝑁3ℎ, 𝑒

𝑛
4ℎ⟩. (5.12)

Due to 2𝑏(𝑏− 𝑎) = 𝑏2 − 𝑎2 + (𝑏− 𝑎)2, we conclude that
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(𝑑𝑡𝑒
𝑛
1ℎ, 𝑒

𝑛
1ℎ) +𝒜1

(︀
𝜈𝑛
(︀
𝜃𝑛−1

ℎ

)︀
, 𝑒𝑛

1ℎ, 𝑒
𝑛
1ℎ

)︀
≥ 1

2

[︁
𝑑𝑡‖𝑒𝑛

1ℎ‖
2
0 + ∆𝑡‖𝑑𝑡𝑒

𝑛
1ℎ‖

2
0

]︁
+ 𝜈0‖∇𝑒𝑛

1ℎ‖
2
0, (5.13)

(𝑑𝑡𝑒
𝑛
3ℎ, 𝑒

𝑛
3ℎ) +𝒜2

(︀
𝜅𝑛
(︀
𝜃𝑛−1

ℎ

)︀
, 𝑒𝑛

3ℎ, 𝑒
𝑛
3ℎ

)︀
≥ 1

2

[︁
𝑑𝑡‖𝑒𝑛

3ℎ‖
2
0 + ∆𝑡‖𝑑𝑡𝑒

𝑛
3ℎ‖

2
0

]︁
+ 𝜅0‖∇𝑒𝑛

3ℎ‖
2
0 (5.14)

and

𝜇(𝑑𝑡𝑒
𝑛
4ℎ, 𝑒

𝑛
4ℎ) + 𝜇

(︀
𝜎𝑛
(︀
𝜃𝑛−1

ℎ

)︀
curl 𝑒𝑛

4ℎ, curl 𝑒𝑛
4ℎ

)︀
≥ 𝜇

2

[︁
𝑑𝑡‖𝑒𝑛

4ℎ‖
2
0 + ∆𝑡‖𝑑𝑡𝑒

𝑛
4ℎ‖

2
0

]︁
+ 𝜇𝜎0‖curl 𝑒𝑛

4ℎ‖
2
0. (5.15)

Next we estimate the right-hand side of (5.10). Concerning the first term, we have

⟨𝑅𝑛
𝐿1ℎ, 𝑒

𝑛
1ℎ⟩ = ⟨𝜕𝑡𝑢

𝑛 − 𝑑𝑡𝒫ℎ𝑢𝑛, 𝑒𝑛
1ℎ⟩

= (𝜕𝑡𝑢
𝑛 − 𝑑𝑡𝑢

𝑛, 𝑒𝑛
1ℎ) + (𝑑𝑡𝑢

𝑛 − 𝑑𝑡𝒫ℎ𝑢𝑛, 𝑒𝑛
1ℎ).

(5.16)

By integration formula and Cauchy–Schwarz inequality,

|𝜕𝑡𝑢
𝑛 − 𝑑𝑡𝑢

𝑛| =
⃒⃒⃒⃒
𝜕𝑡𝑢

𝑛 − 𝑢𝑛 − 𝑢𝑛−1

∆𝑡

⃒⃒⃒⃒
=

⃒⃒⃒⃒
⃒ 1
∆𝑡

∫︁ 𝑡𝑛

𝑡𝑛−1

(𝜕𝑡𝑢
𝑛(𝑡)− 𝜕𝑡𝑢(𝜉)) d𝜉

⃒⃒⃒⃒
⃒

≤

⃒⃒⃒⃒
⃒
∫︁ 𝑡𝑛

𝑡𝑛−1

𝜕𝑡𝑡𝑢(𝑡) d𝑡

⃒⃒⃒⃒
⃒ ≤ 𝐶

√
∆𝑡‖𝜕𝑡𝑡𝑢‖𝐿2(𝑡𝑛−1,𝑡𝑛;𝐿2(Ω)).

Thanks to the approximation error estimate (5.3),

|𝑑𝑡𝑢
𝑛 − 𝑑𝑡𝒫ℎ𝑢𝑛| =

1
∆𝑡

⃒⃒
(𝑢𝑛 − 𝒫ℎ𝑢𝑛)−

(︀
𝑢𝑛−1 − 𝒫ℎ𝑢𝑛−1

)︀⃒⃒
≤ 1

∆𝑡
𝐶𝑒ℎ

ℓ+1
(︁
‖𝑢𝑛‖1+ℓ,2 +

⃦⃦
𝑢𝑛−1

⃦⃦
1+ℓ,2

)︁
.

(5.17)

Then we have

⟨𝑅𝑛
𝐿1ℎ, 𝑒

𝑛
1ℎ⟩ ≤𝐶

{︂√
∆𝑡‖𝜕𝑡𝑡𝑢‖𝐿2(𝑡𝑛−1,𝑡𝑛;𝐿2(Ω)) + 𝐶𝑒

ℎℓ+1

∆𝑡

(︁
‖𝑢𝑛‖1+ℓ,2 +

⃦⃦
𝑢𝑛−1

⃦⃦
1+ℓ,2

)︁}︂
‖𝑒𝑛

1ℎ‖0. (5.18)

Similarly, we can prove

⟨𝑅𝑛
𝐿2ℎ, 𝑒

𝑛
3ℎ⟩ = ⟨𝜕𝑡𝜃

𝑛 − 𝑑𝑡ℛℎ𝜃
𝑛, 𝑒𝑛

3ℎ⟩

≤ 𝐶

{︂√
∆𝑡‖𝜕𝑡𝑡𝜃‖𝐿2(𝑡𝑛−1,𝑡𝑛;𝐿2(Ω)) + 𝐶𝑒

ℎℓ+1

∆𝑡

(︁
‖𝜃𝑛‖1+ℓ,2 +

⃦⃦
𝜃𝑛−1

⃦⃦
1+ℓ,2

)︁}︂
‖𝑒𝑛

3ℎ‖0
(5.19)

and

𝜇⟨𝑅𝑛
𝐿3ℎ, 𝑒

𝑛
4ℎ⟩ = 𝜇⟨𝜕𝑡𝐵

𝑛 − 𝑑𝑡ℱℎ𝐵𝑛, 𝑒𝑛
4ℎ⟩

≤ 𝐶

{︂√
∆𝑡‖𝜕𝑡𝑡𝐵‖𝐿2(𝑡𝑛−1,𝑡𝑛;𝐿2(Ω)) +

𝐶𝑒ℎ
ℓ

∆𝑡

(︁
‖𝐵𝑛‖ℓ,2 +

⃦⃦
𝐵𝑛−1

⃦⃦
ℓ,2

)︁}︂
‖𝑒𝑛

4ℎ‖0.
(5.20)

Making use of Lemma 5.5, by choosing
(︀
𝜑1, 𝜑, 𝜑2

)︀
= (∇𝑢𝑛,∇𝑢𝑛,∇𝑢𝑛), (𝜃1, 𝜃2) =

(︀
𝜃𝑛, 𝜃𝑛−1

ℎ

)︀
and (𝜆, 𝜒) =

(𝜈𝑛,∇𝑒𝑛
1ℎ), then we arrive at

⟨𝑅𝑛
𝐷1ℎ, 𝑒

𝑛
1ℎ⟩ = 𝒜1

(︀
𝜈𝑛(𝜃𝑛)− 𝜈𝑛

(︀
𝜃𝑛−1

ℎ

)︀
,𝑢𝑛, 𝑒𝑛

1ℎ

)︀
≤ max

{︁
‖𝜈𝑛‖C(Ω̄×R;R+), ‖∇𝑢𝑛‖0,3|𝜈

𝑛|C 0,1(Ω̄×R;R)
}︁⃦⃦
∇
(︀
𝜃𝑛 − 𝜃𝑛−1

ℎ

)︀⃦⃦
0
‖∇𝑒𝑛

1ℎ‖0,
(5.21)
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which, together with

𝜃𝑛 − 𝜃𝑛−1
ℎ = 𝜃𝑛 − 𝜃𝑛−1 + 𝜃𝑛−1 −ℛℎ𝜃

𝑛−1 − 𝑒𝑛−1
3ℎ ,⃦⃦

∇
(︀
𝜃𝑛−1 −ℛℎ𝜃

𝑛−1
)︀⃦⃦

0
≤ 𝐶𝑒ℎ

ℓ
⃦⃦
𝜃𝑛−1

⃦⃦
1+ℓ,2

and (5.4), we derive

⟨𝑅𝑛
𝐷1ℎ, 𝑒

𝑛
1ℎ⟩ ≤ 𝐶*

{︁√
∆𝑡‖𝜕𝑡𝜃‖𝐿2(𝑡𝑛−1,𝑡𝑛;𝐻1(Ω)) + 𝐶𝑒ℎ

ℓ
⃦⃦
𝜃𝑛−1

⃦⃦
1+ℓ,2

+
⃦⃦
∇𝑒𝑛−1

3ℎ

⃦⃦
0

}︁
‖∇𝑒𝑛

1ℎ‖0.

Concerning the term ⟨𝑅𝑛
𝐷2ℎ, 𝑒

𝑛
3ℎ⟩, by using of Lemma 5.5 again, we can choose

(︀
𝜑1, 𝜑, 𝜑2

)︀
=

(∇𝜃𝑛,∇𝜃𝑛,∇ℛℎ𝜃
𝑛), (𝜃1, 𝜃2) =

(︀
𝜃𝑛, 𝜃𝑛−1

ℎ

)︀
and (𝜆, 𝜒) = (𝜅𝑛,∇𝑒𝑛

3ℎ), there holds

⟨𝑅𝑛
𝐷2ℎ, 𝑒

𝑛
3ℎ⟩ = 𝒜2(𝜅𝑛(𝜃𝑛), 𝜃𝑛, 𝑒𝑛

3ℎ)−𝒜2

(︀
𝜅𝑛
(︀
𝜃𝑛−1

ℎ

)︀
,ℛℎ𝜃

𝑛, 𝑒𝑛
3ℎ

)︀
≤ max

{︁
‖𝜅𝑛‖C(Ω̄×R;R+), ‖∇𝜃

𝑛‖0,3|𝜅
𝑛|C 0,1(Ω̄×R;R), ‖ℛℎ𝜃

𝑛‖0,∞|𝜅
𝑛|C 0,1(Ω̄×R;R)

}︁
×
⃦⃦
∇
(︀
𝜃𝑛 − 𝜃𝑛−1

ℎ

)︀⃦⃦
0
‖∇𝑒𝑛

3ℎ‖0
≤ 𝐶*

{︁√
∆𝑡‖𝜕𝑡𝜃‖𝐿2(𝑡𝑛−1,𝑡𝑛;𝐻1(Ω)) + 𝐶𝑒ℎ

ℓ
⃦⃦
𝜃𝑛−1

⃦⃦
1+ℓ,2

+
⃦⃦
∇𝑒𝑛−1

3ℎ

⃦⃦
0

}︁
‖∇𝑒𝑛

3ℎ‖0.

Similarly, by choose
(︀
𝜑1, 𝜑, 𝜑2

)︀
= (𝜃𝑛, 𝜃𝑛, 𝜃𝑛

ℎ), and (𝜃1, 𝜃2) =
(︀
𝜃𝑛, 𝜃𝑛−1

ℎ

)︀
, (𝜆, 𝜒) = (𝛽𝑛, 𝑒𝑛

1ℎ), we deduce

⟨𝑅𝑛
𝐵ℎ, 𝑒

𝑛
1ℎ⟩ =

(︀
𝛽𝑛
(︀
𝜃𝑛−1

ℎ

)︀
𝜃𝑛

ℎ , 𝑒
𝑛
1ℎ

)︀
− (𝛽𝑛(𝜃𝑛)𝜃𝑛, 𝑒𝑛

1ℎ)

= −
(︀
𝛽𝑛
(︀
𝜃𝑛−1

ℎ

)︀
[𝜃𝑛 − 𝜃𝑛

ℎ ], 𝑒𝑛
1ℎ

)︀
−
(︀[︀

𝛽𝑛(𝜃𝑛)− 𝛽𝑛
(︀
𝜃𝑛−1

ℎ

)︀]︀
𝜃𝑛, 𝑒𝑛

1ℎ

)︀
≤ 𝐶*

{︁√
∆𝑡‖𝜕𝑡𝜃‖𝐿2(𝑡𝑛−1,𝑡𝑛;𝐻1(Ω)) + 𝐶𝑒ℎ

ℓ
(︁
‖𝜃𝑛‖1+ℓ,2 +

⃦⃦
𝜃𝑛−1

⃦⃦
1+ℓ,2

)︁
+ ‖𝑒𝑛

3ℎ‖0 +
⃦⃦
𝑒𝑛−1
3ℎ

⃦⃦
0

}︁
‖∇𝑒𝑛

1ℎ‖0.

Now we are in a position to bound 𝑅𝑛
𝐶𝑖ℎ, 𝑖 = 1, 2. By (3.16), we can choose

(︀
𝑢1,𝑢2,𝑢1

ℎ,𝑢
2
ℎ

)︀
=(︀

𝑢𝑛,𝑢𝑛,𝑢𝑛−1
ℎ ,𝑢𝑛

ℎ

)︀
and

(︀
𝑢̄1, 𝑢̄2, 𝑤̄1

ℎ, 𝑤̄
2
ℎ

)︀
=
(︀
𝒫ℎ𝑢𝑛−1,𝒫ℎ𝑢𝑛−1,𝒫ℎ𝑢𝑛−1,𝒫ℎ𝑢𝑛

)︀
, then we have

⟨𝑅𝑛
𝐶1ℎ, 𝑒

𝑛
1ℎ⟩ = 𝒪1(𝑢𝑛,𝑢𝑛, 𝑒𝑛

1ℎ)−𝒪1

(︀
𝑢𝑛−1

ℎ ,𝑢𝑛
ℎ, 𝑒

𝑛
1ℎ

)︀
≤ 𝐶

[︃
‖𝑢𝑛‖0,∞ + ‖𝑢𝑛‖1,3 +

𝑛∑︁
𝑖=𝑛−1

(︁⃦⃦
𝒫ℎ𝑢𝑖

⃦⃦
0,∞ +

⃦⃦
𝒫ℎ𝑢𝑖

⃦⃦
1,3

)︁]︃
·
(︀
2
⃦⃦
𝑢𝑛 − 𝒫ℎ𝑢𝑛−1

⃦⃦
0

+
⃦⃦
𝒫ℎ𝑢𝑛−1 − 𝒫ℎ𝑢𝑛

⃦⃦
0

+
⃦⃦
𝑒𝑛−1
1ℎ

⃦⃦
0

+ ‖𝑒𝑛
1ℎ‖0

)︀
‖∇𝑒𝑛

1ℎ‖0.

Since ⃦⃦
𝑢𝑛 − 𝒫ℎ𝑢𝑛−1

⃦⃦
0
≤
⃦⃦
𝑢𝑛 − 𝑢𝑛−1

⃦⃦
0

+
⃦⃦
𝑢𝑛−1 − 𝒫ℎ𝑢𝑛−1

⃦⃦
0

≤ 𝐶
√

∆𝑡‖𝜕𝑡𝑢‖𝐿2(𝑡𝑛−1,𝑡𝑛;𝐿2(Ω)) + 𝐶𝑒ℎ
ℓ+1
⃦⃦
𝑢𝑛−1

⃦⃦
1+ℓ,2

and ⃦⃦
𝒫ℎ𝑢𝑛−1 − 𝒫ℎ𝑢𝑛

⃦⃦
0
≤
⃦⃦
𝑢𝑛 − 𝑢𝑛−1

⃦⃦
0

+
⃦⃦
𝑢𝑛−1 − 𝒫ℎ𝑢𝑛−1

⃦⃦
0

+ ‖𝑢𝑛 − 𝒫ℎ𝑢𝑛‖0
≤ 𝐶

√
∆𝑡‖𝜕𝑡𝑢‖𝐿2(𝑡𝑛−1,𝑡𝑛;𝐿2(Ω)) + 𝐶𝑒ℎ

ℓ+1
[︁⃦⃦

𝑢𝑛−1
⃦⃦

1+ℓ,2
+ ‖𝑢𝑛‖1+ℓ,2

]︁
,

we have

⟨𝑅𝑛
𝐶1ℎ, 𝑒

𝑛
1ℎ⟩ ≤ 𝐶

(︁√
∆𝑡‖𝜕𝑡𝑢‖𝐿2(𝑡𝑛−1,𝑡𝑛;𝐿2(Ω)) + 𝐶𝑒ℎ

ℓ+1
⃦⃦
𝑢𝑛−1

⃦⃦
1+ℓ,2

+ 𝐶𝑒ℎ
ℓ+1‖𝑢𝑛‖1+ℓ,2 + ‖𝑒𝑛

1ℎ‖0 +
⃦⃦
𝑒𝑛−1
1ℎ

⃦⃦
0

)︁
‖∇𝑒𝑛

1ℎ‖0.
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Similarly, by choosing
(︀
𝑢1,𝑢2,𝑢1

ℎ,𝑢
2
ℎ

)︀
=
(︀
𝑢𝑛, 𝜃𝑛,𝑢𝑛−1

ℎ , 𝜃𝑛
ℎ

)︀
and

(︀
𝑢̄1, 𝑢̄2, 𝑤̄1

ℎ, 𝑤̄
2
ℎ

)︀
=
(︀
𝒫ℎ𝑢𝑛−1,ℛℎ𝜃

𝑛 ,
𝒫ℎ𝑢𝑛−1,ℛℎ𝜃

𝑛
)︀
, we can obtain

⟨𝑅𝑛
𝐶2ℎ, 𝑒

𝑛
3ℎ⟩ = 𝒪2(𝑢𝑛, 𝜃𝑛, 𝑒𝑛

3ℎ)−𝒪2

(︀
𝑢𝑛−1

ℎ , 𝜃𝑛
ℎ , 𝑒

𝑛
3ℎ

)︀
≤ 𝐶

(︁√
∆𝑡‖𝜕𝑡𝑢‖𝐿2(𝑡𝑛−1,𝑡𝑛;𝐿2(Ω)) + 𝐶𝑒ℎ

ℓ
⃦⃦
𝑢𝑛−1

⃦⃦
1+ℓ,2

+ 𝐶𝑒ℎ
ℓ‖𝜃𝑛‖1+ℓ,2 + ‖𝑒𝑛

3ℎ‖0 +
⃦⃦
𝑒𝑛−1
1ℎ

⃦⃦
0

)︁
‖∇𝑒𝑛

3ℎ‖0.

To estimate the term 𝜇⟨𝑅𝑛
𝐸1ℎ, 𝑒

𝑛
4ℎ⟩, we employ Lemma 5.5 by choosing

(︀
𝜑1, 𝜑, 𝜑2

)︀
=

(curl𝐵𝑛, curl𝐵𝑛, curl𝐵𝑛), (𝜃1, 𝜃2) =
(︀
𝜃𝑛, 𝜃𝑛−1

ℎ

)︀
, (𝜆, 𝜒) = (𝜎𝑛, curl 𝑒𝑛

4ℎ) to get

𝜇⟨𝑅𝑛
𝐸1ℎ, 𝑒

𝑛
4ℎ⟩ = 𝜇

(︀[︀
𝜎𝑛(𝜃𝑛)− 𝜎𝑛

(︀
𝜃𝑛−1

ℎ

)︀]︀
curl𝐵𝑛, curl 𝑒𝑛

4ℎ

)︀
≤ 𝜇max

{︁
‖𝜎𝑛‖C(Ω̄×R;R+), ‖curl𝐵𝑛‖0,3|𝜎

𝑛|C 0,1(Ω̄×R;R)
}︁⃦⃦
∇
(︀
𝜃𝑛 − 𝜃𝑛−1

ℎ

)︀⃦⃦
0
‖curl 𝑒𝑛

4ℎ‖0

≤ 𝐶
(︁√

∆𝑡‖𝜕𝑡𝜃‖𝐿2(𝑡𝑛−1,𝑡𝑛;𝐻1(Ω)) + 𝐶𝑒ℎ
ℓ
⃦⃦
𝜃𝑛−1

⃦⃦
1+ℓ,2

+
⃦⃦
∇𝑒𝑛−1

3ℎ

⃦⃦
0

)︁
‖curl 𝑒𝑛

4ℎ‖0.

By using of (5.4) and Assumption 5.2, we can derive

𝜇
⃒⃒
(𝐵𝑛 × curl𝐵𝑛, 𝑒𝑛

1ℎ)−
(︀
𝐵𝑛−1

ℎ × curl𝐵𝑛
ℎ , 𝑒

𝑛
1ℎ

)︀
+
(︀
𝑢𝑛

ℎ ×𝐵𝑛−1
ℎ , curl 𝑒𝑛

4ℎ

)︀
− (𝑢𝑛 ×𝐵𝑛, curl 𝑒𝑛

4ℎ)
⃒⃒

= 𝜇
⃒⃒(︀[︀

𝐵𝑛 −𝐵𝑛−1
ℎ

]︀
× curl𝐵𝑛, 𝑒𝑛

1ℎ

)︀
+
(︀
𝑢𝑛 ×

[︀
𝐵𝑛−1

ℎ −𝐵𝑛
]︀
, curl 𝑒𝑛

4ℎ

)︀
+
(︀[︀
ℱℎ𝐵𝑛−1 + 𝑒𝑛−1

4ℎ

]︀
× curl [𝐵𝑛 −ℱℎ𝐵𝑛], 𝑒𝑛

1ℎ

)︀
−
(︀
[𝑢𝑛 − 𝒫ℎ𝑢𝑛]×

[︀
ℱℎ𝐵𝑛−1 + 𝑒𝑛−1

4ℎ

]︀
, curl 𝑒𝑛

4ℎ

)︀⃒⃒
≤ 𝐶𝜇

[︁
‖curl𝐵𝑛‖0,3

⃦⃦
𝐵𝑛 −𝐵𝑛−1

ℎ

⃦⃦
0
‖∇𝑒𝑛

1ℎ‖0 + ‖𝑢𝑛‖0,∞
⃦⃦
𝐵𝑛 −𝐵𝑛−1

ℎ

⃦⃦
0
‖curl 𝑒𝑛

4ℎ‖0
+
⃦⃦
ℱℎ𝐵𝑛−1

⃦⃦
0,3
‖curl (𝐵𝑛 −ℱℎ𝐵𝑛)‖0‖∇𝑒

𝑛
1ℎ‖0 + ‖curl (𝐵𝑛 −ℱℎ𝐵𝑛)‖0,3

⃦⃦
𝑒𝑛−1
4ℎ

⃦⃦
0
‖∇𝑒𝑛

1ℎ‖0

+ ‖∇(𝑢𝑛 − 𝒫ℎ𝑢𝑛)‖0
⃦⃦
ℱℎ𝐵𝑛−1

⃦⃦
0,3
‖curl 𝑒𝑛

4ℎ‖0 + ‖𝑢𝑛 − 𝒫ℎ𝑢𝑛‖0,∞
⃦⃦
𝑒𝑛−1
4ℎ

⃦⃦
0
‖curl 𝑒𝑛

4ℎ‖0
]︁

≤ 𝐶
(︁
𝐶𝑟

√
∆𝑡‖𝜕𝑡𝐵‖𝐿2(𝑡𝑛−1,𝑡𝑛;𝐿2(Ω)) + 𝐶𝑒𝐶𝑟ℎ

ℓ
[︁⃦⃦

𝐵𝑛−1
⃦⃦

ℓ,2
+ ‖curl𝐵𝑛‖ℓ,2

]︁
+ 𝐶𝑟

⃦⃦
𝑒𝑛−1
4ℎ

⃦⃦
0

)︁
‖∇𝑒𝑛

1ℎ‖0

+ 𝐶
(︁
𝐶𝑟

√
∆𝑡‖𝜕𝑡𝐵‖𝐿2(𝑡𝑛−1,𝑡𝑛;𝐿2(Ω)) + 𝐶𝑒𝐶𝑟ℎ

ℓ
[︁⃦⃦

𝐵𝑛−1
⃦⃦

ℓ,2
+ ‖𝑢𝑛‖ℓ+1,2

]︁
+ 𝐶𝑟

⃦⃦
𝑒𝑛−1
4ℎ

⃦⃦
0

)︁
‖curl 𝑒𝑛

4ℎ‖0.

Combining the above estimates and by Young’s inequality, we can deduce that

𝑑𝑡‖𝑒𝑛
1ℎ‖

2
0 + 𝑑𝑡‖𝑒𝑛

3ℎ‖
2
0 + 𝜇𝑑𝑡‖𝑒𝑛

4ℎ‖
2
0 + ∆𝑡

[︁
‖𝑑𝑡𝑒

𝑛
1ℎ‖

2
0 + ‖𝑑𝑡𝑒

𝑛
3ℎ‖

2
0 + 𝜇‖𝑑𝑡𝑒

𝑛
4ℎ‖

2
0

]︁
+ 𝜈0‖∇𝑒𝑛

1ℎ‖
2
0 +

𝜅0

2
‖∇𝑒𝑛

3ℎ‖
2
0

+ 𝜎0𝜇‖curl 𝑒𝑛
4ℎ‖

2
0 +

𝜅0

2
‖∇𝑒𝑛

3ℎ‖
2
0 −

𝜅0

2

⃦⃦
∇𝑒𝑛−1

3ℎ

⃦⃦2

0
≤ 𝑐*𝜀

(︁⃦⃦
𝑒𝑛−1
1ℎ

⃦⃦2

0
+
⃦⃦
𝑒𝑛−1
3ℎ

⃦⃦2

0
+ 𝜇

⃦⃦
𝑒𝑛−1
4ℎ

⃦⃦2

0
+ 𝛿𝑛

)︁
,

(5.22)

where

𝛿𝑛 = 𝐶∆𝑡
{︁
‖𝜕𝑡𝑡𝑢‖2𝐿2(𝑡𝑛−1,𝑡𝑛;𝐿2(Ω)) + ‖𝜕𝑡𝑡𝜃‖2𝐿2(𝑡𝑛−1,𝑡𝑛;𝐿2(Ω)) + ‖𝜕𝑡𝑡𝐵‖2𝐿2(𝑡𝑛−1,𝑡𝑛;𝐿2(Ω))

+ ‖𝜕𝑡𝑢‖2𝐿2(𝑡𝑛−1,𝑡𝑛;𝐿2(Ω)) + ‖𝜕𝑡𝜃‖2𝐿2(𝑡𝑛−1,𝑡𝑛;𝐻1(Ω)) + ‖𝜕𝑡𝐵‖2𝐿2(𝑡𝑛−1,𝑡𝑛;𝐿2(Ω))

}︁
+ 𝐶

ℎ2ℓ

∆𝑡

{︁
‖𝑢𝑛‖2ℓ+1,2 +

⃦⃦
𝑢𝑛−1

⃦⃦2

ℓ+1,2
+ ‖𝜃𝑛‖21+ℓ,2 + ‖𝐵𝑛‖2ℓ,2 +

⃦⃦
𝜃𝑛−1

⃦⃦2

1+ℓ,2
+
⃦⃦
𝐵𝑛−1

⃦⃦2

ℓ,2

}︁
+ 𝐶ℎ2ℓ

{︁
‖𝜃𝑛‖21+ℓ,2 +

⃦⃦
𝜃𝑛−1

⃦⃦2

1+ℓ,2
+
⃦⃦
𝐵𝑛−1

⃦⃦2

ℓ,2
+ ‖curl𝐵𝑛‖2ℓ,2 + ‖𝑢𝑛‖21+ℓ,2 +

⃦⃦
𝑢𝑛−1

⃦⃦2

1+ℓ,2

}︁
,

and

∆𝑡
𝑚∑︁

𝑛=1

𝛿𝑛 ≤ 𝐶*
(︁

(∆𝑡)2 + ℎ2ℓ
)︁
. (5.23)
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Summing up (5.22) from 𝑛 = 1 to 𝑚, we conclude that

‖𝑒𝑚
1ℎ‖

2
0 + ‖𝑒𝑚

3ℎ‖
2
0 + 𝜇‖𝑒𝑚

4ℎ‖
2
0 + ∆𝑡

𝜅0

2
‖∇𝑒𝑚

3ℎ‖
2
0 + ∆𝑡

𝑚∑︁
𝑛=1

[︁
𝜈0‖∇𝑒𝑛

1ℎ‖
2
0

+
𝜅0

2
‖∇𝑒𝑛

3ℎ‖
2
0 + 𝜇𝜎0‖curl 𝑒𝑛

4ℎ‖
2
0 + ∆𝑡‖𝑑𝑡𝑒

𝑛
1ℎ‖

2
0 + ∆𝑡‖𝑑𝑡𝑒

𝑛
3ℎ‖

2
0 + ∆𝑡‖𝑑𝑡𝑒

𝑛
4ℎ‖

2
0

]︁
≤ ∆𝑡

𝑚−1∑︁
𝑛=0

𝑐*𝜀

(︁
‖𝑒𝑛

1ℎ‖
2
0 + ‖𝑒𝑛

3ℎ‖
2
0 + ‖𝑒𝑛

4ℎ‖
2
0 + ∆𝑡‖∇𝑒𝑛

3ℎ‖
2
0

)︁
+ ∆𝑡

𝑚∑︁
𝑛=1

𝛿𝑛.

(5.24)

Applying the discrete version of the Gronwall inequality (see Lem. 5.1) to (5.24), and by using (5.23), then we
arrive at

‖𝑒𝑚
1ℎ‖

2
0 + ‖𝑒𝑚

3ℎ‖
2
0 + 𝜇‖𝑒𝑚

4ℎ‖
2
0 + ∆𝑡

𝑚∑︁
𝑛=1

[︁
𝜈0‖∇𝑒𝑛

1ℎ‖
2
0 +

𝜅0

2
‖∇𝑒𝑛

3ℎ‖
2
0

+ 𝜇𝜎0‖curl 𝑒𝑛
4ℎ‖

2
0 + ∆𝑡‖𝑑𝑡𝑒

𝑛
1ℎ‖

2
0 + ∆𝑡‖𝑑𝑡𝑒

𝑛
3ℎ‖

2
0 + ∆𝑡‖𝑑𝑡𝑒

𝑛
4ℎ‖

2
0

]︁
≤ 𝐶*

(︁
(∆𝑡)2 + ℎ2ℓ

)︁
.

(5.25)

By virtue of the identity 𝑢𝑛−𝑢𝑛
ℎ = 𝑢𝑛−𝒫ℎ𝑢𝑛−𝑒𝑛

1ℎ, 𝜃𝑛−𝜃𝑛
ℎ = 𝜃𝑛−ℛℎ𝜃

𝑛−𝑒𝑛
3ℎ, 𝐵𝑛−𝐵𝑛

ℎ = 𝐵𝑛−ℱℎ𝐵𝑛−𝑒𝑛
4ℎ,

and the error bounds (5.3), we can obtain the desired result and the proof is completed. �

As far as error estimate for the pressure, we will prove the following sub-optimal result by following a similar
argument developed in [54].

Theorem 5.7. Under the same assumptions as Theorem 5.6, we have

∆𝑡
𝑚∑︁

𝑛=1

‖𝑝𝑛 − 𝑝𝑛
ℎ‖

2
0 ≤ 𝐶*(∆𝑡)−1

(︁
(∆𝑡)2 + ℎ2ℓ

)︁
(5.26)

with ℓ = min{𝑘, 𝑠}.

Proof. From (5.5), we know that

𝑏(𝑣ℎ, 𝑒
𝑛
2ℎ) = ⟨𝑅𝑛

𝐿1ℎ,𝑣ℎ⟩+ ⟨𝑅𝑛
𝑁1ℎ,𝑣ℎ⟩ − (𝑑𝑡𝑒

𝑛
1ℎ,𝑣ℎ)−𝒜1

(︀
𝜈𝑛
(︀
𝜃𝑛−1

ℎ

)︀
, 𝑒𝑛

1ℎ,𝑣ℎ

)︀
.

Making use of the inf-sup condition (3.4), we derive

‖𝑒𝑛
2ℎ‖0 ≤

1
𝛽*

sup
0 ̸=𝑣ℎ∈𝑉 𝑘

ℎ

𝑏(𝑣ℎ, 𝑒
𝑛
2ℎ)

‖𝑣ℎ‖1,2

≤ 𝐶*
{︂
‖𝑅𝑛

𝐿1ℎ‖(𝑉 𝑘
ℎ )′ + ‖𝑅𝑛

𝑁1ℎ‖(𝑉 𝑘
ℎ )′ +

1√
∆𝑡

(︁√
∆𝑡‖𝑑𝑡𝑒

𝑛
1ℎ‖0

)︁
+ ‖∇𝑒𝑛

1ℎ‖0

}︂
,

(5.27)

where 𝑅𝑛
𝑁1ℎ = 𝑅𝑛

𝐷1ℎ +𝑅𝑛
𝐶1ℎ +𝑅𝑛

𝐵ℎ +𝑅𝑛
𝐴1ℎ.

We will estimate the terms in the last line of (5.27) one by one. According to the estimate (5.25), there holds

∆𝑡
𝑚∑︁

𝑛=1

(︁
∆𝑡‖𝑑𝑡𝑒

𝑛
1ℎ‖

2
0

)︁
≤ 𝐶*

(︁
(∆𝑡)2 + ℎ2ℓ

)︁
.

Concerning the term ⟨𝑅𝑛
𝐶1ℎ,𝑣ℎ⟩, by (3.15), similar to the previous theorem, we can deduce
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⟨𝑅𝑛
𝐶1ℎ,𝑣ℎ⟩ ≤ 𝐶*

(︁√
∆𝑡‖𝜕𝑡𝑢‖𝐿2(𝑡𝑛−1,𝑡𝑛;𝐿2(Ω)) + 𝐶𝑒ℎ

ℓ+1
⃦⃦
𝑢𝑛−1

⃦⃦
1+ℓ,2

+ 𝐶𝑒ℎ
ℓ+1‖𝑢𝑛‖1+ℓ,2 + ‖𝑒𝑛

1ℎ‖0 +
⃦⃦
𝑒𝑛−1
1ℎ

⃦⃦
0

)︁
‖𝑣ℎ‖1,2 +𝒪1

(︀
𝑒𝑛−1
1ℎ , 𝑒𝑛

1ℎ,𝑣ℎ

)︀
.

A combination of the inverse inequality, Poincaré type inequality and (5.25) yields⃦⃦
𝑒𝑛−1
1ℎ

⃦⃦
0,3
≤ 𝐶 min

{︁
ℎ−1/2

⃦⃦
𝑒𝑛−1
1ℎ

⃦⃦
0
,
⃦⃦
∇𝑒𝑛−1

1ℎ

⃦⃦
0

}︁
≤ 𝐶*min

{︁
ℎ−1/2

(︀
∆𝑡+ ℎℓ

)︀
, (∆𝑡)−1/2(︀∆𝑡+ ℎℓ

)︀}︁
≤ 𝐶*,

which implies that

|𝒪1

(︀
𝑒𝑛−1
1ℎ , 𝑒𝑛

1ℎ,𝑣ℎ

)︀
| ≤ 𝐶*‖∇𝑒𝑛

1ℎ‖0‖𝑣ℎ‖0,6 + 𝐶*‖∇𝑣ℎ‖0‖𝑒
𝑛
1ℎ‖0,6.

Hence it holds that

‖𝑅𝑛
𝐶1ℎ‖(𝑉 𝑘

ℎ )′ ≤ 𝐶*
(︁√

∆𝑡‖𝜕𝑡𝑢‖𝐿2(𝑡𝑛−1,𝑡𝑛;𝐿2(Ω)) + 𝐶𝑒ℎ
ℓ+1
⃦⃦
𝑢𝑛−1

⃦⃦
1+ℓ,2

+ 𝐶𝑒ℎ
ℓ+1‖𝑢𝑛‖1+ℓ,2 + ‖𝑒𝑛

1ℎ‖0 +
⃦⃦
𝑒𝑛−1
1ℎ

⃦⃦
0

+ ‖∇𝑒𝑛
1ℎ‖0

)︁
.

In a similar way, we can prove

‖𝑅𝑛
𝐷1ℎ‖(𝑉 𝑘

ℎ )′ ≤ 𝐶*
{︁√

∆𝑡‖𝜕𝑡𝜃‖𝐿2(𝑡𝑛−1;𝑡𝑛;𝐻1(Ω)) + 𝐶𝑒ℎ
ℓ
⃦⃦
𝜃𝑛−1

⃦⃦
1+ℓ,2

+
⃦⃦
∇𝑒𝑛−1

3ℎ

⃦⃦
0

}︁
,

‖𝑅𝑛
𝐵ℎ‖(𝑉 𝑘

ℎ )′ ≤ 𝐶*
{︁√

∆𝑡‖𝜕𝑡𝜃‖𝐿2(𝑡𝑛−1;𝑡𝑛;𝐻1(Ω)) + 𝐶𝑒ℎ
ℓ
(︁
‖𝜃𝑛‖1+ℓ,2 +

⃦⃦
𝜃𝑛−1

⃦⃦
1+ℓ,2

)︁
+ ‖𝑒𝑛

3ℎ‖0 +
⃦⃦
𝑒𝑛−1
3ℎ

⃦⃦
0

}︁
,

and

‖𝑅𝑛
𝐴1ℎ‖(𝑉 𝑘

ℎ )′ ≤ 𝐶
(︁
𝐶𝑟

√
∆𝑡‖𝜕𝑡𝐵‖𝐿2(𝑡𝑛−1,𝑡𝑛;𝐿2(Ω)) + 𝐶𝑒𝐶𝑟ℎ

ℓ
⃦⃦
𝐵𝑛−1

⃦⃦
ℓ,2

+ 𝐶𝑟

⃦⃦
𝑒𝑛−1
4ℎ

⃦⃦
0

+ 𝐶𝑒𝐶𝑟ℎ
ℓ‖curl𝐵𝑛‖ℓ,2 + 𝐶𝑟‖curl 𝑒𝑛

4ℎ‖0 +
⃦⃦
𝑒𝑛−1
4ℎ × curl 𝑒𝑛

4ℎ

⃦⃦
0,6/5

)︁
.

To bound the last term in the last line, we continue to derive⃦⃦
𝑒𝑛−1
4ℎ × curl 𝑒𝑛

4ℎ

⃦⃦
0,6/5

=
⃦⃦[︀
𝑒𝑛−1
4ℎ − 𝑍

(︀
𝑒𝑛−1
4ℎ

)︀
+ 𝑍

(︀
𝑒𝑛−1
4ℎ

)︀]︀
× curl 𝑒𝑛

4ℎ

⃦⃦
0,6/5

≤
⃦⃦
𝑒𝑛−1
4ℎ − 𝑍

(︀
𝑒𝑛−1
4ℎ

)︀⃦⃦
0
‖curl 𝑒𝑛

4ℎ‖0,3 +
⃦⃦
𝑍
(︀
𝑒𝑛−1
4ℎ

)︀⃦⃦
0,3
‖curl 𝑒𝑛

4ℎ‖0
≤ 𝐶𝑖𝑛𝑣ℎ

𝑙
⃦⃦
curl 𝑒𝑛−1

4ℎ

⃦⃦
0
‖curl 𝑒𝑛

4ℎ‖0 +
⃦⃦
𝑍
(︀
𝑒𝑛−1
4ℎ

)︀⃦⃦
0,3+𝛿1

‖curl 𝑒𝑛
4ℎ‖0

≤ 𝐶𝑖𝑛𝑣ℎ
𝑙
⃦⃦
curl 𝑒𝑛−1

4ℎ

⃦⃦
0
‖curl 𝑒𝑛

4ℎ‖0 +
⃦⃦
curl 𝑒𝑛−1

4ℎ

⃦⃦
0
‖curl 𝑒𝑛

4ℎ‖0
≤ 𝐶

⃦⃦
curl 𝑒𝑛−1

4ℎ

⃦⃦
0
‖curl 𝑒𝑛

4ℎ‖0.

By virtue of (5.18), we have

‖𝑅𝑛
𝐿1ℎ‖(𝑉 𝑘

ℎ )′ ≤ 𝐶

{︂√
∆𝑡‖𝜕𝑡𝑡𝑢‖𝐿2(𝑡𝑛−1,𝑡𝑛;𝐿2(Ω)) + 𝐶𝑒

ℎℓ+1

∆𝑡

(︁
‖𝑢𝑛‖1+ℓ,2 +

⃦⃦
𝑢𝑛−1

⃦⃦
1+ℓ,2

)︁}︂
.

A combination of the above estimates, we deduce that

‖𝑒𝑛
2ℎ‖0 ≤ 𝐶*

{︁√
∆𝑡
[︁
‖𝜕𝑡𝑢‖𝐿2(𝑡𝑛−1,𝑡𝑛;𝐿2(Ω)) + ‖𝜕𝑡𝑡𝑢‖𝐿2(𝑡𝑛−1,𝑡𝑛;𝐿2(Ω)) + ‖𝜕𝑡𝜃‖𝐿2(𝑡𝑛−1;𝑡𝑛;𝐻1(Ω))

+ ‖𝜕𝑡𝐵‖𝐿2(𝑡𝑛−1,𝑡𝑛;𝐿2(Ω))

]︁
+ ℎℓ

[︁⃦⃦
𝑢𝑛−1

⃦⃦
1+ℓ,2

+ ‖𝑢𝑛‖1+ℓ,2 + ‖𝜃𝑛‖1+ℓ,2
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+
⃦⃦
𝜃𝑛−1

⃦⃦
1+ℓ,2

+
⃦⃦
𝐵𝑛−1

⃦⃦
ℓ,2

+ ‖curl𝐵𝑛‖ℓ,2

]︁
+
ℎℓ+1

∆𝑡

(︁
‖𝑢𝑛‖1+ℓ,2 +

⃦⃦
𝑢𝑛−1

⃦⃦
1+ℓ,2

)︁
+ ‖𝑒𝑛

1ℎ‖0 +
⃦⃦
𝑒𝑛−1
1ℎ

⃦⃦
0

+
⃦⃦
𝑒𝑛−1
3ℎ

⃦⃦
0

+ ‖∇𝑒𝑛
1ℎ‖0 +

⃦⃦
curl 𝑒𝑛−1

4ℎ

⃦⃦
0
‖curl 𝑒𝑛

4ℎ‖0 +
⃦⃦
∇𝑒𝑛−1

3ℎ

⃦⃦
0

+ ‖𝑒𝑛
3ℎ‖0 + ‖∇𝑒𝑛

3ℎ‖0 +
⃦⃦
𝑒𝑛−1
4ℎ

⃦⃦
0

+ ‖curl 𝑒𝑛
4ℎ‖0 +

1√
∆𝑡

(︁√
∆𝑡‖𝑑𝑡𝑒

𝑛
1ℎ‖0

)︁}︂
,

which, together with (5.25), we derive

∆𝑡
𝑚∑︁

𝑛=1

‖𝑒𝑛
2ℎ‖

2
0 ≤ 𝐶*

{︃
(∆𝑡)2 + ℎ2ℓ + (∆𝑡)−1∆𝑡

𝑚∑︁
𝑛=1

(︁
∆𝑡‖𝑑𝑡𝑒

𝑛
1ℎ‖

2
0

)︁
+ (∆𝑡)−1

[︁
(∆𝑡)2 + ℎ2ℓ

]︁ 𝑚∑︁
𝑛=1

∆𝑡‖curl 𝑒𝑛
4ℎ‖

2
0

}︃
≤ 𝐶*(∆𝑡)−1

(︁
(∆𝑡)2 + ℎ2ℓ

)︁
.

Then the proof can be completed by applying 𝑝𝑛 − 𝑝𝑛
ℎ = 𝑝𝑛 −𝒬ℎ𝑝

𝑛 − 𝑒𝑛
2ℎ and (5.3). �

6. Numerical experiments

In this section, we consider two numerical experiments to verify the convergence properties of the fully finite
element discretization for the MHD coupled thermal equation with temperature-dependent coefficients (1.1)–
(1.7). The parallel code is developed based on the finite element package-Parallel Hierarchical Grids (PHG), cf.
[56, 57]. The computations were (partly) done on the high performance computers of State Key Laboratory of
Scientific and Engineering Computing, Chinese Academy of Sciences.

The two examples are used to verify the optimal error estimates of the fully discrete finite element method
proposed in Section 3. In all examples, the domain under consideration is Ω = (0, 1)3 and the finite element
mesh is obtained by a uniform tetrahedral partition. We employ the continuous 𝑃2 finite element for discretizing
the velocity 𝑢 and the temperature 𝜃, the continuous 𝑃1 element for discretizing the pressure 𝑝, and the second
order edge element method for discretizing magnetic induction 𝐵.

Example 6.1. This example is to show the temporal error of the Euler semi-implicit scheme, when ∆𝑡 → 0.
Setting the parameters 𝜈(𝜃) = 1, 𝜎(𝜃) = 1, 𝜅(𝜃) = 𝜃, 𝜇 = 1 and 𝛽(𝜃) = (0, 0, 1), the time interval [0, 1]. The
analytic solution is chosen as

𝑢 =
(︀
𝑦𝑒−𝑡, 𝑧 cos(𝑡), 𝑥

)︀
, 𝑝 = 𝑥− 𝑦, 𝐵 =

(︀
𝑦𝑒−𝑡, 0, 0

)︀
, 𝜃 = 𝑦𝑒−𝑡.

Since the exact solution is linear in spatial variables, the major error comes from the discretization of the time
variable. We fix a tetrahedral mesh with ℎ0 = 0.433, the terminal time 𝑇 = 1, and test the convergence rate
at each time step. We list the discretization error for all unknowns at the last moment 𝑇 = 1 in Table 1, from
which it shows perfectly that the temporal convergence rate of the Euler discrete scheme is first-order.

Example 6.2. This example is to test the convergence rate for our numerical scheme when both the timestep
and the meshwidth are refined at the same time. Setting the parameters 𝜈(𝜃) = 𝜃, 𝜎(𝜃) = 1, 𝜅(𝜃) = 𝜃, 𝜇 = 1 and
𝛽(𝜃) = (0, 0,−1). The initial mesh ℎ0 = 0.866 and the time interval is [0, 1]. The analytic solution is chosen as

𝑢 = (sin(𝑦) sin(𝑡), 0, 0), 𝑝 = 0, 𝐵 = (0, sin(𝑥) sin(𝑡), 0), 𝜃 = 1 + sin(𝑦) sin(𝑡).

To test the validity of Theorem 5.6, the following error bounds are denoted by

𝐸(𝑢) :=

(︃
∆𝑡

𝑚∑︁
𝑛=1

‖∇(𝑢𝑛 − 𝑢𝑛
ℎ)‖20

)︃1/2

, 𝐸(𝜃) :=

(︃
∆𝑡

𝑚∑︁
𝑛=1

‖∇(𝜃𝑛 − 𝜃𝑛
ℎ)‖20

)︃1/2

,
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Table 1. The convergence rate of Euler scheme at terminal time 𝑇 = 1 (Example 6.1).

Δ𝑡
⃦⃦
𝑢(𝑇 )− 𝑢𝑁

ℎ

⃦⃦
0

Order
⃦⃦
𝑢(𝑇 )− 𝑢𝑁

ℎ

⃦⃦
1,2

Order
⃦⃦
𝑝(𝑇 )− 𝑝𝑁

ℎ

⃦⃦
0

Order

0.1000 7.167e-05 – 6.332e-04 – 8.947e-03 –
0.0500 3.612e-05 0.9884 3.189e-04 0.9898 4.374e-03 1.0323
0.0250 1.816e-05 0.9922 1.606e-04 0.9896 2.157e-03 1.0198
0.0125 9.179e-06 0.9843 8.230e-05 0.9644 1.069e-03 1.0130

Δ𝑡
⃦⃦
𝐵(𝑇 )−𝐵𝑁

ℎ

⃦⃦
0

Order
⃦⃦
𝐵(𝑇 )−𝐵𝑁

ℎ

⃦⃦
𝐻(curl;Ω)

Order

0.1000 8.568e-04 – 4.181e-03 –
0.0500 4.181e-04 1.0351 2.039e-03 1.0357
0.0250 2.065e-04 1.0175 1.007e-03 1.0178
0.0125 1.026e-04 1.0087 5.005e-04 1.0089

Δ𝑡
⃦⃦
𝜃(𝑇 )− 𝜃𝑁

ℎ

⃦⃦
0

Order
⃦⃦
𝜃(𝑇 )− 𝜃𝑁

ℎ

⃦⃦
1,2

Order

0.1000 1.338e-03 – 1.371e-02 –
0.0500 7.032e-04 0.9278 7.118e-03 0.9460
0.0250 3.609e-04 0.9623 3.629e-03 0.9721
0.0125 1.826e-04 0.9830 1.831e-03 0.9871

Table 2. The convergence rate of Euler scheme at terminal time 𝑇 = 1 (Example 6.2).

(Δ𝑡, ℎ) 𝐸(𝑢) Order 𝐸(𝐵) Order 𝐸(𝜃) Order
⃦⃦
𝑝(𝑇 )− 𝑝𝑁

ℎ

⃦⃦
0

Order

(Δ𝑡0, ℎ0) 5.827e-03 – 9.387e-03 – 3.749e-02 – 3.883e-03 –
(Δ𝑡0/4, ℎ0/2) 1.148e-03 2.3437 2.560e-03 1.8746 7.187e-03 2.3831 1.014e-03 1.9371
(Δ𝑡0/16, ℎ0/4) 2.636e-04 2.1226 6.528e-04 1.9715 1.662e-03 2.1125 2.418e-04 2.0680
(Δ𝑡0/64, ℎ0/8) 6.400e-05 2.0422 1.627e-04 2.0042 4.062e-04 2.0327 6.316e-05 1.9368

(Δ𝑡, ℎ)
⃦⃦
𝑢(𝑇 )− 𝑢𝑁

ℎ

⃦⃦
0

Order
⃦⃦
𝐵(𝑇 )−𝐵𝑁

ℎ

⃦⃦
0

Order
⃦⃦
𝜃(𝑇 )− 𝜃𝑁

ℎ

⃦⃦
0

Order

(Δ𝑡0, ℎ0) 4.979e-04 – 3.175e-03 – 9.892e-04 –
(Δ𝑡0/4, ℎ0/2) 6.824e-05 2.8671 1.075e-03 1.5626 3.233e-04 1.6136
(Δ𝑡0/16, ℎ0/4) 1.326e-05 2.3641 3.439e-04 1.6439 1.170e-04 1.4661
(Δ𝑡0/64, ℎ0/8) 4.071e-06 1.7031 9.665e-05 1.8311 3.628e-05 1.6893

𝐸(𝐵) :=

(︃
∆𝑡

𝑚∑︁
𝑛=1

‖curl (𝐵𝑛 −𝐵𝑛
ℎ )‖20

)︃1/2

.

Setting ∆𝑡0 = ℎ2
0, Table 2 shows that the convergence rate for the backward Euler scheme at the terminal

time. The initial conditions, boundary conditions and source terms are determined by the analytical solution.
Both the timestep and the meshwidth are refined at the same time such that ∆𝑡 = 𝒪

(︀
ℎ2
)︀
. The corresponding

convergent results are displayed in Table 2 and an 𝒪
(︀
ℎ2
)︀

convergence of the proposed numerical scheme can be
observed, which agrees with the theoretical results developed in this paper.

7. Summary

We have studied a fully discrete finite element scheme for the 3D thermally coupled incompressible MHD
problems with variable coefficients problems. The proposed scheme has the nice features that it only needs to
solve one linear system at each time step and the magnetic induction is approximated by 𝐻(curl)-conforming
Nédélec edge element, which make it quite attractive to solve these highly nonlinear MHD models with possibly
non-smooth magnetic induction solution. We prove that the fully discrete solution converges to a weak solution
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of the continuous problem as both meshwidth and timestep size tend to zero, and it is unique under a further
smooth assumption. Thus we have given a numerical verification of the existence of weak solution to this model,
which is still missing in the literature. Under a quite low regularity assumption for the exact solution, we
rigorously establish the error estimates for the velocity, temperature and magnetic induction unconditionally
in the sense that the time step is restricted but is independent of the spacial mesh size. Whether the plain
convergence or error estimate, the technique and results of this paper have some improvements on that of
relevant papers.
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