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CONVERGENCE ANALYSIS OF A FULLY DISCRETE FINITE ELEMENT
METHOD FOR THERMALLY COUPLED INCOMPRESSIBLE MHD PROBLEMS
WITH TEMPERATURE-DEPENDENT COEFFICIENTS

QIANQIAN DING!, XTAONIAN LONG? AND SHIPENG MAO3*

Abstract. In this paper, we study a fully discrete finite element scheme of thermally coupled in-
compressible magnetohydrodynamic with temperature-dependent coefficients in Lipschitz domain. The
variable coefficients in the MHD system and possible nonconvex domain may cause nonsmooth solu-
tions. We propose a fully discrete Euler semi-implicit scheme with the magnetic equation approximated
by Nédélec edge elements to capture the physical solutions. The fully discrete scheme only needs to
solve one linear system at each time step and is unconditionally stable. Utilizing the stability of the
numerical scheme and the compactness method, the existence of weak solution to the thermally cou-
pled MHD model in three dimensions is established. Furthermore, the uniqueness of weak solution and
the convergence of the proposed numerical method are also rigorously derived. Under the hypothesis
of a low regularity for the exact solution, we rigorously establish the error estimates for the velocity,
temperature and magnetic induction unconditionally in the sense that the time step is independent of
the spacial mesh size.

Mathematics Subject Classification. 65M60, 656M15, 7T6WO05.

Received August 4, 2021. Accepted March 12, 2022.

1. INTRODUCTION

Magnetohydrodynamic (MHD) is the theory of macroscopic interaction of conductive fluid and electromag-
netic induction. It consists of a viscous, incompressible fluid which has the property of electric current conduction
and interacting with electromagnetic inductions. There are lots of applications in astronomy and geophysics as
well as engineering problems, such as metallurgical engineering, electromagnetic pumping, stirring of liquid
metals, liquid metal cooling of nuclear reactors, refer to [16,21,36,42], and the references therein. However, in
many cases, the effect of temperature can not be ignored. Especially, the change of temperature will cause the
change of fluid coeflicients [52,54] as well as the magnetic field coefficients [10,34].
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In this work, we consider the following transient incompressible Navier—Stokes equations and Maxwell’s
equations coupled to the heat equation with temperature-dependent coefficients in R3 [3,10,16,42] as follows,

u, — div [v(0)Vu] + (u-V)u+Vp+puB x curl B—-3(0)0 = f  in Qr, (1.1)
B; + curl[o(f)curl B] — curl (u x B) =g in Qr, (1.2)
0y —div [(0)VO] +u - VO =1 in Qr, (1.3)
divu =0 in Qr, (1.4)
divB =0 in Qr, (1.5)

where Qr = Q x (0,7), T > 0 is a given finite final time, Q is a bounded, simply-connected and Lipschitz
polyhedral domain. w denotes the velocity field, p the pressure, B the magnetic induction, 6 the temperature,
v the kinematic viscosity, o the electric conductivity, ;1 the magnetic permeability, x the thermal conductivity,
1 a given heat source, 3 the thermal expansion coefficient, f a forcing term for the magnetic induction, g the
known applied current with divg = 0. The system is considered in conjunction with the following initial values
and boundary conditions,

w(z,0) =u’, B(z,0)=B°% 6(z,0)=206° Vo € Q, (1.6)

u=up, 0=0p, Bxn=0 on St, (1.7)

where Sy = 9Q x (0,T), n is the outer unit normal of 9 and the initial magnetic induction B satisfies
div BY = 0. Our results in this paper are also valid for another frequently used set of boundary conditions of
the magnetic induction B for (1.1)—(1.5) given by

B-n=0, nxcurlB=0 on St.
The velocity w, pressure p, temperature 6 and magnetic induction B
(u,p,0,B): Qr - R* x R x R x R?
are unknown functions. The following functions

(f,4,9): Qr - R* x Rx R’

are given functions. Those functions v, 3, ¢ and &
(1,8,0,6): Qr x R — RT x R® x RT x RT

are continuously differentiable functions in (z,t,0).

In the last several decades, various finite element methods for MHD problems regardless of heat effects have
been extensively developed in the literature. Let us review the references and try to summarize them, which
is unlikely to be complete and accurate, of course. We can mainly classify them into two formulations based
on the chosen discrete finite element spaces. The first formulation was proposed by Gunzburger et al. [26]
and they made use of standard Lagrange H' finite element spaces to approximate both the hydrodynamic
unknowns and the magnetic induction. It is therefore easy to implement and has been extensively employed in
computational MHD, see e.g. [20,25,35,55] for stationary models and [4,17,27,58] for time-dependent models.
However, it is known that the nodal finite element method discretizations of the magnetic operator cannot be
correctly approximated when the magnetic induction components may have regularity below H*(2), cf. [14,30],
which may be frequently encountered in non-convex polyhedral or with a non C''! boundary. A possible way to
overcome these difficulties was proposed in [48] by virtue of Nédélec finite elements for the magnetic induction
B, which leads to another natural formulation and is valid for non-smooth magnetic solution. This variational
formulation seems to be attractive and has been employed in [19,24,45,50] and the references therein. We also
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mention the recent papers [31,32], where different formulations were proposed to maintain the divergence free
magnetic solutions in the numerical schemes.

When buoyancy effects cannot be neglected in the momentum equation due to temperature differences in the
conductive flow, the incompressible MHD is usually coupled to the heat equation by the well-known Boussinesq
approximation. For instance, as a pioneer work, Lagrange continuous finite element methods for the station-
ary heat coupled MHD equations with constant coefficients had been studied in [39,40]. On the other hand,
in many practical applications of MHD problems, the change of temperature will affect the coefficients in
the fluid field as well as the electromagnetic filed. It is of great significance to study reliable finite element
methods for the coupled MHD system with the coefficients depend on the temperature. The coupled fluid
systems or electromagnetic models with temperature-dependent coefficients are faced with nonlinear PDEs
with great mathematical challenges, which has attracted attention by both physicists and mathematicians, see
e.g. [10,33,43,54] and the references therein. As far as we know, the first work to study error estimates of finite
element methods for the thermally coupled MHD equations with temperature-dependent coefficients is given
in [47], where a fully discrete Crank—Nicolson scheme is proposed and investigated. More recently, the fully
discrete Euler semi-implicit scheme has been studied in [46]. The proposed schemes in the above two papers
are based on the magnetic induction approximated by Lagrange H! finite element method and all the error
estimates are conducted under sufficiently smooth assumption on the exact solutions. However, in view of the
highly nonlinearity brought by the temperature-dependent coeflicients and the Lorentz terms in the magnetic
equation, as well as a possible non-convex domain or a non C'! boundary, we can not expect to a smooth
solution for the magnetic induction belong to H' () in such situations (see [12,13]). Thus H (curl)-conforming
Nédélec edge element is a natural choice to approximate the magnetic equation in order to capture the physical
solutions. Furthermore, Nédélec finite elements seems to be a better choice since it can treat the boundary
conditions of magnetic induction easier than Lagrange finite element discretization.

In this work, we will give a rigorous convergence analysis and error estimates of a fully discrete finite ele-
ment method for the MHD system described by (1.1)—(1.7) based on the magnetic induction approximated by
H (curl)-conforming Nédélec edge element. The time discretization is based on a backward Euler semi-implicit
scheme and the stable Taylor-Hood type finite elements are used to approximate the fluid field and Lagrange
finite element to approximate the heat equation. In the first half of the paper, we show that the numerical
solution converges to a weak solution of the continuous system without any further regularity assumption as
both meshwidth and timestep tend to zero. In fact, the first convergence result of finite element discretization
for MHD is attributed to [45], where some weak and strong convergence of the subsequence of discrete velocity
and magnetic field are proved by the standard compact argument. In this paper, we will extend the results to
MHD models with temperature-dependent coefficients. Strong convergence of all the discrete fields (velocity,
magnetic induction and heat) is proved rigorously. So the result of this paper is also an improvement of [31],
which has not proved any strong convergence of the discrete fields. Furthermore, we show the uniqueness of
weak solution for incompressible MHD models with temperature-dependent coefficients provided it satisfies a
smoother condition, which seems to be new in the literature. Then we can prove that the whole sequence of
the discrete solution converges (strongly) to the unique weak solution. In the second half of the paper, under
a weak regularity hypothesis on the exact solution, a rigorous error estimate of the velocity, temperature and
magnetic induction are established unconditionally in the sense that the timestep is independent on the spacial
meshwidth. In this paper, we will confront with two major difficulties in the analysis. The first difficulty arises
from the nonlinearity in the model caused by variable temperature-dependent coefficients, and the other is the
very low regularity of the exact solution caused by the nonlinearity structure or non-convex domain. In order
to deal with these difficult problems, some technical tools need to be developed in this paper.

A brief overview of this paper is provided as follows. In the next section, we describe the notations and some
preliminary knowledge to be used throughout the paper. In Section 3, we propose a fully finite element discrete
method with a backward Euler semi-implicit scheme for the system (1.1)—(1.7), and some basic lemmas and
theorems are recalled. In Section 4, the well-posedness and stability of the fully discrete scheme are presented.
We show that the fully discrete solution converges to a weak solution of the continuous problem as At and h
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tend to zero. The uniqueness of the continuous problem is also established under a slight smoother assumption
on the weak solution. In Section 5, we prove error estimates for all variables under a weak regularity assumption.
In Section 6, we present two numerical examples to illustrate our theoretical results. Finally, we close the paper
with some concluding remarks in Section 7.

2. FUNCTIONAL SETTING FOR THE MAGNETO-HEAT COUPLING MODEL

For mathematical setting of problem (1.1)—(1.5) with the initial values and boundary conditions (1.6)—(1.7),
we first introduce some notations that will be used throughout the paper. For all m € N, 1 < p < oo, let
W™P(Q) denote the standard Sobolev space and it is written as H™(€2) when p = 2. The norm in WP (Q) is
defined by [|-[|,,, , such that

1/p

1/p
oy = | 0 1D%0E, | with ol = ([ plrae) <0<,
o] <m @
[0]],00 = max [ D] o with [[v]lg o, = esssup[v(z)],
la]<m zEQ
where
Do olel
0z 0xg?0x g’

for the multi-index o = (a1, 2,a3) and |of = a1 + ag + ag, with a;,as, a3 > 0. For the function spaces

L?(0,T;X), 1 < p < 00, the norms are denoted as

/p
||U||Lp 0,T:X) </ [|v(t) Hp dt) for 1 < p < +oo,
V]l 1o 0,7,y = esssupllv(t)] y,
0<t<T

where X is a real Banach space with the norm ||-||y. The inner product will be denoted by (-,-), that is
(¢,9) = [ ¢t da, the norm in L*(Q) defined by ||-[|5. (-,-) is for the dual product between a Banach space
and the dual space. Vector-valued quantities will be denoted in boldface notations, such as u = (uq, ug, us) and

L3(Q) = (LQ(Q))B. We use C and ¢, with or without subscripts, bars, tildes or hats, to denote generic positive
constants independent of the discretization parameters, which may take different values at different places.
We introduce the following classical Sobolev spaces:

X =H'Y(Q), on{veﬂg( ), dive =0}, Y =H'(Q), Y,=H)Q),

M = L*(Q), {qu / dx—O}

={C e L*(Q),curlC € L*(Q)}, W, ={C € W, C x nlspg = 0}.
Here and what in follows, we define the following norm
2 2\ /2
IClw = 1] sz(eurey = (ICIG + lleurlClF) © ¥Cew.

We also need to define the following Sobolev spaces

H(div;Q) = {b e L*(Q),divb e L*()}, H(div’;Q) = {b € H(div;Q),divd = 0}
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and H(2) = Wy N H(div; ), which is equipped with the following norm

) Lo\ 1/2
[0llsgey = (lleurtw]§ + divv?) Vo € H(Q).
We recall the following embedding result (see e.g., Prop. 3.7 of [2] or [23]) which is valid for a Lipschitz
polyhedron.
Lemma 2.1. There ezists a parameter §; = d1(Q2) > 0 such that the embedding H(Q) — L3+°1(Q) is compact.

It is well known that the following Poincaré type and embedding inequalities are valid in bounded polyhedral
domains (see Chapter 3 of [41] for more details),

[vllg.m < crllVoll, m € [1,6] Vo e X, (2.1)

lv]ly < czflcurly||, Vve Wyn H(divo; Q), (2.2)
[vllo,00 < esllvlliyr2 vi>1/2, (2.3)
[0l 5 < callvllyyyo  lleurlolly g < cslleurlof; , Vi>1/2. (2.4)

For every w € H2(99), let Yy(w) be an affine space of Y defined by
Yo(w) ={£ €Y;{— 0, € Yo},

where 6, € Y is an extension of w. Similarly, let V = X, for every w € H? (09), let V(w) be an affine space
of X defined by

Vw)={veX;v—u, €V},

where u,, € X is an extension of w.

We denote by () the space of functions m times continuously differentiable in €. The space €™ (ﬁ)
consists of functions in € () bounded, and uniformly continuous in Q with derivatives up to the m th order.
The space €™ (ﬁ) consists of functions in € (ﬁ) that are Lipschitz continuous in Q with derivatives up to
the mth order, refer to [23].

In order to describe our scheme concisely, for all (u,v,w) € (X x X x X), (0,¢) € (Y xY), we denote the
trilinear terms as

01 (u, v, w) = ;{/Q[(u~V)v]de;—/Q[(u~V)w]vda:},
Os(u,0, ) = ;{/Q(u-VG)godx—/Q(u-Vga)de}.

Now, we introduce the definition of weak solution to the heat coupled MHD system (1.1)—(1.7).
Definition 2.2. Suppose that
fel?(0,T;L*(Q), e lL?(0,T;L%Q), gelL?(0,T;L*Q)), B’eW,
up € H' (o,T;H%(aQ)), u’ € V(up(-,0)), 0pec H (o,T;H%(aQ)), 6° € Yo(0p(-,0)).
We say that (u,p, 0, B) is the weak solution of (1.1)—(1.7), if there holds (i)

u e L>(0,T;L*(Q)) N L*(0,T;V(up)), 0€ L>(0,T;L*(Q)) NL*(0,T;Yo(6p)),
B € L>(0,T; L*(Q)) N L*(0,T; Wy), pe L™(0,T;Q).
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(ii) For any (v,q,p,C) € (Xo x Q x Yy x Wy), the weak formulation holds

(ug,v) + A1 (v(0),u,v) + O1(u,u,v) + u(B x curl B,v) + b(v,p) — b(u,q) — (3(0)0,v) = (f,v), (2.5)
(B4, C) + (o(f)curl B,curl C) — (u x B,curlC) = (g,C), .
<0t7 > +~A2("€(9)79790) + OQ(U,Q,S@) = (1#7@)» (2~7)

where

A1 (v(0), u,v) :/V(H)Vu:Vvd:v, b('u,q):—/qdivvd:lc7
Q

Q

Aa(k(0),0, ) :AR(H)V9~V@dx.

(iii) For all ¢ € [0, T, there holds
[t + BN + 0lete. 2] + / ve@rval + u|va@ieu B[] + | vawvs]| |as
= IO+l BO)Z + 100)12] + / (o) + lg, B) + (,6) + (B(6)6, w)dr

l\D\H

Remark 2.3. Since V¢ € W, for all ¢ € H}(Q), by choosing C = V¢ in (2.6), we can deduce (By, V) = 0.
Due to the orthogonal decomposition L?(Q) = H (div’;Q) & VH}(), see [18,41], it can be checked that
div B, = 0, together with div B® = 0, then we are able to obtain that div B(t) = 0, for all ¢ € (0, T].

Remark 2.4. Under the external forces (f,u), (g, B) and (¢, 6), the total energy includes the fluid kinetic
energy %Hu(t)Hg, the magnetic energy %MHB(t)Hg and thermal energy %HG(t)Hg, while the dissipation of energy

2 2 2
contains the friction losses ‘ , the Ohmic losses /LH \/a(ﬁ)curlBH and heat losses H\/R(H)VHH .
0 0 0

3. A FULLY DISCRETE FINITE ELEMENT METHOD BASED ON EULER SCHEME

In this section, we introduce a mixed finite element method which describes a spatial discretization of the
problem (2.5)—(2.7) based on the backward Euler scheme.

Let © be a polyhedral domain, and the domain is partitioned into a mesh 75, where h is the diameter of
the element. Each tetrahedron K is supposed to be the image of a reference tetrahedron K under an affine
map Fx. The family of meshes {7}, is assumed to be regular and quasi-uniform. Let Py (K) be the space of
polynomials of total degree at most £ > 0 on K and ﬁk( K) the space of homogeneous polynomials k on K. We
first introduce the generalized Taylor-Hood element (X }f7 k= 1) with £ > 2, where X ;’f is the k order vectorial
Lagrange finite element subspace of X, Qﬁ Lis the k — 1 order scalar Lagrange finite element subspace of Q.
And th is the k order scalar Lagrange finite element subspace of Y, refer to [6,23]. For the case k = 1, we use
the well-known stable mini-elements to approximate velocity and pressure, cf. [6,8,23].

The space Dy(K) denotes the polynomials ¢ in Py, (K) that satisfy g(z) - @ =0 on K. For 1 < k, we define
the space

Ni(K) = P,_1(K) & Di(K).

To approximate the magnetic induction, we use Nédélec H (curl)-conforming finite element space (see [41,44]),
which is defined by

W) ={CecW,, Clxk € Np(K) VK €T,}.
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Note that the above definition is the first family H (curl)-conforming discrete space. We can also employ the
second family finite element spaces with Ny (K) is chosen by Py (K).

Setting S), = {C € H'(Q) N LE(Q), C € Py(K), VK € T, }, we introduce the discretely solenoidal function
space

Wh, = {CeW}.(C,VS) =0 VSeSs,).

Furthermore, the space Wokh is known to satisfy the following discrete Poincaré-Friedrichs inequality (see [48]
or Thm. 4.7 of [30]),

llenlly < Cillcurley]|, Vey € Wokh, (3.1)

with a constant C, > 0 independent of the mesh-size h.
The link between the spaces W, and W(2) is accomplished by the Hodge mapping Z: H (curl; Q) — W(Q),
refer to [30], where W(Q2) = {C € H(Q2), divC =0 in Q} such that
curl Z(C) = curlC vCeW.

Furthermore, the Hodge mapping satisfies the following approximation property, there exists | = [(2) > 0,
ICL = Z(Ch)ly < ch*|curl Cyll, ¥ Ch € W, (3.2)
We use fol to approximate the pressure p, and use a finite element affine space
Yo (w) = {& € V5 & — mib, € Y4}

to find the temperature 6, where 7, : & (Y7 th) is the usual Lagrange interpolation operator and Yokh C Yy Let
VikE = XFN HL(), and we use the space

th('w) = {’I)h S X}f; vy, — Hpuy, € ‘/hk},

where II, = 73, to find the velocity u. Further, the discrete kernel space of the divergence operator can be
defined by

Xk = {vh € X\ b(vn,qn) =0 Vg € Q’;fl}.
We recall the following inverse estimate from Theorem 3.2.6 of [11]. On a quasi-uniform mesh there holds
||vhHm,q S Cinvhl_m+3(1/q_1/p)||Uh||z,p V’Uh S Xf]f7 (33)

where Cj,, > 0 is a generic constant independent of the mesh-size h, + and m are two real numbers with
0<21<m <1, pand q are two integers with 1 <p < g < 0.
From the Fortin criterion, the following discrete inf-sup condition (see Chap. 2 of [8] or [30]) is established,

di
f qp @ divon) o g (3.4)
0#£an€Q) " 0£v, €V ||Uh||1,2||Qh||0

where 3* is a generic positive constant depending on the domain 2.

Let N be a positive integer and 0 =ty < t; < ... < ty = T be a uniform partition of [0,7] with time step
At = T/N and t, = nAt,0 < n < N. For any function w(t), we write w" as the value of w at t = nAt. The
backward difference form is dyw™ = (w™ — w" ') /At for any sequence {w™}. We set v"(0) = v(z,t,,0), and
o™(0), k" (0) and B"(0) are defined similarly.
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Starting with the initial datum 6) € Y£(0p), BY € W} and u) € VF(up), with & >
1, then our aim is to find {uh,ph,H}{,B}l")th"'(uD) X Qy < Y& (0p) x WEin=1,...,N}, for any
{(vh,qh,goh,Ch) € ViEx Q7! x Y x W} such that

(deuy, vn) + AL (" (0370), upt on) + O (up ™ up, on) — (87 (6771)65 vn)
+u(Bpr~! x curl B, vy,) + b(vp, p}) = (7, vn),

b(uy,, qn) =0,
(d: B}, Cy) + (0™ (07" )curl By, curl Cp,) — (u} x B!, curl Cp,) = (g", Ch),

(dt927 (Ph) + -'42 (Hn (9}7_1)79}?5 Sah) + 02 (uz_la 027 CPh) = (q/)n7 (ph)v

with the initial values satisfy u) = Py,u®, BY = P1;,B° and 0 = P5,0°, where Py,u® € V¥ (up), P, B° € W}
and Pyp00 € YOkh(QD) are corresponding L? projection or interpolation functions which satisfy the following
estimates [1,11,28]:

lu® = Pora®]y < OB

16° — Poy6®

|B® = P1,BY||, < C'|| B°

OH@+1,2’ Hm’

< Chl+1H00 (39)

||o ||e+1,27

with ¢ = min{k, s}, where k > 1 is the order index of the finite element spaces, s > 1/2 is the index of regularity
of the initial values.

Remark 3.1. The coefficients depend on the temperature will increase the nonlinearity of the model and make
the problem more intricate. The existence of solution to problem (3.5)—(3.8) will be proved in next section.
Furthermore, we will prove that the discrete solution converges to a weak solution of the continuous model as
At and h tend to zero.

Remark 3.2. When  is a non-convex polyhedron, the difficulty comes from the fact that the magnetic induc-
tion is in general not in H'(Q) (see Rem. 3.3.1 of [21] for an explanation). The approximation of the magnetic
induction with classical H'-conforming Lagrange finite elements can not capture the singularities and may
converge to a wrong solution, refer to [14,15,21], etc. This is the reason why we choose Nédélec edge element
to approximate the magnetic induction in (3.7).

Remark 3.3. In fact, the discrete solution for the magnetic induction still satisfies the weakly divergence
free property. For any s, € S, by choosing Cj, = Vs, in (3.7), we can obtain (d,B]!,Vs;,) = 0, namely,
((Bp — B} ')/At,Vsy) = 0. Due to (BY),Vsy) = 0, it implies that (B}, Vsy,) = 0, where n = 0,1,...,N.
Thus there is no need to add a Lagrange multiplier in the magnetic equation as in [45].

The following result gives a maximum principle for strong solution of (1.1)—(1.5). The detailed proof can
follow the same line as Lemma 3.5 of [38] or Lemma 3.1 of [37].

Lemma 3.4. Let (u, B,0) be a strong solution of (1.1)-(1.5) for t € (0,T]. Then

O(x,t) < et/2H¢”L2(0,t;L2(Q)) + maX{SUP 0°, sup 9D}7 V(z,t) € Qr. (3.10)
Q (0,T]x 00

By the maximum principle (3.10), we know that temperature ¢ of (1.1)-(1.5) is uniformly bounded. Therefore,
we can assume the given functions v, k, o € ‘50’1(9 x [0,T] x R; R"’) and 8 € %0’1(9 x [0,T] x R; R3) so as to
satisfy
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0<o0g<o(zte) <oy, 0 < ko < k(z,t,e) < K

1B(x,t,e)| < B, 0 <y <v(z,te)<u for alle € R, (3.11)

with positive constants oq, 01, Ko, K1, Vo, V1 and B;.

We now show that the solution of (3.5)—(3.8) enjoys a stability property, which holds regardless of the sizes
of h and At, and will play an important role in proving the convergence and well-posedness of the fully discrete
solution.

Lemma 3.5. Under the condition (3.11), for all1 <m < N, the numerical solution (u},py, 0%, B}) of (3.5)-
(3.8) satisfies the following stability estimate,

i+ e B 15 + 152105+ (1105 = 57+ i = w13 + ]| B3~ B 2)
n=1

m 2 2
+AtZ<H\/V"(Qz_1)VuZ —|—uH\/a"(92_1)curlB,’: + H\/fi"(ﬁz_l)VGZ
n=1 0 0

where C is a generic constant depending on f, g, ¥, u, u°, B°, 0 o,v, 3, &

2
<C,
0

Proof. Choosing ¢, = 207" in (3.8) and using 2(a — b, a) = a® — b> + (a — b)*, there holds

2
lop 12 = o712 + jog — 0|12 + 2AtH\/n” G
0

By virtue of the Young inequality and (2.1), summing up from n =1 to m, we deduce

— DA, 07).

2

H%”IIﬁZH@h on- 1||0 n(gr=hyvey

0 (3.12)

2 — n
< |65l + Atrg el an \\3 < Coo-
Taking v, = 2u} in (3.5), ¢ = —2p} in (3.6), C,, = 2uB? € W, in (3.7) and adding the three equations,
there holds

a2 = a2+ g — Y2+ BRI — ]| B

2
LR R T |

=2At(B™ (07 1) 0 upt) + 20t (f7, upl) + 2ulAt(g”, By).
By virtue of Young inequality, (2.1), (3.1) and (3.12), we have

25" () )| < 20 U0 s 1R+ 3 | 6
< 2V610§||5n||<2,g(ng;R3)Coo + QHWVU,
1 2
n ..n n n _ nn2 o an— "
2" u) + e B < 2 A+ g | ) v
0
2
+MU()_103|Q”||(2)+MHWCUI‘1B,’;
0

Inserting these inequalities into (3.13), and summing up from n = 1 to m, there holds

2

+ 2Atul[y/o™ (07 ") curl B! (3.13)

0
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m
lag? 15+ B35 + 32 (it = i~ [lo + wll B — B[

n=1
—|—Atz< —|—uH\/a" (67~ ")curl B!

<l 2+ B + 0o S0 (14 173 + 77

n=1

nl n
n (01 ) Vuy

) (3.14)

A combination of (3.12) and (3.14) , then we can obtain the desired conclusion. O

The following estimates for the trilinear term in Navier—Stokes equations can be referred to Lemma 4.5 of
[53].

Theorem 3.6. For i = 1,2, let u® be functions in L>(2) N WH3(Q), and ul, functions in XF. Then, for
veHLQ), u' € (L®(Q)NWH3(Q)), w' € X}, and (p,q) = (0,1) or (p,q) = (1,0), we have

|01 (ul,u2,v) - 01 (ull_”u%,’v){

< minf ol 2} 3 (ol + ) -
2
) Z(Hui _ ain + ||lat - w;’L||p + ||w}, — u@||p) |vll, + |01 (W), — up, w; — uj,v)|.
i=1
Moreover, if ﬁ)i — u% € Xy, then we readily see
|(91 ul u wh fui) Ol(u}”u%,'w% fu,zlﬂ
< fmin{ e =12} 3l ¢ i) -

2
Sl =@, + [l = i, + [l - wi], ) l|@? - ui],-
=1

4. WELL-POSEDNESS AND CONVERGENCE OF THE FULLY DISCRETE SOLUTION

In this section, we will prove the well-posedness of the numerical solution to the problem (3.5)—(3.8) by using
the Lax—Milgram theorem (see [22] for more details). Utilizing the stability of the numerical scheme and the
compactness method, the existence of weak solution to the thermally coupled MHD model in three dimensions
is established. Furthermore, the uniqueness of weak solution and the convergence of the proposed numerical
method are also derived.

We first prove the well-posedness result for the discrete solution in the following theorem.

Theorem 4.1. Under the condition of Lemma 8.5, then there exists a unique solution (u}, 0y, B}') to scheme

(3.5)-(3.8).
Proof. We divide this proof into two steps:

Step 1. For any ¢y, € Y, given 9271 and u2717 find 07 € Y (0p), we can rewrite (3.8) as

1 1
Kt(al?? @h) + A2 (K:n (0271)3 027 (Ph) + 02 (u2717 9;117 @h) = (Wla Qoh) + Kt (02717 Sph) (41)



CONVERGENCE OF FEM FOR THERMALLY COUPLED MHD 979

Let us define
1

G(ega Sah) = At

(0;;7 @h) + A2 (ﬁn (02_1) ’ 027 Qoh) + 02 (uz—l’ 0}?3 Qah) .
It is easy to verify that G(6}, ¢,) satisfies the ellipticity and boundedness. An application of the Lax-Milgram
theorem shows that problem (3.8) attains a unique solution 6.

Step 2. We prove the uniqueness of the solution of (3.5)—(3.7) based on a fixed 6}. According to (3.5)-(3.7),
the solution (u}, B) € (XF, x W) satisfy that for any (v, Cy) € (X§, x W), there holds

1
—(up,vp) + i(B}'LL7 Ch) + (1/" (Hzfl)VuZ, Vvh) + u(a" (QZfl)curl B}, curl Ch)

At At
+ 01 (up~uf,vp) + p(BE ! x curl By vy) — p(ujl x By ™', curl Cy,) (4.2)
n n (gn— n n 1 n— [ ———
= (f"+B" (6, "), vn) + p(g", Cr) + (Atuh 1,vh) + (EB’Z 1,Ch)~

Let U™ ! = (uz_l,Bﬁ_l), U" = (uy,B}}), ® = (vp,, Ch), and it is easy to see that

2

1 n M n n— n n— n

|||Un|||2:At||uh|§+m||3h|§+H\/ v (051 Vg, +NH\/Jn(9h !)curl By,
0

provides a norm on Xp, x W, . Define the left-hand side of (4.2) as I(U"_l, U”, ®), thus we can obtain

2
0

(U™ U ) = U,

We choose 63 > 0 such that 1/(3 + 1) +1/(6 — d2) = 1/2 and H'(Q) < L57%(Q), together with (3.2)
and (3.3), then we have the following estimate
,u|(B,’L’71 X curlB}f,vh)‘
=pl([Br~' = Z(By™Y)] x curl B}, vp,) + (Z(By™') x curl By, vy,)|
< CHH2|eurl By~ llewrl By g sllvnllos + Cll Z (B )lg 5100,
< Chl||eurl By | lcurl B o[ Vouly + C|lcurl By~ | [[curl BR|o[[Von o,

leurl By [o[lvnllg s,

where we have used ||Z(B271) < C’chrlZ(BZfl) = C’||curl B,TLL%HO according to Lemma 2.1.

o345, lo

Similarly, we have
p| (up x B! curl Ch)| < CthcurlB,’flHO||curIC’h||0||VuZHO + CchrlB,TflHochrlChHOHVuZHO.

This implies the continuity of I (U"_l, un, @), namely,

I(U U, )| < 0(1 4, , + (B 1)|}cur1B;;—1||0)||\U”||\|||<1>||\.

1
I 2
According to the Lax-Milgram theorem, we know that (3.5) and (3.7) admit a unique solution (uj,B}').
Combining Step 1 and Step 2, we have completed the proof of Theorem 4.1. (I

Next, we will present the convergence analysis for the fully discrete solution to problem (3.5)—(3.8). To
this end, we introduce some interpolated functions over the temporal variable, which will be used below. Let
upat(s,t), Onat(s,t), Brat(,t) be the piecewise linear continuous interpolation of the fully discrete solution
(up, 0y, By),n=1,2,...,N on (t,_1,1,), that is to say
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t—1t,_ tn — 1t  _
drat(,t) == TtlasZ('vt) + Tt(bh (1),
where ¢; = @7, ¢, = ¢}, with ¢ = u, 0, B.

B Let éhAt(Jf,t), uhAt(xat)v jahAt(mat)v BhAt(x7t)a ’ahAt(x7t)a éhAt(x7t)a EhAt(xat)7 fAt(xvt)a gAt('Tat)v
Yar(x,t), oac(z,t), Dac(z,t), Bac(z,t) and Ka¢(x,t) be the piecewise constant extensions of {67}, {u}}, {p}},

{B}}, {uzfl}, {9271}, {B}?*l}, {f™}, {g"}, {v"}, {o™}, {v"}, {B"} and {k"}, n =1,2,..., N, respectively,
namely, for all ¢ € (¢,,—1,tn],

Onat(1t) =0, @nae(,t) =up, Prac(ot) =p,  Bradlt) = By,

par(t) = u) ™, Opni(-t) = 077t Buai(,t) =Byl fa(t) = £,

Gac(t) =g"  Yarl-t) =9 Gait) = 0" Dar(t) =v",

Bat(t)=B", Fac(t)=r"
With the above notations, we will prove the following priori stability estimates without any restrictions on h
and At.

Lemma 4.2. For the sequences {(upat, Dhat, Brat, Onat)}, there exists a constant C independent of the mesh-
size h and the time-step At such that

H(uhAt) + vﬁhAtHLr(O T;(XNH+s(Q))") < Ca ||(BhAt)t H1+s(Q))) < 07
H(ahm) ||L4/3(0 Ty (YNHI*s(Q))) = <C,
with r = ﬁ} ¢ = rnin{l7 ( + l) 3(12_‘?51), 3(12_?_151), 2} and s > = , where 01 is defined in Lemma 2.1 and | is

defined in (3.2).
Proof. To validate the first assertion, we define the L2-orthogonal projection to V¥ via &2),. Setting % + % =1

and r’ = (, with ¢ = mln{l ( +l) (12%1), 3(12jsr1(§1), 2} for any v € L" (O,T;X ﬂHHs(Q)), by (3.5), we

have
((unat)y, Prv) + %[((ﬂhm -V)apae, Zrv) — ((pat - V) Prv, par)] + (Vonat, Prv)
+ <17At (éhAt)v'ahAhve@hv) + M(ma x curl Byag, Whv) - (BAt (éhAt)éhAt; gh'v> (4.3)
= (fAh e@h'l))-
By virtue of Lemma 3.5, the Cauchy—Schwarz inequality and the interpolation inequality

lnacllos < Cllanadlly I Vanaclly, (4.4)

thanks to v’ = %, which implies that 7/ > 4, we can derive that
1
/ 5[((ﬁhm -V)anat, Zrv) — ((dnat - V)@h'vvahAt)]‘ dt
0

< Clltnatllp slIVanatllol| Zrvllg 6

T
<C [ Wanatll 21V anac i/ [Vanadl |V 2ol e
0

~ 1/2 ~
< OlIVnacl o r,z2 o Vanadl 2o 202y |V 20l o, rizz@y < CIV 200l o o,7:22(c)-

It can be checked that 1 < r < 2, then we obtain
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T
/ ‘ (Dm (ehAt)V'&hAh V«@h’v) ‘ dt
0
S CHf/AtH%(QXR;R‘*') ||V'ahﬁt||L2(0,T;L2(Q))||V'@hv||Lr’(0,T;L2(Q)) S C”V'@}LUHLT’(O,T;LQ(Q))'

By using of Lemma 2.1, (3.2), (3.3), (2.1), there holds

T
/ ’,U(BhAt x curl BhAh :@hv) ‘ dt
0

=/OT’u([BhAt—

B2 (T . -
< / ’ﬂcinvhlHCUI‘]B}LAtHOHCUI‘IBhAtHOHgZh'U||076
0

Z(BhAt) + Z(ma)} x curl BhAt, @hv) ‘ dt

+ #HZ(BhAt) ||<@h'”‘|o,6 dt

‘ chrl Bias

Lemma 2.1

/ ’uC’mvh chrl ma

chrl BhAt

||V<@hv||0

R el

0,345

curl Bya:

T
c/ I, + L] dt,
0

5o

(s

O||V:@h'u||0 dt =

where we have used the interpolation inequality

5143
30F51)

0,346,

3(1+61)

|7(Bia)l, = 7 (Bs)],

#(51s)

By virtue of (3.3) and Lemma 3.5, we obtain

1-1 -
/ |Il|dt</ ‘,uC’mvh chrlBhAtH chrlBhAtH chrlBhAtH0|

(3.3) l
[ i

<
< C" BhAtH chrl BhAt‘

Cznv C BhAt

muv

1-1 -
‘0 chrlBhAtHOHV«@h””o de

curl BhAt ’

l 1—-1

\VZ

om0l

chrl ma’

L>(0,T;L2()) L2(0,T;L2(Q)) L%(O,T;B(Q))

Lemma 3.5

CIIVZpoll, 3 <OV Pho|

Lt (0,1:L2() = L™ (0,T;L2())

Concerning the other term, it can be decomposed as

T T
[imlars |
0 0

5143
3015

0,3451

25,
3(14+671)
0

I curl ma

‘Z(BhAt) - BhAt + BhAt

#(51s)

O||V<@hv\|0 dt

3 1+5
< 3(1+61)

=

T
Z(Bua Bua
| lz(Buad) - B
T
+/ M ’Z Bia
0 ( )
T T
ZI/ |.[21|dt+/ ‘Izz‘dt.
0 0

251
3(1+51)

Z(ma)

5143
3(1+61)

0,34+51

curl Bya:

19 Poo| dt

5143
3(1+61)

0,3461

CurlBhAtH()vatho dt
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With the help of (3.3), Lemmas 2.1, 3.5 and the interpolation inequality (4.5), we continue to deduce

T
/ oy | dt
0
T
<
0
Lemma 2.1 T
2
0

5143
3(1+61)

0,3461

3(1+51)

C’h( +l)(3<1+51)> chrl B}LAt

()

chrl Bua:
0

curl ma‘
0

Ch( +l)(3<1+51>) chrl B

||V<@hv||0 dt

. L40) (52— 12‘51 +1) (522 )
< / Ch( +l)(3<1+51)) chrlBhAt‘ G )<3( Ml) chrlBhAt -G )<5< Ml)) chrlBhAt
0 0 0
@33) (T (2 L) (2 1) (28 .
< / Ci(m) )(3<1+51)> (3 )(3<1+61)) chrl BhAt 1-(3 )(3<1+61>) chrl Bia,
0 0 0
(3+) (sc55) G (sas) -
1B H 1B
L>(0,T;L2(Q)) chr hat L2(0,T;L2()) curt Bnat L2(0,T;L2(Q))

X ||Vf@h’vl| - 2 55
L0 Gawn) (0,220

Lemma 3.5
SN [—— =Tl e
I 2“)(@) (0,T;L2(Q2))

T
/ 1oz dt < /
0

< CHBhAt

and

51+3
3(1+61)
0

3(1 +51)

dt

‘curl Biua:

MHBhAt

‘curl Buag

OHVf@hU”o

51+3
3(1+51)

L2(0,T5L2(2))

51
3(1+51)
L=(0,T;L?(Q))

chrl Buag

L2(0 T~L2(Q))vazhv|| 5,
” L(3(1+51>) (0,T;L2(Q))
< C|IVZp| YO TRy < CHV‘@hU”LW(QT;L?(Q))'

L (s (0,T;L2(2))

X chrl BhAt‘

Combined with these estimates, we get the following conclusion

T
/ ’u(BhAt x curl Byay, ,@hv) ‘ dt < C||VZPpv]
0

L7 (0,T;L2(Q))" (4.6)

Due to 1 < r < 2, we have

/OT‘ (BAt (éhAt)éhAt; «@hv) ‘ dt < CIIVPpll 1 o, 1,12(0))-

Combining these inequalities with (4.3), we have

T
/ (unar), + Vinarv)|dt < C[[V 2] oz ey +CR Vo]
0

L™ (0,T5L2()) = < OVl L™ (0,T;H*(Q))> (4.7)

where we have used the properties of L?-orthogonal projection ((upat);, v) = ((unat);, Prv) and (see (2.7) of
[45])

IVZolly < [IVollg + [IV(Zno = v)lly < Cl[Volly + CR7[[Vol|, 5.
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Thus it yields that
H(uhAt)t + vphAtHLr(07T;(XmH1+S (Q))/) SC (48)

To validate the second assertion, we define the L2-orthogonal projection to W(f’h via Zp,. From (3.7), we know
that (upat, Brat) satisfy:

((BhAt)t7‘QhC) + (&At (éhm)curllg’hm,curl QhC) — (ﬂ«hAt X ma,curl QhC) = (gAt7QhC). (4.9)

For any C € L (0, T WnNH 1+S(Q)), by virtue of Lemma 3.5 and the Cauchy—Schwarz inequality, there holds

T
/0 ’(&At (ehm)curl B¢, curl QhC) ‘ dt < C||curl QhC”LW(o,T;m(Q))’

Adopting the same techniques as (4.6), applying Schwarz’s inequality, equations (3.2), (3.3), Lemmas 3.5, 2.1
and the interpolation inequality (4.5), we readily see

/OT‘ (ahm x Byay, curl QhC> ‘ dt = /OT‘ (rahm X (Bm . Z(ma) + Z(BhAt)>,curl ,@hc) ’ dt

T
</
0

T
g/ [Con! [Viin el el B et 2,1
0

H’ahAtHO,ooHBhAt — Z(ma) H0||cur1 2,C||, + H'&hAt”OﬁHZ(BShAt) Ho 3||cur1 2,C||,| dt

261
3(14+671)

0

dt

51+3
~ 3(1+91)
‘Z(ma) I
0,345

i 1

+ Cuvahmuon(ma)

T
</
0

+Cl[Vanadlo|[Z(Buar) = Buai

curl 2,C|,

. l N 1-1
C’mUC’fm, ||V'llhAt||0 HBhAt HO’ curl BhAt HO chrl th”o

25,
3(1+51)

0

51+3
3(1+61) |

0,3+61

#(1s)

|curl 2,C||,

261 5143
~ Fal 3(1+9 3(1+95
+ CHvuhAtHoHBhAt 0( o Y curl 2,C|,| dt

#(51s)

0,3+0,

l

R 1
curl Bya:
L2(0,T;L2(%))

1-(3+) (sippy) -

< CHBhAt

Lo<(0,T;L2(2)) H IVanadll 20,722 () lleurl 2rCl 2 (0.T:L2(%2))

3+ (s885)

+ CHBhAt’ L (0L () chrl BhAt‘ L2 (0T L () IVanatll 20,702

5 0148
X|curl2,C|| 2 I OHBhAt EIeE= Iy chrl Boa|

L (0,T;L2%(2)) L2(0,T;L2(Q))

2 )G (0.7 22(0))
X [Vunaell 20,7020 llcurl 20ClL 2
1 (st (0,T3L2(2))
< Clleurl 2,C|| 1 o 1, 12(0))-

Combining these inequalities with (4.9), we obtain

T
| 1Brs0 €t < Clewrt 24C10 052y (4.10)
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Here, we need to introduce H(curl)-orthogonal projections to Wk, via 28! (see (2.12) of [45]), then we can
deduce

[curl 2,C||, < ||curl 2,C — curl ,@,CL“”CHO + ||curl o0rle — curlC’H0 + |lcurl C||,
< Cinvh ™| 2,C - C +C — QﬁwlCHO + Ch¥||curl C||, , + [[curl C,
<CR|Cll 445 + Cllcurl C,.

Thus it yields that
H(Bh/At)tHLT(O7T;(W0H1+S(Q))/) SC (411)

Similarly, we define the L? projection to Y via %Z),. By (3.8), we know that (wpas, Onat) satisfy:

((Onat)y Zne) + (f’vm (éhAt)VéhAt,V«%’hsﬁ) + 0, (ahAt,éhAtw%hSﬁ) = (J’At,%h@) (4.12)

For any ¢ € L* (O7 T;YoN HHS(Q)), by virtue of Lemma 3.5, the Cauchy—Schwarz inequality and the interpo-
lation inequality (4.4), there holds

[
O 2

- [(ﬁhAt . Véhm,%’hgo) - (ﬁhm . Ve@h%éhmﬂ ‘ dt
< C/OT U|’llhAt||(1)/2||V1lhAt||é/2HVéhAt

(19l at

~ 1/2 o
< C’HVUhAt||L/2 0,T:L2(Q vohAt ‘|V‘@h<10||L‘L 0,T;L2(Q < CHVQ’ISOHL‘%O,T;LQ(Q))
(0, () ( ()

L2(0,T;L2(Q))

and

/OT‘ (fNiAt (éhAt)véhAtv V%h@) ‘ dt < CHV'@MPHLZ(O,T;L?(Q))'

Combining these inequalities with (4.12), applying the properties of L?-orthogonal projection, then we can
arrive at

T
/ [((Orae)y, 9)l At < CIINZR@l pa 0. 7:12(0)) (4.13)
0
using the same techniques as demonstrated in (4.8), which implies that
H(ehAt)t||L4/3(0’T;(YQH1+S(SZ))/) Sca (414)

then the results now follows. O

Remark 4.3. A prioristability estimate of the above time derivatives for discrete finite element solution plays
a key role in the subsequent strong convergence of the scheme. Such type of estimate for MHD model was first
developed in [45]. The proof therein seems to be not complete and there are some minor gaps in the bounds
on the important Lorentz force terms (e.g., the estimates in line 19 and line 20 of page 1073 are not valid and
similar problem arises in line 2-3 of page 1074). Here we give a rigorous proof with a different index r.

Concerning the discrete pressure solution, it enjoys the following stability estimate without any restrictions
on h and At.
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Lemma 4.4. For the sequence {upat, Prat}, we have

H(uhAt)t||LT(O7T;(XQH1+5(Q))/) < 07 ||ﬁhAt||LT(O,T;L2(Q)QH—S,2(Q)) < C. (415)
Proof. For any v € L (0,T;V N H'(Q)), by (4.3), we have

1., . - . - - A -
(wnat)y, Pnv) + 5[(("%& -V)apat, Zpv) — ((Unat - V) Ppv, apae)] + (VAt (ehAt>vuhAt> V@hv)

+ H(ma x curl Bja¢, @;{u) - (BAt (éhm)éhm, @;ﬂ:) = (fAt’ gzhv)' (4.16)

Using the similar method as in the proof of Lemma 4.2, we can obtain

T

i [((unat)y v)| At < OVl L o 10200y + CRIIV L 0 1 pre () - (4.17)

For all v € L (0,T; X N H'#()), by virtue of (4.7), (4.17) and Lemma 4.2, there holds

T T T T
| 1nae 2ol dt = [ 1Tpnano)ldt < [ (Vs + (unso)lde+ [ (s, o)l
0 0 0 0
< ClIVoll e o, 1iz200)) + CREIVOl L 0 11 ()
which implies that
||VﬁhAt||LT(O,T;H_l(Q)ﬁH_l_s>2(Q)) S C (418)

Then we can obtain H(uhAt>tHLT‘((],T;(XﬂHlJrS(Q))'
inequality (Cor. 2.1 of [23]), we find that

)y < C by using Lemma 4.2. Thanks to the Poincaré type

HﬁhAt|‘L7‘(07T;L2(Q)QH75,2(Q)) < ||vﬁhAtHLT((LT;Hfl(Q)ﬁHflfs,Q(Q)) < C, (419)
then the conclusion now follows. O

We also need to recall the Aubin-Lions’ compactness result for Bochner spaces (refer to Lem. 2.8 of [21]).

Lemma 4.5. Let F' be a Banach space, Fy and Fy be two reflexive Banach spaces. Assume Fy € F with compact
injection, F' C Fy with continuous injection. Then the space

{w‘w e LP(0, T Fy), %—1: e LP1(0, T, Fl)} € LP(0,T; F)

with 1 < py < +00, 1 < p; < +00.
Next, we present some basic convergence results for the fully discrete solution in the following theorem.

Theorem 4.6. There exist functions w € L°(0,T;L*(Q)) N L*(0,T; H§()),B € L*>(0,T;L*()) N
L?(0,T;W),pe L" ((),T; LQ(Q)),H € L™ (O,T; LQ(Q)) N L? (O,T; H&(Q)), such that, as h, At — 0,

What, Uhat, Whar — U weakly* in  L*(0,T;L*(Q)),
Bias, Buar, Biar =~ B weakly® in L=(0,T; L*(Q2)),
Onat Onae, Onae — 0 weakly” in  L>(0,7;L*(Q)),
UpAt, UpAt, UpAr — U weakly in L2 (O,T; H&(Q)),
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Bunt, Bray, Buar = B weakly  in L?(0,T; W),

éhAt, éhAt, GhAt — 9 Weakly in 2(0 T' H(}(Q))
Dhat — P weakly in L"(0,T;L*(Q) N H™*>*(Q)),
(uhat); = u weakly  in ( T (XN H'(Q /)
(Bhat), — Bt weakly  in ( W NH™( Q /)
(Orat), — 6 weakly in L*3 (0 T; (Y NH™(Q /)
UpAt, UhAat, UWpat — U in  L*(0,T; LI(Q)),
Onats Onat, Onar — 0 in  L*(0,T; LY(Q)),
BhAt» BhAt7 BhAt — B in L2 (0 T LQ(Q))

with 1 < g < 6, where — means strong convergence, — means weak convergence.

Proof. The statements of Lemma 3.5 can imply that {(ﬁhm,f)hm, ma,éhm) }, {(ﬁhm, ma, @hm>} and

{(unat, Brat,Orat)} are all bounded sequences and thus have the corresponding weak convergent subsequence
(see e.g. [51]). The other weak convergence results can be deduced by the statements of Lemmas 4.2 and 4.4.
We say that the above three subsequences (still denoted by the same notations) enjoy the same accumulation
function (u, B,0). In fact, applying the interpolation inequality, Holder inequality and Lemma 3.5, we have

n 2 n—1
HehAt*QhAt 12(0,T:La( Q)) Z”ah 0 ||Lq
ZH‘)” On 1 e 105 = 077 e
m «@ m 11—«
" 12 n 2
_o(zmneh—ez o) (35 24008 -0 v |

n=1 n=1
m «@ m 11—«

(320055 ) (Sl -0 ) 2
n=1 =

with a = =2 and we continue to obtain

5q’

2 At—0
5

0,

H9hAt — Opa
L2(0,T;L4())

which implies {0nat}, {éhm} and {éhm} converge to the same limit 8, as h, At — 0. Furthermore, they

converge strongly to 6 in L?(0,T;L9(Q2)) by a combination of Lemmas 4.2 and 4.5. Similarly, we can show

that {unat}, {@nas} and {@,a¢} converge strongly to w in L2(0,T; LY(Q2)) and {Bpa¢}, {BhAt} and {ma}

converge strongly to B in L? (0, T; L? (Q)) as h, At — 0. The proof is completed. O

Considering that the viscosity coefficients v(-), o(-), (-) and B(-) are assumed to be in ¢! (Q x R;R), here
we may define | - ‘%’UJ(QXR;R) by

(A

7oL (OxRR) = sup{ (2,0), (y,x) € 2 x R}7 (4.20)
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where A can be taken as v, o, k and 3.

Now, we will prove that the accumulation function (u, B,#0) is indeed a weak solution to (2.5)—(2.7), which
provides a numerical version of the existence analysis of the thermally coupled incompressible MHD problems
with temperature-dependent coefficients.

Theorem 4.7. Suppose that the initial values satisfy w(0) = u°, B(0) = B° 0(0) = 6° and

limAtHOHfAt - f’

3 o sy =0 i
L2(0,T;L2(Q)) 0, limas—ollga: g||L2(O’T’L2(Q)) 0 limac—o|[¥ac =% L2(0,T;L2%(R))
Then there exists a subsequence of {tpas}, {ma}, {éhm} and {prat} converges to (u, B,0,p), which is a

weak solution of (2.5)-(2.7) as h, At — 0.

Proof. According to the approximation properties of finite element space, for any v € 65°(2) N H (2), there
exists a function v, = Hpv € th such that

v 2% v in Hy(9Q),

where Hj, is the H'-orthogonal projection operator to V¥ (see [7,9]). For any 6(t) € €°°([0,T]), by virtue of
the Young inequality, Lemma 3.5, (4.20) and Theorem 4.6, we can verify the estimates one by one,

/OT [<9At (éhAt) Vupat, Vvh) — (v(8)Vu, Vv)] 5(t)dt

< CH(DAt - V) <éhAt>

L2(0,T5L4(9)) ||VﬂhAt||L2(O,T;L2(Q)) [Von 6(t) ||Loo(0,T;L4(Q))

[Vttt ||L2(0,T;L2(Q)) ||V'Uh 5(t) ||L°°(0,T;L4(Q))

+ C|V|<go,1(QxR;R) ‘ehAt a 9‘ L2(0,T;L4(Q))

+C|lv

¢ (QxR;R+) ||vu||L2(0,T;L2(Q)) ” [Vvh - V’U](S(t) ||L2(07T;L2(Q))

h,At—0
———

T
e - /0 (Vitnar — Vi, Vo) 6(¢) dt 0,

and

T
/ [O1(@pat, rat, vn) — O1(u, u,v)]d(t) dt
0

< Clltnar — u||L2(07T;L4(Q))Hv'&’hAtHLQ(O,T;LQ(Q)) thé(t)HLm(O,T;L%Q))
+ Cllull 120,714 ) IVl 20,7520 | (08 = 0@ | e (0,724 02))
+ Cllanar =l p20,7,0 ) IVORI) Lo (0.7, 220 1B L2 (0, 7,24 (02))
+ CHuHLQ(O,T;L‘l(Q)) ||vvh5(t)HLoc(o,T;L2(Q)) [wnat — U||L2(0,T;L4(Q))
+ Cllull 207,140 IV (0r = 0)6(O)|| oo (0,720 18l L2072 ()

T
/0 (w- V) (wpae — u),vp) d(t) dt

h,At—0
—_—

+C 0.

On the other hand, by applying (3.2), inverse inequality (3.3) and Lemma 3.5, we derive

T
/0 {M(ma X curlBhAt,vh) — u(B x curlB,’u)}é(t) dt
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[ e([Brss - 2(Busd)]  cont Busiown)

+ M(Z(ma) X curlBhAt,vh) — u(B x curlB,v)} 3(t) dt‘

S Chl-i—%

curl BhAt ’

HCUI‘I BhAt‘

) [vrd(t) ||L°°(O,T;L6(Q))

L2(0,T;L2()) L2(0,T;L3(Q

+ /T [M(Z(ma> x curl ma,vh) — u(B x curlB,v)} o(t)de
0

< C’thcurl ma‘

curl Bya; ‘

v 6 ()| o< (0,725 (02))

L2(0,T;L2(Q)) H L2(0,T;L2())

+ /T [u(Z(BhAt> x curl ma,vh) — u(B x curlB,v)} o(t)dt
0
= F1 + |F2|

as h — 0, it can be clearly deduced F; = Chl“curlﬁhAt‘

curl B;,At’

L2(O,T;L2(Q))H
VR O(t)]| oorn .76 — 0. Next, we just need to show |F3| — 0 when h, At — 0.
Lo (0,T;L5(Q))

< . Thanks to div Z(BhAt) =0, we can derive
L2(0,T;L?(Q))

= chrl Z(ma)

L2(0,T;L2(Q))

From Lemma 3.5, we know that chrl ma‘

()

L2(0,TyH()) L2(0,T5L2(2))

(4.21)

= "curléhAt’ <

L2(0,T;L*(2))
Noticing that H(2) << H*(Q) << L3(Q), where << means the compact imbedding, s > 1/2 is a
constant depending on Q (c¢f. [48]). We can choose d; > 0 such that 1/(3+ 1) + 1/(6 —d2) = 1/2 and
H'(Q) < L57%(Q), together with the fact that Bja; converges to B in the sense of weak convergence
in L%(0,T; H(curl; Q)) according to Theorem 4.6, then we have

|Fy| = /OT [N(Z(ma> x curl BhAt,vh> — (B x curlB,’v)} o(t)dt

culz(s1s) 5]

Lo (0TLA(@) leurl Bl| 12 7. 12 (0)) Va0 ()| o< 0,7, 2.6 (02))

+ C,U'HBHLZ(O,T;'H(Q)) HCUI'IB”Lz(o,T;Lz(Q)) ([ (vn — v)é(t)”LOO(O)T;L6—52(Q))

T
+Cu/ (Z(ma) x (curlBhAt _ curlB),'uh> §(t) dt| A0, o,
0
where we have used the fact that
25 3441
B0) B, = ) BT () 8
H hat L2(0,T;L3(Q)) — hat L2(0,T;L2(Q)) hat L2(0,T;L3+91(Q))

346
3(1+61)

L2(0,T5L2(2))

25,
3(1+4671)

chrl ma —curl B
L2(0,T;L2(Q))

< CHZ(BW) _B

and
25
25 =91
B(T%l) 3(1+4d1)
L2(0,7:L2(2)

|#(Bia) -
L2(0.T5L2(%))

9 + HBhAt - B‘

< <HZ(BhAt) — By
L2(0,T:L2(
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25,

3(1+571)
L2(0,T;L2(Q))

< ((jh(H%)

h,At—0
—_——

‘curl BhAt’

+ HBhAt - B‘
L2(0,T;L2(Q))

0.
Based on Theorem 4.6 and the definition of weak convergence, there hold

h,At—0
e

T T T T
/ (div vy, pras) 6() dt 2270 / (divw, p) 8(t) dt, / (div @na, gn) 8(t) dt / (divu, q) 6(¢) dt.
0 0 0 0
By using Lemma 4.4, so we can extract a subsequence of {(una¢),}, which has common subscript and is denoted
by the same notation such that

h,At—0
—_—_

T
/0 [((what);, vn) — (O, v)]0(t) dt 0.

Hence it yields that

/T[(ut,v) + (v(0)Vu, Vo) + O1(u, u,v) + p(B x curl B,v) — (8(0)6,v)
0 (4.22)

— (divw, p) + (divu, ¢)]d(¢) dt = /0 (f,v)d(t)dt.

In the next step, for any C' € €5°(Q2) N Wy, there exists C, = O, C € W such that

h—0 .
C’h;C anO,

where Oy, is the H (curl)-orthogonal projection operator to Wokh. Making use of Young’s inequality, Lemma 3.5,
(4.20) and Theorem 4.6, there holds

/OT [<5At (éhm) curl Bj,a;, curl Ch> — (0(f)curl B, curl C)} o(t)dt

< OH((?N, —-0) (éhAt>‘

chrlBhAt’

|lcurl C}0(t) ||L°°(0,T;L3(Q))

L2(0,T;L5(9)) L2(0,T:L2(Q))

+ C|O-‘%’O~1(Q><R;]R ‘éhm - 9‘ )chrl By ) |curl Ch(s(t)”LOO(O,T;L3+51(Q))

~—

L2(0,T;L5~%2(Q) L2(0,T;L2(Q

+ CHUH%(QXR;RJF) |curl BHLQ(O?T;Lz(Q)) |l[curl Cy, — curl C](S(t)||L2(07T;L2(Q))

h,At—0
e -

+Cllo 0.

T
@ (xRRY) /0 (curl Bpas — curl B, curl Ch) o(t)dt

In addition, by applying Lemma 3.5, we deduce that

/OT[(ﬂ,hAt X BhAt,curlCh) — (u % B,curlC’)}(S(t) dt

<Cn! chrl Bya [curl C), 5(t)||Loo(o,T;L2(Q)) ||ﬁhAt||L2(o,T;L6(Q))

L2(0,T5L2(2))

X /OT [(@nae % Z(Buar),curl Cy) = (u x B, curl©)|(t) dt




990 Q. DING ET AL.

= E1 + ‘E2|,

as h — 0, it can be clearly derived E; = Cthcurl Bha: LQ(O’T;LQ(Q))HCUI‘l Ch 5(t)||Loo(0’T;L2(Q))
l@natllr2(0,7;06(0) — 0. Next, we just need to show |Ez[ — 0 when h, At — 0. By using of Young'’s inequality,

Theorem 4.6, (4.21), Lemmas 2.1 and 3.5, we continue to derive

|Es| = ‘/OT[('[%M X Z(EhAt),curlCh) — (u % B,curlC)}(S(t) dt

< Cllunat — UHL2(O,T;L6*52(Q)) HZ<B’1N)

+ CHUHLQ(O,T;LG(Q))HZ<BhAt) B B‘

L2 0T [eurl Cy 6(8)| Loc (0,7;2.2(02))

L2(0,T;L3()) leurl Gy 6(1) ”L“(O,T;LQ(Q))

h,At—0
+ C”u”Lw(O,T;LG*éz(Q)) ||B||L2(0,T;H(Q)) |(curl Cy — curl 0)5(t)||Loo(o,T;L2(Q)) —0

where we have used the fact that 1/(3+01) + 1/(6 —d2) + 1/2 = 1 and HZ(BhM)‘

£2(0,T;L3+%1(Q))

. Collecting these results yield that

CHZ(BhAt) L2(0,T;H(Q))

T T
/ (B, C) + (o(0)cur] B, curl C) + (u x B, curl C)|5(t) dt — / (g, C)5(1) dt. (4.23)
0 0
Finally, for any ¢ € €5°(Q) NYy, there exists ¢, = App € Yokh such that
h—0

$Ph — P in%a

where A}, is the H'-orthogonal projection operator to Yoljl. In a similar argument, there holds

/OT [("%At (éhAt) vghAt; V(ph) — (K(@)V@, V(p)} (5(75) de

< O (Rae =) (nane) Vihar 1¥6n 8(8) e 07,23 s

L2(0,T;L4(Q)) H L2(0,T;L2(Q))

+ Ol (oemmy [Brae =0 o [V I9n 60l = 0.1:24(0)

~—

L2(0,T;L2(Q))
+C|k

@ (OxR;R*) VOl 120,720 | (Vor = V@) 6l 20,7120

h,At—0
—0,

T
+ CHKH‘K(QXR;R‘*’) /0 (v‘ghAt — Vo, V(ph> o(t)dt

and

/OT {(92 ('&hm, Ona, <Ph> — 0(u, 0, (p)} §(t) dt

lond ()| Lo (0,7:24(02))

< Cllanat — ull 207,040 HVGhAt’ L (0L ()

+ Cllwll 20,7130 VOl 200, 7:12 0)) | (0n = €IS ()| Lox (0,714 (02))

+ Cl|tpar — U||L2(0,T;L4(Q)) “v§0h§(t)||L°°(O,T;L2(Q)) HéhAt’ L2(0,T:L4(9)
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+ Cllullp20,7;030)) Vor () o 0,220y Hehm - 9’ L2(0.T:L4(Q))

+ C||U||L2(0,T;L4(Q)) IV (on — %0)5(t)\|Loc(o,T;L2(sz)) ||9HL2(O,T;L4(Q))

T
C NV (Oar — V0, 01 ) 6(1) dt| 2222 0.
+ /0 (u ( hAt ) Sph) (1)
Hence it yields that
T T
[ 1600+ (s0)76,90) + Ostub. 0500 at = | (0. 0)800) at. (4.24)
0 0

Since €5°(Q)NHE(Q) is dense in H{ (2), 65°(Q) NW, is dense in Wy, €5°(2)NYy is dense in Yy and €°°([0, T'])
is dense in L%([0,T]) with 1 < ¢ < oo, the proof of Theorem 4.7 can be completed by combining with (4.22),
(4.23) and (4.24) in the distribute sense, as h, At — 0. O

Remark 4.8. The first convergence result of finite element discretization for MHD with constant coefficients
is given in Theorem 3.1 of [45], which gives the proof idea without going through all the details. Here we extend
to the temperature dependent coefficients case with the details to show the techniques to treat these nonlinear
terms.

We will also show the continuous system (2.5)—(2.7) has a unique solution. To this end, let us recall the
Gronwall lemma in differential form.

Lemma 4.9 (Gronwall lemma). If n(:) is continuous differentiable function, and it is non-negative such that

' (t) < ¢()n(t) +¢o(t) ¢ €[0,T], (4.25)

where ¢(t) and o(t) are non-negative integrable functions, then there holds

n(t) < efo #(s)ds {n(O) + /Ot ©o(s) ds} vt e [0,T). (4.26)

We will prove the uniqueness of the continuous system (2.5)—(2.7), provided that the exact solution is under
a slight smooth assumption. More precisely, we need to make a smoother assumption on the weak solution for
the magneto-thermal coupling model with temperature-dependent coefficients.

Theorem 4.10. Let (u, B, 0,p) be the weak solution of the continuous system (2.5)-(2.7) and assume that u €
L2(0,T; H'™(Q)) N L*(0, T; W4(Q)), curl B € L*(0,T; H*(Q)) N L*(0,T; L5(2)), 6 € L*(0,T; H'™(Q)) N
L* (O,T; Wl’G(Q)) with s > 1/2. Then (u, B, 0,p) is the unique weak solution for system (2.5)-(2.7).

Proof. Assume that problem (2.5)—(2.7) has two different weak solutions (w1, By, 01, p1) and (us, Ba, 62, p2). Let
u=u—uz, B=B1—Bs, 0 =0;—0 and p = p1 —ps in (2.5)—(2.7), for any (v, C, ¢, q) € (Xo x Wy x Yy x Q),
there holds
(ug,v) + (¥(01)Vu, Vo) 4+ ([v(01) — v(02)|Vus, Vo) + (v - V)u,v) + ((u - V)us,v) — (dive, p)
+(divas q) + (B x curl By,v) + u(By x curl B,v) — ([8(61) — B(02)]61,v) — (B(62)0,0) = 0, (4.27)
(B, C) + ([0(01) — o(62)]curl By, curl C) + (c(f2)curl B, curl C)
—(u x By, curlC) — (ug x B,curlC) =0, (4.28)
(01, 0) + ([5(61) — £(62)]V01, Vp) + (5(62)V6, V) + (w - V81, ) + (3 - V6, ) = 0, (4.20)
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Choosing v = u,q =p in (4.27), C = uB in (4.28), ¢ = 0 in (4.29) and adding the three equations, we have

%%(Hu”i B2+ 1012) + H\/U(H;L)Vqu + ,uH\/U(Gz)curlBHZ + H\/Fu(eg)veHz

—(w(01) = v(62)] Vg, V) = ((u - V)ug, u) + (8(62)0, u) (4.30)
+ ([B(61) — B(02)]61,u) — u(B x curl By, u) + u(u; x B, curl B)
— 1([o(01) — o(02)]curl By, curl B) — ([k(01) — £(62)]V61, V) — (u - V64,0).

By using the Young’s inequalities, Sobolev inequalities (2.1)—(2.4), (4.20) and the interpolation inequalities, we
find

[((v(01) = v(62)) Vg, Vu)| < |v

16

%”Ovl(QxR;R) 0,3||VU’QHO,6”VU’“O
1 2 -

< gllVrva|, + 65 s 0mn)|
1 2 _ 2

< GV V|| 605 1 s ey [ V2l g1 €l

< [ VEEIVa + 155 (00 606 10 s gy IV ) 1012+ ]|V

2 2
|VU2||0,6||9||0,3

and
(- V)usg, u)| < éH\/WVu ’z + 6Valc%||VuQHg’3||u||(2)7u\(B x curl By, u) — (u; X B,curl B)|
< | Bofleurt Byl ullo -+ sl o o | Blofleurl Bl
< éumw )z + 6y ' p?lleur] By |2, | B2 + gH\/@cuﬂBHz + 205 pllual? | B2
Similarly, we can deduce
[([B(01) — B(02)]01, 1) + (B(02)0,u) — u([o(01) — 0(62)]curl By, curl B)|
<8
+10lgo. (axmr)lfllo sl curl Billg gllcurl B,

2 2 _ _
< 2| Vi@ vu|| + (655180 () S 10115 6 + 666 1817 (s ) 161

2o (ansytlleurt Bald ) 101 + 1 | Va@ e+ 5| Voticun B

o () 101101l gllell 5 + 181l (e mnoy 101 el

+ 4yt (cl 205 o
and
[(15(62) = R(8)]V 601, V6) + (- V01, 6)| < I8l o (o) 101l sl V01 o 61 V01l + 161l 1961 5 el g
< 2| VR V8| + g™ (er 155 ol s ) 1901 [2) 1013 + | W/o@ V]| + 6w v 12 s ol
Combining these inequalities with (4.30), then we come to
& (Il s BI + 1013) < €1+ Vs + 19l + 190112+ llewed Bul + s

4 2 2 2
o] (Il + I BIG + 1617)

Applying Lemma 4.9, by using u(0) = 0, B(0) = 0, #(0) = 0, we deduce that w = 0, B = 0 and § = 0.
Consequently, equation (4.27) is simplified as (p,divv) = 0, for any v € Hg (). Combining with the inf-sup
condition with continuous form, then we deduce p = 0, which brings the proof to an end. (]

(4.31)
+ [leurl By g5 + V6|
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Theorem 4.11. Under the same conditions of Theorems 4.7 and 4.10, then the whole sequence of {tnat},
{ma}, {éhAt} and {Pnpat} converges to the unique weak solution (u,B,0,p).

Proof. Based on Theorems 4.7 and 4.10, we know that each subsequence of {@pa:}, {ma}, {éhAt} and
{Pna+} has the same limit (u, B,#,p), which is the unique weak solution to the system (2.5)—(2.7). Thus the
whole sequence of {@pa¢}, {ma}, {éhm} and {Pra:} converges to the unique weak solution (u, B,6,p). O

5. ERROR ESTIMATES FOR THE MAGNETO-HEAT COUPLING MODEL WITH
TEMPERATURE-DEPENDENT COEFFICIENTS

In this section, we mainly consider the error estimates of the fully discrete finite element method for the
MHD system coupled the thermal equation with temperature-dependent coefficients. Under the hypothesis of
a low regularity for the exact solution, we rigorously establish the error estimates for the velocity, temperature
and magnetic induction unconditionally in the sense that the time step is restricted but is independent of the
spacial mesh size. We also prove a sub-optimal error estimate for the pressure as a supplementary result, which
is consistent with the pioneering work [54].

We first recall a discrete version of the Gronwall inequality in a slightly more general form than usually found
in the literature, and this detailed proof can be found in [29].

Lemma 5.1. Let C,, At,a,, by, ¢, and d,, be non-negative numbers with n > 0 such that

am—l—Atzm:bnSAtidnan—FAticn—i—C* Ym > 0.
n=0 n=0 n=0

Suppose that Atd,, < 1, for all n, and set A\, = (1 — Atdn)_l. Then

am—i-AtibnSexp(Ati)\ndn>{Aticn+C*} VYm > 0.

n=0 n=0 n=0

Before proceeding, we need to make a regularity assumption for the weak solution of (2.5)—(2.7), which will
be helpful for the error analysis of the numerical solution.

Assumption 5.2. Suppose that the weak solution (u,p, B,0) satisfies the following regularity,

we L>®(0,T; H*'(Q)), pe L®(0,T;H*(Q)), 0€L>(0,T;H'(Q)), BeL>0,T;HQ)),
curl B € L>(0,T; H*(Q)), wu, € L*(0,T;L*()), B, € L*(0,T;L*(Q)), 6, € L*(0,T;H"'(Q)),
uy € L*(0,T; L* (), By € L*(0,T;L%(Q)), 04 € L*(0,T;L*()),

where the exponent s > 1/2 depends on Q.

Remark 5.3. The above regularity assumption for the solution (u,p, B,0) is even weaker than most of the
hypotheses in the literature, see, e.g. [27,29,38,49,54]. We hope it is a reasonable assumption and may be valid
for a general polyhedral with Lipschitz boundary. In fact, it is enough to facilitate the subsequent error analysis
of the magneto-thermal coupling model with temperature-dependent coefficients.

We next define some useful Galerkin and Ritz projections: given (u,p,0) € (Xo x Q xYp), find Pru €
th(uD)7 Onp € fol and R0 € YO’“h(QD), for any (vp, qn, pr) € (th X ijl X Yokh)7 such that

(V(o)vphua V’Uh) + b(vha th) - b(Phuy qh) = (l/(e)v’u’v vvh) + b(’l)}“p) - b(u? q}l)v

(R(O)VRAG, Vipr) = (R(9)V0, Vion). (5.1)
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We define the Fortin operator F;, from Wy to W,’f: given B € Wy, find F,B € W[f, for any C}, € W,f and
Y, € Sy, such that

(oc(0)curl 7, B, curl C}) = (o(f)curl B, curlCy,), (FrB,Vyp) = (B, V). (5.2)

By a similar argument to the constant coefficients case as [5,23,28] and the temperature-dependent coefficients
case [54] (refer to Lem. 1 for more details), we can prove the following approximation properties

lw = Prully + hl|V(w = Prw)lly + hllp — Qnplly < Ceh i {|ully o n + Ch' pll, 0,
|B ~ FiBlly + llewrl (B — F,B) |, < Ch* (IBll,, + eurl B, ), (5.3)
HG - Rho”m < CeheHGHHLQ

with ¢ = min{k, s}, where k& > 1 is the order index of the finite element spaces, s > 1/2 is the index of regularity
of the exact solution.
By virtue of the properties of projection, we present that the solution to (2.5)—(2.7) has the following estimates,

which hold regardless of the sizes h and At. Moreover, the stability property is beneficial to the subsequent
error analysis in full discretization.

Lemma 5.4. Suppose Assumption 5.2 holds. Let (u,0, B) be the unique solution of (2.5)—(2.7), then the fol-
lowing estimates are established,

lu = Prullg oo + IV(w = Pru)lly 5 + llcurl (B — FuB)llg 5 + |0 = Rubllg o + IV(0 = Ri)llg 3 < Cr,  (5.4)
where C,. is a generic constant depending on the regularity of the domain €.

Proof. Let U = Ipu € X ;f , with U is the standard Lagrange nodal interpolant. By using the finite element
approximations, including (5.3), inverse inequality (3.3), Sobolev’s embedding theorem and Assumption 5.2, we
directly see

I9Putlys = [V(Pru = U + U = w+ )y < [V(Prw = U)llg s + IV (U = )5 + [Vl
< Cinsh (I (P~ w)llg + |V (= U) o] + [V (U ~ )5 + [Tl g
02 <G

/—
< IVullys + CR* 2 [l 4o + I
We can verify that other terms are bounded in a similar way, this bring the proof to an end. O

Let (€7, €5y, €5y, ehn) = (up — Pru™, pp — Qnp™, 03 — Rp0™, By — F,B™). A combination of (2.5)-(2.7),
(3.5)—(3.8) and (5.1), (5.2) yields the following truncation error equations:
(deeysvn) +Ar (v (071), e vn) + b(on, ) = (R, + Riyps o),
b(e?hacﬂz) =0,
(dteg}w @h) + Ay (‘K“'n (92_1) ’ eghv @h) = <R7£2h7 ¢h> + <R7]<f2h’ <Ph>v
(drefy, Cn) + (07 (0" )curlef,, curl Cp) = (Rig, + Risy, Cn),

where

<Rz1h7 Uh> = <8tun - dtphuna vh>a

(RN1p»vn) = (Rp1p, + Réqp + R, + R, vn)
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= {Al(yn(ﬁn),u", vp) — Ax (1/" (9271),1/’, vh)} + {Ol(u",u”,vh) -0 (uzfl, uﬁ,vh)}
+{(B™(0;7 )05, vp) — (B™(0™)0™,v1,) } + {u(B™ x curl B",v;) — u(Bj~! x curl By, vy,) },

and

(Rian: pn) = (00" — diRp0", 1),

(Rivon, on) = < D2n + Rczm ©n)

"), 0" on) — Ao (5" (0771),0" o) b+ {O2(u™, 0", 0n) — Oz (uy ™", 05, 0m) }
(R73n:Ch) <atBn dtth ,Ch),

(RNsns Cn) = (Riop + Rigap, Ch)

{(upp x By~ ", curlCy) — (u" x B",curl Cy,)}

—i—{ "(0™)curl B", curl C}) — ( ’L(Gﬁfl)curlBﬂcurl C’h)}.

The following lemma can be referred to Lemma 2 of [54].

Lemma 5.5. Let ¢;, 0;, i = 1,2, and x be functions in L2(Q2), and X a function in €°1 (Q X R;R). Then for
any ¢ € LPO(Q), where pg < oo, it holds that

/)\(',91)¢1 Xd.’L‘— / )\(',02)¢2de
Q Q
< maX{HA A %OJ(QxR;R)}(Hol —0allgq0 T ||¢1 - QT)HO,qO + H(J3 - ¢2||O,q0)

where 1/po+1/qo + 1/ro = 1, and |\

% (QxR;R)? ||a)||0,1)0‘

€01 (AxR;R) is defined in (4.20).

With the above preparations, we can now establish the following error estimates for the velocity, temperature
and magnetic induction.

Theorem 5.6. Suppose Assumption 5.2 holds, and the initial approzimations u9, 69, BY satisfy

|

with £ = min{k, s}. Then there exists a positive constant Aty such that when At < Atg, the continuous problem
(2.5)-(2.7) and the finite element system (3.5)-(3.8) admits a unique solution (u™,0", B™) and (uy,0}, B}),
respectively, which satisfies

0 0
- h‘o’

B’ - Bj|, < C*h’

I — w5+ 107 = 615 + ) B = B+ A3 ol V(" —up)ll;
+ kol V(6" = ;)5 + poolleurl (B” - B[] < ¢ (a0 + ).

Proof. Substituting (e, eb,, eh,, pel,) into (vn, qn, ¢n, Cr) in (5.5)—(5.8), there holds

(deety, efy) + AL (v (92’1)&%, et) = (R7yp + Riyyps €in), (5.10)
(dref,, e5,) + Az (K" (92_1)’67331’ ef) = (Rign + Rion: €5), (5.11)
pldeefy, efy) + p(o™ (057 eurlef, curlef, ) = u(Rig, + Rig,, €ih,)- (5.12)

Due to 2b(b — a) = b2 — a® + (b — a)?, we conclude that
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n n n(ogn— n n 1 n (12
(deely, ely) + AL (v (0] 1)761h’61h) §{dtue1h||o+AtHdt€1h” } +vollVelnllos
el )+ As (57 (67, s ) [l + Atlidies 2] + ol Ve 2
(t3h’3h 2 h s C3hs €3 §{t 3hllo t3h} 0 3hllo

and

p(dielty, €y,) + (o™ (0, )curlely,, curlel,) > % [dtHeZhHg + AtHdt@ZhH(Q)} + pog||curl eZ'hHé

Next we estimate the right-hand side of (5.10). Concerning the first term, we have

(R71p,e1n) = (Opu™ — diPru,ely,)
= (Opu" — dpu”, efy,) + (diu™ — diPru”, efy,).

By integration formula and Cauchy—Schwarz inequality,

u” — yn1 1 tn
|Ou" — dyu| = |Opu™ — NN /tnl(atun(t) — Oru(§)) A€
tn
< / 8ttu(t) de| < C\/E|‘attu||ll2(tn71,tn;L2(Q))-
tn—1

Thanks to the approximation error estimate (5.3),

1
jdeu” = diPru| = = |(u" = Pru”) = (w7 = PruT)|
1 n n—
< O (I o )

Then we have

l+1

n n h n n— n
<RL1iu €1h> SC{ v At”attu”L2(t,,L,17t,,L;L2(Q)) + Oeﬂ (||u H1+é72 + ||u 1H1+e,2) }Helh|0'

Similarly, we can prove

(Rionse5p) = (010" — diRp0", e3y,)

h’+1 n n—1 n
<0{F 100001 121, 12y + Co g (107 iy + 6 |’1+52>}|€3h0

and
IR 3y €4p) = (O B" — dyFn B™, €}y)

C.ht
< C{F|8ttBIL2(t7L LtasL2(Q) T AL (

18" e+ 18" ,2) el

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

Making use of Lemma 5.5, by choosing ((Z)l, b, (;52) = (Vu™, Vu"™, Vu"), (01,02) = (9”,9271) and (A, x) =

(v™,Vel,), then we arrive at

(Rpin, ein) = A (" (0") —v" (6}, b uey)
< maX{HV"

@ (QxR;RT)? Hvun||o,3|yn %”Ovl(QX]R;]R)}HV(on - 92_1) ||o||ve711hH07

(5.21)
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which, together with
A A e
IV (6" = Ru6" )|, < Ceh’ll6" ],
and (5.4), we derive

(R i) < C{VBUAN g, 0ya11(cp) + Ch 19y + 19655 ]y HITERA .

Concerning the term (R}),,,€%,), by using of Lemma 5.5 again, we can choose (qﬁl,d_), gbg) =
(VO™ Vo™ VR0™), (61,602) = (0",92_1) and (A, x) = (k", Ve},), there holds

(Rion, k) = Az(k"(07), 0", e,) — Az (k" (05 7"), Rn0", €3),)

< max{”’inH(g(QxR;RJr)» ||vonH0,3|"fn|(5011((2><R;R)v ”RhonHO,oo|'%n‘(£011(Q><R;R)}
V(0" = 05l Vesnllo
< C VBN 21, sty + O N0 |y + 1965 o}V o

X

Similarly, by choose (¢1, b, qﬁg) = (6",0",07), and (01, 62) = (9"79271), (A, x) = (8", €e}y,), we deduce
(R, ety) = (B™ (0, 1) 05, ety) — (B™(0M)0", ety
= —(B"(Or )" = Op) ) — ([B7(67) = B" (077 1)]0", ei)
< C*{@IlﬁtellLg(tn,l,t,,b;m(g)) + Cehf(l\enl\l%2 - ||9”*1H1H’2) + [lesnlly + ||e§h_1HO}||Ve?,L||O.
Now we are in a position to bound R{,,,i = 1,2. By (3.16), we can choose (ul,u2,u,11,u%) =
w”, u L u?) and (@l @?, wl, w?) = (Phu !, Prut, Pou 1, Pou™), then we have
h h ho Wp,
(REaps€tn) = Or(u™, u" efy,) — O1 (up ™t up, efy)

o+ g 32 ([P + Hmuiul,g)]

i=n—1

<cC

(2l = Pau™ |+ [[Pra ™ = Pl + eyl + lledillo) 1 VeRlo-

Since
= Paw =y < [ =+ = Pawn
< OVAH Ol gy, g,z + Ceh™ " L
and
[P = Py < [l =+ ™t = Pow |+l = Pau”
< OVBHOW 2o,y 0y o) + Ch 0 gy + 1070
we have

<Rglh7 €?h> < C(\/ At”atu||L2(tn717tn;L2(Q)) + Cehf-‘rl H'u,n—l H1+Z’2

+ CR g+ el + €3]y ) 19 €Ral
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Similarly, by choosing (u17u2,u,11,ui) = (u”,ﬁ”,uzflﬁ,’;) and (ﬁl,u ,wh,wh) = (Phu"’l,RhG",

Prunt, Rhen), we can obtain
n n _ n agn _n n—1 pgn _n
(Réan,e3) = O2(u™, 0", e3,) — Oz (uh On €3h)

< O(VAUOl s, 1oy + Ceh' [0 1y 0 + Ce N0 g + Neillo + [Tl ) 195w -

To estimate the term pu(R%,.€},), we employ Lemma 5.5 by choosing (¢1, ¢, ¢2) =
(curl B™, curl B™, curl B"), (64,603) = (9",92_1), (A, x) = (0", curle},) to get

W{RE1, €n) = u([a"(@”) —o" (02_1)]cur1 B", curl ezh)

#01(QxR;R) } [V (6" — 6571 || lleurLed, |

< C(\/E\|5t9||L2(tn_l,tn;Hl(sz)) + Ch (0" |y + Hveg,;lﬂo) leurl ez, o-

<u Inax{ le™ H%(QXR;R+)’ [curl B" |, 5|0™

By using of (5.4) and Assumption 5.2, we can derive
p|(B™ x curl B" e}),) — (By ™' x curl By, e},) + (uf x B, curle},) — (u" x B", curl )|
= M’([B” — B;fl] x curl B",e?h) + (u" X [B;fl — B”],curleffh)
+ ([}"thfl + ezh_l} x curl [B" — F, B"],ely) — ([u" — Ppu] x [.7-"th71 + ezh_l} ,curl eZh)|
< Cp [lleur1 B || B ~ By IVetily + [l o[ B ~ By~ eurl ey,
+ [|[FnB" | slleurl (B — F.B") o[ Vet [l + [eurl (B™ — FuB™) ||y 5leis | Vet

9 = P o[ B glleurt el + u = Pl o[l lewrt e
< c(cr@natBnLQ(WI’%LQ(Q)) + C.C,h* [HB”*IHA2 + ||lcurl B"Ilm] +Clen ||0) IVethllo

+ C(CTV A0 Bl 2,y ¢050200)) T CeCrh’ [HBn_IHZ,z + ||“n||e+1,2} +Clel ! Ho) lcurl ey lo-
Combining the above estimates and by Young’s inequality, we can deduce that

el + dellesnl + pdallei | + At [ldeehls + el + plideeis 5] +voll Vet 5 + 51 Ve o
+ ooplleurt e l§ + S IVesls = S2IVer [ < et (lled lls + e 1o + wllesi 15 + 64, |
where
On = CAt{Hattuni?(tn,l,tn;L2(Q)) + Hatt9||iz(tn,1,tn;LZ‘(Q)) + ||8ttB||iz(tn,1,tn;L2(Q))
+ Hatu”QL?(tn_l,tn;Lz(Q)) + ||3t9||iz(tn_l,tn;Hl(Q)) + ||atB||iZ(tn_1,tn;L2(Q))}
h2t 2 _1112 2 2 _1112 _152

+ O I e+ [ s+ 107 + 1B + 107710+ 1B 17

£ R 107 g+ 1677 B2+ leurl By + 3+ [ [}
and

At f: 5, < CF ((At)2 + h%). (5.23)

n=1
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Summing up (5.22) from n = 1 to m, we conclude that

m
2 2 2 Ko 2 2
llethllo + lleshllo + wlleiillo + At—"IVegj ll + At > [VOHVe?hIIo

n=1
0|1 ven, |12 Le |12 + Atlldeeiy || + Atl|deel |12 + At|ldeey ||
+ 5 IVeRlIg + poollewrlefy 5 + Atldie, |5 + At dies, 1§ + At deefy (5.24)
m—1 m
2 2 2 2
<At Y e (Ilemully + lesulls + e I + AtVes, IF) + At Y- b
n=0 n=1

Applying the discrete version of the Gronwall inequality (see Lem. 5.1) to (5.24), and by using (5.23), then we
arrive at

m |12 m (12 m |2 - n 12 Ko n 12

1hllo 3hllo 4hllo 0 1rllo T 5 3hllo
llexillo + llesillo + mlledillo + At ) | nollVernllo + 5 [IVesall (5.25)
n=1 5.25

+ poolleurl e, | + Atldiely s + Atldieiy I} + Atlldieiy 5] < €* (A1) + 1),

By virtue of the identity u" —u} = u" —Ppu” —ely, 0" -0} = 0" —Rp0"—e%,, B*"— B} = B"—F,B" —e};,
and the error bounds (5.3), we can obtain the desired result and the proof is completed. (]

As far as error estimate for the pressure, we will prove the following sub-optimal result by following a similar
argument developed in [54].

Theorem 5.7. Under the same assumptions as Theorem 5.6, we have
ALY " = pil < Ot (an T (a0 + 1) (5.26)
n=1

with £ = min{k, s}.
Proof. From (5.5), we know that

b(vn, €3,) = (RL1p,Vn) + (R1p, vn) — (deety, va) — A (Vn (9271)7671%”}1)'
Making use of the inf-sup condition (3.4), we derive

1 b o
||e;1h||0 g — su (Uh762h)
B 0#vp €V} H1’h||1,2

(5.27)
* n n 1 / n n
< c {”RLth(th)’ + HRNI}LH(Vh”V)l + \/A—t< At”dtelh”O) + ||ve1h||0}7

where Ry, = Rpyp, + Rty + By, + Ry,
We will estimate the terms in the last line of (5.27) one by one. According to the estimate (5.25), there holds

Ati(mndtaﬁué) <o ((a? + 121).

Concerning the term (Rg,,,Vn), by (3.15), similar to the previous theorem, we can deduce
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(Rp, o) < C* (\/Ellf)tUIlLa(tnfl,tn;m(m) O™ My
+ Coh [ u |y n + lletnllo + et I, )||'UhH1 2+ O1(efy s ey, vn).

A combination of the inverse inequality, Poincaré type inequality and (5.25) yields

o)

< Crmin{ 2 (At + 1Y), (AT (A0 | < o,

He?f:lHo,ggcmin{ 1/2H e1n {

which implies that

04 (5 el vn)| < C* 5+ C* 1Vl lleinlos

Hence it holds that

L2y T Ceh "™

n 1”
n—1,tn; 1+4,2

IRl ey < O (VAU 2,
+ C’ehHlHun”He,Q +lletnllo + ||6?h_1||0 + ||V€7fh||o)-
In a similar way, we can prove

1Rl vy < C{ VAN 121, ity + O 18" e + Vel o -

n—15tn;

BBl ey < C{VBUAN oo, ety + O (107 1ses + 107 1 pon) + Bl + 5 Ly}
and

||R21h||(vhl§)’ < C(CT\/E”&&BHL?@ tn;L2(82)) + CECThZHBn_lue,Q + CT”(fZ}?l“o

n—1,

+ C.C, hé||curlB"||é2 + Cyllcurley, ||, + ||e” b curleg‘h|‘06/5>.
To bound the last term in the last line, we continue to derive

ledn Xcur]‘ezhHO’ﬁ/5 et = Z (el ') + Z(enn )] xcurleZhH076/5
< e = Z (el ) [lolleurtefulio s + (12 (el ) [l glleurl eyl

< CmvthcurleZ;lH lcurley, ||, + HZ(e4h ) lcurley, ||,

||O ,3+61

< Cinuh! |curlel, 1|| [curlely ||, + ||curle], 1H0chrleffh||0

< C||curle}, 1HOchrl exnllo-

By virtue of (5.18), we have

B+l
”RLlh”(Vk)’ < C{V ”attuHL?(fn 1ot L2(Q)) +C (”U ||1+52 + H“n 1||1+e 2)}

A combination of the above estimates, we deduce that

||€;Lh||0 g C*{\/E|:||atu||L2(tn—17tn§L2(Q)) + Hattu”Lz(tnfl7tn§L2(Q)) + Hat@HLz(tnfl?tn;Hl(Q))

+ ||6tB||L2(tr,H,tn;L2(Q))} + A [Hun_lﬂwe,z + Hun||1+e,2 + ||‘9n”1+4,2
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- B R+ _
10" g + 1B+ leur B + i (I g+ [0 )

+lletullo + e o+ llesa llg + 1Vetullo + [leurl g |[glleurle, [l + || Ves; |,

Dl + 19l + ey + leurt el + = (VAdietly) |

7= (V3

which, together with (5.25), we derive

n 12 * 2 -1 n o2
a3 el < o (a4 (a0 ar 3" (et )
n=1 n=1
+ (A [ h?ﬂ Z |curle:fh||§} <o (At ((At)2 + h%).
Then the proof can be completed by applying p™ — pj = p™ — Qpp™ — €h;, and (5.3). O

6. NUMERICAL EXPERIMENTS

In this section, we consider two numerical experiments to verify the convergence properties of the fully finite
element discretization for the MHD coupled thermal equation with temperature-dependent coefficients (1.1)—
(1.7). The parallel code is developed based on the finite element package-Parallel Hierarchical Grids (PHG), cf.
[56,57]. The computations were (partly) done on the high performance computers of State Key Laboratory of
Scientific and Engineering Computing, Chinese Academy of Sciences.

The two examples are used to verify the optimal error estimates of the fully discrete finite element method
proposed in Section 3. In all examples, the domain under consideration is Q = (0, 1)3 and the finite element
mesh is obtained by a uniform tetrahedral partition. We employ the continuous P; finite element for discretizing
the velocity v and the temperature 6, the continuous P; element for discretizing the pressure p, and the second
order edge element method for discretizing magnetic induction B.

Example 6.1. This example is to show the temporal error of the Euler semi-implicit scheme, when At — 0.
Setting the parameters v(0) = 1,0(0) = 1,x(0) = 0, p = 1 and B(0) = (0,0, 1), the time interval [0,1]. The
analytic solution is chosen as

u:(ye*t,zcos(t),x), p=x—y, B:(ye*t,0,0), 6 =ye "

Since the exact solution is linear in spatial variables, the major error comes from the discretization of the time
variable. We fix a tetrahedral mesh with hy = 0.433, the terminal time 7" = 1, and test the convergence rate
at each time step. We list the discretization error for all unknowns at the last moment 7" =1 in Table 1, from
which it shows perfectly that the temporal convergence rate of the Euler discrete scheme is first-order.

Example 6.2. This example is to test the convergence rate for our numerical scheme when both the timestep
and the meshwidth are refined at the same time. Setting the parameters v(0) = 0,0(0) = 1,x(0) =0, p = 1 and
B(0) = (0,0, —1). The initial mesh hg = 0.866 and the time interval is [0, 1]. The analytic solution is chosen as

u = (sin(y) sin(t),0,0), p=0, B = (0,sin(x)sin(t),0), 6 =1+ sin(y)sin(¢).

To test the validity of Theorem 5.6, the following error bounds are denoted by

1/2 1/2
(AtZHv —uj) ||o) : (AtZHv — o ||o> :
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TABLE 1. The convergence rate of Euler scheme at terminal time T'= 1 (Example 6.1).

At |w(T) — uj, Ho Order  ||u(T) uhNHl ) Order  ||p(T) — hN”o Order
0.1000  7.167e-05 - 6.332e-04 - 8.947¢-03 -
0.0500  3.612e-05 0.9884  3.189e-04 0.9898  4.374e-03 1.0323
0.0250  1.816e-05 0.9922  1.606e-04 0.9896  2.157¢-03 1.0198
0.0125  9.179e-06 0.9843  8.230e-05 0.9644  1.069e-03 1.0130
At [B(T) - Bi[|, Order [[B(T) = B[l yr(euersry  Order

0.1000  8.568e-04 - 4.181e-03 E

0.0500  4.181e-04 1.0351  2.039e-03 1.0357

0.0250  2.065e-04 1.0175  1.007e-03 1.0178

0.0125  1.026e-04 1.0087  5.005e-04 1.0089

At [0(T) —67],  Order [O(T) -6, Order

0.1000  1.338e-03 - 1.371e-02 E

0.0500  7.032e-04 0.9278  7.118e-03 0.9460

0.0250  3.609e-04 0.9623  3.629¢-03 0.9721

0.0125  1.826e-04 0.9830  1.831e-03 0.9871

TABLE 2. The convergence rate of Euler scheme at terminal time 7' =1 (Example 6.2).

(At h) E(u) Order FE(B) Order FE(0) Order ||p(T) — pi||, Order
(Ato, ho) 5.827¢-03 - 9.387e-03 - 3.749e-02 - 3.883¢-03 -
(Ato/4,ho/2) 1.148¢-03 2.3437 2.560e-03 1.8746 7.187e-03 2.3831 1.014e-03 1.9371
(Ato/16,ho/4) 2.636e-04 2.1226 6.528e-04 1.9715 1.662e-03 2.1125 2.418e-04 2.0680
(Ato/64,ho/8) 6.400e-05 2.0422 1.627¢-04 2.0042 4.062e-04 2.0327 6.316e-05 1.9368
(At, h) [u(T) —uy ||, Order [[B(T) fob"HO Order [[6(T) — 05[], Order

(Ato, ho) 4.979e_o4 E 3.175e-03 9.892e-04 -

(Ato/4,ho/2) 6.824e-05 2.8671 1.075¢-03 1.5626 3.233e-04 1.6136

(Ato/16,ho/4) 1.326e-05 2.3641 3.439e-04 1.6439 1.170e-04 1.4661

(Ato/64, ho/8) 4.071e-06 1.7031 9.665¢-05 1.8311 3.628e-05 1.6893

m 1/2
)= (Athcurl(B“B::)Hé) :
n=1

Setting Aty = hZ, Table 2 shows that the convergence rate for the backward Euler scheme at the terminal
time. The initial conditions, boundary conditions and source terms are determined by the analytical solution.
Both the timestep and the meshwidth are refined at the same time such that At = O(h2). The corresponding
convergent results are displayed in Table 2 and an (’)(h2) convergence of the proposed numerical scheme can be
observed, which agrees with the theoretical results developed in this paper.

7. SUMMARY

We have studied a fully discrete finite element scheme for the 3D thermally coupled incompressible MHD
problems with variable coefficients problems. The proposed scheme has the nice features that it only needs to
solve one linear system at each time step and the magnetic induction is approximated by H (curl)-conforming
Nédélec edge element, which make it quite attractive to solve these highly nonlinear MHD models with possibly
non-smooth magnetic induction solution. We prove that the fully discrete solution converges to a weak solution
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of the continuous problem as both meshwidth and timestep size tend to zero, and it is unique under a further
smooth assumption. Thus we have given a numerical verification of the existence of weak solution to this model,
which is still missing in the literature. Under a quite low regularity assumption for the exact solution, we
rigorously establish the error estimates for the velocity, temperature and magnetic induction unconditionally
in the sense that the time step is restricted but is independent of the spacial mesh size. Whether the plain
convergence or error estimate, the technique and results of this paper have some improvements on that of
relevant papers.
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