In this paper, we consider a priori and a posteriori error estimates of the H(curl2)-conforming finite element when solving the quad-curl eigenvalue problem. An a priori estimate of eigenvalues with convergence order 2(s − 1) is obtained if the corresponding eigenvector $$ ∈ $$$$(Ω) and ∇ × $$ ∈ $$$$(Ω). For the a posteriori estimate, by analyzing the associated source problem, we obtain lower and upper bounds for the errors of eigenvectors in the energy norm and upper bounds for the errors of eigenvalues. Numerical examples are presented for validation.
Keywords: The quad-curl problem, eigenvalue problem, $$ error estimation, $$ error estimation, curl-curl conforming elements
@article{M2AN_2022__56_3_1027_0,
author = {Wang, Lixiu and Zhang, Qian and Sun, Jiguang and Zhang, Zhimin},
title = {\protect\emph{A priori} and \protect\emph{a posteriori} error estimates for the quad-curl eigenvalue problem},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
pages = {1027--1051},
year = {2022},
publisher = {EDP-Sciences},
volume = {56},
number = {3},
doi = {10.1051/m2an/2022027},
mrnumber = {4420892},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an/2022027/}
}
TY - JOUR AU - Wang, Lixiu AU - Zhang, Qian AU - Sun, Jiguang AU - Zhang, Zhimin TI - A priori and a posteriori error estimates for the quad-curl eigenvalue problem JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2022 SP - 1027 EP - 1051 VL - 56 IS - 3 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2022027/ DO - 10.1051/m2an/2022027 LA - en ID - M2AN_2022__56_3_1027_0 ER -
%0 Journal Article %A Wang, Lixiu %A Zhang, Qian %A Sun, Jiguang %A Zhang, Zhimin %T A priori and a posteriori error estimates for the quad-curl eigenvalue problem %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2022 %P 1027-1051 %V 56 %N 3 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/m2an/2022027/ %R 10.1051/m2an/2022027 %G en %F M2AN_2022__56_3_1027_0
Wang, Lixiu; Zhang, Qian; Sun, Jiguang; Zhang, Zhimin. A priori and a posteriori error estimates for the quad-curl eigenvalue problem. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 3, pp. 1027-1051. doi: 10.1051/m2an/2022027
[1] and , Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems. Math. Comput. 52 (1989) 275–297. | MR | Zbl
[2] and , Eigenvalue Problems. Elsevier (1991) 641–787. | MR | Zbl
[3] , , and , Residual based a posteriori error estimators for eddy current computation. ESAIM: M2AN 34 (2000) 159–182. | MR | Zbl | Numdam
[4] , , and , Residual-based a posteriori error estimation for the Maxwell’s eigenvalue problem. IMA J. Numer. Anal. 37 (2017) 1710–1732. | MR
[5] , , and , A posteriori error estimates for Maxwell’s eigenvalue problem. J. Sci. Comput. 78 (2019) 1250–1271. | MR
[6] , and , Hodge decomposition methods for a quad-curl problem on planar domains. J. Comput. Sci. 73 (2017) 495–513. | MR
[7] , and , Multigrid methods based on Hodge decomposition for a quad-curl problem. Comput. Methods Appl. Math. 19 (2019) 215–232. | MR
[8] and , A variational approach for the solution of the electromagnetic interior transmission problem for anisotropic media. Inverse Prob. Imaging 1 (2017) 443–456. | MR | Zbl
[9] , , and , The inverse electromagnetic scattering problem for anisotropic media. Inverse Prob. 26 (2010). | MR | Zbl
[10] , and , Error analysis of a decoupled finite element method for quad-curl problems. J. Sci. Comput. 90 (2022) 1–25. | MR
[11] , Sobolev Spaces and Elliptic Equations. Course Notes (2016).
[12] , , and , A mixed finite element scheme for quad-curl source and eigenvalue problems. Commun. Comput. Phys. 29 (2021) 1125–1151. | MR | DOI
[13] , and , Analysis of an interior penalty DG method for the quad-curl problem. IMA J. Numer. Anal. 41 (2021) 2990–3023. | MR | DOI
[14] and , Generalized finite element systems for smooth differential forms and stokes’ problem. Numer. Math. 140 (2018) 327–371. | MR | DOI
[15] and , Robust a posteriori error estimation for the Maxwell equations. Comput. Methods Appl. Mech. Eng. 196 (2007) 2583–2595. | MR | Zbl | DOI
[16] and , On Bogovskiĭ and regularized Poincaré integral operators for de Rham complexes on Lipschitz domains. Math. Z. 265 (2010) 297–320. | MR | Zbl | DOI
[17] , and , Convergence and optimal complexity of adaptive finite element eigenvalue computations. Numer. Math. 110 (2008) 313–355. | MR | Zbl | DOI
[18] , Elliptic Boundary Value Problems on Corner Domains: Smoothness and Asymptotics of Solutions. Vol 1341. Springer (2006). | MR | Zbl
[19] , and , A singular field method for the solution of Maxwell’s equations in polyhedral domains. SIAM J. Appl. Math. 59 (1999) 2028–2044. | MR | Zbl | DOI
[20] and , Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms. Vol 5. Springer Science & Business Media (2012). | MR | Zbl
[21] , Shifted inverse iteration based multigrid methods for the quad-curl eigenvalue problem. Appl. Math. Comput. 367 (2020) 124770. | MR
[22] , , and , A discontinuous Galerkin method for the fourth-order curl problem. J. Comput. Math. 30 (2012) 565–578. | MR | Zbl | DOI
[23] , and , Simple curl-curl-conforming finite elements in two dimensions. SIAM J. Sci. Comput. 42 (2020) A3859–A3877. | MR | DOI
[24] , and , A family of finite element stokes complexes in three dimensions. SIAM J. Numer. Anal. 60 (2022) 222–243. | MR | DOI
[25] , A posteriori error indicators for Maxwell’s equations. J. Comput. Appl. Math. 100 (1998) 173–190. | MR | Zbl | DOI
[26] , Finite Element Methods for Maxwell’s Equations. Oxford University Press (2003). | MR | Zbl | DOI
[27] and , Finite element methods for Maxwell’s transmission eigenvalues. SIAM J. Sci. Comput. 34 (2012) B247–B264. | MR | Zbl | DOI
[28] , Singularities of the quad-curl problem. J. Differ. Equ. 264 (2018) 5025–5069. | MR | DOI
[29] , Spectral approximation for compact operators. Math. Comput. 29 (1975) 712–725. | MR | Zbl | DOI
[30] , A posteriori error estimates for Maxwell equations. Math. Comput. 77 (2008) 633–649. | MR | Zbl | DOI
[31] and , Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54 (1990) 483–493. | MR | Zbl | DOI
[32] , Iterative methods for transmission eigenvalues. SIAM J. Numer. Anal. 49 (2011) 1860–1874. | MR | Zbl | DOI
[33] , A mixed FEM for the quad-curl eigenvalue problem. Numer. Math. 132 (2016) 185–200. | MR | DOI
[34] and , Finite Element Methods for Eigenvalue Problems. Chapman and Hall/CRC, Boca Raton, FL (2016). | DOI
[35] , , and , Multigrid methods for a quad-curl problem based on interior penalty method. Comput. Math. App. 76 (2018) 2192–2211. | MR
[36] , and , A curl-conforming weak Galerkin method for the quad-curl problem. BIT Numer. Math. 59 (2019) 1093–1114. | MR | DOI
[37] , A review of a posteriori error estimation techniques for elasticity problems. Comput. Methods Appl. Mech. Eng. 176 (1999) 419–440. | MR | Zbl | DOI
[38] , and , A new error analysis of a mixed finite element method for the quad-curl problem. Appl. Math. Comput. 349 (2019) 23–38. | MR
[39] , and , -conforming spectral element method for quad-curl problems. Comput. Methods Appl. Math. 21 (2021) 661–681. | MR | DOI
[40] , , and , -conforming quadrilateral spectral element method for quad-curl problems. Math. Models Methods Appl. Sci. 31 (2021) 1951–1986. | MR | DOI
[41] , Mixed schemes for quad-curl equations. ESAIM: M2AN 52 (2018) 147–161. | MR | Numdam | DOI
[42] , Regular decomposition and a framework of order reduced methods for fourth order problems. Numer. Math. 138 (2018) 241–271. | MR | DOI
[43] , New conforming finite elements based on the de rham complexes for some fourth-order problems. Ph.D. dissertation (2021). | MR
[44] , and , -conforming finite elements in 2 dimensions and applications to the quad-curl problem. SIAM J. Sci. Comput. 41 (2019) A1527–A1547. | MR | DOI
[45] and , A nonconforming finite element method for fourth order curl equations in . Math. Comput. 80 (2011) 1871–1886. | MR | Zbl | DOI
Cité par Sources :





