A priori and a posteriori error estimates for the quad-curl eigenvalue problem
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 3, pp. 1027-1051

In this paper, we consider a priori and a posteriori error estimates of the H(curl2)-conforming finite element when solving the quad-curl eigenvalue problem. An a priori estimate of eigenvalues with convergence order 2(s − 1) is obtained if the corresponding eigenvector $$ ∈ $$$$(Ω) and ∇ × $$ ∈ $$$$(Ω). For the a posteriori estimate, by analyzing the associated source problem, we obtain lower and upper bounds for the errors of eigenvectors in the energy norm and upper bounds for the errors of eigenvalues. Numerical examples are presented for validation.

DOI : 10.1051/m2an/2022027
Classification : 65N15, 65N25, 65N30, 76W05
Keywords: The quad-curl problem, eigenvalue problem, $$ error estimation, $$ error estimation, curl-curl conforming elements
@article{M2AN_2022__56_3_1027_0,
     author = {Wang, Lixiu and Zhang, Qian and Sun, Jiguang and Zhang, Zhimin},
     title = {\protect\emph{A priori} and \protect\emph{a posteriori} error estimates for the quad-curl eigenvalue problem},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1027--1051},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {3},
     doi = {10.1051/m2an/2022027},
     mrnumber = {4420892},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2022027/}
}
TY  - JOUR
AU  - Wang, Lixiu
AU  - Zhang, Qian
AU  - Sun, Jiguang
AU  - Zhang, Zhimin
TI  - A priori and a posteriori error estimates for the quad-curl eigenvalue problem
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2022
SP  - 1027
EP  - 1051
VL  - 56
IS  - 3
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2022027/
DO  - 10.1051/m2an/2022027
LA  - en
ID  - M2AN_2022__56_3_1027_0
ER  - 
%0 Journal Article
%A Wang, Lixiu
%A Zhang, Qian
%A Sun, Jiguang
%A Zhang, Zhimin
%T A priori and a posteriori error estimates for the quad-curl eigenvalue problem
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2022
%P 1027-1051
%V 56
%N 3
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2022027/
%R 10.1051/m2an/2022027
%G en
%F M2AN_2022__56_3_1027_0
Wang, Lixiu; Zhang, Qian; Sun, Jiguang; Zhang, Zhimin. A priori and a posteriori error estimates for the quad-curl eigenvalue problem. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 3, pp. 1027-1051. doi: 10.1051/m2an/2022027

[1] I. Babuška and J. Osborn, Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems. Math. Comput. 52 (1989) 275–297. | MR | Zbl

[2] I. Babuška and J. Osborn, Eigenvalue Problems. Elsevier (1991) 641–787. | MR | Zbl

[3] R. Beck, R. Hiptmair, R. Hoppe and B. Wohlmuth, Residual based a posteriori error estimators for eddy current computation. ESAIM: M2AN 34 (2000) 159–182. | MR | Zbl | Numdam

[4] D. Boffi, L. Gastaldi, R. Rodríguez and I. Šebestová, Residual-based a posteriori error estimation for the Maxwell’s eigenvalue problem. IMA J. Numer. Anal. 37 (2017) 1710–1732. | MR

[5] D. Boffi, L. Gastaldi, R. Rodríguez and I. Šebestová, A posteriori error estimates for Maxwell’s eigenvalue problem. J. Sci. Comput. 78 (2019) 1250–1271. | MR

[6] S. C. Brenner, J. Sun and L. Sung, Hodge decomposition methods for a quad-curl problem on planar domains. J. Comput. Sci. 73 (2017) 495–513. | MR

[7] S. C. Brenner, J. Cui and L. Sung, Multigrid methods based on Hodge decomposition for a quad-curl problem. Comput. Methods Appl. Math. 19 (2019) 215–232. | MR

[8] F. Cakoni and H. Haddar, A variational approach for the solution of the electromagnetic interior transmission problem for anisotropic media. Inverse Prob. Imaging 1 (2017) 443–456. | MR | Zbl

[9] F. Cakoni, D. Colton, P. Monk and J. Sun, The inverse electromagnetic scattering problem for anisotropic media. Inverse Prob. 26 (2010). | MR | Zbl

[10] S. Cao, L. Chen and X. Huang, Error analysis of a decoupled finite element method for quad-curl problems. J. Sci. Comput. 90 (2022) 1–25. | MR

[11] L. Chen, Sobolev Spaces and Elliptic Equations. Course Notes (2016).

[12] H. Chen, J. Li, W. Qiu and C. Wang, A mixed finite element scheme for quad-curl source and eigenvalue problems. Commun. Comput. Phys. 29 (2021) 1125–1151. | MR | DOI

[13] G. Chen, W. Qiu and L. Xu, Analysis of an interior penalty DG method for the quad-curl problem. IMA J. Numer. Anal. 41 (2021) 2990–3023. | MR | DOI

[14] S. Christiansen and K. Hu, Generalized finite element systems for smooth differential forms and stokes’ problem. Numer. Math. 140 (2018) 327–371. | MR | DOI

[15] S. Cochez-Dhondt and S. Nicaise, Robust a posteriori error estimation for the Maxwell equations. Comput. Methods Appl. Mech. Eng. 196 (2007) 2583–2595. | MR | Zbl | DOI

[16] M. Costabel and A. Mcintosh, On Bogovskiĭ and regularized Poincaré integral operators for de Rham complexes on Lipschitz domains. Math. Z. 265 (2010) 297–320. | MR | Zbl | DOI

[17] X. Dai, J. Xu and A. Zhou, Convergence and optimal complexity of adaptive finite element eigenvalue computations. Numer. Math. 110 (2008) 313–355. | MR | Zbl | DOI

[18] M. Dauge, Elliptic Boundary Value Problems on Corner Domains: Smoothness and Asymptotics of Solutions. Vol 1341. Springer (2006). | MR | Zbl

[19] A.-S. Bonnet-Ben Dhia, C. Hazard and S. Lohrengel, A singular field method for the solution of Maxwell’s equations in polyhedral domains. SIAM J. Appl. Math. 59 (1999) 2028–2044. | MR | Zbl | DOI

[20] V. Girault and P. Raviart, Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms. Vol 5. Springer Science & Business Media (2012). | MR | Zbl

[21] J. Han, Shifted inverse iteration based multigrid methods for the quad-curl eigenvalue problem. Appl. Math. Comput. 367 (2020) 124770. | MR

[22] Q. Hong, J. Hu, S. Shu and J. Xu, A discontinuous Galerkin method for the fourth-order curl problem. J. Comput. Math. 30 (2012) 565–578. | MR | Zbl | DOI

[23] K. Hu, Q. Zhang and Z. Zhang, Simple curl-curl-conforming finite elements in two dimensions. SIAM J. Sci. Comput. 42 (2020) A3859–A3877. | MR | DOI

[24] K. Hu, Q. Zhang and Z. Zhang, A family of finite element stokes complexes in three dimensions. SIAM J. Numer. Anal. 60 (2022) 222–243. | MR | DOI

[25] P. Monk, A posteriori error indicators for Maxwell’s equations. J. Comput. Appl. Math. 100 (1998) 173–190. | MR | Zbl | DOI

[26] P. Monk, Finite Element Methods for Maxwell’s Equations. Oxford University Press (2003). | MR | Zbl | DOI

[27] P. Monk and J. Sun, Finite element methods for Maxwell’s transmission eigenvalues. SIAM J. Sci. Comput. 34 (2012) B247–B264. | MR | Zbl | DOI

[28] S. Nicaise, Singularities of the quad-curl problem. J. Differ. Equ. 264 (2018) 5025–5069. | MR | DOI

[29] J. Osborn, Spectral approximation for compact operators. Math. Comput. 29 (1975) 712–725. | MR | Zbl | DOI

[30] J. Schöberl, A posteriori error estimates for Maxwell equations. Math. Comput. 77 (2008) 633–649. | MR | Zbl | DOI

[31] L. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54 (1990) 483–493. | MR | Zbl | DOI

[32] J. Sun, Iterative methods for transmission eigenvalues. SIAM J. Numer. Anal. 49 (2011) 1860–1874. | MR | Zbl | DOI

[33] J. Sun, A mixed FEM for the quad-curl eigenvalue problem. Numer. Math. 132 (2016) 185–200. | MR | DOI

[34] J. Sun and A. Zhou, Finite Element Methods for Eigenvalue Problems. Chapman and Hall/CRC, Boca Raton, FL (2016). | DOI

[35] Z. Sun, J. Cui, F. Gao and C. Wang, Multigrid methods for a quad-curl problem based on C 0 interior penalty method. Comput. Math. App. 76 (2018) 2192–2211. | MR

[36] J. Sun, Q. Zhang and Z. Zhang, A curl-conforming weak Galerkin method for the quad-curl problem. BIT Numer. Math. 59 (2019) 1093–1114. | MR | DOI

[37] R. Verfürth, A review of a posteriori error estimation techniques for elasticity problems. Comput. Methods Appl. Mech. Eng. 176 (1999) 419–440. | MR | Zbl | DOI

[38] C. Wang, Z. Sun and J. Cui, A new error analysis of a mixed finite element method for the quad-curl problem. Appl. Math. Comput. 349 (2019) 23–38. | MR

[39] L. Wang, H. Li and Z. Zhang, H ( 𝐜𝐮𝐫𝐥 2 ) -conforming spectral element method for quad-curl problems. Comput. Methods Appl. Math. 21 (2021) 661–681. | MR | DOI

[40] L. Wang, W. Shan, H. Li and Z. Zhang, H ( 𝐜𝐮𝐫𝐥 2 ) -conforming quadrilateral spectral element method for quad-curl problems. Math. Models Methods Appl. Sci. 31 (2021) 1951–1986. | MR | DOI

[41] S. Zhang, Mixed schemes for quad-curl equations. ESAIM: M2AN 52 (2018) 147–161. | MR | Numdam | DOI

[42] S. Zhang, Regular decomposition and a framework of order reduced methods for fourth order problems. Numer. Math. 138 (2018) 241–271. | MR | DOI

[43] Q. Zhang, New conforming finite elements based on the de rham complexes for some fourth-order problems. Ph.D. dissertation (2021). | MR

[44] Q. Zhang, L. Wang and Z. Zhang, H ( 𝐜𝐮𝐫𝐥 2 ) -conforming finite elements in 2 dimensions and applications to the quad-curl problem. SIAM J. Sci. Comput. 41 (2019) A1527–A1547. | MR | DOI

[45] B. Zheng and J. Xu, A nonconforming finite element method for fourth order curl equations in 3 . Math. Comput. 80 (2011) 1871–1886. | MR | Zbl | DOI

Cité par Sources :