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A PRIORI AND A POSTERIORI ERROR ESTIMATES FOR THE QUAD-CURL
EIGENVALUE PROBLEM

Lixiu Wang1,2, Qian Zhang3,˚ , Jiguang Sun3 and Zhimin Zhang2,4

Abstract. In this paper, we consider a priori and a posteriori error estimates of the 𝐻pcurl2q-
conforming finite element when solving the quad-curl eigenvalue problem. An a priori estimate of
eigenvalues with convergence order 2p𝑠´ 1q is obtained if the corresponding eigenvector 𝑢 P𝐻𝑠´1

pΩq
and ∇ ˆ 𝑢 P 𝐻𝑠

pΩq. For the a posteriori estimate, by analyzing the associated source problem, we
obtain lower and upper bounds for the errors of eigenvectors in the energy norm and upper bounds for
the errors of eigenvalues. Numerical examples are presented for validation.
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1. Introduction

The quad-curl operator has important applications in the inverse electromagnetic scattering theory [8,9]. The
corresponding quad-curl eigenvalue problem plays a fundamental role in the analysis and computation of the
electromagnetic interior transmission eigenvalues [27,32,33]. Various numerical methods have been proposed for
the quad-curl source problem, see, e.g., [6,7,13,22,35,36,38,41,42,45]. However, there exist only a few results
on the numerical methods for the quad-curl eigenvalue problem. The quad-curl eigenvalue problem was first
proposed in [33], where J. Sun developed a mixed finite element method by introducing an auxiliary variable
𝑤 “ ∇ˆ∇ˆ𝑢 and proved an a priori error estimate. In [12], H. Chen et al. designed a different mixed scheme
by introducing 𝛿 “ ∇ ˆ 𝑢. Two multigrid methods based on the Rayleigh quotient iteration and the inverse
iteration with fixed shift were proposed and analyzed in [21].

Very recently, three of the authors and their collaborators constructed 𝐻pcurl2q-conforming finite elements
in both two and three dimensions (2D and 3D) to solve the quad-curl source problem [23, 24, 39, 40, 44]. Based
on the conforming elements, in this paper, we consider the conforming finite element method for the eigenvalue
problem and derive a priori and a posteriori error estimates.

Keywords and phrases. The quad-curl problem, eigenvalue problem, a priori error estimation, a posteriori error estimation,
curl-curl conforming elements.
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In the first part of the paper, we apply the classical framework of Babuška and Osborn [2, 29] to derive an
a priori estimate. To this end, we prove the discrete compactness of the 𝐻pcurl2q-conforming finite elements
with div-free condition. We can show that the conforming method is convergent and it has a convergence order
of 2p𝑠´ 1q when the eigenvector 𝑢 P𝐻𝑠´1pΩq and ∇ˆ 𝑢 P𝐻𝑠pΩq.

At reentrant corners or material interfaces, the eigenvectors feature strong singularities [28]. For more efficient
computation, adaptive local refinements are considered. A posteriori error estimators are essential for adaptive
finite element methods. In addition, an inappropriate scheme for the quad-curl problem might lead to spurious
eigenvalues. In this situation, a posteriori error estimators can be applied to test whether an eigenvalue is spu-
rious. We refer to [3–5,15,17,25,30] for the a posteriori error estimates of electromagnetic problems and elliptic
problems. In [10], S. Cao et al. developed an a posteriori error estimator for a decoupled finite element method
for the quad-curl source problem. In terms of the quad-curl eigenvalue problem, to the authors’ knowledge, no
work on a posteriori error estimations has been done so far. Therefore, in the second part of the paper, we
consider an a posteriori error estimate for the conforming finite element method.

Due to the large kernel space of the curl operator, the Helmholtz decomposition of splitting a vector field in
𝐻pcurl2; Ωq into the irrotational and solenoidal components plays an important role in the analysis. However,
in general, the irrotational component is not 𝐻2-regular when Ω is non-convex. Therefore, we propose a new
decomposition for 𝐻0pcurl2; Ωq, which further splits the irrotational component into a function in 𝐻2pΩq and
a function in the kernel of curl operator. To obtain an a posteriori error estimator for the eigenvalue problem,
we apply the idea of [17] to relate the eigenvalue problem to a source problem. An a posteriori error estimator
for the source problem is constructed by analyzing irrotational and solenoidal components, respectively. Then
an a posteriori error estimator for simple eigenvalues is obtained. The proof uses the new decomposition and
makes no additional regularity assumption.

For ease of presentation, we will focus on only 3D case, the similar arguments can be used to the 2D case.
The rest of this paper is organized as follows. In Section 2, we present some notation, the 𝐻pcurl2q-conforming
elements, the new decomposition, and an 𝐻pcurl2q-type Clément interpolation, which will be used in the a
posteriori error analysis. In Section 3, we derive the a priori error estimate for the quad-curl eigenvalue problem.
In Section 4, we prove the a posteriori error estimate. Finally, in Section 5, we show some numerical experiments.

2. Notation and basis tools

2.1. Notation

Let Ω Ă R3 be a contractible Lipschitz domain. For a Lipschitz domain 𝐷 Ă R3, 𝐿2p𝐷q denotes the space of
square integrable functions on 𝐷 with norm } ¨ }𝐷. For a positive integer 𝑠, 𝐻𝑠p𝐷q denotes the space of scalar
functions in 𝐿2p𝐷q whose derivatives up to order 𝑠 are also in 𝐿2p𝐷q. If 𝑠 “ 0, 𝐻0p𝐷q “ 𝐿2p𝐷q. For vector
functions, denote 𝐿2p𝐷q “ p𝐿2p𝐷qq3 and 𝐻𝑠p𝐷q “ p𝐻𝑠p𝐷qq3. We use p¨, ¨q𝐷 and x¨, ¨yB𝐷 to stand for the 𝐿2

inner products on 𝐷 and B𝐷. When 𝐷 “ Ω, we omit the subscript Ω in the notation of norms and 𝐿2 inner
products.

For simplicity, denote p∇ˆq2𝑢 “ ∇ˆ∇ˆ 𝑢. We now define a space concerning the ∇ˆ operator

𝐻pcurl2;𝐷q :“ t𝑢 P 𝐿2p𝐷q : p∇ˆq𝑖𝑢 P 𝐿2p𝐷q, 𝑖 “ 1, 2u,

whose norm is given by

}𝑢}𝐻pcurl2;𝐷q “

g

f

f

e

2
ÿ

𝑖“0

`

p∇ˆq𝑖𝑢, p∇ˆq𝑖𝑢
˘

𝐷
.

We also equip the space 𝐻pcurl2;𝐷q with the following norm:

|||𝑢|||
2
𝐷 “ }𝑢}

2
𝐷 ` }p∇ˆq2𝑢}𝐷.
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We drop the subscript 𝐷 in ||| ¨ |||𝐷 when 𝐷 “ Ω. The spaces 𝐻0pcurl2;𝐷q, 𝐻1
0 p𝐷q, and 𝐻pdiv0;𝐷q are defined,

respectively, as

𝐻0pcurl2;𝐷q :“ t𝑢 P 𝐻pcurl2;𝐷q : 𝑢ˆ 𝑛𝐷 “ 0 and ∇ˆ 𝑢ˆ 𝑛𝐷 “ 0 on B𝐷u,
𝐻1

0 p𝐷q :“ t𝑢 P 𝐻1p𝐷q : 𝑢 “ 0 on B𝐷u,

𝐻pdiv0;𝐷q :“ t𝑢 P 𝐿2p𝐷q : ∇ ¨ 𝑢 “ 0u,

where 𝑛𝐷 is the unit outward normal vector to B𝐷.
Let 𝒯ℎ be a shape regular simplicial triangulation of Ω. Denote by 𝒩ℎ, ℰℎ, and ℱℎ the sets of vertices, edges,

and faces. Let 𝜏𝑒 and 𝑛𝑓 be the unit tangent vector of an edge 𝑒 P ℰℎ and the unit normal vector of a face
𝑓 P ℱℎ, respectively. We denote 𝒩 int

ℎ and ℱ int
ℎ as the sets of vertices and faces in the interior of Ω, respectively.

Let 𝒩ℎp𝑇 q, ℰℎp𝑇 q and ℱℎp𝑇 q be the sets of vertices, edges, and faces on the element 𝑇 . Denote by ℎ𝑇 the
diameter of 𝑇 P 𝒯ℎ. Denote ℎ “ max

𝑇P𝒯ℎ

ℎ𝑇 . We use 𝑃𝑘 to represent the space of polynomials with degrees at most

𝑘. Denote 𝑃𝑘 “ p𝑃𝑘q
3.

2.2. 𝐻pcurl2q-conforming elements in 3D

We apply the 𝐻pcurl2q-conforming elements constructed in [23,24]. The shape function space for an element
𝑇 P 𝒯ℎ is

𝑉 𝑘
ℎ p𝑇 q “ ∇𝑃𝑘`1p𝑇 q ‘ p𝑃`𝑘´1p𝑇 q,

where

p𝑢 “

ż 1

0

𝑢p𝑊 ` 𝑡p𝑥´𝑊 qq ˆ 𝑡p𝑥´𝑊 qd𝑡,

and

𝑃`𝑘 p𝑇 q “

$

’

&

’

%

𝑃1p𝑇 q ‘𝐵
1, 𝑘 “ 1,

𝑃2p𝑇 q ‘𝐵
1 ‘𝐵2, 𝑘 “ 2,

𝑃𝑘p𝑇 q ‘𝐵
𝑘, 𝑘 ě 3.

Here 𝐵1 and 𝐵𝑘 are spaces of modified bubbles defined on the Alfeld split of 𝑇 , see [24] for more information.

Remark 2.1. For the bubble functions in 𝑃`𝑘 p𝑇 q, we choose the barycenter of 𝑇 as the base point 𝑊 in the
Poincaré operator p, see [14]. For other functions, we choose 𝑊 to be the origin.

For 𝑘 ě 2, the 𝐻pcurl2q-conforming element with the shape function space 𝑉 𝑘
ℎ p𝑇 q is defined by the following

degrees of freedom (DOFs).

– Vertex DOFs 𝑀𝑣p𝑢q at all vertices 𝑣𝑖 P 𝒩ℎ:

𝑀𝑣p𝑢q “ tp∇ˆ 𝑢qp𝑣𝑖qu . (2.1)

– Edge DOFs 𝑀𝑒p𝑢q on all edges 𝑒𝑖 P ℰℎ:

𝑀𝑒p𝑢q “

"
ż

𝑒𝑖

𝑢 ¨ 𝜏𝑒𝑖
𝑞d𝑆, @𝑞 P 𝑃𝑘p𝑒𝑖q

*

Y

"

1
lengthp𝑒𝑖q

ż

𝑒𝑖

∇ˆ 𝑢 ¨ 𝑞d𝑆, @𝑞 ˝ 𝐹𝑇 P 𝑃𝑘´3p𝑒𝑖q

*

. (2.2)
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– Face DOFs 𝑀𝑓 p𝑢q at all faces 𝑓𝑖 P ℱℎ (with two mutually orthogonal unit vector 𝜏1 and 𝜏2 in the face 𝑓𝑖

and the unit normal vector 𝑛𝑖):

𝑀𝑓 p𝑢q “

"
ż

𝑓𝑖

∇ˆ 𝑢 ¨ 𝑛𝑖𝑞d𝐴, @𝑞 P 𝑃𝑘´4p𝑓𝑖q{R
*

Y

"

1
areap𝑓𝑖q

ż

𝑓𝑖

∇ˆ 𝑢 ¨ 𝜏1𝑞d𝐴, @𝑞 P 𝑃𝑘´4p𝑓𝑖q

*

Y

"

1
areap𝑓𝑖q

ż

𝑓𝑖

∇ˆ 𝑢 ¨ 𝜏2𝑞d𝐴, @𝑞 P 𝑃𝑘´4p𝑓𝑖q

*

(2.3)

Y

"

1
area p𝑓𝑖q

ż

𝑓𝑖

𝑢 ¨ 𝑞d𝐴,@𝑞 “ 𝐵𝑇𝑞, 𝑞 P 𝑃𝑘´2p𝑓𝑖q r𝑥̂´ p𝑥̂ ¨ 𝑛̂𝑖q 𝑛̂𝑖s |𝑓𝑖

*

.

– Interior DOFs 𝑀𝑇 p𝑢q for all the elements 𝑇𝑖 P 𝒯ℎ:

𝑀𝑇 p𝑢q “

"
ż

𝑇𝑖

∇ˆ 𝑢 ¨ 𝑞d𝑉, @𝑞 ˝ 𝐹𝑇𝑖
“ 𝐵´T

𝑇𝑖
𝑞, 𝑞 P 𝑃𝑘´6p𝑇𝑖q ˆ 𝑥̂

*

Y

"
ż

𝑇𝑖

𝑢 ¨ 𝑞d𝑉, @𝑞 ˝ 𝐹𝑇𝑖 “ 1{detp𝐵𝑇𝑖q𝐵𝑇𝑖𝑞 P 𝑃𝑘´3p𝑇𝑖q𝑥̂

*

. (2.4)

Here the notation ˆ̈ denotes the corresponding variable on the reference element (the tetrahedron with vertices
p0, 0, 0q, p1, 0, 0q, p0, 1, 0q, and p0, 0, 1q), and 𝐵𝑇 is the Jacobian matrix of the transformation from 𝑇 to 𝑇 .

We can define an 𝐻pcurl2; Ωq interpolation Π𝑘
ℎ𝑢 by the DOFs (2.1)–(2.4). Applying the similar arguments of

the proof of Theorem 5.41 in [26], we can obtain the following error estimates.

Theorem 2.2. The interpolation Π𝑘
ℎ satisfies the following approximation properties.

(1) Assume that 𝑢 P 𝐻𝑠´1pΩq, ∇ ˆ 𝑢 P 𝐻𝑠pΩq, 𝑠 ě 3{2 ` 𝛿 with 𝛿 ą 0. Then we have the following error
estimates for the interpolation Π𝑘

ℎ,

›

›𝑢´Π𝑘
ℎ𝑢

›

›

𝐻pcurl2;Ωq
ď 𝐶ℎmint𝑠´1,𝑘´1up}𝑢}𝑠´1 ` }∇ˆ 𝑢}𝑠q.

(2) Assume that 𝑢 P 𝐻𝑠`1pΩq, 𝑠 ě 3{2 ` 𝛿 with 𝛿 ą 0. Then we have the following error estimates for the
interpolation Π𝑘

ℎ,

›

›𝑢´Π𝑘
ℎ𝑢

›

›` ℎ
›

›∇p𝑢´Π𝑘
ℎ𝑢q

›

›` ℎ2
›

›∇∇ˆ p𝑢´Π𝑘
ℎ𝑢q

›

› ď 𝐶ℎmint𝑠`1,𝑘`1u }𝑢}𝑠`1 .

(3) Assume that 𝑢 P𝐻1{2`𝛿p𝑇 q with 𝛿 ą 0 and ∇ˆ 𝑢|𝑇 P 𝑃`𝑘´1p𝑇 q, then

›

›𝑢´Π𝑘
ℎ𝑢

›

›

𝑇
ď 𝐶

`

ℎ
1{2`𝛿
𝑇 }𝑢}1{2`𝛿,𝑇 ` ℎ𝑇 }∇ˆ 𝑢}𝑇

˘

.

For 2D 𝐻pcurl2q-conforming elements, we refer to the family 𝑟 “ 𝑘 ` 1 in [23].

2.3. An 𝐻(curl2)-type Clément interpolation

Let 𝜔𝑣 be the union of elements sharing the vertex 𝑣 and 𝑅𝑣𝜑 be the 𝐿2 projection of 𝜑 P 𝐿2p𝜔𝑣q on 𝜔𝑣, i.e.,
𝑅𝑣𝜑 P 𝑃1p𝜔𝑣q such that

ż

𝜔𝑣

p𝜑´𝑅𝑣𝜑q 𝑝d𝑉 “ 0, @𝑝 P 𝑃1p𝜔𝑣q.
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For 𝑢 P𝐻1{2`𝛿pΩq with ∇ˆ 𝑢 P𝐻3{2`𝛿pΩq, the lowest-order 𝐻pcurl2; Ωq interpolation Π2
ℎ𝑢 defined by the

DOFs (2.1)–(2.4) can be written as

Π2
ℎ𝑢 “

ÿ

𝑣P𝒩ℎ

3
ÿ

𝑖“1

𝛼𝑖
𝑣p𝑢q𝜑

𝑖
𝑣`

ÿ

𝑒Pℰℎ

3
ÿ

𝑖“1

𝛼𝑖
𝑒p𝑢q𝜑

𝑖
𝑒 `

ÿ

𝑓Pℱℎ

𝛼𝑓 p𝑢q𝜑𝑓 ,

where

𝛼𝑖
𝑣p𝑢q “ the 𝑖th component of ∇ˆ 𝑢p𝑣q,

𝛼𝑖
𝑒p𝑢q “

ż

𝑒

𝑢 ¨ 𝜏𝑒𝑞𝑖d𝑠 for any 𝑞𝑖 P 𝑃2p𝑒q,

𝛼𝑓 p𝑢q “

ż

𝑓

𝑢 ¨𝐵𝑇 p𝑛̂𝑓 ˆ 𝑥̂|𝑓 ˆ 𝑛̂𝑓 qd𝐴 with 𝑓 P B𝑇,

and the functions 𝜑𝑖
𝑣, 𝜑𝑖

𝑒, and 𝜑𝑓 are the corresponding dual basis functions. Now we define an 𝐻pcurl2q-
type Clément interpolation rΠ2

ℎ for 𝑢 P 𝐻1{2`𝛿pΩq with ∇ ˆ 𝑢 P 𝐻1pΩq by replacing 𝛼𝑖
𝑣p𝑢q with

r𝛼𝑖
𝑣p𝑢q “ 𝑅1

𝑣

`

p∇ˆ 𝑢q𝑖
˘

p𝑣q. The interpolation is well-defined and the following error estimate holds.

Theorem 2.3. For any 𝑇 P 𝒯ℎ, let 𝜔𝑇 “ Y𝑣𝑖P𝒩ℎp𝑇 q𝜔𝑣𝑖
. Then, for 𝑢 P𝐻2pΩq, it holds that

}𝑢´ rΠ2
ℎ𝑢}𝑇 ` ℎ𝑇 }∇p𝑢´ rΠ2

ℎ𝑢q}𝑇 ` ℎ
2
𝑇 }∇

`

∇ˆ p𝑢´ rΠ2
ℎ𝑢q

˘

}𝑇 ď 𝐶ℎ2}𝑢}2,𝜔𝑇
.

The theorem can be obtained by combining the approximation properties of Π𝑘
ℎ and the classic Clément

interpolation.

2.4. A decomposition of 𝐻0pcurl2; Ωq

Motivated by the decomposition of 𝐻0pcurl; Ωq in Proposition 5.1 of [19], we obtain a decomposition of the
space 𝐻0pcurl2; Ωq, which plays a critical role in the analysis.

Lemma 2.4. Let ∇𝐻1
0 pΩq be the set of gradients of functions in 𝐻1

0 pΩq. Then ∇𝐻1
0 pΩq is a closed subspace of

𝐻0pcurl2; Ωq and

𝐻0pcurl2; Ωq “ 𝑋 ‘∇𝐻1
0 pΩq, (2.5)

where 𝑋 “
 

𝑢 P 𝐻0pcurl2; Ωq
ˇ

ˇp𝑢,∇𝑝q “ 0, @𝑝 P 𝐻1
0 pΩq

(

. Namely, for any 𝑢 P 𝐻0pcurl2; Ωq, 𝑢 “ 𝑢0 ` 𝑢K with
𝑢0 P ∇𝐻1

0 pΩq and 𝑢K P 𝑋. Furthermore, 𝑢K admits the splitting

𝑢K “ ∇𝜑` 𝑣, (2.6)

where 𝜑 P 𝐻1
0 pΩq and 𝑣 P𝐻2pΩq satisfying

}𝑣}2 ď 𝐶}∇ˆ 𝑢K}1. (2.7)

}∇𝜑} ď 𝐶
`

}∇ˆ 𝑢K}1 ` }𝑢K}
˘

. (2.8)

Proof. The proof of (2.5) can be found in [44]. To prove (2.6)–(2.8), let 𝒪 be a bounded, smooth, contractible
open set with sΩ Ă 𝒪. For any 𝑢K P 𝑋, we can extend 𝑢K in the following way:

r𝑢 “

#

𝑢K, Ω,
0, 𝒪{sΩ.
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Obviously, r𝑢 P 𝐻0pcurl;𝒪q and ∇ˆ r𝑢 P𝐻1
0 p𝒪q. According to Proposition 4.1 in [16], there exists a 𝑤 P𝐻2p𝒪q

such that

∇ˆ p𝑤 ´ r𝑢q “ 0 and }𝑤}2,𝒪 ď 𝐶}∇ˆ r𝑢}1,𝒪. (2.9)

Based on Theorem 2.9 of [20], there exists a unique function 𝑝 of 𝐻1p𝒪q{R such that

𝑤 ´ r𝑢 “ ∇𝑝. (2.10)

Now, we restrict (2.10) to the domain 𝒪{sΩ and obtain

∇𝑝 “ 𝑤 P𝐻2p𝒪{sΩq. (2.11)

Using the extension theorem [11], we can extend 𝑝 P 𝐻3p𝒪{sΩq to r𝑝, which is defined on 𝒪 and satisfies

}r𝑝}3,𝒪 ď 𝐶 }𝑝}3,𝒪{sΩ ď 𝐶 }∇𝑝}2,𝒪{sΩ “ 𝐶 }𝑤}2,𝒪{sΩ , (2.12)

where we have used Poincaré–Friedrichs inequality for 𝑝 P 𝐻3p𝒪{sΩq since we can choose 𝑝 for which
ş

𝒪{sΩ 𝑝 “ 0.
Restricting on Ω, we have

𝑢K “ 𝑤´∇r𝑝
loomoon

P𝐻2pΩq

`∇ pr𝑝´ 𝑝q
loomoon

P𝐻1pΩq

fi 𝑣 `∇𝜑.

Note that 𝜑 “ r𝑝´ 𝑝 P 𝐻1
0 pΩq since r𝑝 is the extension of 𝑝. Therefore, (2.6) is proved. By virtue of (2.12) and

(2.9), we obtain

}𝑣}2 “ }𝑤 ´∇r𝑝}2 ď }𝑤 ´∇r𝑝}2,𝒪 ď 𝐶}𝑤}2,𝒪 ď 𝐶}∇ˆ r𝑢}1,𝒪 “ 𝐶}∇ˆ 𝑢K}1
and

}∇𝜑} “ }𝑢K ´ 𝑣} ď }𝑢K} ` }𝑣} ď }𝑢K} ` }𝑣}2 ď 𝐶
`

}𝑢K} ` }∇ˆ 𝑢K}1
˘

.

�

3. An A PRIORI error estimate for the eigenvalue problem

Following [33], the quad-curl eigenvalue problem is to seek 𝜆 and 𝑢 such that

p∇ˆq4𝑢 “ 𝜆𝑢 in Ω,
∇ ¨ 𝑢 “ 0 in Ω,
𝑢ˆ 𝑛 “ 0 on BΩ,

∇ˆ 𝑢ˆ 𝑛 “ 0 on BΩ,

(3.1)

where 𝑛 is the unit outward normal to BΩ. The assumption that Ω is contractible implies 𝜆 ‰ 0. The variational
form of the quad-curl eigenvalue problem is to find 𝜆 P R and 𝑢 P 𝑋 such that

pp∇ˆq2𝑢, p∇ˆq2𝑣q “ 𝜆p𝑢,𝑣q, @𝑣 P 𝑋. (3.2)

We define some discrete spaces.

𝑉ℎ “ t𝑣ℎ P 𝐻pcurl2; Ωq : 𝑣ℎ|𝑇 P 𝑉
𝑘
ℎ p𝑇 qu,

𝑉 0
ℎ “ t𝑣ℎ P 𝑉ℎ : 𝑛ˆ 𝑣ℎ “ 0 and 𝑛ˆ∇ˆ 𝑣ℎ “ 0 on BΩu,
𝑆ℎ “ t𝑤ℎ P 𝐻

1pΩq : 𝑤ℎ|𝑇 P 𝑃𝑘p𝑇 qu,

𝑆0
ℎ “ t𝑤ℎ P 𝑆ℎ, 𝑤ℎ|BΩ “ 0u,

𝑋ℎ “ t𝑢ℎ P 𝑉
0
ℎ | p𝑢ℎ,∇𝑞ℎq “ 0, for all 𝑞ℎ P 𝑆0

ℎu.

The discrete problem for (3.2) is to find 𝜆ℎ P R and 𝑢ℎ P 𝑋ℎ such that

pp∇ˆq2𝑢ℎ, p∇ˆq2𝑣ℎq “ 𝜆ℎp𝑢ℎ,𝑣ℎq, @𝑣 P 𝑋ℎ. (3.3)
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3.1. The source problem

We start with the associated source problem. Given 𝑓 P 𝐿2pΩq, find 𝑢 P 𝐻0pcurl2; Ωq and 𝑝 P 𝐻1
0 pΩq such

that

p∇ˆq4𝑢` 𝑢`∇𝑝 “ 𝑓 in Ω,
∇ ¨ 𝑢 “ 0 in Ω,
𝑢ˆ 𝑛 “ 0 on BΩ,

∇ˆ 𝑢ˆ 𝑛 “ 0 on BΩ.

(3.4)

Note that 𝑝 “ 0 for 𝑓 P 𝐻pdiv0; Ωq.
The weak formulation is to find p𝑢; 𝑝q P 𝐻0pcurl2; Ωq ˆ𝐻1

0 pΩq such that

𝑎p𝑢,𝑣q ` 𝑏p𝑣, 𝑝q “ p𝑓 ,𝑣q, @𝑣 P 𝐻0pcurl2; Ωq,
𝑏p𝑢, 𝑞q “ 0, @𝑞 P 𝐻1

0 pΩq,
(3.5)

where

𝑎p𝑢,𝑣q “
`

p∇ˆq2𝑢, p∇ˆq2𝑣
˘

` p𝑢,𝑣q,

𝑏p𝑣, 𝑝q “ p𝑣,∇𝑝q.

Define 𝑌 :“
 

𝑤 P 𝐻0pcurl; Ωq : p𝑤,∇𝑞q “ 0, @𝑞 P 𝐻1
0 pΩq

(

, then ∇ˆ𝑢 P 𝑌 . By applying Friedrichs inequality
on ∇ˆ 𝑢, we get 𝑎p¨, ¨q is coercive on 𝐻0pcurl2; Ωq, i.e.,

𝑎p𝑢,𝑢q ě }𝑢}2𝐻pcurl2;Ωq.

In addition, the following Babuška–Brezzi condition holds,

sup
𝑣P𝐻0pcurl2;Ωq

𝑏p𝑣, 𝑝q

}𝑣}𝐻pcurl2;Ωq

ě
𝑏p∇𝑝, 𝑝q

}∇𝑝}𝐻pcurl2;Ωq

“ }∇𝑝} ě 𝐶}𝑝}1.

The well-posedness of (3.5) then follows from Theorem 1.3.2 of [34]. Consequently, we can define a bounded
solution operator 𝐴 : 𝐿2pΩq Ñ 𝐿2pΩq such that, for 𝑓 P 𝐿2pΩq, 𝐴𝑓 “ 𝑢 P 𝑋 Ă 𝐿2pΩq satisfies

𝑎p𝐴𝑓 ,𝑣q “ p𝑓 ,𝑣q, @𝑣 P 𝑋.

The operator 𝐴 is selfadjoint since

p𝐴𝜑,𝜓q “ 𝑎p𝐴𝜓, 𝐴𝜑q “ 𝑎p𝐴𝜑, 𝐴𝜓q “ p𝜑, 𝐴𝜓q, @𝜑,𝜓 P 𝐿2pΩq.

𝐴 is also compact due to the following result.

Lemma 3.1. 𝑋 processes the continuous compactness property.

Proof. Since 𝑋 Ă 𝑌 ãÑãÑ 𝐿2pΩq [26], then 𝑋 ãÑãÑ 𝐿2pΩq. �

The 𝐻pcurl2q-conforming finite element method seeks 𝑢ℎ P 𝑉
0
ℎ and 𝑝ℎ P 𝑆

0
ℎ such that

𝑎p𝑢ℎ,𝑣ℎq ` 𝑏p𝑣ℎ, 𝑝ℎq “ p𝑓 ,𝑣ℎq, @𝑣ℎ P 𝑉
0
ℎ ,

𝑏p𝑢ℎ, 𝑞ℎq “ 0, @𝑞ℎ P 𝑆
0
ℎ.

(3.6)

Since ∇ˆ𝑢ℎ P 𝑌 , by the Friedrichs inequality on ∇ˆ𝑢ℎ, there exists a constant 𝐶 independent of ℎ such that

𝑎p𝑢ℎ,𝑢ℎq “ }𝑢ℎ}
2 ` }p∇ˆq2𝑢ℎ}

2 ě 𝐶}𝑢ℎ}𝐻pcurl2;Ωq.
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The well-posedness of problem (3.6) is then due to the discrete Babuška–Brezzi condition,

sup
𝑣P𝑉 0

ℎ

𝑏p𝑣ℎ, 𝑝ℎq

}𝑣}𝐻pcurl2;Ωq

ě
𝑏p∇𝑝ℎ, 𝑝ℎq

}∇𝑝ℎ}𝐻pcurl2;Ωq

“ }∇𝑝ℎ} ě 𝐶}𝑝ℎ}1.

Consequently, we can define a discrete solution operator 𝐴ℎ : 𝐿2pΩq Ñ 𝐿2pΩq such that 𝑢ℎ “ 𝐴ℎ𝑓 P 𝑋ℎ is
the solution of (3.6). We will use the standard finite element framework and the approximation property of the
interpolation to obtain the approximation property of the numerical solution. To this end, we first introduce a
new space:

𝐻pgradcurl; Ωq “ t𝑢 P 𝐻pcurl; Ωq : ∇ˆ 𝑢 P𝐻1pΩqu,

and the associated space with vanishing trace

𝐻0pgradcurl; Ωq “ t𝑢 P 𝐻pgradcurl; Ωq : 𝑛ˆ 𝑢 “ 0 and ∇ˆ 𝑢 “ 0 on BΩu.

Equip the space 𝐻pgradcurl; Ωq with norm }𝑢}2𝐻pgradcurl;Ωq “ }𝑢}
2 ` }∇∇ ˆ 𝑢}2. We can show that the space

𝐻0pgradcurl; Ωq is equivalent to 𝐻0pcurl2; Ωq.

Lemma 3.2. The space 𝐻0pcurl2; Ωq coincides with 𝐻0pgradcurl; Ωq. Moreover, for 𝑢 P 𝐻0pcurl2; Ωq,

}𝑢}𝐻pcurl2;Ωq ď 𝐶}𝑢}𝐻pgradcurl;Ωq. (3.7)

Proof. To prove 𝐻0pcurl2; Ωq “ 𝐻0pgradcurl; Ωq, it suffices to show 𝐻0pcurl2; Ωq Ă 𝐻0pgradcurl; Ωq since
𝐻0pgradcurl; Ωq Ă 𝐻0pcurl2; Ωq is trivial. For 𝑢 P 𝐻0pcurl2; Ωq, we have ∇ ˆ 𝑢 P 𝐻0pdiv;𝛺q “ t𝑢 P 𝐿2p𝛺q :
∇ ¨𝑢 P 𝐿2p𝛺q, 𝑢 ¨𝑛 “ 0 on B𝛺u since ∇ ¨ p∇ˆ𝑢q “ 0 and p∇ˆ𝑢q ¨𝑛 “ ∇BΩ ¨ p𝑢ˆ𝑛q “ 0 on BΩ. It then follows
from 𝐻0pcurl; Ωq X𝐻0pdiv; Ωq “ 𝐻1

0 pΩq ([20], Lem. 2.5) that ∇ˆ 𝑢 P 𝐻1
0 pΩq, and hence 𝑢 P 𝐻0pgradcurl; Ωq.

The inequality (3.7) follows from the Poncaré inequality. �

Lemma 3.3. 𝐶80 pΩq is dense in 𝐻0pgradcurl; Ωq.

Proof. The density of 𝐶80 pΩq in 𝐻0pgradcurl; Ωq has been proved in Theorem 3.15 of [43]. The proof uses a
similar argument to the one used to prove the density of 𝐶80 pΩq in 𝐻0pcurl; Ωq [26]. �

With the density of 𝐶80 pΩq in 𝐻0pgradcurl; Ωq, we can obtain the following approximation property.

Theorem 3.4. For 𝑓 P 𝐿2pΩq, it holds

}𝐴𝑓 ´𝐴ℎ𝑓}𝐻pcurl2;Ωq Ñ 0 as ℎÑ 0.

Proof. The usual theory of mixed method shows that

}𝐴𝑓 ´𝐴ℎ𝑓}𝐻pcurl2;Ωq ď 𝐶

"

inf
𝑣ℎP𝑉 0

ℎ

}𝐴𝑓 ´ 𝑣ℎ}𝐻pcurl2;Ωq ` inf
𝑞ℎP𝑆0

ℎ

}𝑝´ 𝑞ℎ}1

*

. (3.8)

It follows from the approximation property of the canonical interpolations, Lemma 3.2, the density of 𝐶80 pΩq
in 𝐻1

0 pΩq, and Lemma 3.3 that

inf
𝑣ℎP𝑉 0

ℎ

}𝐴𝑓 ´ 𝑣ℎ}𝐻pcurl2;Ωq ` inf
𝑞ℎP𝑆0

ℎ

}𝑝´ 𝑞ℎ}1 Ñ 0 as ℎÑ 0.

�

If 𝑝 and 𝐴𝑓 are smoother, then from the approximation property of Π𝑘
ℎ, we have the following error estimate

with a convergence order.

Theorem 3.5. Assume that 𝐴𝑓 P 𝐻𝑠´1pΩq,∇ ˆ 𝐴𝑓 P 𝐻𝑠pΩq, and 𝑝 P 𝐻𝑠pΩq p𝑠 ě 3{2 ` 𝛿 with 𝛿 ą 0q. It
holds that

}𝐴𝑓 ´𝐴ℎ𝑓}𝐻pcurl2;Ωq ď 𝐶ℎ𝑠´1
`

}𝐴𝑓}𝑠´1 ` }∇ˆ𝐴𝑓}𝑠 ` }𝑝}𝑠
˘

.
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3.2. An a priori error estimate of the eigenvalue problem

We first rewrite the eigenvalue problem (3.2) by adding a low-order term 𝑢. Find 𝜆 P R and p𝑢; 𝑝q P
𝐻0pcurl2; Ωq ˆ𝐻1

0 pΩq such that

𝑎p𝑢,𝑣q ` 𝑏p𝑣, 𝑝q “ p𝜆` 1qp𝑢,𝑣q, @𝑣 P 𝐻0pcurl2; Ωq,
𝑏p𝑢, 𝑞q “ 0, @𝑞 P 𝐻1

0 pΩq.
(3.9)

Due to the fact that ∇ ¨ 𝑢 “ 0, we have 𝑝 “ 0. Then (3.9) can be written as an operator eigenvalue problem of
finding 𝜇 :“ 1{p𝜆` 1q P R and 𝑢 P 𝑋 such that

𝐴𝑢 “ 𝜇𝑢. (3.10)

The discrete eigenvalue problem (3.3) is equivalent to seeking 𝜆ℎ P R and p𝑢ℎ; 𝑝ℎq P 𝑉
0
ℎ ˆ 𝑆

0
ℎ such that

𝑎p𝑢ℎ,𝑣ℎq ` 𝑏p𝑣ℎ, 𝑝ℎq “ p𝜆ℎ ` 1qp𝑢ℎ,𝑣ℎq, @𝑣ℎ P 𝑉
0
ℎ ,

𝑏p𝑢ℎ, 𝑞ℎq “ 0, @𝑞ℎ P 𝑆
0
ℎ.

(3.11)

Using the operator 𝐴ℎ, the eigenvalue problem is to find 𝜇ℎ P R and 𝑢ℎ P 𝑋ℎ such that

𝐴ℎ𝑢ℎ “ 𝜇ℎ𝑢ℎ, (3.12)

where 𝜇ℎ “ 1{p𝜆ℎ ` 1q.
Let Λ “ tℎ𝑛, 𝑛 “ 0, 1, 2, . . .u be a sequence of mesh sizes such that

ℎ0 ą ℎ1 ą ℎ2 ą ¨ ¨ ¨ ą 0 and ℎ𝑛 Ñ 0 as 𝑛Ñ8.

Define a collection of operators,
𝒜 “ t𝐴ℎ : 𝐿2pΩq Ñ 𝐿2pΩq, ℎ P Λu.

To apply the abstract convergence theory [29], we need to verify:

(1) 𝒜 is collectively compact, i.e., for each bounded set 𝑈 Ă 𝐿2pΩq, 𝒜p𝑈q “ t𝐴ℎ𝑢 : 𝑢 P 𝑈, ℎ P Λu is relatively
compact.

(2) 𝒜 is point-wise convergent, i.e., for 𝑓 P 𝐿2pΩq, 𝐴ℎ𝑓 Ñ 𝐴𝑓 strongly in 𝐿2pΩq as ℎÑ 0.

Theorem 3.4 verifies (2). It remains to verify (1). We first show t𝑋ℎuℎPΛ has discrete compactness property.

Theorem 3.6. t𝑋ℎuℎPΛ processes the discrete compactness property, i.e., for every t𝑤𝑛u
8
𝑛“1 such that

– 𝑤𝑛 P 𝑋ℎ𝑛 for each 𝑛 and ℎ𝑛 Ñ 0 as 𝑛Ñ8,
– there is a constant 𝐶 independent of 𝑤𝑛 such that }𝑤𝑛}𝐻pcurl2;Ωq ď 𝐶,

then there exists a subsequence, still denoted t𝑤𝑛u, and a function 𝑤 P 𝑋 such that

𝑤𝑛 Ñ 𝑤 strongly in 𝐿2pΩq and weekly in 𝑋 as 𝑛Ñ8.

Proof. Let 𝑤𝑛 P 𝑋ℎ𝑛
, 𝑛 “ 1, 2, . . . and ℎ𝑛 Ñ 0 as 𝑛 Ñ 8. Suppose }𝑤𝑛}𝐻pcurl2;Ωq ď 𝐶 ă 8 for all 𝑛. Seek

𝑝𝑛 P 𝐻1
0 pΩq such that p∇𝑝𝑛,∇𝜉q “ p𝑤𝑛,∇𝜉q for all 𝜉 P 𝐻1

0 pΩq. Set 𝑤𝑛 “ 𝑤𝑛 ´∇𝑝𝑛, clearly, 𝑤𝑛 satisfies

p∇ˆq2𝑤𝑛 “ p∇ˆq2𝑤𝑛, ∇ˆ𝑤𝑛 “ ∇ˆ𝑤𝑛, and ∇ ¨𝑤𝑛 “ 0 in Ω,
𝑛ˆ𝑤𝑛 “ 𝑛ˆ𝑤𝑛 on BΩ.

Hence 𝑤𝑛 P 𝑋 and }𝑤𝑛}𝐻pcurl2;Ωq ď 𝐶. By Lemma 3.1, there is a subsequence, still denoted by t𝑤𝑛u8𝑛“1, and
a function 𝑤 P 𝐿2pΩq such that 𝑤𝑛 Ñ 𝑤 as 𝑛Ñ 8 strongly in 𝐿2pΩq. Furthermore, we can prove 𝑤 P 𝑋. In
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fact, for any 𝑣 P 𝐿2pΩq, lim𝑛Ñ8p∇ˆ𝑤𝑛,𝑣q ď 𝐶}𝑣}, which implies the limit of p∇ˆ𝑤𝑛,𝑣
˘

is a bounded linear
functional on 𝐿2pΩq. By Riesz representation theorem, there exists a unique element 𝑧 P 𝐿2pΩq such that

lim
𝑛Ñ8

p∇ˆ𝑤𝑛,𝑣
˘

“ p𝑧,𝑣q.

Picking 𝑣 P𝐻1pΩq, we have

p𝑤,∇ˆ 𝑣q “ lim
𝑛Ñ8

p𝑤𝑛,∇ˆ 𝑣
˘

“ lim
𝑛Ñ8

p∇ˆ𝑤𝑛,𝑣
˘

“ p𝑧,𝑣q,

which implies 𝑧 “ ∇ˆ𝑤 P 𝐿2pΩq. Moreover, it holds that

p𝑤,∇ˆ 𝑣q “ p∇ˆ𝑤,𝑣q ` x𝑤 ˆ 𝑛,𝑣y “ p𝑧,𝑣q ` x𝑤 ˆ 𝑛,𝑣y ,

which leads to x𝑤 ˆ 𝑛,𝑣y “ 0 for all 𝑣 P 𝐻1{2pBΩq because of the surjectivity from 𝐻1pΩq to 𝐻1{2pBΩq.
Therefore, we arrive at 𝑤 ˆ 𝑛 “ 0 on BΩ, and hence 𝑤 P 𝐻0pcurl; Ωq. We can then prove ∇ˆ𝑤 P 𝐻0pcurl; Ωq
by replacing 𝑤 with ∇ˆ𝑤. Finally, 𝑤 P 𝑋 since

p𝑤,∇𝑞q “ lim
𝑛Ñ8

p𝑤𝑛,∇𝑞q “ 0, @𝑞 P 𝐻1
0 pΩq.

The weak convergence of 𝑤𝑛 Ñ 𝑤 in 𝑋 then follows. By Lemma 7.15 of [26], 𝑤𝑛 P 𝐻1{2`𝑠pΩq with 𝑠 ą 0,
and it holds

}𝑤𝑛}1{2`𝑠 ď 𝐶}∇ˆ𝑤𝑛}. (3.13)

Since 𝑤𝑛 P 𝐻1{2`𝑠pΩq and ∇ ˆ𝑤𝑛 “ ∇ ˆ𝑤𝑛 P 𝐶
0pΩq, we know by Lemma 4.1 of [23] that the interpolation

Πℎ𝑛𝑤
𝑛 is well-defined. Since Πℎ𝑛𝑤𝑛 “ 𝑤𝑛, Πℎ𝑛∇𝑝𝑛 is well-defined, and it holds 𝑤𝑛 ´ Πℎ𝑛𝑤

𝑛 “ Πℎ𝑛∇𝑝𝑛 “

∇𝜋ℎ𝑛
𝑝𝑛 with 𝜋ℎ𝑛

the Lagrange interpolation (see [24], Lem. 5.3 and [23], Lem. 4.5). Hence, using the fact that
𝑤 P 𝐻pcurl2; Ωq and 𝑤𝑛 P 𝑋ℎ𝑛 ,

}𝑤 ´𝑤𝑛}
2 “p𝑤 ´𝑤𝑛,𝑤 ´Πℎ𝑛

𝑤𝑛q ` p𝑤 ´𝑤𝑛,Πℎ𝑛
𝑤𝑛 ´𝑤𝑛q

“ p𝑤 ´𝑤𝑛,𝑤 ´Πℎ𝑛
𝑤𝑛q ` p𝑤 ´𝑤𝑛,´∇𝜋ℎ𝑛

𝑝𝑛q

“ p𝑤 ´𝑤𝑛,𝑤 ´Πℎ𝑛
𝑤𝑛q ď }𝑤 ´𝑤𝑛}}𝑤 ´Πℎ𝑛

𝑤𝑛},

which implies

}𝑤 ´𝑤𝑛} ď }𝑤 ´Πℎ𝑛𝑤
𝑛} ď }𝑤 ´𝑤𝑛} ` }𝑤𝑛 ´Πℎ𝑛𝑤

𝑛}. (3.14)

To estimate the second term on the right-hand side, we apply Theorem 2.2 and (3.13) to obtain

}𝑤𝑛 ´Πℎ𝑛
𝑤𝑛} ď 𝐶ℎ1{2`𝑠

𝑛 p}𝑤𝑛}1{2`𝑠 ` }∇ˆ𝑤𝑛}q ď 𝐶ℎ1{2`𝑠
𝑛 }∇ˆ𝑤𝑛}. (3.15)

Combining (3.14) and (3.15) leads to

}𝑤 ´𝑤𝑛} ď }𝑤 ´𝑤
𝑛} ` 𝐶ℎ1{2`𝑠

𝑛 }𝑤𝑛}𝐻pcurl2;Ωq.

Since the right-hand side converges to zero, we have proved that 𝑤𝑛 Ñ 𝑤 in 𝐿2pΩq as 𝑛 Ñ 8. The weak
convergence 𝑤𝑛 Ñ 𝑤 in 𝑋 follows from the strong convergence 𝑤𝑛 Ñ 𝑤 in 𝐿2pΩq, the weak convergence
𝑤𝑛 Ñ 𝑤 in 𝑋, and the fact that ∇ˆ𝑤𝑛 “ ∇ˆ𝑤𝑛.

�

Theorem 3.7. 𝒜 is collectively compact.
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Proof. Suppose 𝑈 Ă 𝐿2pΩq is a bounded set. For any 𝑢 P 𝑈 , according to the wellposedness of (3.6), 𝐴ℎ𝑢 P 𝑋ℎ

satisfies
}p∇ˆq2𝐴ℎ𝑢} ` }𝐴ℎ𝑢} ď 𝐶}𝑢}.

By the Friedrichs inequality, we have
}𝐴ℎ𝑢}𝐻pcurl2;Ωq ď 𝐶}𝑢},

which implies t𝐴ℎ𝑢 : 𝑢 P 𝑈, ℎ P Λu Ă𝑊 :“ YℎPΛ𝑋ℎ is bounded in 𝐻pcurl2; Ωq.
To prove that the set t𝐴ℎ𝑢 : 𝑢 P 𝑈, ℎ P Λu is relatively compact, it suffices to show that 𝑊 ãÑãÑ 𝐿2pΩq.

Suppose t𝑤𝑛u
8
𝑛“1 Ă 𝑊 is bounded in 𝐻pcurl2; Ωq. Then 𝑤𝑛 P 𝑋ℎ𝑛

for some ℎ𝑛. If ℎ𝑛 Ñ 0 as 𝑛 Ñ 8, there
exists a convergent subspace in 𝐿2pΩq according to the discrete compactness of 𝑋ℎ (Thm. 3.6). If ℎ𝑛 ě 𝛿 ą 0,
then t𝑤𝑛u

8
𝑛“1 is contained in a finite dimensional space, and hence there exists a convergent subsequence. �

Theorem 3.8. Let 𝜇 be an eigenvalue of 𝐴 with multiplicity 𝑚 and 𝐸p𝜇q be the associated eigenspace. Let
t𝜑𝑗u

𝑚
𝑗“1 be an orthonormal basis for 𝐸p𝜇q. There exist exactly 𝑚 discrete eigenvalues 𝜇𝑗,ℎ and the associated

eigenfunctions 𝜑𝑗,ℎ, 𝑗 “ 1, 2, . . . ,𝑚, of 𝐴ℎ such that

|𝜇´ 𝜇𝑗,ℎ| Ñ 0, as ℎÑ 0, (3.16)

and

|𝜇´ 𝜇𝑗,ℎ| ď 𝐶 max
1ď𝑖ď𝑚

𝑎p𝜑𝑖 ´ 𝜑𝑖,ℎ,𝜑𝑖 ´ 𝜑𝑖,ℎq. (3.17)

Moreover, if 𝜑 P𝐻𝑠´1pΩq and ∇ˆ 𝜑 P𝐻𝑠pΩq for any 𝜑 P 𝐸p𝜇q, then, for ℎ small enough,

|𝜇´ 𝜇𝑗,ℎ| “ 𝑂pℎ2p𝑠´1qq. (3.18)

Proof. According to Theorem 4 of [29], it holds that

|𝜇´ 𝜇𝑗,ℎ| ď 𝐶

#

𝑚
ÿ

𝑖,𝑘“1

|pp𝐴´𝐴ℎq𝜑𝑖,𝜑𝑘q| ` }p𝐴´𝐴ℎq|𝐸p𝜇q}
2

+

.

Since 𝜑𝑖, 𝐴𝜑𝑖 P 𝑋, we have

pp𝐴´𝐴ℎq𝜑𝑖,𝜑𝑘q “ p∇ˆ∇ˆ p𝐴´𝐴ℎq𝜑𝑖,∇ˆ∇ˆ𝐴𝜑𝑘q ` pp𝐴´𝐴ℎq𝜑𝑖, 𝐴𝜑𝑘q

“ p∇ˆ∇ˆ p𝐴´𝐴ℎq𝜑𝑖,∇ˆ∇ˆ p𝐴´𝐴ℎq𝜑𝑘q ` pp𝐴´𝐴ℎq𝜑𝑖, p𝐴´𝐴ℎq𝜑𝑘q

ď |||p𝐴´𝐴ℎq𝜑𝑖||||||p𝐴´𝐴ℎq𝜑𝑘|||,

which together with the fact that 𝐸p𝜇q is finite dimensional leads to

|𝜇´ 𝜇𝑗,ℎ| ď 𝐶

"

max
1ď𝑖ď𝑚

|||p𝐴´𝐴ℎq𝜑𝑖|||
2
` }p𝐴´𝐴ℎq|𝐸p𝜇q}

2

*

ď 𝐶 max
1ď𝑖ď𝑚

}p𝐴´𝐴ℎq𝜑𝑖}
2
𝐻pcurl2;Ωq.

Then (3.16) follows from the pointwise convergence of 𝐴ℎ to 𝐴 in 𝐻pcurl2; Ωq (Thm. 3.4). Since ∇ ¨ 𝜑𝑖 “ 0, it
follows from (3.8) that

}p𝐴´𝐴ℎq𝜑𝑖}𝐻pcurl2;Ωq ď inf
𝑣ℎP𝑋ℎ

}𝐴𝜑𝑖 ´ 𝑣ℎ}𝐻pcurl2;Ωq

“ inf
𝑣ℎP𝑋ℎ

𝜇}𝜑𝑖 ´ p1{𝜇q𝑣ℎ}𝐻pcurl2;Ωq ď 𝜇}𝜑𝑖 ´ 𝜑𝑖,ℎ}𝐻pcurl2;Ωq
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ď 𝐶𝜇
b

𝑎p𝜑𝑖 ´ 𝜑𝑖,ℎ,𝜑𝑖 ´ 𝜑𝑖,ℎq (Poincaré inequality),

which proves (3.17). Let 𝜑 P 𝐸p𝜇q. Furthermore, if 𝜑 P𝐻𝑠´1pΩq and ∇ˆ𝜑 P𝐻𝑠pΩq, according to Theorem 3.5,
we have that

}p𝐴´𝐴ℎq𝜑}𝐻pcurl2;Ωq ď 𝐶ℎ𝑠´1p}𝐴𝜑}𝑠´1 ` }∇ˆ𝐴𝜑}𝑠q ď 𝐶𝜇ℎ𝑠´1p}𝜑}𝑠´1 ` }∇ˆ 𝜑}𝑠q.

Since 𝐸p𝜇q is finite dimensional, we obtain (3.18). �

Remark 3.9. The estimate |𝜇´ 𝜇𝑗,ℎ| ď 𝐶 max1ď𝑖ď𝑚 𝑎p𝜑𝑖 ´ 𝜑𝑖,ℎ,𝜑𝑖 ´ 𝜑𝑖,ℎq will be applied to obtain (4.2) in
the next section. The reason that we consider the quad-curl problem (3.4) with the low-order term 𝑢 is to make
}𝜑´ 𝜑ℎ}𝐻pcurl2;Ωq ď 𝐶𝜇

a

𝑎p𝜑´ 𝜑ℎ,𝜑´ 𝜑ℎq hold.

4. A POSTERIORI error estimates for the eigenvalue problem

Assume that p𝜆;𝑢; 𝑝q P Rˆ𝐻0pcurl2; Ωqˆ𝐻1
0 pΩq is a simple eigenpair of (3.9) with }𝑢}0 “ 1 and p𝜆ℎ;𝑢ℎ; 𝑝ℎq P

Rˆ 𝑉 0
ℎ ˆ 𝑆

0
ℎ is the associated finite element eigenpair of (3.11) with }𝑢ℎ}0 “ 1. According to Theorem 3.8 and

(3.28a) of [1], the following inequalities hold:

}𝑢´ 𝑢ℎ} ď 𝐶𝜌Ωpℎq|||𝑢´ 𝑢ℎ|||, (4.1)

|𝜆ℎ ´ 𝜆| ď 𝐶|||𝑢´ 𝑢ℎ|||
2
, (4.2)

where
𝜌Ωpℎq “ sup

𝑓P𝐿2pΩq,}𝑓}“1

inf
𝑣P𝑉 0

ℎ

}𝐴𝑓 ´ 𝑣}𝐻pcurl2;Ωq .

It is obvious that 𝜌Ωpℎq Ñ 0 as ℎÑ 0.
Define two projection operators 𝑅ℎ, 𝑄ℎ as follows. For 𝑢 P 𝐻0pcurl2; Ωq and 𝑝 P 𝐻1

0 pΩq, find 𝑅ℎ𝑢 P 𝑉
0
ℎ , 𝑄ℎ𝑝 P

𝑆0
ℎ, such that

𝑎p𝑢´𝑅ℎ𝑢,𝑣ℎq ` 𝑏p𝑣ℎ, 𝑝´𝑄ℎ𝑝q “ 0, @𝑣ℎ P 𝑉
0
ℎ ,

𝑏p𝑢´𝑅ℎ𝑢, 𝑞ℎq “ 0, @𝑞ℎ P 𝑆
0
ℎ.

According to the orthogonality and the uniqueness of the discrete eigenvalue problem,

𝑢ℎ “ p𝜆ℎ ` 1q𝑅ℎ𝐴𝑢ℎ.

Let
`

𝑢ℎ; 𝑝ℎ
˘

be the solution of (3.5) with 𝑓 “ p𝜆ℎ ` 1q𝑢ℎ. Then

𝑢ℎ “ p𝜆ℎ ` 1q𝐴𝑢ℎ and 𝑢ℎ “ 𝑅ℎ𝑢
ℎ. (4.3)

The following theorem relates the eigenvalue problem to the source problem (3.5) with 𝑓 “ p𝜆ℎ ` 1q𝑢ℎ.

Theorem 4.1. Let 𝑟pℎq “ 𝜌Ωpℎq ` |||𝑢´ 𝑢ℎ|||. It holds that

|||𝑢ℎ ´𝑅ℎ𝑢
ℎ||| ´ 𝐶𝑟pℎq|||𝑢´ 𝑢ℎ||| ď |||𝑢´ 𝑢ℎ||| ď |||𝑢

ℎ ´𝑅ℎ𝑢
ℎ||| ` 𝐶𝑟pℎq|||𝑢´ 𝑢ℎ|||. (4.4)

Furthermore, for ℎ small enough, there exist two constants 𝑐 and 𝐶 such that

𝑐|||𝑢ℎ ´𝑅ℎ𝑢
ℎ||| ď |||𝑢´ 𝑢ℎ||| ď 𝐶|||𝑢ℎ ´𝑅ℎ𝑢

ℎ|||. (4.5)
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Proof. Since 𝑢ℎ “ 𝑅ℎ𝑢
ℎ, by the triangle inequality, we have that

´|||𝑢´ 𝑢ℎ||| ` |||𝑢ℎ ´𝑅ℎ𝑢
ℎ||| ď |||𝑢´ 𝑢ℎ||| ď |||𝑢´ 𝑢

ℎ||| ` |||𝑢ℎ ´𝑅ℎ𝑢
ℎ|||.

Using the fact 𝑢 “ p𝜆` 1q𝐴𝑢 and (4.3), we obtain that

|||𝑢´ 𝑢ℎ||| “ |||p𝜆` 1q𝐴𝑢´ p𝜆ℎ ` 1q𝐴𝑢ℎ||| ď |𝜆` 1||||𝐴p𝑢´ 𝑢ℎq||| ` |𝜆´ 𝜆ℎ||||𝐴𝑢ℎ|||. (4.6)

Due to the well-posedness of (3.5), it holds that

|||𝐴p𝑢´ 𝑢ℎq||| ď 𝐶}𝑢´ 𝑢ℎ},

which, together with (4.1) and (4.2), leads to

|||𝑢´ 𝑢ℎ||| ď 𝐶𝑟pℎq|||𝑢´ 𝑢ℎ|||. (4.7)

Then (4.4) follows immediately. Note that 𝑟pℎq Ñ 0 as ℎÑ 0. For ℎ small enough, (4.4) implies (4.5). �

Now to obtain an a posteriori error estimate for the eigenvalue problem, it suffices to derive an a posteriori
error estimate for the source problem with 𝑓 “ p𝜆ℎ ` 1q𝑢ℎ. The exact solution and numerical solution are
p𝑢ℎ; 𝑝ℎq and p𝑢ℎ; 0q, respectively.

Denote the total errors by 𝑒 :“ 𝑢ℎ ´ 𝑢ℎ and 𝜀 :“ 𝑝ℎ ´ 0 “ 𝑝ℎ. Then 𝑒 P 𝐻0pcurl2; Ωq and 𝜀 P 𝐻1
0 pΩq satisfy

the defect equations

𝑎p𝑒,𝑣q ` 𝑏p𝑣, 𝜀q “ 𝑟1p𝑣q, @𝑣 P 𝐻0pcurl2; Ωq, (4.8)
𝑏p𝑒, 𝑞q “ 𝑟2p∇𝑞q, @𝑞 P 𝐻1

0 pΩq, (4.9)

where

𝑟1p𝑣q “ p𝑓 ,𝑣q ´
`

p∇ˆq2𝑢ℎ, p∇ˆq2𝑣
˘

´ p𝑢ℎ,𝑣q,

𝑟2p∇𝑞q “ ´p𝑢ℎ,∇𝑞q.

We have the following Galerkin orthogonality

𝑟1p𝑣ℎq “ 0, @𝑣ℎ P 𝑉
0
ℎ , (4.10)

𝑟2p∇𝑞ℎq “ 0, @𝑞ℎ P 𝑆
0
ℎ. (4.11)

The error estimator will be constructed by employing Lemma 2.4. Writing 𝑒“𝑒0`𝑒K and 𝑣 “ 𝑣0`𝑣K with
𝑒0,𝑣0 P ∇𝐻1

0 pΩq and 𝑒K,𝑣K P 𝑋, we obtain that
`

𝑒0,𝑣0
˘

`
`

𝑣0,∇𝜀
˘

“ 𝑟1p𝑣
0q, @𝑣0 P ∇𝐻1

0 pΩq, (4.12)
`

p∇ˆq2𝑒K, p∇ˆq2𝑣K
˘

` p𝑒K,𝑣Kq “ 𝑟1p𝑣
Kq, @𝑣K P 𝑋, (4.13)

p𝑒0,∇𝑞q “ 𝑟2p∇𝑞q, @𝑞 P 𝐻1
0 pΩq. (4.14)

The estimators for the irrotational part 𝑒0, the solenoidal part 𝑒K, and ∇𝜀 will be derived separately. Firstly,
we consider the irrotational part 𝑒0 and ∇𝜀. For a 𝜗 P 𝐻1

0 pΩq, we have

𝑟1p∇𝜗q “
ÿ

𝑇P𝒯ℎ

p𝑓 ´ 𝑢ℎ,∇𝜗q𝑇 “
ÿ

𝑇P𝒯ℎ

´p∇ ¨ 𝑓 , 𝜗q𝑇 `
ÿ

𝑓Pℱ int
ℎ

@

rr𝑛𝑓 ¨ 𝑓 ss𝑓 , 𝜗
D

𝑓

`
ÿ

𝑇P𝒯ℎ

p∇ ¨ 𝑢ℎ, 𝜗q𝑇 ´
ÿ

𝑓Pℱ int
ℎ

@

rr𝑛𝑓 ¨ 𝑢ℎss𝑓 , 𝜗
D

𝑓
,
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where 𝑓 P ℱ int
ℎ is the common face of two adjacent elements 𝑇1, 𝑇2 P 𝒯ℎ, 𝑛𝑓 is the unit normal vector of 𝑓

directed towards the interior of 𝑇1, and the jump

rr𝑛𝑓 ¨ 𝑢ℎss𝑓 “ 𝑛𝑓 ¨ 𝑢ℎ|𝑇2 ´ 𝑛𝑓 ¨ 𝑢ℎ|𝑇1 .

We also have
𝑟2p∇𝜗q “

ÿ

𝑇P𝒯ℎ

´p𝑢ℎ,∇𝜗q𝑇 “
ÿ

𝑇P𝒯ℎ

p∇ ¨ 𝑢ℎ, 𝜗q𝑇 ´
ÿ

𝑓Pℱ int
ℎ

xrr𝑛𝑓 ¨ 𝑢ℎss𝑓 , 𝜗y𝑓 .

We introduce the error terms which are related to the upper and lower bounds for 𝑒0 and ∇𝜀:

𝜂2
0 :“

ÿ

𝑇P𝒯ℎ

`

𝜂𝑇
0

˘2
`

ÿ

𝑓Pℱ int
ℎ

´

𝜂𝑓
0

¯2

, (4.15)

𝜂2
3 :“

ÿ

𝑇P𝒯ℎ

`

𝜂𝑇
3

˘2
`

ÿ

𝑓Pℱ int
ℎ

´

𝜂𝑓
3

¯2

, (4.16)

where

𝜂𝑇
0 :“ ℎ𝑇 }∇ ¨ 𝑓}𝑇 , 𝑇 P 𝒯ℎ,

𝜂𝑓
0 :“ ℎ

1{2
𝑓 }rr𝑛𝑓 ¨ 𝑓 ss𝑓 }𝑓 , 𝑓 P ℱ int

ℎ ,

𝜂𝑇
3 :“ ℎ𝑇 }∇ ¨ 𝑢ℎ}𝑇 , 𝑇 P 𝒯ℎ,

𝜂𝑓
3 :“ ℎ

1{2
𝑓 }rr𝑛𝑓 ¨ 𝑢ℎss𝑓 }𝑓 , 𝑓 P ℱ int

ℎ .

Next, we consider the bounds for 𝑒K. For 𝑤 P 𝑋, the residual 𝑟1p𝑤q can be expressed as

𝑟1p𝑤q “
ÿ

𝑇P𝒯ℎ

`

𝑓 ´ 𝑢ℎ,𝑤
˘

𝑇
´
`

p∇ˆq2𝑢ℎ, p∇ˆq2𝑤
˘

𝑇

“
ÿ

𝑇P𝒯ℎ

`

𝑓 ´ p∇ˆq4𝑢ℎ ´ 𝑢ℎ,𝑤
˘

𝑇
`

ÿ

𝑓Pℱ int
ℎ

@

rrp∇ˆq2𝑢ℎ ˆ 𝑛𝑓 ss𝑓 ,∇ˆ𝑤
D

𝑓

`
ÿ

𝑓Pℱ int
ℎ

@

rrp∇ˆq3𝑢ℎ ˆ 𝑛𝑓 ss𝑓 ,𝑤
D

𝑓
,

where rrp∇ˆq2𝑢ℎ ˆ 𝑛𝑓 ss𝑓 and rrp∇ˆq3𝑢ℎ ˆ 𝑛𝑓 ss𝑓 stand for the jump of the tangential component of p∇ˆq2𝑢ℎ

and p∇ˆq3𝑢ℎ, respectively. The bounds for |||𝑒K||| contain the error terms

𝜂2
1 :“

ÿ

𝑇P𝒯ℎ

`

𝜂𝑇
1

˘2
`

ÿ

𝑓Pℱ int
ℎ

´

𝜂𝑓
1;1

¯2

`
ÿ

𝑓Pℱ int
ℎ

´

𝜂𝑓
1;2

¯2

, (4.17)

𝜂2
2 :“

ÿ

𝑇P𝒯ℎ

`

𝜂𝑇
2

˘2
, (4.18)

where

𝜂𝑇
1 :“ ℎ2

𝑇

›

›𝜋ℎ𝑓 ´ p∇ˆq4𝑢ℎ ´ 𝑢ℎ

›

›

𝑇
, 𝑇 P 𝒯ℎ,

𝜂𝑇
2 :“ ℎ2

𝑇 }𝑓 ´ 𝜋ℎ𝑓}𝑇 , 𝑇 P 𝒯ℎ,

𝜂𝑓
1;1 :“ ℎ

1{2
𝑓

›

›rr𝑛𝑓 ˆ p∇ˆq2𝑢ℎss𝑓
›

›

𝑓
, 𝑓 P ℱ int

ℎ ,

𝜂𝑓
1;2 :“ ℎ

3{2
𝑓

›

›rr𝑛𝑓 ˆ p∇ˆq3𝑢ℎss𝑓
›

›

𝑓
, 𝑓 P ℱ int

ℎ ,
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and 𝜋ℎ𝑓 denotes the 𝐿2-projection of 𝑓 onto t𝑣ℎ P 𝐿
2pΩq : 𝑣ℎ|𝑇 P 𝑃𝑘p𝑇 q, @𝑇 P 𝒯ℎu. For 𝑇 P 𝒯ℎ, we define a

local error indicator 𝜂ℎp𝑢ℎ, 𝑇 q by

𝜂2
ℎp𝑢ℎ, 𝑇 q “ p𝜂

𝑇
0 q

2 ` p𝜂𝑇
1 q

2 ` p𝜂𝑇
3 q

2 `
ÿ

𝑓PB𝑇

`

p𝜂𝑓
0 q

2 ` p𝜂𝑓
3 q

2 ` p𝜂𝑓
1;1q

2 ` p𝜂𝑓
1;2q

2
˘

,

and a global a posteriori error estimator by

𝜂2
ℎp𝑢ℎ,Ωq “ 𝜂2

0 ` 𝜂
2
1 ` 𝜂

2
3 .

Now we state the a posteriori estimate for 𝑒 and 𝜀 in the energy norm.

Theorem 4.2. Let 𝜂0, 𝜂1, 𝜂2, and 𝜂3 be defined in (4.15), (4.17), (4.18), and (4.16), respectively. Then if
ℎ ă 1,

𝛾1p𝜂0 ` 𝜂1 ` 𝜂3q ´ 𝛾2𝜂2 ď |||𝑒||| ` }∇𝜀} ď Γ1p𝜂0 ` 𝜂1 ` 𝜂3q ` Γ2𝜂2,

and, if ℎ is small enough,

𝛾3p𝜂1 ` 𝜂3q ´ 𝛾4p𝜂2 ` ℎ
2𝜂0q ď |||𝑒||| ď Γ3p𝜂0 ` 𝜂1 ` 𝜂3q ` Γ4𝜂2,

where 𝛾1, 𝛾2, 𝛾3, 𝛾4,Γ1,Γ2,Γ3, and Γ4 are some constants independent of ℎ.

Since 𝑓 “ p𝜆ℎ` 1q𝑢ℎ, according to the definition of 𝜂0, 𝜂2, and 𝜂3, we have that 𝜂0 “ 𝜆ℎ𝜂3 and 𝜂2 “ 0. Then
by Theorems 4.1, 4.2, and (4.2), we can obtain the following a posteriori error estimates for the eigenvectors
and eigenvalues.

Theorem 4.3. For ℎ small enough, there exist constants 𝑐1, 𝐶1, and 𝐶2 such that

𝑐1p𝜂1 ` 𝜂3q ď |||𝑢´ 𝑢ℎ||| ď 𝐶1p𝜂1 ` p𝜆ℎ ` 1q𝜂3q,

and

|𝜆´ 𝜆ℎ| ď 𝐶2p𝜂1 ` p𝜆ℎ ` 1q𝜂3q2,

where 𝜂1 and 𝜂3 are respectively defined in (4.17) and (4.16) with 𝑓 “ p𝜆ℎ ` 1q𝑢ℎ.

The proof of Theorem 4.2. Since 𝑒 “ 𝑒0 ` 𝑒K, the proof is split into three parts corresponding to 𝑒0, 𝑒K,
and 𝜀, respectively.

(i) Estimation of the irrotational part 𝑒0. Based on (4.14), we can rewrite 𝑒0 “ ∇𝜙 with 𝜙 solving the
following uniformly positive definite variational problem on 𝐻1

0 pΩq. Seek 𝜙 P 𝐻1
0 pΩq such that

p∇𝜙,∇𝑞q “ 𝑟2p∇𝑞q, @𝑞 P 𝐻1
0 pΩq. (4.19)

Note that 𝑟2p∇𝑞ℎq “ 0,@𝑞ℎ P 𝑆0
ℎ. Define a projection operator 𝑃 𝑘

ℎ : 𝐻1
0 pΩq ÝÑ 𝑆0

ℎ such that (see, e.g.,
[3, 29,31])

𝑃 𝑘
ℎ𝜑 “ 𝜑, @𝜑 P 𝑆0

ℎ, (4.20)

}𝜑´ 𝑃 𝑘
ℎ𝜑}𝑇 ď 𝐶ℎ𝑇 }∇𝜑}𝜔𝑇

, (4.21)

}𝜑´ 𝑃 𝑘
ℎ𝜑}𝑓 ď 𝐶

a

ℎ𝑓 }∇𝜑}𝜔𝑓
, (4.22)

}∇𝑃 𝑘
ℎ𝜑}𝑇 ď 𝐶}∇𝜑}𝜔𝑇

, (4.23)
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where 𝜔𝑇 is defined in Theorem 2.3 and 𝜔𝑓 is the union of elements sharing at least one vertex with 𝑓 P ℱℎ.
Due to (4.14) and the orthogonal property (4.11), we have that

}𝑒0}2 “ 𝑟2p𝑒
0q “ 𝑟2p∇𝜙´∇𝑃 𝑘

ℎ𝜙q “ ´p𝑢ℎ,∇p𝜙´ 𝑃 𝑘
ℎ𝜙qq. (4.24)

Using integration by parts, (4.21), and (4.22), we obtain that
´

𝑢ℎ,∇p𝜙´ 𝑃 𝑘
ℎ𝜙q

¯

“
ÿ

𝑇P𝒯ℎ

´

´

∇ ¨ 𝑢ℎ, 𝜙´ 𝑃
𝑘
ℎ𝜙

¯

𝑇
`

ÿ

𝑓Pℱ int
ℎ

@

rr𝑛𝑓 ¨ 𝑢ℎss𝑓 , 𝜙´ 𝑃
𝑘
ℎ𝜙

D

𝑓

ď 𝐶
ÿ

𝑇P𝒯ℎ

}∇ ¨ 𝑢ℎ}𝑇 ℎ𝑇 }∇𝜙}𝜔𝑇
` 𝐶

ÿ

𝑓Pℱ int
ℎ

}rr𝑛𝑓 ¨ 𝑢ℎss𝑓 }𝑓

a

ℎ𝑓 }∇𝜙}𝜔𝑓

ď 𝐶
´

ÿ

𝑇P𝒯ℎ

}∇ ¨ 𝑢ℎ}
2
𝑇 ℎ

2
𝑇

¯1{2

}𝑒0} ` 𝐶
´

ÿ

𝑓Pℱ int
ℎ

}rr𝑛𝑓 ¨ 𝑢ℎss𝑓 }
2
𝑓 ℎ𝑓

¯1{2

}𝑒0}.

Therefore, we have

}𝑒0} ď 𝐶𝜂3. (4.25)

We now derive lower bounds for 𝑒0 using the bubble functions.
Denote by 𝜆𝑇

1 , 𝜆
𝑇
2 , 𝜆

𝑇
3 , 𝜆

𝑇
4 the barycentric coordinates of 𝑇 P 𝒯ℎ and define the bubble function 𝑏𝑇 by

𝑏𝑇 “

"

256𝜆𝑇
1 𝜆

𝑇
2 𝜆

𝑇
3 𝜆

𝑇
4 , on 𝑇,

0, Ωz𝑇.

Given 𝑓 P ℱℎ, a common edge of 𝑇1 and 𝑇2, let 𝜛𝑓 “ 𝑇1 Y 𝑇2 and enumerate the vertices of 𝑇1 and 𝑇2

such that the vertices of 𝑓 are numbered first. Define the face-bubble function 𝑏𝑓 by

𝑏𝑓 “

"

27𝜆𝑇𝑖
1 𝜆

𝑇𝑖
2 𝜆

𝑇𝑖
3 , on 𝑇𝑖, 𝑖 “ 1, 2,

0, Ωz𝜛𝑓 .

Using the technique of Lemma 3.3 in [37], we have the following norm equivalences.

}𝑏𝑇𝜑ℎ}𝑇 ď }𝜑ℎ}𝑇 ď 𝐶}𝑏
1{2
𝑇 𝜑ℎ}𝑇 , @𝜑ℎ P 𝑃𝑘p𝑇 q, (4.26)

}𝑏𝑓𝜑ℎ}𝑓 ď }𝜑ℎ}𝑓 ď 𝐶}𝑏
1{2
𝑓 𝜑ℎ}𝑓 , @𝜑ℎ P 𝑃𝑘p𝑓q. (4.27)

Using (4.26), integration by parts, the inverse inequality, and the fact that 𝑏𝑇∇ ¨𝑢ℎ P 𝐻
1
0 p𝑇 q Ă 𝐻1

0 pΩq, we
have that

p𝜂𝑇
3 q

2

ℎ2
𝑇

“ }∇ ¨ 𝑢ℎ}
2
𝑇 ď 𝐶}𝑏

1{2
𝑇 ∇ ¨ 𝑢ℎ}

2
𝑇 “ 𝐶

`

∇ ¨ 𝑢ℎ, 𝑏𝑇∇ ¨ 𝑢ℎ

˘

𝑇

“ ´𝐶
`

𝑢ℎ,∇p𝑏𝑇∇ ¨ 𝑢ℎq
˘

𝑇
“ 𝐶𝑟2

`

∇p𝑏𝑇∇ ¨ 𝑢ℎq
˘

“ 𝐶
`

𝑒0,∇p𝑏𝑇∇ ¨ 𝑢ℎq
˘

𝑇
ď 𝐶}𝑒0}𝑇 }∇p𝑏𝑇∇ ¨ 𝑢ℎq}𝑇

ď
𝐶

ℎ𝑇
}𝑒0}𝑇 }∇ ¨ 𝑢ℎ}𝑇 ď

𝐶

ℎ2
𝑇

}𝑒0}𝑇 𝜂
𝑇
3 ,

which implies that

𝜂𝑇
3 ď 𝐶}𝑒0}𝑇 . (4.28)
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We define a continuous operator 𝑃𝑇 : 𝐿8p𝑓q Ñ 𝐿8p𝑇 q as in [37]. According to Lemma 3.3 of [37],

}𝑃𝑇𝜎}𝑇 ď 𝐶ℎ
1{2
𝑇 }𝜎}𝑓 .

Denote rr𝑛𝑓 ¨ 𝑢ℎss𝑓 ;𝑇𝑖
“ 𝑃𝑇𝑖

rr𝑛𝑓 ¨ 𝑢ℎss𝑓 , then

}rr𝑛𝑓 ¨ 𝑢ℎss𝑓 ;𝑇𝑖
}𝑇𝑖
ď 𝐶ℎ

1{2
𝑇𝑖
}rr𝑛𝑓 ¨ 𝑢ℎss𝑓 }𝑓 . (4.29)

The estimate of the local upper bound for 𝜂𝑓
3 can be obtained similarly:

p𝜂𝑓
3 q

2

ℎ𝑓
“ }rr𝑛𝑓 ¨ 𝑢ℎss𝑓 }

2
𝑓 ď 𝐶

@

rr𝑛𝑓 ¨ 𝑢ℎss𝑓𝑏𝑓 , rr𝑛𝑓 ¨ 𝑢ℎss𝑓
D

𝑓

“ 𝐶
2
ÿ

𝑖“1

ˆ

´

𝑢ℎ,∇ p𝑏𝑓 rr𝑛𝑓 ¨ 𝑢ℎss𝑓 ;𝑇𝑖
q

¯

𝑇𝑖

`

´

∇ ¨ 𝑢ℎ, 𝑏𝑓 rr𝑛𝑓 ¨ 𝑢ℎss𝑓 ;𝑇𝑖

¯

𝑇𝑖

˙

“ 𝐶
2
ÿ

𝑖“1

ˆ

´

𝑒0,∇ p𝑏𝑓 rr𝑛𝑓 ¨ 𝑢ℎss𝑓 ;𝑇𝑖
q

¯

𝑇𝑖

`

´

∇ ¨ 𝑢ℎ, 𝑏𝑓 rr𝑛𝑓 ¨ 𝑢ℎss𝑓 ;𝑇𝑖

¯

𝑇𝑖

˙

ď 𝐶
2
ÿ

𝑖“1

`

ℎ´1
𝑇𝑖
}𝑒0}𝑇𝑖

` }∇ ¨ 𝑢ℎ}𝑇𝑖

˘

𝜂𝑓
3 ,

where we have used

}∇p𝑏𝑓 rr𝑛𝑓 ¨ 𝑢ℎss𝑓 ;𝑇𝑖
q}𝑇𝑖

ď 𝐶ℎ´1
𝑇𝑖
}𝑏𝑓 rr𝑛𝑓 ¨ 𝑢ℎss𝑓 ;𝑇𝑖

}𝑇𝑖
ď 𝐶ℎ

´1{2
𝑇𝑖

}rr𝑛𝑓 ¨ 𝑢ℎss𝑓 }𝑓 .

Consequently,

𝜂𝑓
3 ď 𝐶

`

}𝑒0}𝜛𝑓
` 𝜂𝑇1

3 ` 𝜂𝑇2
3

˘

ď 𝐶}𝑒0}𝜛𝑓
. (4.30)

Now collecting (4.25), (4.28), and (4.30), we have that

𝑐𝜂3 ď }𝑒
0} ď 𝐶𝜂3. (4.31)

(ii) Estimation of ∇𝜀. Similar to the upper estimate of 𝑒0, we can obtain an upper bound for }∇𝜀}. Due to
(4.12) and (4.14) , we have

}∇𝜀}2 “ 𝑟1
`

∇𝜀
˘

´ 𝑟2
`

∇𝜀
˘

“ 𝑟1
`

∇p𝜀´ 𝑃 𝑘
ℎ 𝜀q

˘

´ 𝑟2
`

∇p𝜀´ 𝑃 𝑘
ℎ 𝜀q

˘

“
`

𝑓 ,∇p𝜀´ 𝑃 𝑘
ℎ 𝜀q

˘

.

From integration by parts, (4.21), and (4.22),

}∇𝜀}2 “
ÿ

𝑇P𝒯ℎ

´
`

∇ ¨ 𝑓 , 𝜀´ 𝑃 𝑘
ℎ 𝜀

˘

𝑇
`

ÿ

𝑓Pℱ int
ℎ

@

rr𝑛𝑓 ¨ 𝑓 ss𝑓 , 𝜀´ 𝑃
𝑘
ℎ 𝜀

D

𝑓

ď
ÿ

𝑇P𝒯ℎ

}∇ ¨ 𝑓}𝑇ℎ𝑇 }∇𝜀}𝜔𝑇
` }rr𝑛𝑓 ¨ 𝑓 ss𝑓 }𝑓

a

ℎ𝑓 }∇𝜀}𝜔𝑓

ď 𝐶}∇𝜀}
ˆ

´

ÿ

𝑇P𝒯ℎ

}∇ ¨ 𝑓}2𝑇ℎ2
𝑇

¯1{2

`

´

ÿ

𝑓Pℱ int
ℎ

}rr𝑛𝑓 ¨ 𝑓 ss𝑓 }
2
𝑓ℎ𝑓

¯1{2
˙

.

Therefore, we have that

}∇𝜀} ď 𝐶𝜂0. (4.32)
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By a similar argument to the lower estimate of 𝑒0, we have the lower bounds for ∇𝜀:

𝜂𝑇
0 ď }∇𝜀}𝑇 , (4.33)

𝜂𝑓
0 ď 𝐶

`

}∇𝜀}𝜛𝑓
` 𝜂𝑇1

0 ` 𝜂𝑇2
0

˘

ď 𝐶}∇𝜀}𝜛𝑓
. (4.34)

Combining (4.32), (4.33), and (4.34), we arrive at

𝑐𝜂0 ď }∇𝜀} ď 𝐶𝜂0. (4.35)

(iii) Estimation of the solenoidal part 𝑒K. We start with proving the upper bound for 𝜂𝑇
1 by using 𝑏𝑇

again. Employing the similar technique of Lemma 3.3 in [37], we have the following estimates for any 𝑣 in
finite dimensional spaces:

}𝑣}2𝑇 ď 𝐶}𝑏𝑇𝑣}
2
𝑇 , (4.36)

}𝑏2𝑇𝑣}
2
𝑇 ď 𝐶}𝑣}2𝑇 . (4.37)

Let 𝜑ℎ “ 𝜋ℎ𝑓 ´ p∇ˆq4𝑢ℎ ´ 𝑢ℎ, we then have

ˆ

𝜂𝑇
1

ℎ2
𝑇

˙2

“
›

›𝜋ℎ𝑓 ´ p∇ˆq4𝑢ℎ ´ 𝑢ℎ

›

›

2

𝑇

ď 𝐶
`

𝑓 ´ p∇ˆq4𝑢ℎ ´ 𝑢ℎ, 𝑏
2
𝑇𝜑ℎ

˘

𝑇
` 𝐶

`

𝜋ℎ𝑓 ´ 𝑓 , 𝑏
2
𝑇𝜑ℎ

˘

𝑇

`

by (4.36)
˘

“ 𝐶𝑟1p𝑏
2
𝑇𝜑ℎq ` 𝐶

`

𝜋ℎ𝑓 ´ 𝑓 , 𝑏
2
𝑇𝜑ℎ

˘

𝑇

`

𝑏2𝑇𝜑ℎ P 𝐻0pcurl2; Ωq
˘

“ 𝐶𝑎p𝑒, 𝑏2𝑇𝜑ℎq ` 𝐶𝑏p𝑏
2
𝑇𝜑ℎ, 𝜀q ` 𝐶

`

𝜋ℎ𝑓 ´ 𝑓 , 𝑏
2
𝑇𝜑ℎ

˘

𝑇

`

by (4.8)
˘

ď 𝐶|||𝑒|||𝑇 |||𝑏
2
𝑇𝜑ℎ|||𝑇 ` 𝐶

›

›∇𝜀
›

›

𝑇

›

›𝑏2𝑇𝜑ℎ

›

›

𝑇
` 𝐶𝜂𝑇

2 ℎ
´2
𝑇

›

›𝑏2𝑇𝜑ℎ

›

›

𝑇
.

Due to the inverse inequality and (4.37), it holds that

|||𝑏2𝑇𝜑ℎ|||
2
𝑇 “ }𝑏

2
𝑇𝜑ℎ}

2
𝑇 ` }p∇ˆq2𝑏2𝑇𝜑ℎ}

2
𝑇 ď 𝐶ℎ´4

𝑇 }𝑏2𝑇𝜑ℎ}
2
𝑇 ď 𝐶ℎ´4

𝑇 }𝜑ℎ}
2
𝑇 .

Thus we obtain that
ˆ

𝜂𝑇
1

ℎ2
𝑇

˙2

ď 𝐶
𝜂𝑇
1

ℎ2
𝑇

`

ℎ´2
𝑇 |||𝑒|||𝑇 ` }∇𝜀}𝑇 ` ℎ

´2
𝑇 𝜂𝑇

2

˘

.

Dividing the above inequality by 𝜂𝑇
1

ℎ2
𝑇

and multiplying by ℎ2
𝑇 , we obtain

𝜂𝑇
1 ď 𝐶

`

|||𝑒|||𝑇 ` ℎ
2
𝑇 }∇𝜀}𝑇 ` 𝜂𝑇

2

˘

. (4.38)

Next we estimate the upper bound for 𝜂𝑓
1;1 by using the bubble functions 𝑏𝑇 and 𝑏𝑓 . Let 𝑇1 and 𝑇2 be two

elements sharing the face 𝑓 . Denote 𝜓ℎ|𝑇𝑖
“ 𝑃𝑇𝑖

rr𝑛𝑓 ˆ p∇ˆq2𝑢ℎss𝑓 for 𝑖 “ 1, 2, then

}𝜓ℎ}𝑇𝑖
ď 𝐶ℎ

1{2
𝑇𝑖
}rr𝑛𝑓 ˆ p∇ˆq2𝑢ℎss𝑓 }𝑓 . (4.39)

Denote 𝜔𝑓,1 “ p𝑏𝑇1 ´ 𝑏𝑇2q𝑏𝑓𝑛𝑓 ˆ𝜓ℎ. A simple calculation shows that

p∇ˆ 𝜔𝑓,1q|𝑓 “
256
27

ˆ

𝑆𝑓

3|𝑇1|
`

𝑆𝑓

3|𝑇2|

˙

𝑏2𝑓𝜓ℎ,
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where 𝑆𝑓 stands for the area of the face 𝑓 . Similar to (4.36) and (4.37), the following inequalities hold

}𝑣}𝑓 ď 𝐶}𝑏𝑓𝑣}𝑓 , (4.40)
}p𝑏𝑇1 ´ 𝑏𝑇2q𝑏𝑓𝑣}𝜛𝑓

ď 𝐶}𝑣}𝜛𝑓
. (4.41)

Now we are ready to construct the upper bound for 𝜂𝑓
1;1:

ℎ´1
𝑓 }rr𝑛𝑓 ˆ p∇ˆq2𝑢ℎss𝑓 }

2
𝑓

ď 𝐶
@

rr𝑛𝑓 ˆ p∇ˆq2𝑢ℎss𝑓 ,∇ˆ 𝜔𝑓,1

D

𝑓

`

by (4.40)
˘

“ 𝐶
`

p∇ˆq4𝑢ℎ,𝜔𝑓,1

˘

´ 𝐶
`

p∇ˆq2𝑢ℎ, p∇ˆq2𝜔𝑓,1

˘

“ 𝐶𝑟1p𝜔𝑓,1q ´ 𝐶
`

𝑓 ´ 𝑢ℎ ´ p∇ˆq4𝑢ℎ,𝜔𝑓,1

˘ `

𝜔𝑓,1 P 𝐻0pcurl2; Ωq
˘

ď 𝐶|||𝑒|||𝜛𝑓
|||𝜔𝑓,1|||𝜔𝑓

` 𝐶}𝜔𝑓,1}𝜛𝑓

ˆ

}∇𝜀}𝜛𝑓
`

2
ÿ

𝑖“1

ℎ´2
𝑇𝑖

`

𝜂𝑇𝑖
1 ` 𝜂𝑇𝑖

2

˘

˙

.

By applying the inverse inequality, (4.39), and (4.41), we get

|||𝜔𝑓,1|||𝜛𝑓
ď ℎ´2

𝑓 }𝜔𝑓,1}𝜛𝑓
ď ℎ

´3{2
𝑓 }rr𝑛𝑓 ˆ p∇ˆq2𝑢ℎss𝑓 }𝑓 ,

which, together with (4.38), leads to

𝜂𝑓
1;1 ď 𝐶

´

|||𝑒|||𝜛𝑓
` 𝜂𝑇1

2 ` 𝜂𝑇2
2 ` ℎ2

𝑇1
}∇𝜀}𝑇1 ` ℎ

2
𝑇2
}∇𝜀}𝑇2

¯

. (4.42)

The upper bound for 𝜂𝑓
1;2 can be constructed in a similar way. Extend rr𝑛𝑓 ˆ p∇ˆq3𝑢ℎss𝑓 to rr𝑛𝑓 ˆ

p∇ˆq3𝑢ℎss𝑓 ;𝑇𝑖 on 𝑇𝑖 such that

}rr𝑛𝑓 ˆ p∇ˆq3𝑢ℎss𝑓 ;𝑇𝑖
}𝑇𝑖
ď 𝐶ℎ

1{2
𝑇𝑖
}rr𝑛𝑓 ˆ p∇ˆq3𝑢ℎss𝑓 }𝑓 . (4.43)

Denote 𝜔𝑓,2|𝑇𝑖
“ 𝑏2𝑓 rr𝑛𝑓 ˆ p∇ˆq3𝑢ℎss𝑓 ;𝑇𝑖

, then

}rr𝑛𝑓 ˆ p∇ˆq3𝑢ℎss𝑓 }
2
𝑓 ď 𝐶

@

rr𝑛𝑓 ˆ p∇ˆq3𝑢ℎss𝑓 ,𝜔𝑓,2

D

𝑓

“
`

p∇ˆq4𝑢ℎ,𝜔𝑓,2

˘

´
`

p∇ˆq2𝑢ℎ, p∇ˆq2𝜔𝑓,2

˘

´
@

rr𝑛𝑓 ˆ p∇ˆq2𝑢ℎss𝑓 ,∇ˆ 𝜔𝑓,2

D

𝑓

“ 𝑟1p𝜔𝑓,2q ´
`

𝑓 ´ 𝑢ℎ ´ p∇ˆq4𝑢ℎ,𝜔𝑓,2

˘

´
@

rr𝑛𝑓 ˆ p∇ˆq2𝑢ℎss𝑓 ,∇ˆ 𝜔𝑓,2

D

𝑓

ď 𝐶ℎ
´3{2
𝑓

´

2
ÿ

𝑖“1

`

𝜂𝑇𝑖
1 ` 𝜂𝑇𝑖

2 ` ℎ2
𝑇𝑖
}∇𝜀}𝑇𝑖

˘

` 𝜂𝑓
1;1 ` |||𝑒|||𝜛𝑓

¯

›

›rr𝑛𝑓 ˆ p∇ˆq3𝑢ℎss𝑓
›

›

𝑓
.

Dividing the above inequality by
›

›rr𝑛𝑓 ˆ p∇ˆq3𝑢ℎss𝑓
›

›

𝑓
and applying (4.38) and (4.42), we obtain

𝜂𝑓
1,2 ď 𝐶

´

𝜂𝑇1
2 ` 𝜂𝑇2

2 ` |||𝑒|||𝑇1Y𝑇2
` ℎ2

𝑇1
}∇𝜀}𝑇1 ` ℎ

2
𝑇2
}∇𝜀}𝑇2

¯

. (4.44)

Collecting (4.38), (4.42), and (4.44), we have that

𝜂1 ď 𝐶
`

𝜂2 ` |||𝑒||| ` ℎ
2}∇𝜀}

˘

. (4.45)
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It remains to construct the upper bound of 𝑒K. For 𝑒K P 𝑋 Ă 𝐻0pcurl2; Ωq, according to Lemma 2.4,
𝑒K “ 𝑤 `∇𝜓 with 𝑤 P𝐻2pΩq and 𝜓 P 𝐻1

0 pΩq. Then we have

|||𝑒K|||
2
“ 𝑟1p𝑒

Kq “ 𝑟1p𝑤q ` 𝑟1p∇𝜓q.

Due to the Galerkin orthogonality (4.10), for any 𝑤ℎ P 𝑉
0
ℎ ,

𝑟1p𝑤q “ 𝑟1p𝑤 ´𝑤ℎq

“
ÿ

𝑇P𝒯ℎ

´

`

𝑓 ´ 𝑢ℎ ´ p∇ˆq4𝑢ℎ,𝑤 ´𝑤ℎ

˘

𝑇
`

ÿ

𝑓Pℱℎp𝑇 q

@

𝑛𝑓 ˆ p∇ˆq3𝑢ℎ,𝑤 ´𝑤ℎ

D

𝑓

´
ÿ

𝑓Pℱℎp𝑇 q

@

𝑛𝑓 ˆ p∇ˆq2𝑢ℎ,∇ˆ p𝑤 ´𝑤ℎq
D

𝑓

¯

ď
ÿ

𝑇P𝒯ℎ

´

}𝜋ℎ𝑓 ´ 𝑢ℎ ´ p∇ˆq4𝑢ℎ}𝑇 }𝑤 ´𝑤ℎ}𝑇 ` }𝜋ℎ𝑓 ´ 𝑓}𝑇 }𝑤 ´𝑤ℎ}𝑇

¯

`
ÿ

𝑓Pℱ int
ℎ

}rr𝑛𝑓 ˆ p∇ˆq2𝑢ℎss𝑓 }𝑓 }∇ˆ p𝑤 ´𝑤ℎq}𝑓

`
ÿ

𝑓Pℱ int
ℎ

}rr𝑛𝑓 ˆ pp∇ˆq3𝑢ℎqss𝑓 }𝑓 }𝑤 ´𝑤ℎ}𝑓

ď 𝐶p𝜂1 ` 𝜂2q

ˆ

ÿ

𝑇P𝒯ℎ

´

ℎ´4
𝑇 }𝑤 ´𝑤ℎ}

2
𝑇 `

ÿ

𝑓Pℱℎp𝑇 q

ℎ´1
𝑓 }∇ˆ p𝑤 ´𝑤ℎq}

2
𝑓

`
ÿ

𝑓Pℱℎp𝑇 q

ℎ´3
𝑓 }𝑤 ´𝑤ℎ}

2
𝑓

¯

˙1{2

.

Let 𝑤ℎ “ rΠ2
ℎ𝑤. According to the trace inequality and Theorem 2.3, we obtain

ÿ

𝑇P𝒯ℎ

´

ℎ´4
𝑇 }𝑤 ´𝑤ℎ}

2
𝑇 `

ÿ

𝑓Pℱℎp𝑇 q

ℎ´1
𝑓 }∇ˆ p𝑤 ´𝑤ℎq}

2
𝑓 `

ÿ

𝑓Pℱℎp𝑇 q

ℎ´3
𝑓 }𝑤 ´𝑤ℎ}

2
𝑓

¯

ď 𝐶}𝑤}22.

Furthermore, we use (2.6), (2.7), and the Poincaré inequality to obtain

𝑟1p𝑤q ď 𝐶p𝜂1 ` 𝜂2q}𝑤}2 ď 𝐶p𝜂1 ` 𝜂2q}∇ˆ 𝑒K}1 ď 𝐶p𝜂1 ` 𝜂2q|||𝑒
K|||.

Similar to the proof of (4.32), using (2.8), it holds that

𝑟1p∇𝜓q ď 𝐶p𝜂0 ` 𝜂3q}∇𝜓} ď 𝐶p𝜂0 ` 𝜂3q|||𝑒
K|||.

Hence,

|||𝑒K||| ď 𝐶p𝜂0 ` 𝜂1 ` 𝜂2 ` 𝜂3q. (4.46)

Combining (4.32), (4.35), (4.45), and (4.46), we obtain Theorem 4.2.

5. Numerical examples

In this section, we will present some numerical results in 2D. The quad-curl problem in 2D is

p∇ˆq4𝑢 “ 𝜆𝑢 in Ω,
∇ ¨ 𝑢 “ 0 in Ω,
𝑢ˆ 𝑛 “ 0 on BΩ,
∇ˆ 𝑢 “ 0 on BΩ,

(5.1)
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Figure 1. Sample meshes for Ω1 (left), Ω2 (middle), and Ω3 (right).

where ∇ˆ 𝑢 “ B𝑢2
B𝑥1

´ B𝑢1
B𝑥2

for 𝑢 “ p𝑢1, 𝑢2q and ∇ˆ 𝑢 “ p B𝑢
B𝑥2

,´ B𝑢
B𝑥1
q for a scalar 𝑢. Since the outermost ∇ˆ is

acting on a scalar, the function 𝜎 “ ∇ˆ 𝑢 satisfies

∆𝜎 P 𝐻1pΩq in Ω,
𝜎 “ 0 on BΩ.

(5.2)

When Ω is a polygon, according to Theorem 14.6 of [18], 𝜎 P 𝐻1`𝜋{𝜔´𝜖pΩq for any 𝜖 ą 0. Here 𝜔 is the largest
interior angle at the corners of Ω.

Since 𝑢 P 𝑋, according to Lemma 2.4, 𝑢 “ ∇𝜑 ` 𝑣 with 𝜑 P 𝐻1
0 pΩq and 𝑣 P 𝐻2pΩq. In addition, according

to the proof of Lemma 2.4, 𝜑 actually satisfies ∆𝜑 P 𝐻1pΩq, and hence 𝜑 P 𝐻1`𝜋{𝜔´𝜖pΩq. Therefore 𝑢 P

𝐻mint𝜋{𝜔´𝜖,2upΩq.

5.1. A priori error estimates

We consider three different domains:

– Ω1: the unit square given by p0, 1q ˆ p0, 1q,
– Ω2: the L-shaped domain given by p0, 1q ˆ p0, 1q{

`

r1{2, 1q ˆ p0, 1{2s
˘

,
– Ω3: given by p0, 1q ˆ p0, 1q{

`

r1{4, 3{4s ˆ r1{4, 3{4s
˘

.

The eigenvectors on Ω1 are in t𝑢 P𝐻2´𝜖pΩq : ∇ˆ𝑢 P 𝐻3´𝜖pΩqu. The eigenvectors on Ω2 are in t𝑢 P𝐻2{3´𝜖pΩq :
∇ˆ𝑢 P 𝐻5{3´𝜖pΩqu. According to Theorem 3.8, the convergence orders for Ω1 and Ω2 are 4 and 4{3, respectively.

The initial meshes of the domains are shown in Figure 1. In Tables 1–3, we list the first five eigenvalues. Since
the exact eigenvalues are unknown, the relative error is adopted:

Error “

ˇ

ˇ

ˇ

ˇ

ˇ

𝜆ℎ
𝑖 ´ 𝜆

ℎ{2
𝑖

𝜆
ℎ{2
𝑖

ˇ

ˇ

ˇ

ˇ

ˇ

¨

Table 1. The first 5 eigenvalues of Ω1 with the fourth-order elements.

ℎ 𝜆ℎ
1 𝜆ℎ

2 𝜆ℎ
3 𝜆ℎ

4 𝜆ℎ
5

1{4 7.08101988e+02 7.08102390e+02 2.35145718e+03 4.25922492e+03 5.02522026e+03
1{8 7.07978763e+02 7.07978786e+02 2.35006082e+03 4.25597055e+03 5.02401495e+03
1{16 7.07971973e+02 7.07971975e+02 2.34999027e+03 4.25582307e+03 5.02399272e+03
1{32 7.07971564e+02 7.07971564e+02 2.34998613e+03 4.25581473e+03 5.02399235e+03
1{64 7.07971528e+02 7.07971555e+02 2.34998587e+03 4.25581421e+03 5.02399235e+03
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Table 2. The first 5 eigenvalues of Ω2 with the fourth-order elements.

ℎ 𝜆ℎ
1 𝜆ℎ

2 𝜆ℎ
3 𝜆ℎ

4 𝜆ℎ
5

1{4 5.34885649e+02 1.57586875e+03 6.10288551e+03 6.40711482e+03 1.09459861e+04
1{8 5.35061810e+02 1.57477474e+03 6.09556539e+03 6.37916246e+03 1.09184358e+04
1{16 5.35222062e+02 1.57468831e+03 6.09528577e+03 6.37104166e+03 1.09152964e+04
1{32 5.35292267e+02 1.57467206e+03 6.09528045e+03 6.36787675e+03 1.09143027e+04
1{64 5.35320748e+02 1.57466664e+03 6.09528434e+03 6.36661570e+03 1.09139180e+04

Table 3. The first 5 non-zero eigenvalues of Ω3 with the fourth-order elements.

ℎ 𝜆ℎ
1 𝜆ℎ

2 𝜆ℎ
3 𝜆ℎ

4 𝜆ℎ
5

1{4 9.43570924e+02 9.43570924e+02 3.35118080e+03 5.10757870e+03 1.03672699e+04
1{8 9.40543704e+02 9.40543704e+02 3.33230800e+03 5.11255084e+03 1.03470233e+04
1{16 9.39507116e+02 9.39507116e+02 3.32612997e+03 5.11519580e+03 1.03445476e+04
1{32 9.39103168e+02 9.39103168e+02 3.32373447e+03 5.11630255e+03 1.03438189e+04
1{64 9.38943028e+02 9.38943036e+02 3.32278551e+03 5.11674950e+03 1.03435487e+04

Table 4. Convergence rate for Ω1 with the fourth-order elements (relative error).

ℎ 𝜆ℎ
1 Error Order

1{4 7.08101988e+02 1.74021691e-04 –
1{8 7.07978763e+02 9.59045415e-06 4.1815
1{16 7.07971973e+02 5.77922813e-07 4.0527
1{32 7.07971564e+02 5.08588883e-08 3.5063
1{64 7.07971528e+02 – –

Table 5. Convergence rate for Ω2 with the fourth-order elements (relative error).

ℎ 𝜆ℎ
1 Error Order

1{4 5.34885649e+02 3.29341761e-04 –
1{8 5.35061810e+02 2.99502830e-04 0.1370
1{16 5.35222062e+02 1.31169871e-04 1.1911
1{32 5.35292267e+02 5.32057764e-05 1.3018
1{64 5.35320748e+02 – –

Table 6. Convergence rate for Ω3 with the fourth-order elements (relative error).

ℎ 𝜆ℎ
1 Error Order

1{4 9.43570924e+02 3.20825910e-03 –
1{8 9.40543704e+02 1.10211572e-03 1.5415
1{16 9.39507116e+02 4.29957430e-04 1.3580
1{32 9.39103168e+02 1.70524522e-04 1.3342
1{64 9.38943028e+02 – –

Tables 4–6 show the convergence rates of the relative errors for the first eigenvalues. We can observe a convergence
order 4 for Ω1 and 4{3 for Ω2, which agrees with the theoretical results. We can also observe a convergence
order 4{3 for Ω3 even if this case is not covered in the theoretical analysis.
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Figure 2. The convergence rates of error estimators and the relative errors. (a) The third
eigenvalue of Ω1. (b) The first eigenvalue on Ω2. (c) The third eigenvalue on Ω3.

Figure 3. The local indicators 𝜂ℎp𝑢ℎ, 𝑇 q.

5.2. A posteriori error estimates

Figure 2 shows global error estimators 𝜂2
ℎp𝑢ℎ,Ωq and the relative errors of some simple eigenvalues for the

three domains. It can be observed that the relative errors and the estimators have the same convergence rates,
which confirms the upper bound estimate for the simple eigenvalues. Figure 3 shows the distribution of the local
indicators 𝜂ℎp𝑢ℎ, 𝑇 q. The estimators are large at corners and catch the singularities effectively.
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6. Conclusion

We proved a priori and robust a posteriori error estimates for the 𝐻pcurl2q-conforming finite element method
when solving the quad-curl eigenvalue problem. Due to a new decomposition of the function in 𝐻pcurl2; Ωq, the
theory assumes no extra regularity of the eigenfunctions. The a posteriori error estimator is essential for the
adaptive finite element method. It can also be applied to test spurious eigenvalues.

Acknowledgements. This work is supported in part by the National Natural Science Foundation of China grants NSFC
11871092, NSFC 11926356, NSAF 1930402, NSFC 12101036.
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