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A PRIORI AND A POSTERIORI ERROR ESTIMATES FOR THE QUAD-CURL
EIGENVALUE PROBLEM

Lixiu WANGY?, QIAN ZHANG>*®, JIGUANG SUN? AND ZHIMIN ZHANG??

Abstract. In this paper, we consider a priori and a posteriori error estimates of the H(curl?)-
conforming finite element when solving the quad-curl eigenvalue problem. An a priori estimate of
eigenvalues with convergence order 2(s — 1) is obtained if the corresponding eigenvector u € H*™*(Q)
and V x u € H*(Q). For the a posteriori estimate, by analyzing the associated source problem, we
obtain lower and upper bounds for the errors of eigenvectors in the energy norm and upper bounds for
the errors of eigenvalues. Numerical examples are presented for validation.
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1. INTRODUCTION

The quad-curl operator has important applications in the inverse electromagnetic scattering theory [8,9]. The
corresponding quad-curl eigenvalue problem plays a fundamental role in the analysis and computation of the
electromagnetic interior transmission eigenvalues [27,32,33]. Various numerical methods have been proposed for
the quad-curl source problem, see, e.g., [6,7,13,22,35,36,38,41,42,45]. However, there exist only a few results
on the numerical methods for the quad-curl eigenvalue problem. The quad-curl eigenvalue problem was first
proposed in [33], where J. Sun developed a mixed finite element method by introducing an auxiliary variable
w =V x V x u and proved an a priori error estimate. In [12], H. Chen et al. designed a different mixed scheme
by introducing = V x u. Two multigrid methods based on the Rayleigh quotient iteration and the inverse
iteration with fixed shift were proposed and analyzed in [21].

Very recently, three of the authors and their collaborators constructed H (curlQ)—conforming finite elements
in both two and three dimensions (2D and 3D) to solve the quad-curl source problem [23,24,39,40,44]. Based
on the conforming elements, in this paper, we consider the conforming finite element method for the eigenvalue
problem and derive a priori and a posteriori error estimates.

Keywords and phrases. The quad-curl problem, eigenvalue problem, a priori error estimation, a posteriori error estimation,
curl-curl conforming elements.
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In the first part of the paper, we apply the classical framework of Babuska and Osborn [2,29] to derive an
a priori estimate. To this end, we prove the discrete compactness of the H (cur12)—conforming finite elements
with div-free condition. We can show that the conforming method is convergent and it has a convergence order
of 2(s — 1) when the eigenvector uw € H*~1(Q2) and V x u € H*(Q).

At reentrant corners or material interfaces, the eigenvectors feature strong singularities [28]. For more efficient
computation, adaptive local refinements are considered. A posteriori error estimators are essential for adaptive
finite element methods. In addition, an inappropriate scheme for the quad-curl problem might lead to spurious
eigenvalues. In this situation, a posteriori error estimators can be applied to test whether an eigenvalue is spu-
rious. We refer to [3-5,15,17,25,30] for the a posteriori error estimates of electromagnetic problems and elliptic
problems. In [10], S. Cao et al. developed an a posteriori error estimator for a decoupled finite element method
for the quad-curl source problem. In terms of the quad-curl eigenvalue problem, to the authors’ knowledge, no
work on a posteriori error estimations has been done so far. Therefore, in the second part of the paper, we
consider an a posteriori error estimate for the conforming finite element method.

Due to the large kernel space of the curl operator, the Helmholtz decomposition of splitting a vector field in
H (cur12; ) into the irrotational and solenoidal components plays an important role in the analysis. However,
in general, the irrotational component is not H2-regular when ) is non-convex. Therefore, we propose a new
decomposition for Hy (curl2; ), which further splits the irrotational component into a function in H?(Q) and
a function in the kernel of curl operator. To obtain an a posteriori error estimator for the eigenvalue problem,
we apply the idea of [17] to relate the eigenvalue problem to a source problem. An a posteriori error estimator
for the source problem is constructed by analyzing irrotational and solenoidal components, respectively. Then
an a posteriori error estimator for simple eigenvalues is obtained. The proof uses the new decomposition and
makes no additional regularity assumption.

For ease of presentation, we will focus on only 3D case, the similar arguments can be used to the 2D case.
The rest of this paper is organized as follows. In Section 2, we present some notation, the H (cur12)—conforming
elements, the new decomposition, and an H (curlz)—type Clément interpolation, which will be used in the a
posteriori error analysis. In Section 3, we derive the a priori error estimate for the quad-curl eigenvalue problem.
In Section 4, we prove the a posteriori error estimate. Finally, in Section 5, we show some numerical experiments.

2. NOTATION AND BASIS TOOLS

2.1. Notation

Let © < R? be a contractible Lipschitz domain. For a Lipschitz domain D = R3, L?(D) denotes the space of
square integrable functions on D with norm || - | p. For a positive integer s, H*(D) denotes the space of scalar
functions in L?(D) whose derivatives up to order s are also in L?(D). If s = 0, H°(D) = L?(D). For vector
functions, denote L?(D) = (L?*(D))? and H*(D) = (H*(D))3. We use (-,-)p and (-, Ysp to stand for the L?
inner products on D and 0D. When D = 2, we omit the subscript ) in the notation of norms and L? inner
products.

For simplicity, denote (Vx)?u = V x V x u. We now define a space concerning the V x operator

H(curl’>; D) := {ue L*(D) : (Vx)'ue L*D), i =1,2},

whose norm is given by

2
[l g emrzimy = 4| 2 (VX)iw, (VX)) .
1=0

We also equip the space H (curlz; D) with the following norm:

2
lullp = lul? + (V%) *ulb.
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We drop the subscript D in || - || , when D = Q. The spaces Hp(curl®; D), H(D), and H(div’; D) are defined,
respectively, as

Ho(curl®; D) := {u e H(curl®; D) : wxnp =0and V x u x np =0 on éD},
Hg(D) :={ue H (D) :u = 0on oD},
H(div’; D) := {ue L*(D): V-u = 0},

where np is the unit outward normal vector to 0D.

Let 7;, be a shape regular simplicial triangulation of Q. Denote by N}, Ex, and Fy, the sets of vertices, edges,
and faces. Let 7. and my be the unit tangent vector of an edge e € £, and the unit normal vector of a face
f € Fp, respectively. We denote N, ,ilnt and Fi" as the sets of vertices and faces in the interior of ©, respectively.
Let N (T), En(T) and Fr(T) be the sets of vertices, edges, and faces on the element 7. Denote by hp the

diameter of T' € 7. Denote h = Inax hr. We use P to represent the space of polynomials with degrees at most
€/lp

k. Denote Py, = (Pk)s

2.2. H(curl?)-conforming elements in 3D

We apply the H (curlz)—conforming elements constructed in [23,24]. The shape function space for an element
TeT,is

V() = VPeyr (T) @ pP (1),

where
1
pu = J u(W + t(x — W)) x t(x — W)dt,
0
and
P(T)® B*, k=1,
PHT)={ P(T)®B'®B? k=2
P.(T)® B*, k> 3.

Here B! and B* are spaces of modified bubbles defined on the Alfeld split of T, see [24] for more information.

Remark 2.1. For the bubble functions in P/ (T'), we choose the barycenter of T as the base point W in the
Poincaré operator p, see [14]. For other functions, we choose W to be the origin.

For k > 2, the H (curl®)-conforming element with the shape function space V}*(T') is defined by the following
degrees of freedom (DOF's).

— Vertex DOFs M, (u) at all vertices v; € NVy:
M,(u) = {(V xu)(v;)}. (2.1)
— Edge DOFs M. (u) on all edges e; € &p:
M, (u) = {J u - T, qdS, Vg e Pk(ei)}

1
—_— . FreP,_3(é);. 2.2
u{length(ei) LVX“ ads vao Fre b 3(&)} 22
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— Face DOFs My (u) at all faces f; € Fp, (with two mutually orthogonal unit vector 7 and 7 in the face f;
and the unit normal vector n;):

My(u) = { V x u-n;qdA, Vqe Pk4(fz-)/]R}

fi

1
) {aream flv X ’U,'qudA, VqEPk_4(fi)}

U {are;(fi) ; V x u-1pqdA, Vqe Pk—4(fi)} (2.3)

V) {EH(;WL.u-qu,Vq = Brq,q € Pk,g(fi) [z — (& - 7y) 7] f}

— Interior DOFs Mr(u) for all the elements T; € Tp:

My (u) = U V x u-qdV, Ygo Fr, = Bz" 4,4 € P,_¢(T}) x w}
T

i

U U w-qdV, Yqo Fr, = 1/det(Br,)Br.q € Pk_g(i;);i:}. (2.4)
T.

i

Here the notation * denotes the corresponding variable on the reference element (the tetrahedron with vertices
(0,0,0), (1,0,0), (0,1,0), and (0,0,1)), and By is the Jacobian matrix of the transformation from 7' to 7.

We can define an H (curl?; Q) interpolation II¥u by the DOFs (2.1)-(2.4). Applying the similar arguments of
the proof of Theorem 5.41 in [26], we can obtain the following error estimates.

Theorem 2.2. The interpolation HZ satisfies the following approximation properties.

(1) Assume that w € H*"Y(Q), V x u € H*(Q), s = 3/2+§ with § > 0. Then we have the following error
estimates for the interpolation Hﬁ,

Ja = ] iy < CH™ 5 (], + [V wl).

(2) Assume that w € H*"Y(Q), s = 3/2 + § with § > 0. Then we have the following error estimates for the
interpolation H’,fb,

lu — Myl + 2|V (u - Oju)| + 22| VV x (u — )| < Cprin{s+1k+1} |lul, -
(3) Assume that w e HY?(T) with 6 > 0 and V x u|r € P [ (T), then
Ju— 1w, < C(h** |l 5.0 + bV x ul7).

For 2D H (curl?®)-conforming elements, we refer to the family » = k + 1 in [23].

2.3. An H(curl?®)-type Clément interpolation

Let w, be the union of elements sharing the vertex v and R, ¢ be the L? projection of ¢ € L?(w,) on w,, i.e.,
R,¢ € P;(w,) such that

f (¢ - Rv(b) pdV = 07 VP € Pl(wv)'
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For u e H'?9(Q) with V x u € H*?9(Q), the lowest-order H(curl*; Q) interpolation IT;u defined by the
DOFs (2.1)-(2.4) can be written as

3 3
Mu= Y Y al(we,+ > > al(wel+ > ap(u)dy,
veN}, i=1 eely i=1 feFn

where

o' (u) = the ith component of V x u(v),

)

ag(u) = f u - T.q;ds for any ¢; € Pa(e),

af(u) = L’U,BT(’flf X ii)|f X 'flf)dA with f e 0T,

and the functions ¢!, ¢, and ¢ are the corresponding dual basis functions. Now we define an H (curl?)-

type Clément interpolation ﬁi for w € HY?>*%(Q) with V x w € H'Y(Q) by replacing of(u) with
&% (u) = RY((V x u);)(v). The interpolation is well-defined and the following error estimate holds.

Theorem 2.3. For any T € Ty, let wr = Uy,en, (1)wo, - Then, for we H?(KY), it holds that
lu = M ulr + b |V (u = Gu)|z + W3 V(V x (u—=T5w) [ < Ch? w0,

The theorem can be obtained by combining the approximation properties of H’,E; and the classic Clément
interpolation.

2.4. A decomposition of Hy(curl?; Q)

Motivated by the decomposition of Hy(curl; ) in Proposition 5.1 of [19], we obtain a decomposition of the
space Ho(curl?; Q), which plays a critical role in the analysis.

Lemma 2.4. Let VHJ(Q) be the set of gradients of functions in H}(Q). Then VH(Q) is a closed subspace of
Hy(curl®; Q) and

Ho(curl®; Q) = X @ VH(Q), (2.5)

where X = {u € Hy(curl?; Q)}(u, Vp) =0, Vpe H} (Q)} Namely, for any w € Ho(curl®; Q), u = u® + u' with
u® € VHY(Q) and ut € X. Furthermore, u' admits the splitting

ut =V +w, (2.6)
where ¢ € HY(Q) and v e H?(Q) satisfying

|vl2 < CIV x uh]s.
<

Vel < C(IV x wtf + Jut]).

Proof. The proof of (2.5) can be found in [44]. To prove (2.6)-(2.8), let O be a bounded, smooth, contractible
open set with Q — O. For any u' € X, we can extend u' in the following way:

&_ ,U‘La Qa
)0, O/
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Obviously, @ € Hy(curl; ©) and V x @ € HZ(O). According to Proposition 4.1 in [16], there exists a w € H?(O)
such that

Vx(w—u)=0and [|w|20 < C|V x u,0. (2.9)
Based on Theorem 2.9 of [20], there exists a unique function p of H!(O)/R such that
w—u=Vp. (2.10)
Now, we restrict (2.10) to the domain O/ and obtain
Vp =we H?*(0/Q). (2.11)

Using the extension theorem [11], we can extend p € H3(O/Q) to p, which is defined on O and satisfies

IPls.0 < Clplsom < ClIVPlyom = Clwly o (2.12)

where we have used Poincaré-Friedrichs inequality for p € H3(0/Q) since we can choose p for which So b= 0.
Restricting on €2, we have

ut = w-Vp+V (p—p) = v+ V.
eH2(Q)  eHI(Q)

Note that ¢ = p—p € H(2) since p is the extension of p. Therefore, (2.6) is proved. By virtue of (2.12) and
(2.9), we obtain

[vll2 = w = V]2 < [w = VP20 < Clwla,0 < C|V x @10 = C|V x u* |y
and
1 i 1 1 1
Vol = Jut —v| < Jut| + v < Jut| +[v], < C (Jut| + |V x uth).
O
3. AN 4 PRIORI ERROR ESTIMATE FOR THE EIGENVALUE PROBLEM
Following [33], the quad-curl eigenvalue problem is to seek A and w such that
(Vx)'u = Au  in Q,
V-u=0 in Q,
(3.1)

uxn=0 on 02,
Vxuxn=0 on 0f),

where n is the unit outward normal to 0€2. The assumption that {2 is contractible implies A # 0. The variational
form of the quad-curl eigenvalue problem is to find A € R and u € X such that

(Vx)?u, (Vx)*v) = AMu,v), YveX. (3.2)
We define some discrete spaces.
Vi = {vn € H(curl;Q) = vyl € ViH(T)},
V0 ={v,eViy: nxwv,=0and nxV x v, =0 on 0Q},
Sy, = {w, € HY(Q) : wy|r € Pu(T)},
Sh = {wp, € Sh, wplo = 0},
Xy, = {up e V| (un,Vaqn) =0, for all g, € Sp}.
The discrete problem for (3.2) is to find Ay € R and up, € X}, such that
(Vx)2up, (Vx)*vp) = Mp(un,vp), Yoe Xp. (3.3)
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3.1. The source problem

We start with the associated source problem. Given f € L?(Q), find u € Hy(curl*; Q) and p € H}(Q) such
that

(V) 'u+u+Vp=f inQ,
V-u=0 1inQ,

(3.4)
uxn=0 ono0df,
Vxuxn=0 ondd
Note that p = 0 for f e H(div"; Q).
The weak formulation is to find (u;p) € Ho(curl®; Q) x H(Q) such that
a(w,v) + b(v,p) = (f,0), Vo e Hylew’;), .

b(u,q) =0, Vg e H} (),
where

a(u,v) = ((Vx)*u, (Vx)*v) + (u,v),
b(’U,p) = (vaP)'

Define Y := {w € Hy(curl; Q) : (w,Vq) =0, Vg€ H}(Q)}, then Vxwu € Y. By applying Friedrichs inequality
on V x u, we get a(-,-) is coercive on Hp(curl®; Q), i.e.,

a’(u’u) = HUH?‘I(curIQ;Q)'
In addition, the following Babuska—Brezzi condition holds,

b b(V
sup (v.p) _ _bVpp)
veHo(curl?;Q) HUHH(curl2;Q) ||vaH(0url2;Q)

= [Vpl = Clpl.
The well-posedness of (3.5) then follows from Theorem 1.3.2 of [34]. Consequently, we can define a bounded
solution operator A : L?(Q) — L?(Q) such that, for f € L2(Q2), Af = ue X < L*(Q) satisfies
a(Af,v) = (f,v), YveX.

The operator A is selfadjoint since

(Ap, ) = a(Ap, Ag) = a(Ap, AY) = (¢, AY), Vo, € L*(Q).
A is also compact due to the following result.
Lemma 3.1. X processes the continuous compactness property.
Proof. Since X ¢ Y << L?(Q) [26], then X << L?(Q). O

The H(curl®)-conforming finite element method seeks uy, € V¥ and py, € S such that

a,('LLh, vh) + b(vh7ph) = (.fa vh)7 vvh € ‘/}?a

(3.6)
b(up, qn) =0, Y € Sp.

Since V x up, € Y, by the Friedrichs inequality on V x uy, there exists a constant C' independent of A such that

a(un, un) = [un]® + [(Vx)*un]* = Clun| g ewnz;0)-
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The well-posedness of problem (3.6) is then due to the discrete Babuska—Brezzi condition,

b(on,pn) _ _ b(Vpn,pn)
veV,0 ”vHH(curlz;Q) vahHH(curlz;Q)

= [Vpn| = Clpals-

Consequently, we can define a discrete solution operator Ay, : L?(Q) — L2(Q) such that u;, = Apf € X}, is
the solution of (3.6). We will use the standard finite element framework and the approximation property of the
interpolation to obtain the approximation property of the numerical solution. To this end, we first introduce a
new space:
H(gradcurl; Q) = {u € H(curl; Q) : V x u e H'(Q)},
and the associated space with vanishing trace
Hy(gradcurl; Q) = {u € H(gradeurl; Q) : n x w = 0 and V x u = 0 on 0$2}.

Equip the space H(gradcurl; Q) with norm H’U,H?{( = |u|? + |[VV x u|?. We can show that the space

Ho(gradcurl; Q) is equivalent to Ho(curl?; Q).

gradcurl;Q2)

Lemma 3.2. The space Hy(curf; Q) coincides with Hy(gradcurl; Q). Moreover, for u € Ho(curlz; Q),
||UHH(curl2;Q) < CHU’HH(gmdcurl;Q)- (37)

Proof. To prove Hy(curl®;Q) = Hy(gradcurl; ), it suffices to show Hy(curl®; Q) < Hy(gradcurl; Q) since
Hy(gradeurl; Q) c Hy(curl?; Q) is trivial. For u € Ho(curl?; Q), we have V x u € Hy(div; 2) = {u € L*(2) :
V-ue L3(2), u-n=0on dN2}since V-(Vxu)=0and (Vxu) n= V- (uxn)=0on o It then follows
from Hy(curl; Q) n Ho(div; Q) = HE () ([20], Lem. 2.5) that V x w € H (), and hence uw € Hy(gradcurl; Q).
The inequality (3.7) follows from the Poncaré inequality. O

Lemma 3.3. C(Q) is dense in Ho(gradcurl; §2).

Proof. The density of C{ () in Hy(gradcurl; Q) has been proved in Theorem 3.15 of [43]. The proof uses a
similar argument to the one used to prove the density of C§°(2) in Hy(curl; Q) [26]. O

With the density of C§°(Q2) in Hp(gradcurl; ), we can obtain the following approximation property.
Theorem 3.4. For f € L*(Q), it holds

”Af - Ahf||H(curl2;Q) —0ash —0.

Proof. The usual theory of mixed method shows that
Af-A wiz.o) < CJ inf |Af—wv wi2:0) +inf — . 3.8
A = A Py < C { nf 1A = on Loy + inf, o= anls } (3.5)
It follows from the approximation property of the canonical interpolations, Lemma 3.2, the density of C°(£2)
in H}(Q), and Lemma 3.3 that

inf HA.f - vhHH(curlng) + inf Hp - Qhul —0ash—0.
’UhEV;? qh€52

O

If p and Af are smoother, then from the approximation property of wa we have the following error estimate
with a convergence order.

Theorem 3.5. Assume that Af € H*"1(Q),V x Af € H*(Q), and p € H*(Q) (s = 3/2+ § with § > 0). It
holds that

”A.f - Ahf||H(curl2;Q) < Chs_l (||Ast—1 + HV X Ast + HpHs) .
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3.2. An a priori error estimate of the eigenvalue problem

We first rewrite the eigenvalue problem (3.2) by adding a low-order term w. Find A € R and (u;p) €
Ho(curl®; Q) x H(Q) such that

a(u,v) + b(v,p) = (A + 1)(u,v), Yo e Hy(curl?; Q),

b(u,q) =0, Vg e HL (). (3.9)

Due to the fact that V - u = 0, we have p = 0. Then (3.9) can be written as an operator eigenvalue problem of
finding p:=1/(A+ 1) € R and u € X such that

Au = pu. (3.10)
The discrete eigenvalue problem (3.3) is equivalent to seeking A, € R and (up;pp) € V0 x SY) such that

a(wp, vy) + b(vn, pr) = (A + D) (up,vp), VYo, e V2,

(3.11)
b(un, qn) = 0, Van € Sp.
Using the operator Ay, the eigenvalue problem is to find u;, € R and u;, € X} such that
Apup = ppup, (3.12)

where pup = 1/(Ap + 1).
Let A = {h,,n=0,1,2,...} be a sequence of mesh sizes such that

hg>hy > hy>--->0and h, — 0asn— .

Define a collection of operators,
A={A,: L*(Q) —» L*(Q), he A}.

To apply the abstract convergence theory [29], we need to verify:

(1) A is collectively compact, i.e., for each bounded set U = L%(Q), A(U) = {Apu : u € U, h € A} is relatively
compact.
(2) A is point-wise convergent, i.c., for f € L2(Q), Apf — Af strongly in L?(Q) as h — 0.

Theorem 3.4 verifies (2). It remains to verify (1). We first show {X}, }rea has discrete compactness property.
Theorem 3.6. {X}}ren processes the discrete compactness property, i.e., for every {w,}>_; such that

- wy, € Xy, for eachn and hy, — 0 asn — o0,
— there is a constant C independent of wy, such that |wy|| g(cure;0) < C,

then there exists a subsequence, still denoted {w,}, and a function w € X such that
w,, — w strongly in L*(Q) and weeklyin X as n — oo.

Proof. Let wy, € Xp,,n = 1,2,... and h, — 0 as n — 0. Suppose |wn| g(curz;0) < C < 0 for all n. Seek
p" € H}(Q) such that (Vp™, VE) = (w,,, V&) for all £ € HL(Q). Set w" = w,, — Vp", clearly, w™ satisfies

(Vx)?w" = (Vx)*w,, Vxw'=Vxw, and V- -w"=0 in

nxw'=nxw, on O

Hence w" € X and |w"| g (curiz;0) < C. By Lemma 3.1, there is a subsequence, still denoted by {w"}}"_;, and
a function w € L?(Q) such that w"™ — w as n — o strongly in L?(Q). Furthermore, we can prove w € X. In
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fact, for any v € L?(Q), lim,,_,(V x w"™, v) < C|v|, which implies the limit of (V x w", v) is a bounded linear
functional on L?(Q). By Riesz representation theorem, there exists a unique element z € L?({2) such that

Jim (Vx w v) = (2,v).

Picking v € H'(2), we have

(w,va):nlgréo(w ,V x v) :nlgrolo(wa v) = (z,v),

which implies z = V x w € L2(Q2). Moreover, it holds that
(w,V xv) = (Vxwv)+{wxnv)=(zv) +{(wxn,v),

which leads to (w x m,v) = 0 for all v € HY?(9Q) because of the surjectivity from H'(Q) to H/?(0Q).
Therefore, we arrive at w x n = 0 on 0f2, and hence w € Hy(curl; Q). We can then prove V x w € Hy(curl; Q)
by replacing w with V x w. Finally, w € X since

(w,Vq) = lim (w",Vq) =0, Vqe Hy(Q).

The weak convergence of w” — w in X then follows. By Lemma 7.15 of [26], w” € H'/?*5(Q) with s > 0,
and it holds

Since w" € HY/?*5(Q) and V x w™ = V x w,, € C°(Q), we know by Lemma 4.1 of [23] that the interpolation
I, w™ is well-defined. Since IIj,, w,, = wy, I, Vp" is well-defined, and it holds w,, — II;,, w™ = II;,, Vp" =
Vi, p"* with 7, the Lagrange interpolation (see [24], Lem. 5.3 and [23], Lem. 4.5). Hence, using the fact that
w € H(curl®;Q) and w, € X}, ,

Jw — w,|* = (w — w,, w — I, w"™) + (w — wy, I, w" —w,)
=(w — wp,w — I, w") + (W — wy, -V, p")
=(w—wp,w — I, w") < |w - wy||w -, w"|,
which implies
lw —w,| < |w -, w"| < [w—w"|| + |w" — 1, w"|. (3.14)

To estimate the second term on the right-hand side, we apply Theorem 2.2 and (3.13) to obtain
Jw" =Ty, w" | < Ch/2H(|w" [1a4s + [V x ™) < Oh/2F[V x w"]. (3.15)
Combining (3.14) and (3.15) leads to
[w —w,| < w —w"| + Chy/*** |wa i (cunz0)-

Since the right-hand side converges to zero, we have proved that w, — w in L?(Q) as n — oo. The weak
convergence w, — w in X follows from the strong convergence w, — w in L?(Q), the weak convergence
w” — w in X, and the fact that V x w,, = V x w™.

O

Theorem 3.7. A is collectively compact.
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Proof. Suppose U = L?(Q) is a bounded set. For any u € U, according to the wellposedness of (3.6), Apu € X},
satisfies
[(Vx)?Apul + [Apu] < Clul.

By the Friedrichs inequality, we have
HAhu||H(cur12;Q) < CH“’”?

which implies {Apu : u e U h e A} € W := Upep X}, is bounded in H(cur12; Q).

To prove that the set {A,u : w € U h € A} is relatively compact, it suffices to show that W << L?(Q).
Suppose {w,}*_; < W is bounded in H(curl?; Q). Then w, € Xp, for some hy,. If h, — 0 as n — oo, there
exists a convergent subspace in L?(Q) according to the discrete compactness of X;, (Thm. 3.6). If h,, > > 0,
then {w,}*_; is contained in a finite dimensional space, and hence there exists a convergent subsequence. [

Theorem 3.8. Let p be an eigenvalue of A with multiplicity m and E(u) be the associated eigenspace. Let
{qﬁj}g”:l be an orthonormal basis for E(u). There exist exactly m discrete eigenvalues ;5 and the associated
eigenfunctions ¢;p,j = 1,2,...,m, of Ay such that

| — pjnl =0, as h — 0, (3.16)
and
= pjnl < C max a(¢; — in, di — ¢in): (3.17)

Moreover, if ¢ € HS71(Q) and V x ¢p € H*(Q2) for any ¢ € E(u), then, for h small enough,
|t = jnl = O(R*CD). (3.18)

Proof. According to Theorem 4 of [29], it holds that

| = 1.1 <C{

il SE

(A= An) i, dr)| + (A = An)| B |2} :

1

Since ¢;, Agp; € X, we have

(A= Ap)di, ) = (VX V x (A= Ap)pi, V x V x Apy.) + ((A — An) @i, Ady)
= (VX Vx(A=Ap)pi,V xV x (A—Ap) i) + ((A— Ap) i, (A— Ap)or)
(A — An)illll(A — Ar) Pkl

which together with the fact that E(u) is finite dimensional leads to

N

=il < € { s 1A= A0S+ 104 = 40 oo 2}

2
< C 1I<Illa\<‘)$n H(A - Ah)¢iHH(cur12;Q)‘

Then (3.16) follows from the pointwise convergence of Ay, to A in H(curl?; Q) (Thm. 3.4). Since V - ¢p; = 0, it
follows from (3.8) that

H (A - Ah)d)iHH(curIQ;Q) < v

= inf pldi — (1/w)vnlmeanz0) < pldi — din
’UhEXh

}32§h HA¢1 - vhHH(curlz;Q)

|H(cur12;ﬂ)
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< Cuyfaldi — b i — bin)  (Poincaré inequality),

which proves (3.17). Let ¢ € E(u). Furthermore, if ¢ € H*71(Q) and V x ¢p € H*(f2), according to Theorem 3.5,
we have that

[(A = ARl b (eunzi) < ChTH([ A,y + [V x A@,) < Cuh* H(|@],_y + |V x ¢],).
Since F(u) is finite dimensional, we obtain (3.18). O

Remark 3.9. The estimate |p — p; 5] < Cmaxi<i<m a(P; — @i n, @i — Pip) will be applied to obtain (4.2) in
the next section. The reason that we consider the quad-curl problem (3.4) with the low-order term w is to make

H¢ - ¢hHH(cur12;Q) < C/J\/G;(¢ - (z)hv ¢ - d)h) hold.

4. A POSTERIORI ERROR ESTIMATES FOR THE EIGENVALUE PROBLEM

Assume that (\;u;p) € Rx Ho(curl?; Q) x H} () is a simple eigenpair of (3.9) with |ullg = 1 and (A; un; pp) €
R x V)2 x S is the associated finite element eigenpair of (3.11) with |uy/lo = 1. According to Theorem 3.8 and
(3.28a) of [1], the following inequalities hold:

lw —un| < Cpa(h)|lu — usnl, (4.1)
An = Al < Cllu — un]?, (4.2)
where
pQ(h) = sup inf ”Af - v”H(curlz;Q) .

FEL2(Q),| £ =1veVy

It is obvious that po(h) — 0 as h — 0.
Define two projection operators Ry, Qy, as follows. For u € Hy(curl®; Q) and p € H(Q), find Ryu e V2, Qup €
S such that

a(u — Rpu,vp,) + b(vp, p — Qpp) =0, Vo, € V),
b(u — Rpu,qp) =0, Vg€ 52.

According to the orthogonality and the uniqueness of the discrete eigenvalue problem,
up = (Ap + 1)RpAuy,.
Let (u”;p") be the solution of (3.5) with f = (A4 + 1)uy. Then
ul = (A + 1)Auy, and uy, = Ryu. (4.3)

The following theorem relates the eigenvalue problem to the source problem (3.5) with f = (A, + 1)up,.
Theorem 4.1. Let r(h) = po(h) + ||u — u||. It holds that

lu® — Ryl = Cr(h)llu — unll < flu — wnll < [lu" — Rpw"|| + Cr(h)lu — ual). (4.4)
Furthermore, for h small enough, there exist two constants ¢ and C such that

cllu” = Rpu|| < flu — un|| < Cllu” — Ryu"|). (4.5)
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Proof. Since u;, = Rpu”, by the triangle inequality, we have that
~flw = w4+ lu” = Rpw"l < flw — ] < flu = u|| + [lu® = Ryu®]).
Using the fact u = (A + 1)Au and (4.3), we obtain that
flw =l = (3 + 1) Aw — (A + 1) Aun ] < [A+ 1A Cw = wn)ll + X = N[ Auy - (4.6)
Due to the well-posedness of (3.5), it holds that
lA(w = )| < Cllu — unl,
which, together with (4.1) and (4.2), leads to
llw = w"[l < Cr(h)llw — ual. (4.7)
Then (4.4) follows immediately. Note that r(h) — 0 as h — 0. For h small enough, (4.4) implies (4.5). O

Now to obtain an a posteriori error estimate for the eigenvalue problem, it suffices to derive an a posteriori
error estimate for the source problem with f = (A, 4+ 1)us. The exact solution and numerical solution are
(u”;p") and (uy;0), respectively.

Denote the total errors by e := u” — u;, and € := p" —0 = p". Then e € Hy(curl®; Q) and ¢ € HL(Q) satisfy
the defect equations

a(e,v) + b(v,e) = ri(v), Yo € Hy(curl®; Q), (4.8)
be,q) = r2(Vq), Vg € Hy(9), (4.9)

where

7‘1('[)) = (f,’l)) - ((VX)Q’U,}“ (VX)Q’U) - ('U/}“'U),
r2(Vq) = —(un, Vq).
We have the following Galerkin orthogonality

ri(vp) = 0, Yo, € V), (4.10)
ro(Vap) = 0, Yqn € 52. (4.11)

The error estimator will be constructed by employing Lemma 2.4. Writing e=e° + e and v = v° + v' with
e, v’ e VH(Q) and e*, vt € X, we obtain that

(€°,v%) + (v°,Ve) = (v°), Vol e VHL (), (4.12)
((Vx)%er, (Vx)?vh) + (e, vh) = ri(vh), Yol e X, (4.13)
(e, Vq) = r2(Vq), Vg e H)(Q). (4.14)

The estimators for the irrotational part e, the solenoidal part e, and Ve will be derived separately. Firstly,
we consider the irrotational part €’ and Ve. For a 9 € H}(Q), we have

(V) = Y (f—un,VO)p= > =(V-£.0)p+ Y {lns-£1,.9),

TeTy TeTy fe]:)ilnt

+ Z (V"Uaha'ﬂ)T_ Z <[[nf'Uh]]f719>f7

TeTy feFint
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where f € Fi*® is the common face of two adjacent elements 71,75 € Tp,, my is the unit normal vector of f
directed towards the interior of 77, and the jump

[rs - wnlly = ny - wnln, —ng - wnlsy.

We also have

ra(VO) = Y —(un,Vi)r = 3 (Vound)p— 3 (ng-unlly. 9,

TeTy, TeTy, fej:;lm

We introduce the error terms which are related to the upper and lower bounds for e and Ve:

2

= )+ Y] (775) , (4.15)

TeTn feFint
2 2
= > )+ Y (nf) (4.16)
TeT), feFint
where

m = hr |V Fly, TeT,
1/2 in:
g =0 Iy £yl feFm,
s o= hr |V upp TeT,
1/2 in
nf = by [Ing - wnllyl feF™,

Next, we consider the bounds for e'. For w € X, the residual 71 (w) can be expressed as

ri(w) = Z (f —un,w), — (V) ?uy, (Vx)zw)T

TeTy
= Z (.f - (VX)4uh *'ll:ha’IU)T + Z <[[(V><)2uh X nf]]f,v X 'w>f
TeT;, fE}—;iLnt
+ Z <[(V><)3uh an]]f7w>f,
feFint

where [(Vx)%up x nslly and [(Vx)3uy, x ns]; stand for the jump of the tangential component of (Vx)2uy,
and (V x)3uy, respectively. The bounds for ||e*|| contain the error terms

. 2 2
=Y @)+ Y (n{;l) + <77{;2) : (4.17)
1< ez rem
=Y (nd)”, (4.18)
TeT,
where
n = hp|anf — (V) up — s, T €Ty,
5 = b | f —mnflr, TeT,
My = h}/z [y > (V) unlly] feFr,

0l = b2 g x (V) unlls] ferm,
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and 7, f denotes the L2-projection of f onto {vj, € L?(Q) : v|r € Py(T), VT € Tp,}. For T € T, we define a
local error indicator ny(wp, T) by

M (un, T) = (g )% + ()* + 3)% + D) () + ) + (l.)? + (nl0)?),
feoT

and a global a posteriori error estimator by

i (wn, Q) = 15 + 1 + 13-

Now we state the a posteriori estimate for e and € in the energy norm.

Theorem 4.2. Let ng, m1, 12, and n3 be defined in (4.15), (4.17), (4.18), and (4.16), respectively. Then if
h<1,

y(no+m +n3) —yen2 < |lefl + [Ve| < Ti(no +m1 + n3) + Tang,

and, if h is small enough,

Y3(m +13) — Ya(n2 + h*no) < llell < Ts(no + n1 + n3) + Tana,
where v1,Y2,73,74, 11,12, '3, and I'y are some constants independent of h.

Since f = (Ap + 1)uy, according to the definition of 19, 72, and 73, we have that 19 = A\pn3 and 72 = 0. Then
by Theorems 4.1, 4.2, and (4.2), we can obtain the following a posteriori error estimates for the eigenvectors
and eigenvalues.

Theorem 4.3. For h small enough, there exist constants c1,C1, and Co such that

ci(m +m3) < lu —upll < Cr(m + (An + 1)ma),

and
A=Al < Calm + (Ap + 1)773)2’

where n1 and N3 are respectively defined in (4.17) and (4.16) with f = (A\n + D)up,.

€1

)

The proof of Theorem 4.2. Since e = € + e*, the proof is split into three parts corresponding to e, e
and ¢, respectively.

(i) Estimation of the irrotational part e’. Based on (4.14), we can rewrite €* = V¢ with ¢ solving the
following uniformly positive definite variational problem on Hg (). Seek ¢ € HJ (£2) such that

(Ve,Vq) = r2(Vq), Vge H}(R). (4.19)

Note that r2(Vqy) = 0,Vq, € SP. Define a projection operator PF : Hi(Q) —> SY such that (see, e.g.,
(3,29, 31])

Pig=¢, VoeS, (4.20)

|¢ = Pyolr < Chr|Vlun, (4.21)

|6 = Piéls < Cvhs|VElw,, (4.22)

VB¢l < OV, (4.23)
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where wy is defined in Theorem 2.3 and wy is the union of elements sharing at least one vertex with f € F,.
Due to (4.14) and the orthogonal property (4.11), we have that

|€%]% = ra(e®) = ro(Vip — VPg) = —(un, V(e — Pye)). (4.24)

Using integration by parts, (4.21), and (4.22), we obtain that

> f(V~uh,<P*Pffs@)T+ Y, s unlly o= Pioy,

(umV(sﬁ - Plfw))

TeTy, fEJ:;ilnt
< C ), IV unlphr|[Vel,, +C D] g - wnllsl s Vs Vel
TGTh f€.7:}ilnt
1/2 1/2
< (Y IV-unlihd) N+ (Y Mng - wnlslihy) el
TGT;,, fE.'F}iLr't
Therefore, we have
| < Cns. (4.25)

We now derive lower bounds for e° using the bubble functions.
Denote by AT, A\ AT AT the barycentric coordinates of T € 7;, and define the bubble function br by

b — 256 A FXTATAT, on T,
=70, O\T.

Given f € F3, a common edge of 77 and T3, let wy = T7; U T and enumerate the vertices of 77 and 75
such that the vertices of f are numbered first. Define the face-bubble function by by

by — 2TATATINL, on Ty, i=1,2,
! 0, MNwy.

Using the technique of Lemma 3.3 in [37], we have the following norm equivalences.

lbrénlr < lénlr < Clop énlr, Vén € Pu(T), (4.26)
lbsénls < llénls < Clby ol Vi € Pi(f). (4.27)
Using (4.26), integration by parts, the inverse inequality, and the fact that b7V -uy, € H} (T) < H}(Q), we
have that
(n3)* = |V u|3 <C’Hb1/2V~u 13 =C(V - upn, brV - uyp)
h% = hllT = T hilT = h, 0T Uh)

= —C(Uh, V(bTV . uh))T = C’I"Q (V(bTV . uh))
=C (" V(brV -un)), < Cle’ ||V (brV - un)|r

C
< l€r V- unlr < 55 [l€lrng
T

Q /

’ﬂ

which implies that

15 < Cle’|r. (4.28)
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We define a continuous operator Pr : L*(f) — L*(T) as in [37]. According to Lemma 3.3 of [37],
|Prolz < Chyl®|o]s-
Denote [ns - up] .1, = Pry[[ny - wp]ly, then

1/2
<

ey - wnllyr [rs-wnllyly (4.29)

The estimate of the local upper bound for 77;: can be obtained similarly:

> FounllfllF < £ Wnllrors iy - Unlly )y

(\_I)
e

<
Il
_

((uh, V (bglng - wnlly:r) )Ti + (V “up, by - uh]]f;Ti>Ti>

(I_I)
1

~
Il
—

((60, V(bsllnys - unllyr,) )Ti + <V “up, by[ny uh]]f;n-)

T;

2
<C Y (hper, + IV - unlz) .
i=1
where we have used
— —1/2
IV (of g - wnll o), < Chztlbgling - willpsr |z < Chy 2y - wnllfl -

Consequently,
n < C(l e, + 15" +n3%) < O], (4.30)
Now collecting (4.25), (4.28), and (4.30), we have that
enz < €] < Cn. (4.31)

(ii) Estimation of Ve. Similar to the upper estimate of €, we can obtain an upper bound for |Ve|. Due to
(4.12) and (4.14) , we have

IVe|? = r1(Ve) —ra(Ve) =1 (V(e — Pfe)) —ra(V(e — Pfe)) = (f, V(e — Ple)).

From integration by parts, (4.21), and (4.22),

IVel? = > —(V-fie—Pie)p+ Y {Ins-flse— Pie),

TETh fEJ:;Lnt
< 3 IV Flohe|Velor + [ns - £15l3/hs Vel
TET}L
1/2 1/2
<cv€(( S Iv-ERE) T+ (X ng - £ll30y) )
TG'Th fe]:;lnt

Therefore, we have that

[Vl < Cno. (4.32)
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By a similar argument to the lower estimate of €, we have the lower bounds for Ve:

m <|[Velr, (4.33)
m < C(IVelw, + 15" +m5°) < C| Vel (4.34)

Combining (4.32), (4.33), and (4.34), we arrive at
eno < || Vel < Cno. (4.35)
Estimation of the solenoidal part e'. We start with proving the upper bound for n7 by using by

again. Employing the similar technique of Lemma 3.3 in [37], we have the following estimates for any v in
finite dimensional spaces:

[vl7 < Cllbrvlz, (4.36)
[b70l7 < Cllvl7- (4.37)

Let ¢, = i f — (Vx)*uy — uyp,, we then have

) 2

() = lms = () =
< C(f = (V) 'up —un,b3¢n) . + C (wn f = f,07¢0n) . (by (4.36))
= Cry(b3dn) + C (mnf — £.07¢n),  (b7¢n € Ho(curl*; Q)
= Ca(e, by ¢p) + Cb(br¢n,e) + C (mnf — f,07dn) . (by (4.8))
< CllellplIv7éull + Vel |67¢nl 7 + Cng h? |b7¢n 1 -

Due to the inverse inequality and (4.37), it holds that
17-¢nll7 = 167017 + 1(Vx)*050n15 < Chiy* V7 ¢nlF < Chy* a3

Thus we obtain that

77? ? 77? 2 A
<hz> <Ciz (hz’llellr + IVelr + hp*ng ) -
T T

Dividing the above inequality by % and multiplying by k2, we obtain
n < C(lelly + 27| Velr +n3) - (4.38)

Next we estimate the upper bound for 77{;1 by using the bubble functions by and by. Let T} and T3 be two
elements sharing the face f. Denote vy, |7, = Pr,[ng x (Vx)*u,]f for i = 1,2, then

I%n g x (V) *unllfly- (4.39)

T, < C’h;/f
Denote wy1 = (b, — bp,)byny x 1P A simple calculation shows that

256 [ Sy Sr\ o
it b
27 (3|T1| + 3|T2|) ¥ns

(Vxwpi)ly =
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where Sy stands for the area of the face f. Similar to (4.36) and (4.37), the following inequalities hold

Clogvl s, (4.40)
Clv),- (4.41)

oy

<
H(le - bTQ)bewa <

Now we are ready to construct the upper bound for 77{;1:
hy g < (V) ?unls
< C{ns x (Vx)*up]ly, V x wf71>f (by (4.40))
= C((VX)ALU}L,UJJCJ) — C((Vx)zuh, (V><)2wf,1)
=Cri(wyf1) — C(f —ujy, — (Vx)‘luh,wf,l) (wa e H()(CUIIZ;Q))

2
- (V%f £ R+ n?)).

i=1

< Cllello, llwsall,, + Clwsa

By applying the inverse inequality, (4.39), and (4.41), we get

—3/2
=y < h7P Iy < (V%) ?unlfly

lwrallm, < hp?lwsal

which, together with (4.38), leads to
nly < C(llell, +n3' +n3* + b3, IVelr, + b, | Velr, ). (4.42)

The upper bound for 77{;2 can be constructed in a similar way. Extend [n; x (Vx)3up]; to [ny x
(Vx)3up] .1, on T; such that

Ilng x (V)2 upllpr |, < ChE[[mg x (V)2 ]lyl s (4.43)

Denote wya|r, = b7y x (Vx)3up] s.r,, then

[ng > (Vx)PurlllF < Oy x (V) unlly, wrz2),
— ((VX)4U}L,wf,2) — ((VX)?up, (Vx)’wy2) — ([ng x (VX)up] s, V x Wf,2>f

=ri(wyf2) — (f —up — (VX)4uh,wf72) - <[[nf X (Vx)zuh]]f,v X “’f»2>f

Ve

2
<Ry (ot + nf + W3 Velr) + ol + llell,, ) [y x (V) Punlly] -
i=1

Dividing the above inequality by |[n; x (Vx)3uh]]f||f and applying (4.38) and (4.42), we obtain

nlo < C (0] +n3* + lellgyor, + 13, Vel + B, Vel ) - (4.44)
Collecting (4.38), (4.42), and (4.44), we have that

m < C (n2 + [lell + h%| Vel) . (4.45)
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It remains to construct the upper bound of e*. For et € X Ho(curlz;ﬂ), according to Lemma 2.4,

el = w + V¢ with w e H%(Q) and v € H}(2). Then we have
lle* 11 = ri(et) = ri(w) + i (Ve),
Due to the Galerkin orthogonality (4.10), for any wy, € V0,

ri(w) =r(w —wp)

= Z ((f—uh—(vx)4uh,w—wh)T+ Z (ny x (Vx)3uh,w—wh>f

TeTy fE}—h(T)
_ Z <nf X (VX)Quh,VX (w—wh)>f>
feFn(T)
< Y (Imnf = un = (V) unlrfw = walr + o f = flrlw = wilr)
TGTh

+ 2 g x (V) Pun]l 71V x (w —wh)l s

rerpe
+ 37 My x (V) un) ¢l flw — wal ¢
feFint
<cmrm( 3 (o -wili e 3 w1V x - w3
TeTn feFn(T)
1/2
+ Y AP - wh||§)> .
FEFR(T)

Let wy, = ﬁ%w According to the trace inequality and Theorem 2.3, we obtain

S (e —wnlp Y WY x w—w)F Y e —wif3) < Clwl3.

TeT), feFn(T) feFn(T)
Furthermore, we use (2.6), (2.7), and the Poincaré inequality to obtain
ri(w) < C(m +m2)|wlz < Clm +12) [V x i < Clm + o)l e
Similar to the proof of (4.32), using (2.8), it holds that
(V) < Clno +13) [ V]| < Clogo + ns) e .
Hence,
lletll < Clno +m + 12 +113).
Combining (4.32), (4.35), (4.45), and (4.46), we obtain Theorem 4.2.

5. NUMERICAL EXAMPLES

In this section, we will present some numerical results in 2D. The quad-curl problem in 2D is
(Vx)*u = Au  in Q,
V-u=0 in €2,
uxn=0 ondf,
Vxu=0 on 0f,

(4.46)
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) for a scalar u. Since the outermost Vx is

(5.2)

When € is a polygon, according to Theorem 14.6 of [18], o € H'+™/“~¢(Q) for any ¢ > 0. Here w is the largest

interior angle at the corners of €.

Since u € X, according to Lemma 2.4, u = V¢ + v with ¢ € H}(Q) and v € H?(Q2). In addition, according
to the proof of Lemma 2.4, ¢ actually satisfies A¢ € H'(Q), and hence ¢ € H'™/“~¢(Q). Therefore u €
Hmin{ﬂ/w—aQ}(Q).

5.1. A priori error estimates

We consider three different domains:

— y: the unit square given by (0,1) x (0,1),
— Q,: the L-shaped domain given by (0,1) x (0,1)/([1/2,1) x (0,1/2]),
— Qg: given by (0,1) x (0,1)/([1/4,3/4] x [1/4,3/4]).

The eigenvectors on Q are in {u € H>~¢(Q) : Vxu € H3~¢(Q)}. The eigenvectors on Qy are in {u € H*37¢(Q) :
V xu e H3~¢(Q)}. According to Theorem 3.8, the convergence orders for Q; and 2, are 4 and 4/3, respectively.

The initial meshes of the domains are shown in Figure 1. In Tables 1-3, we list the first five eigenvalues. Since
the exact eigenvalues are unknown, the relative error is adopted:

Error =

N\
A2 '

%

TABLE 1. The first 5 eigenvalues of ©; with the fourth-order elements.

AL

)

N

i

A

1/4
1/8
1/16
1/32
1/64

7.08101988e4-02
7.07978763e+02
7.07971973e+-02
7.07971564e4-02
7.07971528e+-02

7.08102390e4-02
7.07978786e+02
7.07971975e4-02
7.07971564e4-02
7.07971555e+-02

2.35145718e4-03
2.35006082e+-03
2.34999027e4-03
2.34998613e4-03
2.34998587e+-03

4.25922492e+03
4.25597055e+03
4.25582307e4-03
4.25581473e+4-03
4.25581421e+03

5.02522026e4-03
5.02401495e4-03
5.02399272e4-03
5.02399235e+-03
5.02399235e+-03
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TABLE 2. The first 5 eigenvalues of Q25 with the fourth-order elements.

R M A2 A At AL

1/4 5.34885649e+4-02  1.57586875e+03  6.10288551e+03  6.40711482e+03  1.09459861e+-04
1/8 5.35061810e+02  1.57477474e+03  6.09556539e+03  6.37916246e+03  1.09184358e+04
1/16  5.35222062e¢+02  1.57468831e+03  6.09528577e¢+03  6.37104166e+03  1.09152964e+04
1/32  5.35292267e+02 1.57467206e+03  6.09528045e+03  6.36787675e+03  1.09143027e+04
1/64 5.35320748e+02  1.57466664e+03  6.09528434e+03  6.36661570e+03  1.09139180e+04

TABLE 3. The first 5 non-zero eigenvalues of 23 with the fourth-order elements.

h b b b i VW

1/4 9.43570924e+4-02  9.43570924e+02  3.35118080e+03  5.10757870e+03  1.03672699e+-04
1/8 9.40543704e+4-02  9.40543704e+02  3.33230800e+03  5.11255084e+03  1.03470233e+-04
1/16  9.39507116e+02 9.39507116e4+02  3.32612997e+03 5.11519580e+03  1.03445476e+04
1/32  9.39103168e+02  9.39103168e+02  3.32373447e+03  5.11630255e+03  1.03438189e+04
1/64  9.38943028¢+02  9.38943036e+02  3.32278551e+03  5.11674950e+03  1.03435487e+04

TABLE 4. Convergence rate for € with the fourth-order elements (relative error).

h

A

Error

Order

1/4
1/8
1/16
1/32
1/64

7.08101988e+-02
7.07978763e4-02
7.07971973e+02
7.07971564e4-02
7.07971528e4-02

1.74021691e-04
9.59045415e-06
5.77922813e-07
5.08588883e-08

4.1815
4.0527
3.5063

h

A

Error

Order

1/4
1/8
1/16
1/32
1/64

5.34885649e4-02
5.35061810e+-02
5.35222062e4-02
5.35292267e+4-02
5.35320748e+-02

3.29341761e-04
2.99502830e-04
1.31169871e-04
5.32057764e-05

0.1370
1.1911
1.3018

h

AT

Error

Order

1/4
1/8
1/16
1/32
1/64

9.43570924e+02
9.40543704e+4-02
9.39507116e+4-02
9.39103168e+-02
9.38943028e+-02

3.20825910e-03
1.10211572e-03
4.29957430e-04
1.70524522e-04

1.5415
1.3580
1.3342

TABLE 5. Convergence rate for Qs with the fourth-order elements (relative error).

TABLE 6. Convergence rate for Q3 with the fourth-order elements (relative error).

Tables 4-6 show the convergence rates of the relative errors for the first eigenvalues. We can observe a convergence
order 4 for ©; and 4/3 for 3, which agrees with the theoretical results. We can also observe a convergence
order 4/3 for Q23 even if this case is not covered in the theoretical analysis.
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convergence rate - 4
=&~ error estimator 7(u, )
10 relative error of eigenvalue | |

convergence rate - 4/3
—&— error estimator 17 (v, .)
relative error of eigenvalue

log(relative error) or log(error estimator)
log(relative error) or log(error estimator)

3 3 35 4 45 5
log(1/h) log(1/h)

(a) (b)

convergence rate - 4/3
—&— error estimator 12(,.2)
relative error of eigenvalue

\

log(relative error) or log(error estimator)
o

1 15 2 25 35 4 45 5

3
log(1/h)

(c)

FIGURE 2. The convergence rates of error estimators and the relative errors. (a) The third
eigenvalue of Q. (b) The first eigenvalue on 2. (¢) The third eigenvalue on 3.

FIGURE 3. The local indicators ny (up, T).

5.2. A posteriori error estimates

Figure 2 shows global error estimators nz(uh, Q) and the relative errors of some simple eigenvalues for the
three domains. It can be observed that the relative errors and the estimators have the same convergence rates,
which confirms the upper bound estimate for the simple eigenvalues. Figure 3 shows the distribution of the local
indicators ny, (up, T). The estimators are large at corners and catch the singularities effectively.
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6. CONCLUSION

We proved a priori and robust a posteriori error estimates for the H (curl®)-conforming finite element method
when solving the quad-curl eigenvalue problem. Due to a new decomposition of the function in H (curlz; Q), the
theory assumes no extra regularity of the eigenfunctions. The a posteriori error estimator is essential for the
adaptive finite element method. It can also be applied to test spurious eigenvalues.
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