Analysis of the Stokes–Darcy problem with generalised interface conditions
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 2, pp. 727-742

Fluid flows in coupled systems consisting of a free-flow region and the adjacent porous medium appear in a variety of environmental settings and industrial applications. In many applications, fluid flow is non-parallel to the fluid–porous interface that requires a generalisation of the Beavers–Joseph coupling condition typically used for the Stokes–Darcy problem. Generalised coupling conditions valid for arbitrary flow directions to the interface are recently derived using the theory of homogenisation and boundary layers. The aim of this work is the mathematical analysis of the Stokes–Darcy problem with these generalised interface conditions. We prove the existence and uniqueness of the weak solution of the coupled problem. The well-posedness is guaranteed under a suitable relationship between the permeability and the boundary layer constants containing geometrical information about the porous medium and the interface. We study the validity of the obtained results for realistic problems numerically and provide a benchmark for numerical solution of the Stokes–Darcy problem with generalised interface conditions.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1051/m2an/2022025
Classification : 35Q35, 65N08, 76D03, 76D07, 76S05
Keywords: Stokes equations, Darcy’s law, interface conditions, well-posedness
@article{M2AN_2022__56_2_727_0,
     author = {Eggenweiler, Elissa and Discacciati, Marco and Rybak, Iryna},
     title = {Analysis of the {Stokes{\textendash}Darcy} problem with generalised interface conditions},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {727--742},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {2},
     doi = {10.1051/m2an/2022025},
     mrnumber = {4406905},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2022025/}
}
TY  - JOUR
AU  - Eggenweiler, Elissa
AU  - Discacciati, Marco
AU  - Rybak, Iryna
TI  - Analysis of the Stokes–Darcy problem with generalised interface conditions
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2022
SP  - 727
EP  - 742
VL  - 56
IS  - 2
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2022025/
DO  - 10.1051/m2an/2022025
LA  - en
ID  - M2AN_2022__56_2_727_0
ER  - 
%0 Journal Article
%A Eggenweiler, Elissa
%A Discacciati, Marco
%A Rybak, Iryna
%T Analysis of the Stokes–Darcy problem with generalised interface conditions
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2022
%P 727-742
%V 56
%N 2
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2022025/
%R 10.1051/m2an/2022025
%G en
%F M2AN_2022__56_2_727_0
Eggenweiler, Elissa; Discacciati, Marco; Rybak, Iryna. Analysis of the Stokes–Darcy problem with generalised interface conditions. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 2, pp. 727-742. doi: 10.1051/m2an/2022025

[1] P. Angot, Well-posed Stokes/Brinkman and Stokes/Darcy coupling revisited with new jump interface conditions. ESAIM: M2AN 52 (2018) 1875–1911. | MR | Zbl | Numdam | DOI

[2] P. Angot, B. Goyeau and J. A. Ochoa-Tapia, Asymptotic modeling of transport phenomena at the interface between a fluid and a porous layer: jump conditions. Phys. Rev. E 95 (2017) 063302. | MR | DOI

[3] L. Beaude, K. Brenner, S. Lopez, R. Masson and F. Smai, Non-isothermal compositional liquid gas Darcy flow: formulation, soil-atmosphere boundary condition and application to high-energy geothermal simulations. Comput. Geosci. 23 (2019) 443–470. | MR | DOI

[4] G. S. Beavers and D. D. Joseph, Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30 (1967) 197–207. | DOI

[5] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer (2011). | MR | Zbl | DOI

[6] F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers. Rev. Fr. Autom. Inf. Recherche Opér. sér. Rouge 8 (1974) 129–151. | MR | Zbl | Numdam

[7] Y. Cao, M. Gunzburger, F. Hua and X. Wang, Coupled Stokes-Darcy model with Beavers-Joseph interface boundary condition. Commun. Math. Sci. 8 (2010) 1–25. | MR | Zbl | DOI

[8] T. Carraro, C. Goll, A. Marciniak-Czochra and A. Mikelić, Effective interface conditions for the forced infiltration of a viscous fluid into a porous medium using homogenization. Comput. Methods Appl. Mech. Eng. 292 (2015) 195–220. | MR | DOI

[9] R. Dautray and J. Lions, Mathematical Analysis and Numerical Methods for Science and Technology. Springer (1990). | MR

[10] C. Dawson, A continuous/discontinuous Galerkin framework for modeling coupled subsurface and surface water flow. Comput. Geosci. 12 (2008) 451–472. | MR | Zbl | DOI

[11] M. Discacciati and A. Quarteroni, Navier–Stokes/Darcy coupling: modeling, analysis, and numerical approximation. Rev. Mat. Complut. 22 (2009) 315–426. | MR | Zbl | DOI

[12] M. Discacciati, E. Miglio and A. Quarteroni, Mathematical and numerical models for coupling surface and groundwater flows. Appl. Num. Math. 43 (2002) 57–74. | MR | Zbl | DOI

[13] E. Eggenweiler and I. Rybak, Unsuitability of the Beavers-Joseph interface condition for filtration problems. J. Fluid Mech. 892 (2020) A10. | MR | DOI

[14] E. Eggenweiler and I. Rybak, Effective coupling conditions for arbitrary flows in Stokes-Darcy systems. Multiscale Model. Simul. 19 (2021) 731–757. | MR | DOI

[15] V. Girault and B. Rivière, DG approximation of coupled Navier-Stokes and Darcy equations by Beavers–Joseph–Saffman interface condition. SIAM J. Numer. Anal. 47 (2009) 2052–2089. | MR | Zbl | DOI

[16] B. Goyeau, D. Lhuillier, D. Gobin and M. Velarde, Momentum transport at a fluid-porous interface. Int. J. Heat Mass Trans. 46 (2003) 4071–4081. | Zbl | DOI

[17] N. Hanspal, A. Waghode, V. Nassehi and R. Wakeman, Development of a predictive mathematical model for coupled Stokes/Darcy flows in cross-flow membrane filtration. Chem. Eng. J. 149 (2009) 132–142. | DOI

[18] F. Hecht, New development in FreeFem++. J. Numer. Math. 20 (2012) 251–265. | MR | Zbl | DOI

[19] U. Hornung, Homogenization and Porous Media. Springer (1997). | MR | Zbl | DOI

[20] Y. Hou and Y. Qin, On the solution of coupled Stokes/Darcy model with Beavers-Joseph interface condition. Comput. Math. Appl. 77 (2019) 50–65. | MR | DOI

[21] W. Jäger and A. Mikelić, On the interface boundary conditions by Beavers, Joseph, and Saffman. SIAM J. Appl. Math. 60 (2000) 1111–1127. | MR | Zbl | DOI

[22] W. Jäger and A. Mikelić, Modeling effective interface laws for transport phenomena between an unconfined fluid and a porous medium using homogenization. Transp. Porous Media 78 (2009) 489–508. | MR | DOI

[23] A. Jarauta, V. Zingan, P. Minev and M. Secanell, A compressible fluid flow model coupling channel and porous media flows and its application to fuel cell materials. Transp. Porous Media 134 (2020) 351–386. | MR | DOI

[24] G. Kanschat and B. Rivière, A strongly conservative finite element method for the coupling of Stokes and Darcy flow. J. Comput. Phys. 229 (2010) 5933–5943. | MR | Zbl | DOI

[25] U. Lācis and S. Bagheri, A framework for computing effective boundary conditions at the interface between free fluid and a porous medium. J. Fluid Mech. 812 (2017) 866–889. | MR | DOI

[26] U. Lācis, Y. Sudhakar, S. Pasche and S. Bagheri, Transfer of mass and momentum at rough and porous surfaces. J. Fluid Mech. 884 (2020) A21. | MR | DOI

[27] W. J. Layton, F. Schieweck and I. Yotov, Coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 40 (2003) 2195–2218. | MR | Zbl | DOI

[28] M. Le Bars and M. Worster, Interfacial conditions between a pure fluid and a porous medium: implications for binary alloy solidification. J. Fluid Mech. 550 (2006) 149–173. | MR | Zbl | DOI

[29] J. Lions and E. Magenes, Non-Homogeneous Boundary Problemes and Applications. Springer (1972). | MR

[30] R. M. Maxwell, M. Putti, S. Meyerhoff, J.-O. Delfs, I. M. Ferguson, V. Ivanov, J. Kim, O. Kolditz, S. J. Kollet, M. Kumar, S. Lopez, J. Niu, C. Paniconi, Y.-J. Park, M. S. Phanikumar, C. Shen, E. A. Sudicky and M. Sulis, Surface-subsurface model intercomparison: a first set of benchmark results to diagnose integrated hydrology and feedbacks. Water Resour. Res. 50 (2014) 1531–1549. | DOI

[31] K. Mosthaf, K. Baber, B. Flemisch, R. Helmig, A. Leijnse, I. Rybak and B. Wohlmuth, A coupling concept for two-phase compositional porous-medium and single-phase compositional free flow. Water Resour. Res. 47 (2011) W10522. | DOI

[32] A. I. Nazarov and S. I. Repin, Exact constants in Poincaré type inequalities for functions with zero mean boundary traces. Math. Meth. Appl. Sci. 38 (2015) 3195–3207. | MR | DOI

[33] D. A. Nield, The Beavers-Joseph boundary condition and related matters: a historical and critical note. Transp. Porous Media 78 (2009) 537–540. | DOI

[34] A. J. Ochoa-Tapia and S. Whitaker, Momentum transfer at the boundary between a porous medium and a homogeneous fluid. I: theoretical development. Int. J. Heat Mass Trans. 38 (1995) 2635–2646. | Zbl | DOI

[35] B. Reuter, A. Rupp, V. Aizinger and P. Knabner, Discontinuous Galerkin method for coupling hydrostatic free surface flows to saturated subsurface systems. Comput. Math. Appl. 77 (2019) 2291–2309. | MR | DOI

[36] I. Rybak, J. Magiera, R. Helmig and C. Rohde, Multirate time integration for coupled saturated/unsaturated porous medium and free flow systems. Comput. Geosci. 19 (2015) 299–309. | MR | DOI

[37] I. Rybak, C. Schwarzmeier, E. Eggenweiler and U. Rüde, Validation and calibration of coupled porous-medium and free-flow problems using pore-scale resolved models. Comput. Geosci. 25 (2021) 621–635. | MR | DOI

[38] P. G. Saffman, On the boundary condition at the surface of a porous medium. Stud. Appl. Math. 50 (1971) 93–101. | Zbl | DOI

[39] P. Sochala, A. Ern and S. Piperno, Mass conservative BDF-discontinuous Galerkin/explicit finite volume schemes for coupling subsurface and overland flows. Comput. Methods Appl. Mech. Eng. 198 (2009) 2122–2136. | MR | Zbl | DOI

[40] L. Tartar, An Introduction to Sobolev Spaces and Interpolation Spaces. Lecture Notes of the Unione Matematica Italiana (2007). | MR | Zbl

[41] G. A. Zampogna and A. Bottaro, Fluid flow over and through a regular bundle of rigid fibres. J. Fluid Mech. 792 (2016) 5–35. | MR | DOI

Cité par Sources :