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ANALYSIS OF THE STOKES–DARCY PROBLEM WITH GENERALISED
INTERFACE CONDITIONS

Elissa Eggenweiler1 , Marco Discacciati2 and Iryna Rybak1,*

Abstract. Fluid flows in coupled systems consisting of a free-flow region and the adjacent porous
medium appear in a variety of environmental settings and industrial applications. In many appli-
cations, fluid flow is non-parallel to the fluid–porous interface that requires a generalisation of the
Beavers–Joseph coupling condition typically used for the Stokes–Darcy problem. Generalised coupling
conditions valid for arbitrary flow directions to the interface are recently derived using the theory of
homogenisation and boundary layers. The aim of this work is the mathematical analysis of the Stokes–
Darcy problem with these generalised interface conditions. We prove the existence and uniqueness of
the weak solution of the coupled problem. The well-posedness is guaranteed under a suitable relation-
ship between the permeability and the boundary layer constants containing geometrical information
about the porous medium and the interface. We study the validity of the obtained results for realistic
problems numerically and provide a benchmark for numerical solution of the Stokes–Darcy problem
with generalised interface conditions.
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1. Introduction

Multi-domain flow systems containing a free-flow region and a porous medium with a common interface
appear in a wide range of environmental settings and technical applications, e.g., soil-atmospheric interactions,
industrial filtration and drying processes, water-gas management in fuel cells [3, 17, 23]. Mathematical models
for such coupled flow systems convey the conservation of mass, momentum and energy, both in the two flow
domains and across the fluid–porous interface. In the most general case, the Navier–Stokes equations are applied
to describe fluid flow in the free-flow domain and multi-phase Darcy’s law is used in the porous medium [11,31].
However, depending on the application of interest and the flow regime, various simplifications of this general
system are possible [10,30,35,36,39].

The most widely studied free-flow and porous-medium flow system is described by the coupled Stokes–Darcy
equations with different sets of interface conditions [2, 12, 16, 22, 28, 34]. Most of these coupling concepts are
based on the Beavers–Joseph condition on the tangential velocity or its simplification by Saffman [4, 11, 22, 28,
33, 38]. However, both conditions are developed for flows which are parallel to the fluid–porous interface, and
therefore, not applicable to arbitrary flow directions at the fluid–porous interface, e.g., for industrial filtration
problems [13]. In spite of the fact that they provide inaccurate results for arbitrary flow directions to the porous
layer (Fig. 2), they are still routinely used in the literature.
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Alternative coupling conditions existing in the literature are either theoretically derived and involving
unknown model parameters, which need to be calibrated before they can be used in computational models [1,2],
or they are not justified for arbitrary flow directions at the fluid–porous interface [25,26,41]. These limitations
of the existing interface conditions severely restrict the variety of applications that can be accurately modelled.
Recently, generalised interface conditions have been proposed in [14]. To derive these conditions, the theory of
homogenisation with two-scale asymptotic expansions and boundary layers is used. The generalised coupling
conditions recover the classical conservation of mass and the balance of normal forces for isotropic porous media
and provide an extension of the Beavers–Joseph condition. The generalised conditions from [14] reduce to those
developed in [21, 22] for parallel flows to the porous layer under the same assumptions on the flow direction,
but they are valid for arbitrary flow directions to the porous layer (Fig. 2) and do not contain any unknown
parameters. All the effective coefficients appearing in these generalised conditions are computed numerically
based on the pore-scale geometrical information of the coupled flow system.

The Stokes–Darcy problem has been extensively studied in the last decade using the Beavers–Joseph–Saffman
interface condition on the tangential component of the free-flow velocity [11,15,24,27]. Considering the original
Beavers–Joseph condition, where the tangential component of the porous-medium velocity is not neglected,
makes proving the well-posedness of the Stokes–Darcy problem quite challenging as it can be seen in [7, 20].
This becomes even more difficult when the generalised conditions from [14] are considered. The goal of this
paper is to prove the well-posedness of the coupled Stokes–Darcy problem with this new set of effective interface
conditions and to study the macroscale problem numerically.

The paper is organised as follows. In Section 2, we provide the formulation of the coupled Stokes–Darcy
problem with the generalised interface conditions and show the advantage of these conditions over the classical
ones based on the Beavers–Joseph condition. In Section 3, we derive the weak formulation of the coupled
Stokes–Darcy problem with the generalised interface conditions and prove the existence and uniqueness of
the weak solution. The well-posedness is guaranteed for isotropic homogeneous porous media under a suitable
relationship between the non-dimensional permeability and the boundary layer constants which contain the
geometrical information about the interface. In Section 4, we study different porous-medium configurations and
analyse the range of validity for the assumptions on the permeability and the boundary layer constants. Then,
we provide detailed information on how to compute the effective model parameters and present a benchmark
for the Stokes–Darcy problem with the generalised interface conditions including numerical simulation results.
Concluding remarks and future work are presented in Section 5.

2. Coupled flow model

In this paper, we consider the following assumptions on the coupled flow system. The flow domain Ω =
Ωff ∪Ωpm ⊂ R2 consists of the free-flow region Ωff and the adjacent porous medium Ωpm. The sharp interface Γ
separating the two flow regions at the macroscale is considered to be straight (Fig. 1, left) and simple, i.e. mass,
momentum and energy cannot be stored at or transported along Γ. We assume that the macroscale and the pore
scale are separable, i.e. 𝜀 ≪ ℒ, where 𝜀 is the dimensionless characteristic pore size and ℒ is the macroscopic
length of domain Ω (Fig. 1, right).

The porous medium is considered to be non-deformable and homogeneous, constructed by a periodic repetition
of solid obstacles. We consider the same single-phase and steady-state fluid flow at low Reynolds numbers, both
in the free-flow domain and through the porous medium. The fluid is supposed to be incompressible and to have
constant viscosity. The coupled flow system is assumed to be isothermal.

2.1. Free-flow model

Under the given assumptions, the Stokes equations describe the fluid flow in the free-flow region

∇·vff = 0 in Ωff , (2.1)
−∇·T(vff , 𝑝ff) = 0 in Ωff , (2.2)
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Figure 1. Schematic coupled flow system at the macroscale (left) and the pore scale (right)
with the periodicity cell 𝜀𝑌 .

where vff is the fluid velocity, 𝑝ff is the fluid pressure, T(vff , 𝑝ff) = ∇vff − 𝑝ff I is the non-dimensional stress
tensor and I is the identity tensor.

On the external boundary of the free-flow domain 𝜕Ωff ∖ Γ, the following Dirichlet boundary conditions are
imposed

vff = vin on Γ𝐷
ff,in, vff = 0 on Γ𝐷

ff,wall, (2.3)

where vin is the assigned velocity field (Fig. 1, left).

2.2. Porous-medium model

In the porous-medium domain, we consider the Darcy flow equations

∇·vpm = 0 in Ωpm, (2.4)
vpm = −K∇𝑝pm in Ωpm, (2.5)

where vpm is the fluid velocity through the porous medium, 𝑝pm is the fluid pressure and K is the permeability
tensor, which is symmetric positive definite and bounded.

On the external boundary of the porous-medium domain 𝜕Ωpm ∖ Γ, we prescribe the following boundary
conditions, that we consider homogeneous without loss of generality,

𝑝pm = 0 on Γ𝐷
pm, vpm·npm = 0 on Γ𝑁

pm. (2.6)

Here, npm is the unit outward normal vector from the domain Ωpm on its boundary, 𝜕Ωpm ∖ Γ = Γ𝐷
pm ∪ Γ𝑁

pm,
Γ𝐷

pm ∩ Γ𝑁
pm = ∅, and Γ𝐷

pm ̸= ∅ (Fig. 1, left).

2.3. Interface conditions

The generalised interface conditions for the Stokes–Darcy problem (2.1), (2.2) and (2.4), (2.5), proposed
in [14] for arbitrary flow directions to the porous layer, read

vff ·n = vpm·n on Γ, (2.7)
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Figure 2. Comparison of the generalised and the classical interface conditions for arbitrary
(left) and parallel (right) flows to the interface based on the flow problem similar to [14].

𝑝pm = −n·T(vff , 𝑝ff)n−𝑁 𝑏𝑙
𝑠 𝜏 ·T(vff , 𝑝ff)n on Γ, (2.8)

vff ·𝜏 = 𝜀𝑁 𝑏𝑙
𝜏 𝜏 ·T(vff , 𝑝ff)n + 𝜀2

2∑︁
𝑗=1

𝑀 𝑗,𝑏𝑙
𝜏

𝜕𝑝pm

𝜕𝑥𝑗
on Γ, (2.9)

where 𝑁 𝑏𝑙
𝑠 , 𝑁 𝑏𝑙

𝜏 = N𝑏𝑙·𝜏 and 𝑀 𝑗,𝑏𝑙
𝜏 = M𝑗,𝑏𝑙·𝜏 are boundary layer constants, n = −npm on Γ, and 𝜏 is the

unit tangential vector on Γ (Fig. 1, left). Note that for homogeneous porous media all effective coefficients
appearing in the coupling conditions (2.7)–(2.9) are constant along the fluid–porous interface [14]. Since these
coefficients depend on the morphology of the porous medium, they do not stay constant for heterogeneous
media. In addition, the effective coefficients depend on the exact sharp interface location, however, they are
always independent of the flow direction to the porous layer.

The interface condition (2.7) is the conservation of mass across the interface. The coupling condition (2.8) is
an extension of the balance of normal forces. In the case of isotropic porous media 𝑁 𝑏𝑙

𝑠 = 0, that leads to the
classical balance of normal forces at the fluid–porous interface, e.g., [12, 27]. The interface condition (2.9) is a
generalisation of the Beavers–Joseph condition [4]:

(vff − vpm)·𝜏 = −
√

K

𝛼BJ
𝜏 ·T(vff , 𝑝ff)n on Γ, (2.10)

where 𝛼BJ > 0 is the Beavers–Joseph parameter. Notice that the permeability tensor K is of order 𝒪(𝜀2), i.e.
K = 𝜀2K̃, where the non-dimensional permeability tensor K̃ is computed in the standard way using homogeni-
sation theory. Moreover, 𝑁 𝑏𝑙

𝜏 < 0 and 𝑀1,𝑏𝑙
𝜏 < 0. Condition (2.9) can be compared to the Beavers–Joseph

condition (2.10) considering −𝜀𝑁 𝑏𝑙
𝜏 ∼

√
K𝛼−1

BJ and splitting the last term in equation (2.9) into the tangential
porous-medium velocity vpm·𝜏 and the remaining part, which is not necessarily zero in the generalised case.
Note that for isotropic porous media 𝑀2,𝑏𝑙

𝜏 = 0. For a thorough discussion and physical interpretation of the
generalised interface condition (2.9) we refer the reader to [14].

The generalised coupling conditions (2.7)–(2.9) have several advantages over the classical conditions (con-
servation of mass, balance of normal forces, Beavers–Joseph condition). In Figure 2, we present tangential
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velocity profiles for a setting similar to [14], where the flow is arbitrary (Fig. 2, left) and parallel (Fig. 2, right)
to the fluid–porous interface. Macroscale Stokes–Darcy problems with the classical (profile: classical IC) and
generalised (profile: generalised IC) interface conditions are compared against pore-scale resolved simulations
(profile: pore-scale). One can observe that the generalised conditions are suitable for arbitrary flow directions
to the interface (Fig. 2, left) and they are more accurate than the classical conditions for parallel flows (Fig. 2,
right). Moreover, the interface conditions (2.7)–(2.9) contain no undetermined parameters, such as 𝛼BJ, which
need to be fitted. For more details on the validation of the generalised interface conditions and their comparison
to the classical conditions we refer the reader to [14].

3. Weak formulation and analysis

In this section, we study the weak formulation of the coupled Stokes–Darcy problem (2.1)–(2.9) and analyse
its well-posedness.

3.1. Weak formulation of the Stokes–Darcy problem

We introduce the following functional spaces

Hff :=
{︀
u ∈ H1(Ωff)2 : u = 0 on 𝜕Ωff ∖ Γ

}︀
, Hff,Γ :=

{︀
u ∈ H1(Ωff)2 : u = 0 on Γ𝐷

ff,wall ∪ Γ
}︀
, Q := L2(Ωff),

Hpm :=
{︀
𝜓 ∈ H1(Ωpm) : 𝜓 = 0 on Γ𝐷

pm

}︀
, W := Hff ×Hpm,

and norms

‖𝜙‖0,𝑖 := ‖𝜙‖L2(Ω𝑖)
∀𝜙 ∈ L2(Ω𝑖), ‖𝜙‖1,𝑖 := ‖𝜙‖H1(Ω𝑖)

∀𝜙 ∈ H1(Ω𝑖),

‖𝑤‖𝑊 :=
(︁
‖w‖21,ff + ‖𝜓‖21,pm

)︁1/2

∀𝑤 = (w, 𝜓) ∈ W,

where the subscript 𝑖 ∈ {ff,pm} indicates in which domain a function is defined. Analogous notations apply
for vector-valued functions. Additionally, on the interface Γ we consider the trace space 𝐻1/2

00 (Γ) and denote

its dual space by
(︁
𝐻

1/2
00 (Γ)

)︁′
, see, e.g., [29]. In the following, for the sake of simplicity, we waive dx and d𝑆 in

volume and boundary integrals and write 𝑔 = 𝑔(x) for x ∈ Ω𝑖, 𝑖 ∈ {ff,pm}.
In order to obtain the weak formulation of the Stokes–Darcy problem (2.1)–(2.9), we multiply equation (2.2)

by a test function u ∈ Hff , and proceeding in a standard way, we get

0 = −
∫︁

Ωff

(∇·T(vff , 𝑝ff))·u = −
∫︁

𝜕Ωff

T(vff , 𝑝ff)n·u +
∫︁

Ωff

∇vff : ∇u−
∫︁

Ωff

𝑝ff∇·u

= −
∫︁

Γ

T(vff , 𝑝ff)n·u +
∫︁

Ωff

∇vff : ∇u−
∫︁

Ωff

𝑝ff∇·u ∀u ∈ Hff . (3.1)

Splitting the stress tensor T(vff , 𝑝ff) in its normal and tangential component and applying the interface condi-
tions (2.8) and (2.9) to the integral term over Γ in the weak formulation (3.1), we obtain∫︁

Γ

T(vff , 𝑝ff)n·u =
∫︁

Γ

(n·T(vff , 𝑝ff)n)(u·n) +
∫︁

Γ

(𝜏 ·T(vff , 𝑝ff)n)(u·𝜏 )

=
∫︁

Γ

(︀
−𝑝pm −𝑁 𝑏𝑙

𝑠 𝜏 ·T(vff , 𝑝ff)n
)︀
(u·n) +

∫︁
Γ

(𝜏 ·T(vff , 𝑝ff)n)(u·𝜏 )

= −
∫︁

Γ

𝑝pm(u·n) +
∫︁

Γ

(𝜏 ·T(vff , 𝑝ff)n)
(︀
(u·𝜏 )−𝑁 𝑏𝑙

𝑠 (u·n)
)︀

= −
∫︁

Γ

𝑝pm(u·n) +
∫︁

Γ

⎛⎝(︀𝑁 𝑏𝑙
𝜏

)︀−1
𝜀−1(vff ·𝜏 )−

(︀
𝑁 𝑏𝑙

𝜏

)︀−1
𝜀

2∑︁
𝑗=1

𝑀 𝑗,𝑏𝑙
𝜏

𝜕𝑝pm

𝜕𝑥𝑗

⎞⎠(︀(u·𝜏 )−𝑁 𝑏𝑙
𝑠 (u·n)

)︀
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= −
∫︁

Γ

𝑝pm(u·n)−
∫︁

Γ

(︀
𝑁 𝑏𝑙

𝜏

)︀−1
𝑁 𝑏𝑙

𝑠 𝜀−1(vff ·𝜏 )(u·n) +
∫︁

Γ

(︀
𝑁 𝑏𝑙

𝜏

)︀−1
𝜀−1(vff ·𝜏 )(u·𝜏 )

+
∫︁

Γ

⎛⎝(︀𝑁 𝑏𝑙
𝜏

)︀−1
𝑁 𝑏𝑙

𝑠 𝜀

2∑︁
𝑗=1

𝑀 𝑗,𝑏𝑙
𝜏

𝜕𝑝pm

𝜕𝑥𝑗

⎞⎠(u·n)−
∫︁

Γ

⎛⎝(︀𝑁 𝑏𝑙
𝜏

)︀−1
𝜀

2∑︁
𝑗=1

𝑀 𝑗,𝑏𝑙
𝜏

𝜕𝑝pm

𝜕𝑥𝑗

⎞⎠(u·𝜏 ). (3.2)

We introduce a continuous lifting operator 𝐸ff : H1/2
(︁

Γ𝐷
ff,in

)︁2

→ Hff,Γ and split the free-flow velocity vff =

v0
ff + 𝐸ffvin with v0

ff ∈ Hff . Substituting (3.2) into the weak formulation (3.1), we get

−
∫︁

Ωff

∇(𝐸ffvin) : ∇u =
∫︁

Ωff

∇v0
ff : ∇u−

∫︁
Ωff

𝑝ff(∇·u) +
∫︁

Γ

𝑝pm(u·n) +
∫︁

Γ

(︀
𝑁 𝑏𝑙

𝜏

)︀−1
𝑁 𝑏𝑙

𝑠 𝜀−1
(︀
v0

ff ·𝜏
)︀
(u·n)

−
∫︁

Γ

(︀
𝑁 𝑏𝑙

𝜏

)︀−1
𝜀−1
(︀
v0

ff ·𝜏
)︀
(u·𝜏 )−

∫︁
Γ

⎛⎝(︀𝑁 𝑏𝑙
𝜏

)︀−1
𝑁 𝑏𝑙

𝑠 𝜀

2∑︁
𝑗=1

𝑀 𝑗,𝑏𝑙
𝜏

𝜕𝑝pm

𝜕𝑥𝑗

⎞⎠(u·n)

+
∫︁

Γ

⎛⎝(︀𝑁 𝑏𝑙
𝜏

)︀−1
𝜀

2∑︁
𝑗=1

𝑀 𝑗,𝑏𝑙
𝜏

𝜕𝑝pm

𝜕𝑥𝑗

⎞⎠(u·𝜏 ) ∀u ∈ Hff . (3.3)

The weak form of equation (2.1) reads

−
∫︁

Ωff

(︀
∇·v0

ff

)︀
𝑞 =

∫︁
Ωff

(∇·(𝐸ffvin))𝑞 ∀𝑞 ∈ Q. (3.4)

In the porous medium, we consider the elliptic formulation obtained by combining equation (2.4) with Darcy’s
law (2.5). Multiplying the resulting equation by a test function 𝜓 ∈ Hpm, integrating over Ωpm and applying
the interface condition (2.7), we obtain∫︁

Ωpm

(K∇𝑝pm)·∇𝜓 −
∫︁

Γ

(vff ·n)𝜓 = 0 ∀𝜓 ∈ Hpm. (3.5)

For all 𝑣 = (v, 𝜙), 𝑤 = (w, 𝜓) ∈ W and 𝑞 ∈ Q, we define the following bilinear forms

𝒜(𝑣, 𝑤) =
∫︁

Ωff

∇v : ∇w +
∫︁

Ωpm

(K∇𝜙)·∇𝜓 +
∫︁

Γ

𝜙(w·n)−
∫︁

Γ

(v·n)𝜓 +
∫︁

Γ

(︀
𝑁 𝑏𝑙

𝜏

)︀−1
𝑁 𝑏𝑙

𝑠 𝜀−1(v·𝜏 )(w·n)

−
∫︁

Γ

(︀
𝑁 𝑏𝑙

𝜏

)︀−1
𝜀−1(v·𝜏 )(w·𝜏 )−

∫︁
Γ

⎛⎝(︀𝑁 𝑏𝑙
𝜏

)︀−1
𝑁 𝑏𝑙

𝑠 𝜀

2∑︁
𝑗=1

𝑀 𝑗,𝑏𝑙
𝜏

𝜕𝜙

𝜕𝑥𝑗

⎞⎠(w·n)

+
∫︁

Γ

⎛⎝(︀𝑁 𝑏𝑙
𝜏

)︀−1
𝜀

2∑︁
𝑗=1

𝑀 𝑗,𝑏𝑙
𝜏

𝜕𝜙

𝜕𝑥𝑗

⎞⎠(w·𝜏 ), (3.6)

ℬ(𝑤, 𝑞) =−
∫︁

Ωff

(∇·w)𝑞, (3.7)
and the linear functionals

ℱ(𝑤) =−
∫︁

Ωff

∇(𝐸ffvin) : ∇w, 𝒢(𝑞) =
∫︁

Ωff

(∇·(𝐸ffvin))𝑞. (3.8)

Making use of these notations, the weak formulation of the coupled Stokes–Darcy problem (2.1)–(2.9) reads:
find 𝑢 = (v0

ff , 𝑝pm) ∈ W and 𝑝ff ∈ Q, such that

𝒜(𝑢,𝑤) + ℬ(𝑤, 𝑝ff) = ℱ(𝑤) ∀𝑤 = (w, 𝜓) ∈ W, (3.9)

ℬ(𝑢, 𝑞) = 𝒢(𝑞) ∀𝑞 ∈ Q. (3.10)
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3.2. Analysis of the Stokes–Darcy model

In this section, we prove the well-posedness of the Stokes–Darcy problem with the generalised interface
conditions (2.7)–(2.9). Since we consider the interface Γ to be straight (see Sect. 2), the tangential and normal
vectors at the interface are constant. Therefore, taking the tangential and normal components v·𝜏 and v·n of
a suitable vector function v on Γ does not reduce the regularity of the trace v|Γ. In the following, we present
the results for a horizontal interface Γ, so that 𝜏 = e1 and n = −e2 (Fig. 1, left).

We prove the well-posedness for isotropic porous media, i.e. K = 𝑘I with 𝑘 > 0 constant and equal to 𝑘 = 𝜀2𝑘,
where 𝑘 is the non-dimensional permeability (see Sect. 2.3). Note that in this case the boundary layer constants
𝑁 𝑏𝑙

𝑠 = 0 and 𝑀2,𝑏𝑙
𝜏 = 0. Thus, the bilinear form 𝒜(𝑢,𝑤) in (3.9) reduces to

𝒜(𝑢,𝑤) =
∫︁

Ωff

∇v0
ff : ∇w +

∫︁
Ωpm

(𝑘∇𝑝pm)·∇𝜓 +
∫︁

Γ

𝑝pm(w·n)−
∫︁

Γ

(︀
v0

ff ·n
)︀
𝜓 −

∫︁
Γ

(︀
𝑁 𝑏𝑙

𝜏

)︀−1
𝜀−1(v0

ff ·𝜏 )(w·𝜏 )

+
∫︁

Γ

(︀
𝑁 𝑏𝑙

𝜏

)︀−1
𝜀

(︂
𝑀1,𝑏𝑙

𝜏

𝜕𝑝pm

𝜕𝑥1

)︂
(w·𝜏 ). (3.11)

Section 3.2.1 introduces some auxiliary results, while the well-posedness of the coupled Stokes–Darcy problem
is proved in Section 3.2.2.

3.2.1. Auxiliary results

Taking into account the Poincaré inequality

∃𝐶𝑃,𝑖 > 0 such that ‖𝑓‖0,𝑖 ≤ 𝐶𝑃,𝑖‖∇𝑓‖0,𝑖 ∀𝑓 ∈ H𝑖, (3.12)

and the definition of the H1-norm ‖𝑓‖21,𝑖 = ‖𝑓‖20,𝑖 + ‖∇𝑓‖20,𝑖 for 𝑖 ∈ {ff,pm}, we get

‖𝑓‖21,𝑖 ≤ 𝜅𝑖‖∇𝑓‖20,𝑖 ∀𝑓 ∈ H𝑖, (3.13)

where the constant 𝜅𝑖 = 1 + 𝐶𝑃,𝑖
2 > 1.

We consider the following trace inequalities (see, e.g., [29]):

∃𝐶𝑓 > 0 such that ‖v|Γ‖H1/2
00 (Γ)

≤ 𝐶𝑓‖v‖1,ff ∀v ∈ Hff , (3.14)

∃𝐶𝑝 > 0 such that ‖𝜓|Γ‖H1/2
00 (Γ)

≤ 𝐶𝑝‖𝜓‖1,pm ∀𝜓 ∈ Hpm . (3.15)

In the two-dimensional case, for 𝜙 ∈ H1(Ωpm) we have

curl𝜙 =
(︂
𝜕𝜙

𝜕𝑥2
,− 𝜕𝜙

𝜕𝑥1

)︂⊤
·

Since ∇𝜙 ∈ L2(Ωpm)2, we get curl𝜙 ∈ L2(Ωpm)2 and being ∇·(curl𝜙) = 0, we have

curl𝜙 ∈ H(div; Ωpm) :=
{︀
u ∈ L2(Ωpm)2 : ∇·u ∈ L2(Ωpm)

}︀
.

Thus, due to the classical trace results in H(div; Ωpm), see e.g., Lemma 20.2 of [40], Chapter IX, Theorem 1 of
[9], there exists a positive constant 𝐶𝜏 > 0 such that

‖curl𝜙·n‖H−1/2(𝜕Ωpm) ≤ 𝐶𝜏‖curl𝜙‖H(div;Ωpm) = 𝐶𝜏‖curl𝜙‖0,pm = 𝐶𝜏‖∇𝜙‖0,pm ≤ 𝐶𝜏‖𝜙‖1,pm. (3.16)

Since Γ ( 𝜕Ωpm, we have (curl𝜙·n)|Γ ∈
(︁

H1/2
00 (Γ)

)︁′
with H1/2

00 (Γ) =
{︀
𝑢 ∈ H1/2(𝜕Ωpm) : supp𝑢 ⊂ Γ

}︀
and⃦⃦⃦

(curl𝜙·n)|Γ
⃦⃦⃦
(︁
H

1/2
00 (Γ)

)︁′ ≤ ‖curl𝜙·n‖H−1/2(𝜕Ωpm). (3.17)



734 E. EGGENWEILER ET AL.

Therefore, as obviously ∇𝜙·𝜏 = curl𝜙·n, from (3.16) and (3.17) we conclude that

∃𝐶𝜏 > 0 such that
⃦⃦

(∇𝜙·𝜏 )|Γ
⃦⃦
(︁
H

1/2
00 (Γ)

)︁′ ≤ 𝐶𝜏‖𝜙‖1,pm ∀𝜙 ∈ H1(Ωpm). (3.18)

Let us also remark that for the geometrical setting provided in Figure 1 (left), where 𝜏 = e1, we have

∇𝑝pm·𝜏 =
𝜕𝑝pm

𝜕𝑥1
on Γ.

Finally, notice that the first three integrals over Γ in the bilinear form 𝒜 given in (3.11) should be understood
as scalar products in H1/2

00 (Γ), while the last integral must be interpreted as the duality pairing∫︁
Γ

(𝑁 𝑏𝑙
𝜏 )−1𝜀

(︂
𝑀1,𝑏𝑙

𝜏

𝜕𝑝pm

𝜕𝑥1

)︂
(w·𝜏 ) =

∫︁
Γ

𝜀
𝑀1,𝑏𝑙

𝜏

𝑁 𝑏𝑙
𝜏

(∇𝑝pm·𝜏 )(w·𝜏 ) = 𝜀
𝑀1,𝑏𝑙

𝜏

𝑁 𝑏𝑙
𝜏

⟨∇𝑝pm·𝜏 ,w·𝜏 ⟩(︁
H

1/2
00 (Γ)

)︁′
,H

1/2
00 (Γ)

. (3.19)

3.2.2. Well-posedness of the coupled problem

Using the auxiliary results from Section 3.2.1, we can now prove the well-posedness of the Stokes–Darcy
problem with the generalised interface conditions.

Theorem 3.1. For homogeneous isotropic porous media with non-dimensional permeability 𝑘 > 0, the two-
dimensional Stokes–Darcy problem (3.9), (3.10) is well-posed under the following assumption

𝑘 > 𝜅pm𝜅ff(𝐶𝜏𝐶𝑓 )2
(︂
𝑀1,𝑏𝑙

𝜏

2𝑁 𝑏𝑙
𝜏

)︂2

· (3.20)

Proof. The proof uses the classical Babuška–Brezzi theory for the well-posedness of saddle-point problems [6].
The continuity of the functionals ℱ and 𝒢 given by (3.8) is straightforward as well as the continuity and
coercivity of the bilinear form ℬ given by (3.7). Thus, we focus only on the continuity and coercivity of the
bilinear form 𝒜 presented in (3.11), starting from the former property.

Using the Cauchy–Schwarz inequality, the Poincaré inequality (3.12), the trace inequalities (3.14), (3.15),
(3.18), and result (3.19), we get

|𝒜(𝑢,𝑤)| =
⃒⃒⃒⃒ ∫︁

Ωff

∇v0
ff : ∇w +

∫︁
Ωpm

(𝑘∇𝑝pm)·∇𝜓 +
∫︁

Γ

𝑝pm(w·n)−
∫︁

Γ

(︀
v0

ff ·n
)︀
𝜓 −

∫︁
Γ

(︀
𝑁 𝑏𝑙

𝜏

)︀−1
𝜀−1
(︀
v0

ff ·𝜏
)︀
(w·𝜏 )

+
∫︁

Γ

(︀
𝑁 𝑏𝑙

𝜏

)︀−1
𝜀

(︂
𝑀1,𝑏𝑙

𝜏

𝜕𝑝pm

𝜕𝑥1

)︂
(w·𝜏 )

⃒⃒⃒⃒
≤
⃦⃦
v0

ff

⃦⃦
1,ff
‖w‖1,ff + 𝑘‖𝑝pm‖1,pm‖𝜓‖1,pm + 𝐶𝑓𝐶𝑝‖𝑝pm‖1,pm‖w‖1,ff + 𝐶𝑓𝐶𝑝

⃦⃦
v0

ff

⃦⃦
1,ff
‖𝜓‖1,pm

+ 𝜀−1𝐶2
𝑓

1
|𝑁 𝑏𝑙

𝜏 |
⃦⃦
v0

ff

⃦⃦
1,ff
‖w‖1,ff + 𝜀𝐶𝜏𝐶𝑓

⃒⃒⃒⃒
𝑀1,𝑏𝑙

𝜏

𝑁 𝑏𝑙
𝜏

⃒⃒⃒⃒
‖𝑝pm‖1,pm‖w‖1,ff . (3.21)

We define

𝛾 := max
{︂
𝑘, 1 + 𝜀−1𝐶2

𝑓

1
|𝑁 𝑏𝑙

𝜏 |
, 𝐶𝑓𝐶𝑝 + 𝜀𝐶𝜏𝐶𝑓

⃒⃒⃒⃒
𝑀1,𝑏𝑙

𝜏

𝑁 𝑏𝑙
𝜏

⃒⃒⃒⃒}︂
and obtain

|𝒜(𝑢,𝑤)| ≤ 𝛾
(︁⃦⃦

v0
ff

⃦⃦
1,ff

+ ‖𝑝pm‖1,pm

)︁(︁
‖w‖1,ff + ‖𝜓‖1,pm

)︁
≤ 2𝛾‖𝑢‖𝑊 ‖𝑤‖𝑊 , (3.22)

where the second inequality in equation (3.22) follows from (𝑎+ 𝑏) ≤
√

2(𝑎2 + 𝑏2)1/2 for all 𝑎, 𝑏 ∈ R+. Thus, the
bilinear form 𝒜 is continuous.
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Now we prove the coercivity of 𝒜. We remember that 𝑁 𝑏𝑙
𝜏 < 0 and 𝑀1,𝑏𝑙

𝜏 < 0 (see Sect. 2.3). Making use of
inequality (3.13), the trace inequality (3.14), and (3.19), we obtain

𝒜(𝑢, 𝑢) =
∫︁

Ωff

∇v0
ff : ∇v0

ff +
∫︁

Ωpm

(𝑘∇𝑝pm)·∇𝑝pm +
∫︁

Γ

𝑝pm

(︀
v0

ff ·n
)︀
−
∫︁

Γ

(︀
v0

ff ·n
)︀
𝑝pm⏟  ⏞  

=0

−
∫︁

Γ

(︀
𝑁 𝑏𝑙

𝜏

)︀−1
𝜀−1
(︀
v0

ff ·𝜏
)︀2

⏟  ⏞  
≥0

+
∫︁

Γ

(︀
𝑁 𝑏𝑙

𝜏

)︀−1
𝜀

(︂
𝑀1,𝑏𝑙

𝜏

𝜕𝑝pm

𝜕𝑥1

)︂(︀
v0

ff ·𝜏
)︀

≥
⃦⃦
∇v0

ff

⃦⃦2

0,ff
+ 𝑘‖∇𝑝pm‖20,pm − 𝜀

𝑀1,𝑏𝑙
𝜏

𝑁 𝑏𝑙
𝜏

‖(∇𝑝pm·𝜏 )|Γ‖(︁H1/2
00 (Γ)

)︁′
⃦⃦

(v0
ff ·𝜏 )|Γ

⃦⃦
H

1/2
00 (Γ)

≥ 𝜅ff
−1
⃦⃦
v0

ff

⃦⃦2

1,ff
+ 𝜅−1

pm𝑘‖𝑝pm‖21,pm − 𝜀𝐶𝜏𝐶𝑓
𝑀1,𝑏𝑙

𝜏

𝑁 𝑏𝑙
𝜏

‖𝑝pm‖1,pm

⃦⃦
v0

ff

⃦⃦
1,ff
. (3.23)

Applying the generalised Young’s inequality 𝑎𝑏 ≤ 𝑎2/(2𝛿) + 𝛿𝑏2/2 with 𝑎 = 𝜀𝐶𝜏𝐶𝑓

(︀
𝑁 𝑏𝑙

𝜏

)︀−1
𝑀1,𝑏𝑙

𝜏 ‖𝑝pm‖1,pm ≥ 0,
𝑏 =

⃦⃦
v0

ff

⃦⃦
1,ff

≥ 0 and 𝛿 > 0 to the last term in (3.23), we get

𝒜(𝑢, 𝑢) ≥ 𝜅ff
−1
⃦⃦
v0

ff

⃦⃦2

1,ff
+ 𝜅−1

pm𝑘‖𝑝pm‖21,pm −
(𝜀𝐶𝜏𝐶𝑓𝑀

1,𝑏𝑙
𝜏

(︀
𝑁 𝑏𝑙

𝜏

)︀−1)2

2𝛿
‖𝑝pm‖21,pm −

𝛿

2

⃦⃦
v0

ff

⃦⃦2

1,ff

=
(︂
𝜅ff

−1 − 𝛿

2

)︂⃦⃦
v0

ff

⃦⃦2

1,ff
+

(︃
𝜅−1

pm𝑘 −
(𝜀𝐶𝜏𝐶𝑓𝑀

1,𝑏𝑙
𝜏

(︀
𝑁 𝑏𝑙

𝜏

)︀−1)2

2𝛿

)︃
‖𝑝pm‖21,pm.

Recalling that the physical permeability is written as 𝑘 = 𝜀2𝑘, we conclude that the coercivity of the bilinear
form 𝒜 is guaranteed when the following conditions hold

𝛿 < 2𝜅ff
−1, 𝜅−1

pm 𝑘 −

(︁
𝐶𝜏𝐶𝑓𝑀

1,𝑏𝑙
𝜏

(︀
𝑁 𝑏𝑙

𝜏

)︀−1
)︁2

2𝛿
> 0. (3.24)

Combining both inequalities in (3.24), we obtain condition (3.20). Therefore, the coercivity of the bilinear form
𝒜 is guaranteed if condition (3.20) is fulfilled. �

The well-posedness of the Stokes–Darcy problem with the generalised coupling conditions is established
under assumption (3.20) on the dimensionless permeability 𝑘 being not too small in comparison with the
ratio of boundary layer constants

(︀
𝑀1,𝑏𝑙

𝜏 /𝑁 𝑏𝑙
𝜏

)︀2. The permeability 𝑘, the scale separation parameter 𝜀 and the
boundary layer constants 𝑁 𝑏𝑙

𝜏 and 𝑀1,𝑏𝑙
𝜏 can be computed numerically based on the pore-scale information of the

coupled system. The constants 𝜅pm and 𝜅ff appearing in condition (3.20) are related to the Poincaré constants
from (3.12) and (3.13). These constants depend on the size and geometry of the coupled domain [5, 32]. To
the best of the authors’ knowledge, there exist no estimates for constants 𝐶𝜏 and 𝐶𝑓 coming from the trace
inequalities (3.14) and (3.18).

Remark 3.2. Note that the permeability 𝑘 appearing in condition (3.20) is dimensionless and, thus, it depends
on the pore geometry within the unit cell 𝑌 (see Tab. 1 and Fig. 1, right) only. Therefore, this condition does
not imply that the physical permeability 𝑘 = 𝜀2𝑘 cannot become small.

Remark 3.3. In case of anisotropic porous media, all boundary layer constants appearing in the generalised
coupling conditions (2.7)–(2.9) are non-zero. Therefore, the bilinear form 𝒜 has its general expression (3.6)
containing additional integral terms over the interface Γ in comparison to the isotropic case (3.11). The proof
of the coercivity of the bilinear form 𝒜 in the more challenging anisotropic case will be addressed in a follow-up
publication.
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4. Numerical results

In this section, we first analyse the validity of condition (3.20) considering different porous-medium configu-
rations. Then, we present a benchmark for the numerical solution of the Stokes–Darcy problem with generalised
interface conditions (2.7)–(2.9) and provide the procedure for the computation of the material parameters.

4.1. Analysis of the relationship between permeability and boundary layer constants

We analyse the validity of relationship (3.20) between the permeability and the boundary layer constants for
several geometrical configurations of coupled free-flow and porous-medium systems. We consider porous media
with different shapes (circle, square, rhombus) and different sizes of solid inclusions (Tab. 1). Periodic porous
media (Fig. 1, right) are constructed by the periodic repetition of the scaled unit cell 𝜀𝑌 = (0, 𝜀)× (0, 𝜀). Note
that the material parameters (non-dimensional permeability 𝑘, boundary layer constants 𝑁 𝑏𝑙

𝜏 , 𝑀1,𝑏𝑙
𝜏 ) depend

on the shape and size of solid obstacles, but are independent on the scale separation parameter 𝜀. Therefore, to
analyse the validity of condition (3.20) for different geometrical configurations, we consider the corresponding
unit cell 𝑌 = (0, 1)× (0, 1) and the boundary layer stripe to compute the dimensionless permeability 𝑘 and the
boundary layer constants 𝑁 𝑏𝑙

𝜏 and 𝑀1,𝑏𝑙
𝜏 , respectively (Tab. 1 and Fig. 3).

For the sake of clarity, we reformulate condition (3.20) as follows

𝑘 > 𝐶𝑅2, (4.1)

where 𝐶 := 𝜅pm𝜅ff(𝐶𝜏𝐶𝑓 )2 and 𝑅 := 𝑀1,𝑏𝑙
𝜏 /(2𝑁 𝑏𝑙

𝜏 ). We compute the permeability 𝑘 based on the pore geometry
by means of homogenisation theory [19] using formulas (4.2) and (4.3) from Section 4.2.1. The permeability
values for the five considered geometries are presented in Table 1. The boundary layer constants 𝑁 𝑏𝑙

𝜏 and 𝑀1,𝑏𝑙
𝜏

are computed by solving the boundary layer problems (4.4), (4.6) and by integrating their solutions using
formulas (4.5) and (4.7). The boundary layer problems (4.4) and (4.6) are solved numerically within a cut-off
boundary layer stripe 𝑍𝑏𝑙

𝑙 , containing one column with 𝑙 = 4 solid inclusions. A schematic representation of the
cut-off boundary layer stripe with 𝑙 = 2 circular solid obstacles corresponding to geometry 𝐺1 is presented in
Figure 3 (left).

The vertical position of the interface within this boundary layer stripe (Fig. 3, left and right) can be varied
in a certain range depending on the pore geometry [14,21]. A change of the interface location within the stripe
leads to the corresponding change of the boundary layer constants, which contain the information about the
exact position of the interface. Note that the interface location does not influence the permeability values.

The constant 𝐶 in (4.1), which contains the constants 𝐶𝜏 and 𝐶𝑓 coming from the trace inequalities (3.14)
and (3.18), cannot be estimated to the best of the authors’ knowledge. However, we show that there is a

Table 1. Non-dimensional permeability 𝑘 and squared ratio 𝑅2 for different porous-medium
configurations.
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Figure 3. Boundary layer stripe 𝑍𝑏𝑙
2 for geometry 𝐺1 (left), boundary layer constants and ratio

𝑅 for five interface locations 𝐼𝑎 (middle) and illustration of these interface locations (right).

non-trivial validity range for the constant 𝐶 such that condition (4.1) (or, equivalently, (3.20)) is fulfilled. To
achieve this, we minimise the ratio 𝑅 in condition (4.1) by determining the optimal location of the interface.

We consider different vertical positions of the interface 𝐼𝑎 := (0, 1) ×
{︀
𝑎+ 𝑑−1

2

}︀
, where 𝑎 ≥ 0 denotes the

distance between the interface 𝐼𝑎 and the top of the first row of solid inclusions (Fig. 3, right). In Figure 3
(middle), we provide the values of the boundary layer constants 𝑁 𝑏𝑙

𝜏 , 𝑀1,𝑏𝑙
𝜏 and the ratio 𝑅 for five different

interface positions for geometry 𝐺1. We observe that the ratio 𝑅 monotonically decreases as the interface
location approaches the top of the solid inclusions, i.e. 𝑎→ 0. This correlation between 𝑅 and 𝐼𝑎 holds for other
geometrical configurations as well. In Figure 4 (left), we plot the ratio 𝑅 for the porous-medium geometries
shown in Table 1 versus the distance 𝑎, where 30 equidistantly distributed locations 𝐼𝑎 have been considered for
geometries 𝐺1 and 𝐺3 to 𝐺5. A smaller range for 𝑎 has been used for geometry 𝐺2 due to the bigger diameter
of the solid grain. Based on these results, we recommend locating the interface as close as possible to the top
of solid inclusions. This finding is in agreement with the experiment of Beavers and Joseph for parallel flows to
the porous layer [4] and with the conclusion from [37], where different flow scenarios were studied.

We compute the boundary layer constants 𝑁 𝑏𝑙
𝜏 and 𝑀1,𝑏𝑙

𝜏 using FreeFem++ [18]. Restrictions on the
meshing in FreeFEM++ do not allow us to locate the interface directly on the top of the first row of solid
inclusions. Therefore, we locate it at the next possible level, which is at distance 𝑎 = 0.02. We compute the
boundary layer constants for the porous-medium configurations 𝐺1 to 𝐺5 presented in Table 1, considering the
interface location 𝐼0.02. The computed values are reported in Figure 4 (right), where we also provide the ratio
𝑅 appearing in condition (4.1).

For the ease of analysis of condition (4.1), we provide in Table 1 the squared ratio 𝑅2 for the optimal interface
location 𝐼0.02 next to the non-dimensional permeability 𝑘. For the porous-medium geometries 𝐺1 and 𝐺3, we
have 𝑘 ≫ 𝑅2. In this case, the constant 𝐶 in condition (4.1) can be of order 102, that is not restrictive. For
the geometrical configurations 𝐺4 and 𝐺5, we get 𝑘 > 𝑅2, where the constant 𝐶 can be at most of order 10.
This is a very mild restriction. However, for geometry 𝐺2, we obtain 𝑘 < 𝑅2, that requires 𝐶 < 1, making
condition (3.20) a stronger constraint.

4.2. Numerical benchmark

This section serves as a benchmark for other researchers, who would like to use the generalised interface
conditions (2.7)–(2.9) for numerical simulations. First, we provide the details on the computation of material
parameters (permeability 𝑘, boundary layer constants 𝑁 𝑏𝑙

𝜏 and 𝑀1,𝑏𝑙
𝜏 ). Then, we present an analytical solution
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Figure 4. Ratio 𝑅 for geometries 𝐺1 to 𝐺5 computed for different interface locations (left).
Boundary layer constants 𝑁 𝑏𝑙

𝜏 , 𝑀1,𝑏𝑙
𝜏 and ratio 𝑅 computed for the optimal location 𝐼0.02 (right).

to the Stokes–Darcy problem, which satisfies the generalised interface conditions (2.7)–(2.9) at the fluid–porous
interface.

4.2.1. Computation of material parameters

To compute the permeability 𝑘, we apply the theory of homogenisation [19]. Since we consider isotropic
porous media, it is sufficient to solve only one Stokes problem in the fluid part 𝑌f (Tab. 1) of the unit cell
𝑌 = (0, 1)× (0, 1):

−∆yw +∇y𝜋 = e1, divy w = 0 in 𝑌f,

∫︁
𝑌f

𝜋 dy = 0,

w = 0 on 𝜕𝑌f ∖ 𝜕𝑌 , {w, 𝜋} is 1-periodic in y, y =
x
𝜀
, (4.2)

where w = (𝑤1, 𝑤2) and 𝜋 are the solutions to the Stokes problem (4.2) and e1 = (1, 0). The non-dimensional
permeability 𝑘 is then given by

𝑘 =
∫︁

𝑌f

𝑤1(y) dy. (4.3)

We solve the cell problem (4.2) using FreeFem++ with Taylor–Hood finite elements. E.g., for the geometry
𝐺1 presented in Table 1 an adaptive mesh with approximately 50 000 elements is used.

To compute the boundary layer constants 𝑁 𝑏𝑙
𝜏 and 𝑀1,𝑏𝑙

𝜏 , the homogenisation theory with boundary layers [8,
14,21] is applied. We consider the cut-off boundary layer stripe 𝑍𝑏𝑙

4 (see Sect. 4.1) and define 𝑍+
4 = (0, 1)× (𝑎+

𝑑−1
2 , 4) and 𝑍−4 = 𝑍𝑏𝑙

4 ∖𝑍+
4 . To obtain the boundary layer constant 𝑀1,𝑏𝑙

𝜏 , the following boundary layer problem
is solved

−∆y𝛽1,𝑏𝑙 +∇y𝜔
1,𝑏𝑙 = 0, divy 𝛽1,𝑏𝑙 = 0 in 𝑍+

4 ∪ 𝑍−4 ,
q
𝛽1,𝑏𝑙

y
𝐼𝑎

= −w,
q
(∇y𝛽1,𝑏𝑙 − 𝜔1,𝑏𝑙I)e2

y
𝐼𝑎

= −(∇yw − 𝜋I)e2 on 𝐼𝑎,

𝛽1,𝑏𝑙 = 0 on {𝑦2 = −4}, 𝛽1,𝑏𝑙
2 =

𝜕𝛽1,𝑏𝑙
1

𝜕𝑦2
= 0 on {𝑦2 = 4}, 𝛽1,𝑏𝑙 = 0 on ∪4

𝑘=1 (𝜕𝑌𝑠 − (0, 𝑘)),

(4.4)
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where 𝛽1,𝑏𝑙 and 𝜔1,𝑏𝑙 are 𝑦1-periodic functions and J𝑓K𝐼𝑎
:= 𝑓

(︀
·, 𝑎+ 𝑑−1

2 + 0
)︀
−𝑓
(︀
·, 𝑎+ 𝑑−1

2 − 0
)︀
. To define 𝜔1,𝑏𝑙

uniquely, we set
∫︀ 1

0
𝜔1,𝑏𝑙(𝑦1,−4) d𝑦1 = 0. The boundary layer constant 𝑀1,𝑏𝑙

𝜏 is then given by

𝑀1,𝑏𝑙
𝜏 =

∫︁ 1

0

𝛽1,𝑏𝑙
1

(︂
𝑦1, 𝑎+

𝑑− 1
2

)︂
d𝑦1. (4.5)

To compute the boundary layer constant 𝑁 𝑏𝑙
𝜏 , we solve the following boundary layer problem

−∆yt𝑏𝑙 +∇y𝑠
𝑏𝑙 = 0, divy t𝑏𝑙 = 0 in 𝑍+

4 ∪ 𝑍−4 ,
r
t𝑏𝑙

z

𝐼𝑎

= 0,
r(︀
∇yt𝑏𝑙 − 𝑠𝑏𝑙I

)︀
e2

z

𝐼𝑎

= e1 on 𝐼𝑎,

t𝑏𝑙 = 0 on {𝑦2 = −4}, 𝑡𝑏𝑙
2 =

𝜕𝑡𝑏𝑙
1

𝜕𝑦2
= 0 on {𝑦2 = 4}, t𝑏𝑙 = 0 on ∪4

𝑘=1 (𝜕𝑌𝑠 − (0, 𝑘)).

(4.6)

Here, t𝑏𝑙 and 𝑠𝑏𝑙 are 𝑦1-periodic. Again, for the uniqueness, we impose
∫︀ 1

0
𝑠𝑏𝑙(𝑦1,−4) d𝑦1 = 0 and compute

𝑁 𝑏𝑙
𝜏 =

∫︁ 1

0

𝑡𝑏𝑙
1

(︂
𝑦1, 𝑎+

𝑑− 1
2

)︂
d𝑦1. (4.7)

We solve the boundary layer problems (4.4) and (4.6) numerically using FreeFem++ with Taylor–Hood
finite elements. E.g., for the boundary layer stripe with four circular inclusions 𝐺1 an adaptive mesh with
approximately 240 000 elements is used and the boundary layer constants are presented in Figure 3 (middle).

4.2.2. Benchmark solution of the Stokes–Darcy problem

In this section, we provide an analytical solution for the Stokes–Darcy problem (2.1), (2.2) and (2.4), (2.5)
that satisfies the generalised interface conditions (2.7)–(2.9). This solution can serve as a benchmark for the
researchers who will develop and investigate efficient numerical methods for such coupled problem. We consider
the coupled domain Ω = (0, 1) × (0, 1) with the interface Γ = (0, 1) × {0.5} and choose the following exact
solution

𝑢ff = sin
(︁𝜋𝑥1

2

)︁
cos
(︁𝜋𝑥2

2

)︁
, 𝑝ff =

√
2

2
cos
(︁𝜋𝑥1

2

)︁(︂𝑒𝑥2−0.5

𝑘
− 𝜋

2

)︂
,

𝑣ff = − cos
(︁𝜋𝑥1

2

)︁
sin
(︁𝜋𝑥2

2

)︁
, 𝑝pm =

√
2

2
cos
(︁𝜋𝑥1

2

)︁𝑒𝑥2−0.5

𝑘
, (4.8)

where 𝑢ff and 𝑣ff are the components of the free-flow velocity, vff = (𝑢ff , 𝑣ff).
We choose the realistic value of permeability 𝑘 = 10−6 and consider 𝜀 = 10−1. We set the force terms

in the right-hand sides of the Stokes and Darcy equations as well as the Dirichlet boundary conditions by
substitution of the exact solution (4.8) and the permeability value into the model formulation (2.1)–(2.6). The
exact solution (4.8) satisfies the generalised interface conditions (2.7)–(2.9) taking the boundary layer constants
𝑁 𝑏𝑙

𝜏 = − 1
𝜋 ≈ −0.3183 and 𝑀1,𝑏𝑙

𝜏 = − 2𝑘(1+0.5𝜀)
𝜋𝜀2 ≈ −0.06398. We note that these values lie in a typical range of

the boundary layer constants for realistic geometries (Fig. 3, middle and Fig. 4, right). Remember that 𝑀2,𝑏𝑙
𝜏 = 0

and 𝑁 𝑏𝑙
𝑠 = 0 due to isotropy of the porous medium.

We solve the coupled problem (2.1)–(2.9) numerically using the second-order finite volume method on stag-
gered grids. In both flow domains, we consider uniform rectangular meshes conforming at the fluid–porous
interface Γ. Since the chosen discretisation scheme is of second order, we decrease the grid step by the factor of
two at each level of refinement starting with ℎ = 1/8. We perform seven levels of grid refinement and compute
the relative L2-errors for all primary variables

𝜖𝑓 =
‖𝑓 − 𝑓ℎ‖0,𝑖

‖𝑓‖0,𝑖
, 𝑓 ∈ {𝑢ff , 𝑣ff , 𝑝ff , 𝑝pm},
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Table 2. Relative errors for different grid sizes ℎ.

ℎ 𝜖𝑢ff 𝜖𝑣ff 𝜖𝑝ff 𝜖𝑝pm

1/8 5.11e+00 1.35e+00 2.91e−03 2.29e−03
1/16 1.13e+00 2.81e−01 7.66e−04 5.98e−04
1/32 2.73e−01 6.68e−02 1.98e−04 1.54e−04
1/64 6.76e−02 1.64e−02 5.09e−05 3.91e−05
1/128 1.68e−02 4.09e−03 1.29e−05 1.00e−05
1/256 4.21e−03 1.02e−03 3.28e−06 2.52e−06
1/512 1.05e−03 2.54e−04 8.22e−07 6.33e−07
1/1024 2.63e−04 6.39e−05 2.05e−07 1.59e−07

Figure 5. Convergence analysis for all primary variables.

where 𝑓ℎ is the numerical solution and 𝑖 ∈ {ff,pm} depending on the primary variable 𝑓 . The numerical simu-
lation results presented in Table 2 and Figure 5 demonstrate the second order convergence of the discretisation
scheme.

5. Summary

In this paper, we have analysed the Stokes–Darcy problem with generalised coupling conditions at the interface
between the free-flow and the porous-medium domains derived in [14] using the theory of homogenisation
and boundary layers. These conditions extend the classical coupling conditions based on the Beavers–Joseph
condition to the case of arbitrary flows non-parallel to the interface. We have proved that in the case of
homogeneous isotropic porous media the resulting coupled problem is well-posed under the hypothesis that
the non-dimensional permeability is large enough compared to the boundary layer constants that take into
account the geometrical properties of the porous medium in the interfacial region.

Numerical tests have been used to identify the optimal position of the interface in order to guarantee that the
constraint on the permeability becomes the least restrictive possible for a range of porous-medium geometries.
Finally, we have given practical indications on how to compute the boundary layer constants and provided a
benchmark test case for the Stokes–Darcy problem with the generalised coupling conditions.

Future extensions of this work will focus on the development and analysis of effective decoupling algorithms to
solve the Stokes–Darcy problem with the generalised interface conditions and on well-posedness of the coupled
problem in case of anisotropic porous media.
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