An algorithm for the grade-two rheological model
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 3, pp. 1007-1025

We develop an algorithm for solving the general grade-two model of non-Newtonian fluids which for the first time includes inflow boundary conditions. The algorithm also allows for both of the rheological parameters to be chosen independently. The proposed algorithm couples a Stokes equation for the velocity with a transport equation for an auxiliary vector-valued function. We prove that this model is well posed using the algorithm that we show converges geometrically in suitable Sobolev spaces for sufficiently small data. We demonstrate computationally that this algorithm can be successfully discretized and that it can converge to solutions for the model parameters of order one. We include in the appendix a description of appropriate boundary conditions for the auxiliary variable in standard geometries.

DOI : 10.1051/m2an/2022024
Classification : 76A05, 35A15
Keywords: Non-Newtonian flow, grade-two fluid flow, inflow boundary conditions, convergence analysis
@article{M2AN_2022__56_3_1007_0,
     author = {Pollock, Sara and Scott, L. Ridgway},
     title = {An algorithm for the grade-two rheological model},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1007--1025},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {3},
     doi = {10.1051/m2an/2022024},
     mrnumber = {4411482},
     zbl = {1490.76013},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2022024/}
}
TY  - JOUR
AU  - Pollock, Sara
AU  - Scott, L. Ridgway
TI  - An algorithm for the grade-two rheological model
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2022
SP  - 1007
EP  - 1025
VL  - 56
IS  - 3
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2022024/
DO  - 10.1051/m2an/2022024
LA  - en
ID  - M2AN_2022__56_3_1007_0
ER  - 
%0 Journal Article
%A Pollock, Sara
%A Scott, L. Ridgway
%T An algorithm for the grade-two rheological model
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2022
%P 1007-1025
%V 56
%N 3
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2022024/
%R 10.1051/m2an/2022024
%G en
%F M2AN_2022__56_3_1007_0
Pollock, Sara; Scott, L. Ridgway. An algorithm for the grade-two rheological model. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 3, pp. 1007-1025. doi: 10.1051/m2an/2022024

[1] N. Arada, P. Correia and A. Sequeira, Analysis and finite element simulations of a second-order fluid model in a bounded domain. Numer. Methods Part. Differ. Equ. Int. J. 23 (2007) 1468–1500. | MR | Zbl

[2] H. A. Barnes, J. F. Hutton and K. Walters, An Introduction to Rheology. Vol. 3. Elsevier (1989). | Zbl

[3] J.-M. Bernard, Solutions globales variationnelles et classiques des fluides de grade deux. C. R. Acad. Sci. Ser. I Math. 327 (1998) 953–958. | MR | Zbl

[4] J.-M. Bernard, Stationary problem of second-grade fluids in three dimensions: existence, uniqueness and regularity. Math. Methods Appl. Sci. 22 (1999) 655–687. | MR | Zbl

[5] J.-M. Bernard, Problem of second grade fluids in convex polyhedrons. SIAM J. Math. Anal. 44 (2012) 2018–2038. | MR | Zbl

[6] J.-M. Bernard, Steady transport equation in the case where the normal component of the velocity does not vanish on the boundary. SIAM J. Math. Anal. 44 (2012) 993–1018. | MR | Zbl

[7] J.-M. Bernard, Solutions in H 1 of the steady transport equation in a bounded polygon with a full non-homogeneous velocity. J. Math. Pures App. 107 (2017) 697–736. | MR | Zbl

[8] J.-M. Bernard, Fully nonhomogeneous problem of two-dimensional second grade fluids. Math. Methods Appl. Sci. 41 (2018) 6772–6792. | MR | Zbl

[9] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods. 3rd edition. Springer-Verlag (2008). | Zbl | MR

[10] D. Cioranescu, V. Girault and K. R. Rajagopal, Mechanics and Mathematics of Fluids of the Differential Type. In Vol. 35 of Advances in Mechanics and Mathematics. Springer (2016). | MR

[11] J. L. Ericksen and R. S. Rivlin, Stress-deformation relations for isotropic materials. Arch. Ration. Mech. Anal. 4 (1955) 323–425. | MR | Zbl

[12] B. A. Gecim, Non-Newtonian effects of multigrade oils on journal bearing performance. Tribol. Trans. 33 (1990) 384–394.

[13] V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations. Springer Verlag, Berlin (1986). | MR | Zbl

[14] V. Girault and L. R. Scott, Finite element discretizations of a two-dimensional grade-two fluid model. ESAIM: M2AN 35 (2001) 1007–1053. | MR | Zbl | Numdam

[15] V. Girault and L. R. Scott, Analysis of a two-dimensional grade-two fluid model with a tangential boundary condition. J. Math. Pures Appl. 78 (1999) 981–1011. | MR | Zbl

[16] V. Girault and L. R. Scott, Wellposedness of some Oldroyd models that lack explicit dissipation. Research Report UC/CS TR-2017-04, Dept. Comp. Sci., Univ. Chicago (2017).

[17] D. Gómez-Díaz and J. M. Navaza, Rheology of aqueous solutions of food additives: effect of concentration, temperature and blending. J. Food Eng. 56 (2003) 387–392.

[18] L. D. Landau and E. M. Lifshitz, Fluid Mechanics. Pergamon Press (1959). | MR

[19] R. Lapasin, Rheology of Industrial Polysaccharides: Theory and Applications. Springer Science & Business Media (2012).

[20] A. S. Lodge, Low-shear-rate rheometry and polymer quality control. Chem. Eng. Commun. 32 (1985) 1–60.

[21] A. S. Lodge, W. G. Pritchard and L. R. Scott, The hole–pressure problem. IMA J. Appl. Math. 46 (1991) 39–66. | MR | Zbl

[22] H. Morgan and L. Ridgway Scott, Towards a unified finite element method for the Stokes equations. SIAM J. Sci. Comput. 40 (2018) A130–A141. | MR | Zbl

[23] M. Nyström, H. R. Tamaddon Jahromi, M. Stading and M. F. Webster, Hyperbolic contraction measuring systems for extensional flow. Mech. Time-Depend. Mater. 21 (2017) 455–479.

[24] S. Pollock and L. Ridgway Scott, Transport equations with inflow boundary conditions. Submitted (2022). | MR

[25] L. Schwartz, Théorie des Distributions. Hermann, Paris (1966). | MR | Zbl

[26] L. R. Scott, C1 piecewise polynomials satisfying boundary conditions. Research Report UC/CS TR-2019-18, Dept. Comp. Sci., Univ. Chicago (2019).

[27] T. W. Selby, The non-Newtonian characteristics of lubricating oils. ASLE Trans. 1 (1958) 68–81.

[28] P. A. Vasquez, Y. Jin, E. Palmer, D. Hill and M. Gregory Forest, Modeling and simulation of mucus flow in human bronchial epithelial cell cultures – Part I: idealized axisymmetric swirling flow. PLoS Comput. Biol. 12 (2016) 1–28.

Cité par Sources :