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AN ALGORITHM FOR THE GRADE-TWO RHEOLOGICAL MODEL

SARA Porrock!® AND L. RIDGWAY ScoTT?

Abstract. We develop an algorithm for solving the general grade-two model of non-Newtonian fluids
which for the first time includes inflow boundary conditions. The algorithm also allows for both of the
rheological parameters to be chosen independently. The proposed algorithm couples a Stokes equation
for the velocity with a transport equation for an auxiliary vector-valued function. We prove that this
model is well posed using the algorithm that we show converges geometrically in suitable Sobolev spaces
for sufficiently small data. We demonstrate computationally that this algorithm can be successfully
discretized and that it can converge to solutions for the model parameters of order one. We include in
the appendix a description of appropriate boundary conditions for the auxiliary variable in standard
geometries.
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1. INTRODUCTION

Non-Newtonian fluids are found in all aspects of life, from bodily fluids [28] to engine oil [12,27]. Rheology
(non-Newtonian behavior) plays a significant role in manufacturing, including food [17,19]. Thus advances in
modeling and simulation of non-Newtonian fluids can have broad impact.

Models of non-Newtonian fluids have been studied extensively for many years, but only recently have there
been mathematical advances [10] that allow models for them to be understood more completely. This under-
standing now allows development of numerical solution methods with a new level of reliability. The grade-two
model is the simplest of a family of models proposed by Rivlin and Ericksen [11,15] in which the stress-strain
relationship involves derivatives of the fluid velocity. It has been widely studied, but to date no general numerical
method has been proposed and analyzed for solving it.

There have been many different approaches to the grade-two model. In two dimensions, certain simplifications
can be made if one of the parameters is eliminated, and this allows both rigorous analysis of the system in
Lipschitz domains [15] and also extensive numerical analysis of effective discretization schemes [14]. However,
in [15], it was assumed that the flow velocity was tangential to the boundary. Still in two dimensions, the paper
[8] removed that restriction by imposing third-order boundary conditions on the inflow velocity.

However, different approaches were required for general parameters and in three dimensions [1,3-5]. Although
the method proposed in [1] is quite general, it was developed and analyzed only in the case of tangential flow
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FIGURE 1. Two different rheometers: (a) the Lodge Stressmeter and (b) a contraction rheome-
ter. The arrows on the left of each rheometer indicate the fluid inflow, and the arrows on the
right of each rheometer indicate the fluid outflow.

fields. We propose here a slight variation of the approach [1] to the grade-two model that provides some
simplifications both theoretically and computationally, and it applies in full generality.

For certain flow problems, it is critical to allow nontrivial inflow and outflow boundary conditions. For
example, simulating many rheometers [21], the basic instruments for measuring fluid properties, requires this. In
Figure 1 we depict two different rheometers which involve nontrivial inflow and outflow. The Lodge Stressmeter,
depicted in Figure 4.13 of [2], was developed by Arthur Lodge [20]. The rheometer measurements are based on
the pressure difference between the top of the middle section of the channel and the bottom of “hole” along the
bottom of the channel. Contraction rheometers [23] measure the force on the contraction section in the middle
between the large inflow channel and the smaller outflow channel. The shape of the contraction section can be
chosen differently. Thus a major contribution of this paper is the development of analytical techniques to cover
this type of boundary condition.

One issue with the different methods is the requirement for boundary conditions on the inflow boundary.
Since the grade-two model is a third-order partial differential equation, we expect there to be another boundary
condition in addition to the standard ones for flow problems, such as the Stokes no-slip condition. In [1], this
issue was avoided by assuming tangential flow on the boundary. Generalizing [1] to allow an inflow boundary
requires a boundary condition on a certain tensor Y. In the approach proposed here, a condition is posed instead
on the vector —Au+ Vp, which is directly related to the divergence of the stress. Thus the additional boundary
condition can be viewed as a stress boundary condition. We give examples of what this boundary condition
should be for certain geometries.

2. RHEOLOGY MODELS
In all (time-independent) models of fluids, the basic equation can be written as
u-Vu+Vp=V.-T+f, (2.1)

where T is called the extra (also called deviatoric) stress and f represents externally given data. The models
only differ according to the dependence of the stress on the velocity u. In the case of a Newtonian fluid

T=vA,

where A = Vu + (Vu)!. Thus, when V-u = 0, it follows that V- T = vAu, and we obtain the well known
Navier-Stokes equations for Newtonian flow,

—vAu+u-Vu+Vp=f{,

where v is the kinematic viscosity [18].
Typically, the data f is zero, but instead nonhomogeneous boundary conditions are physically relevant. Thus
we will assume that (2.1) holds in some domain © and that u = g on 9, where we assume

/ g-nds=0
o0
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to allow divergence-free solutions. Depending on the details of the model, there will also be a need for appropriate
boundary conditions for T and other ingredients.

2.1. Grade-two fluid model
The grade-two model of Rivlin and Ericksen [11,15] can be expressed as a single equation. The stress tensor

for the grade-two fluid model satisfies

A
T, = 1/A+0¢1EA+Q2A2,

where A = (Vu) + (Vu)® = 2E and the material derivative and the lower-convected Oldroydian derivative are

given by

Dt ot At

for any tensor-valued function f. For the steady-state, grade-two fluid model, the stress tensor simplifies to

De (a tu- v> g, S g—tf +£(Vu) + (Vu)'f,

Ts=vA+ai(u-VA+ Ao(Vu) + (Vu) oA + asAcA). (2.2)

We have used the notation o for tensor multiplication, which here will be just matrix multiplication.
Thus the equations of motion (2.1) can be written

—vAu+u-Vu+Vp=V-7,

2.3
V-u=0 inQ, u=g ond. (23)
Here
T=Tq—vA=0a1(u-VA+Ao(Vu) + (Vu)'oA) + apAcA
=aj(u-VA — Ao(Vu) — (Vu)oA) + (2a; + az)AoA. (2.4)

We assume that the boundary data g is defined on all €2, is divergence free, and sufficiently smooth, to be
specified subsequently.

2.2. Solving the grade-two model equations

It is helpful to expand the divergence of 7, defined in (2.4), to get a better sense of what the various terms
are in (2.3). Recall (3.2) of [16] that

V-(u-VT) =V (To(Vu)") +u-V(V-T)

for any tensor T. Therefore
V-(u-VA) =V-(Ao(Vu)') +u-V(Au).

Recall that A is shorthand for A = Vu + Vu!. Thus

V-7 =V (a1(Ao(Vu)' + Ao(Vu) + (Vu)'oA) + asAcA) + aqu - V(Au)
= V- (a1(Vu) oA + (a1 + a2)AoA) + aju- V(Au). (2.5)

Equation (2.3) can thus be transformed [1] using (2.5):
—vAu+u-Vu+Vp—aju-V(Au) = V- T, (2.6)
where

T =a1(Vu) oA + (a1 + az)AoA. (2.7)
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Define the tensor u® u by (u® u);; = u; uj. Then

V-(u®u) =u-Vu, (2.8)
and so (2.6) can be further transformed to
—vAu—au-V(Au)+Vp=V-T, (2.9)
where
T=T—-u®u=0a;(Vu)'oA + (a; + az)AcA —u®u. (2.10)
Thus

Te=vA+717+a1(u-VA+Ao(Vu) —AcA)+u®u
=vA+7+ai(u-VA—-Ao(Vu)') +u®u.

Note that 7 appears at first not to be a symmetric tensor due to the term VuoA. However, in two dimensions
this is a symmetric matrix if V-u = 0.

Lemma 2.1. Suppose that M is a 2 x 2 matriz with trace zero. Then M (M + M?) is symmetric.

v — <a b )
c—a
using the fact that the trace of M is zero. Then

o fab 2a b+c\ _ (2a*+0bb+c)alb+c)—2ab
M(M+M)_<c—a>(b+c—2a>_(2ac—a(b+c) c(b+ c) + 2a*
_ (2a® +bc+b*  ac—ab
o ac—ab  2a% +bc+c? )

Proof. Write M as

The latter matrix is evidently symmetric. (]

The lemma is not true for 3 x 3 matrices as simple examples show.

3. TRANSFORMED GRADE-TWO MODEL EQUATIONS

Let 7 be defined by solving
vr+oju-Vr=p (3.1)

with suitable inflow boundary conditions [5,8]. Then
Vp =vVr+ai(u-V(Vr) + Vu'Vr).

This means that
Vp=Wl+aju-V)Vr+ o Vu'Vr. (3.2)

Thus (2.9) transforms to
(vI+aju-V)(—Au+ Vr) + s Vu'Vr = V- 7. (3.3)

Define

N(u,7) = —ay7Vu + 7 = —a;7Vu’ + o (Vu) oA + (o + a2)AcA —u®u. (3.4)
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Note that N is not a symmetric tensor due to the term 7Vu?. The incompressibility condition V-u = 0 implies
that

V- (7Vu') = Vu'Vr, V-N(u,7) = —a;Vu'Vr + V- 7. (3.5)
Therefore
V-N(u,7) =~y Vu'Vr + V- (g Vu'o A + (a1 + az)AcA —u®u). (3.6)
Thus (3.3) simplifies to
(vI 4+ aqu)(—Au+ V7) = V- N(u,n). (3.7

Now consider a coupled system that looks initially like a problem potentially different from (2.3), which is a
slight variant of the one proposed in [1]:

—Au+Vr=w inQ), V-u=0 inQ, u=g ondf,
wlI4+oau-V)w=V-N(u,7m) inQ, w=w onT_, (3.8)
where
F_:{XEGQ’alg(x)~n<0}.

Much of the paper will be devoted to proving this system is well posed and provides an equivalent formulation
for solution of (2.3).

Theorem 3.1. The solution (u,7) of (3.8) satisfies (3.3). With p given by (3.1), then (u,p) satisfies (2.3)
with T defined by (2.4). The vector function w satisfies

1 ~
w:;(V-T—u-Vu—Vp)—FVW.

Proof. If (u, ) solves (3.8), then (3.7) holds. In view of (3.5), (3.3) then follows. Assuming p solves (3.1), then
Vp satisfies (3.2). Combining (3.2) and (3.3), we get

wI+aju-V)(—=Au)+Vp=V-T,

which is the same as (2.9). Reversing the derivation of (2.9) proves (u, p) satisfies (2.3) with 7 defined by (2.4).
The statement about w just involves replacing —Au in (2.3) by the indicated expressions. O

The difference between (3.8) and equation (2.6) of [1] is that w replaces V- o for a certain tensor o, and a
transport equation is posed for the full tensor o as opposed to the vector w. Using (3.8) gives a smaller system
to solve. The issue of inflow boundary conditions [6,7] did not arise in [1] which was restricted to tangential
flows. Thus in the general case, some suitable expression for ¢ on the inflow boundary would be required.

3.1. An algorithm for the transformed equations

The system (3.8) is analogous to the reduced system in [15], and the algorithm in that paper suggests an
algorithm for solving (3.8): start with some w’, then solve for n > 1

—AU"+Vrh=w""! inQ, V-u"=0 inQ, u'=g ond,
wlI+oqu™ - V)w" =V-N(u",7") inQ, w"'=w onl_. (3.9)

For definiteness, we will take w = w;,. We prove convergence of this iteration for small data (g and w;) in
Section 4.3. To begin with, let us establish a basic bound.
We collect details on the Lebesgue and Sobolev spaces and norms used in Appendix A. Consider the Sobolev
inequalities
lallyz), >4,

_ 3.10
”u”Wéc(Q)—U‘I{HuHWsm)» q>d/2(g>1ifd=2). (3.10)
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Lemma 3.2. The operator in (3.6) is a continuous map
VN W2 Q) x WH(Q) — LY(Q)*
provided q > d. More precisely,
| V-N(u,n) ||Lq(Q) < Cnflu ||Wq2(Q) (H u HW(?(Q) + Hqu(Q))v (3.11)

where Cn < cog(1+ |aa| + |1 + azl), ¢ is a constant that depends only on the dimension d, and oy is the
Sobolev constant in (3.10).

Proof. Applying (3.10) to (3.6), we get
| V- N(u,r) HLQ(Q) < oglag]]u ||qu(9)|\ T ||qu(9) + c|| a1 (Vu)'oA + (a1 + az)AcA —u®u Hqu(Q)
for a constant ¢ that depends only on the dimension d. Note that

[ (Vu)oA Hqu(Q) = [ (Vw)o(Vu+ (Vu)') HWl(Q)
< [[(Vw)'o (Vu+ (Vu)') || Lo + | V((VW)'o (Vu+ (Vu))) || 1,
< [[(Vw)' |, Q)H Vu+ (Vu)'
+ | V((Vu)) o (Vu+ (Vu)')

) Noe)

u)'oV(Vu + (Vu)') |

HLq(Q) (v o)

< llullwy @2l allwi@) + Tallwzo2lallw @ + ol @2l ullwzq-

Thus (3.10) implies

2
Similarly,
2
[AocA Hqu(Q) = H (Vu+ (Vu)t)o(Vu + (Vu)t) qul(m <1204[lu ||Wq2(ﬂ)'
Finally,
la@ullyig) < llu@uli g + Vo) |Lg) <3lulieolalyig
2 2
<30ogllullwie) <30 llullyzq:
Combining these estimates yields (3.11). O

Lemma 3.3. The operator in (3.6) is a continuous map
VN W3Q) x W2(Q) — W, ()"
provided ¢ > d/2 (q > 1 if d = 2). Moreover
| VYN () lagy < On sy (T ls + 17wz ) (3.12)

where Cn < cog(l + |a1| + |a1 + ag|), ¢ is a constant that depends only on the dimension d, and o, is the
Sobolev constant in (3.10).
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Proof. One consequence of the assumption ¢ > d/2 is the Sobolev inequality
/
ITU | o) < 96l T llwr o)l U llwz o

for any tensors T, U.
In view of (3.6), we get

H VV: N(u,7r) HLQ(Q) < |O‘1‘H V(VutVﬂ') HLq(Q)

We have from the Sobolev inequalities (3.13) and (3.10) that

| V(Vu'Vr) ||Lq(Q) <[ vu'va HLq(Q) + || Vu'vir HLq(Q) < (g +og)llu ”Wg(@)” ™ ||Wq2(9)'

Similarly, for a constant ¢ that depends only on the dimension d, we have

|9V (A0A) [0y < 2(I (VA A llagq) + [ (TV-A)A a0 ) < (g +00) a0

The remaining terms are similar.

We can recover the physical pressure p from (3.1), that is

p=vm+aju- V.

+ H VV- (o1 (Vu)'oA + (a1 + az)AcA —u®u)

1013

(3.13)

Iy

(3.14)

One computational challenge is that (2.3) is a third-order PDE due to the presence of the term u - V(Au).

Thus we need to be careful about the number of boundary conditions required to get a unique solution.

3.2. Variational formulation

A variational formulation of (3.9) is as follows. The first two equations can be approximated by the iterated

penalty method: find u™* € Vj, + g such that

/Vu"’g:Vvdx+p/V~u”’€V-vdx:/w”fl'vdx—/V~z€V~vdm Vv e Vp,
Q Q Q Q

2 — gt 4 purt,

Once this is converged, we set u” = u™* and define the pressure via [22]

/w"quz/—V%”lqu Vq € 11y,
Q Q

Note that 7" has mean zero if constant functions are in Ilj, in view of the divergence theorem:

/ﬂ'”dx:/fv-z”ldz:f/ n~z”1ds:c/ n-gds=0.
Q Q o0 a0

We can pose the transport equation (3.9) via: find w” € IN/h + wy, such that

1//w"~vdx+a1/(u”-VW")~de—/(V-N(u",7T”))-vdsz Vv e W,
Q Q Q

where wy, is posed only on the inflow boundary, that is,

?h:{veWh’V:OonF,}, I‘,:{xeaQ‘n-g<0},

(3.15)

(3.16)

(3.17)
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whereas
Vi ={veW,|v=0o0n0Q}.

Note that it is tempting to integrate by parts to get
u/ w" .vdx—l—al/(un.vw") -vdx—i—/ N@",7") :Vvdz =... VYveV,,
Q Q Q

but there would be boundary terms that would need to be added to the formulation.

We can take W}, to be continuous, vector-valued, piecewise polynomials of degree k£ and II;, to be continuous,
scalar-valued, piecewise polynomials of degree k — 1. The use of continuous elements in (3.16) is called the
unified Stokes algorithm (USA) [22].

Recall from (3.6) that

V-N(u,m) = —oq Vu'Vr + V- (a1 (Vu) oA + (a1 + az)AcA —u®u).

Recalling (2.8), we have

[N am) vae = [ —an((Va)va) v

+/ <V~ (Ozl(Vu”)toA" + (a1 + o@A”oA")) -vdz
Q
- / (u"-vu") - vdz, A" = (Vu")! + Vu™.
Q
We can compute the physical pressure p™ from (3.14) via

/ ptgdr = / (v + aju-Vrh)gde Vg ell,, (3.18)
Q Q

but this does not need to be done at each iteration.

3.3. Required inflow boundary conditions

One drawback to the proposed method (3.9) is that it requires specification of boundary conditions for
w = —Au + V7. Although we cannot provide general guidance for this, we can compute boundary conditions
for w for typical flow geometries. We present this in Appendix B.

4. THEORETICAL DETAILS

Here we collect the theoretical details required to prove the validity of our algorithm. We begin with an
assumption about the smoothness of the data and domain. First we assume that for some ¢ > d, g € Wq2 (),

with
]{ n-gds=0.
o0

Further, we assume that there is a constant ¢, such that for any g as above and any w € L(Q) the solution
(u,7) of

—Au+Vr=w and V-u=0 in{), withu=g ondQ (4.1)

satisfies, for s = 0,1,

[u HW;*Z(Q) + 7 HW;*I(Q) < cq(H w HW;(Q) +ls ||W;+2(Q)>7 q < Qs, (4.2)
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where ¢, depends on § as well as ¢. For s = 0, we require Q5 > d, but for s = 1 we only require Q5 > d/2. This
follows from Theorem 5.4 in [13], page 88 when 0 is sufficiently smooth. In our computational tests, we will
have less smoothness with the polyhedral domains used, but these could be approximated by smooth domains.

We will prove the following theorem which establishes the existence of solutions for the grade-two model (2.3)
as well as for the equivalent model (3.8).

Theorem 4.1. Assume that (4.2) holds for the Stokes problem (4.1). Suppose that d/(s +1) < ¢ < Qs, for
s =0,1, and that r satisfies

2 1 1 1
i S R 4.3
d r g + 2 (43)
Then there exist positive, finite constants v and C,, such that if the boundary data satisfy
< 1
[ wy Hqu(Q) +lg HWq?(Q) =821 2y
v
D
| wp HWf(Q) = (U + 1)Cw’7’ (4.4)

1
and || g [[yya(q) < o’

and the initial iterates are sufficiently small, then the iterates (3.9) are bounded for all n > 0:
W sy S0 I gz + 17" g gy < ca(ll € lwgrgy + K)) (4.5)

where K is a finite positive constant and s = 0,1. Moreover, (u™, 7", w™) converge geometrically in W2(Q)? x
WL(Q)x L™(Q)? to the solution (u,7,w) of (3.8), In view of Theorem 3.1, (u,p) is the solution of the grade-two
model (2.3), where p is related to ™ by (3.1).

The constraint (4.3) implies ¢ > 2 for d = 2 and ¢ > 6 for d = 3, and thus the constraint ¢ > d is satisfied
implicitly. In our computational experiments, we will see that the assumptions on the data size may not be very
restrictive in practice.

4.1. L9 bounds on the iterates

Applying (4.2) with s = 0 to the algorithm (3.9), we have

lu ey + 17wz < ca(ll€ Iwagay + 119" oy )- (4.6)
Consider the abstract transport problem
wl+ou-V)w=f inQ, w=w, onl_. (4.7
In [24], it is proved that this has a unique solution satisfying
VWl Loy < 1l Loy + @+ )W [l o) + leal [[u- Vwe || 140 (4.8)

where 2 < ¢ < 0.
Applying (4.8), (3.11), and (4.6), we conclude that

VW™ | pagqy < Cn|lu” qu2(Q) (H u” ||Wq2(Q) + [ =" ||qu(9))
+ (L4 v)[|we ||Lq(Q) + lea | [[u™ - Vwy ||Lq(Q)

< Onegll a8 w2y + 9" oy )

+ (A2 llpaga) + laal 110" iy ol W llwy -
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Thus (3.10) implies
VI[wW™ [ L) < Oneglln™ llwz o) (|| 8llwao + || W ||Lq(9))
+ @+ ) We || Loy + Tglaa| [ u” HWQZ(Q)” Wy ||qu(Q)

< (caCn 8 Iz + Falen 15 s ) 0™ iy o

+ Cnegl[u” ||Wq2(Q) H w HLq(Q) + (1 +v)[we ||LQ(Q)'

Define w,, = || w' ||Lq(Q)7 Tn = ” u” HW?(Q)’ and

e = max{v ™! (cCnll g llwz(e) + Taloal 1Ws lws ey )» L+ LW s s all €z |-

Let Cg = Cncy/v. Then we have proved that

Nn < €+ CqWn—1
wn < Capwn—1 + €(1 +n5) = (Cown—1 + €)mn + €
< (Cown—1+€)(e + cqwn_1) + € = Cacqw2_1 + e((Cq + cg)wn_1 + 1) + €.
Define 7 to be any constant such that
v > 7y = max{c,Cq,¢q + Cq, 1}.
Then (4.9) implies
wn <ve(l+e+wp1)+ywi_y.
Choosing € < 1/4~, we conclude that
wp, < 6(’7 + %) + iwn,l + 7%2171-
Thus if w,—1 < %, then
! 1
wn <e(y+ 1)+ 3wn1 <e(y+3)+ &

Now choose .

=iy

(4.9)

(4.10)

Then we conclude that w,, < % as well. Note that by definition, v > 1, so € < 1/4~. Recall that we have taken

W0 = Wp.

Therefore, if the boundary data is sufficiently small, e.g.,
< 1
| Wy HW;(Q) +1s HWq?(Q) = 8212y

we conclude that in particular that || w? HLQ(Q) < %, and thus

1

W™ ooy < 7

for all n > 0. Thus also

1 c
oz + 17" lngeon < <o (118 Igon + ) < 52

for all » > 0. Note that we can take the constant ~ as large as we like.

(4.11)

(4.12)

(4.13)
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4.2. qu bounds on the iterates
Applying (4.2) with s =1 to the algorithm (3.9), we have

[u” ||W§(sz) + [ =" ng(sz) < Cr(” g ng(sz) + H wi HW}(Q))' (4.14)

In [24], it is proved that the unique solution of (4.7) satisfies

vIwllwio) < 1€ llwio) + corll £ ll o) + X+ ) Wo i) + laal [u- Vwy [l g, (4.15)
where 1 <7 < 2 and ¢ < oo satisfies
111
qg r 2

Applying (4.15) with f = V- N(u”,7™) as in (3.9), then (3.12), (3.11), (4.14), and (3.13) imply that

VW sy < ON U™ sy (19" vagay + 175" ey

+ Onearll 0z (10" ey + 17" lwa o)
+ (1 +v)|wy ||W,3(Q) + o] || u” - Vwy ||W71,(Q)

. CnCiegr
< one (g lws + %" o) T Tl

+ |C¥1|(|| u” HL‘X’(Q)” Wb ||W3(Q) +o7l[u” HW,?(Q)” Wb HWﬁ(Q))' (4.16)

Note that Holder’s inequality and (4.13) imply

n - n 1—r C
[u HW;%(Q) <ot /qH u ||Wq2(Q) <€ /qﬁ'
Combining this with (4.16) yields
n e CnC2egr
v||w ||W}(Q) < One; (93 + H wr HW}(Q)) 4;2
ai|(oq + ol Q)¢
" ((1 4 1) 4 2l 22 ) | wy s (417)

where g3 = || & [lyy3(q), Provided v satisfies (4.10). Define C,, = v~ 1Cnc? and

Cnciegr 1 lai|(og + 0l |Q17/9) ¢,
6=W4‘; (I+v)+ 2 1w w2

Then (4.17) implies
2
n n—1
W™l o §Cw(93+”“’ HW}(Q)) te

Define w™ = Cy, || w" ||W%(Q). Then we have

W™ < (Cugs + ") + Cpe. (4.18)

Assume that y

o 4.19
Wb llwz (o) < (v +1)Cyuy o
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Then

gl

Cu
¢ 4v~?

By taking ~ sufficiently large, we have
Cye

More precisely, this holds when

2
CwCncicqr

2w +1)?

<

=N

< Gelnegey 1 Joal(on + ol )ey

Y=Zm = maX{%, 1
vV

where g is defined in (4.10). Assume further that

2(v+1)

1
93 =g llwa < Cory’
w

Then (4.18) and (4.20) imply that

Note that (4.19) implies that

W’ = Cy W’ Hw,}(m = Cull Wy llwy (o) < Coll Wo llwz) <

Under the inductive hypothesis that

then (4.23) implies that

provided that v > 16. Therefore (4.24) implies that

W™ lwi) <

for all n, provided that

3
§*7
aé
2 2 3
+-<-
aé v
3 _ 3v
Cwy Onc2y’

¥ > v2 = max{7yi, 16},

where 7 is defined in (4.21).
Using (4.14), we find

[u™ [l + 17" e < Cr(H 8wz + | wn! HW}(Q)) =

for all n > 0, under the assumptions (4.19) and (4.22),

Cr=—+

Cu

where

3v
CNCT

o] (o + o/ ]Q 7/ cq }

o
5

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)
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4.3. Convergence estimates
Recall the tensor 7 introduced in (2.10):
T =0a1(Vu) oA + (a1 + ax)AcA —u®u

Thus (3.4) and (3.6) imply
V-N(u,7) = —ayVu'Vr + V- 7. (4.29)

To estimate terms involving N, note that for any two sequences a™ and b",
anbn _ anflbnfl _ anbn _ anbnfl _'_anbnfl _ alnflbnfl — an(bn _ bnfl) 4 (an _ alnfl)bnfl
Thus (4.29) implies

H \v2 (N(u7z7ﬂ_n) _ N(un_lﬂrn_l)) < ‘041| H v(un _ un_l)tVWn + V(ﬂ'n - w”_l)(Vu"_l)t

||L"‘(Q) LT (Q)

+Jou| H V(") 'o (A" — A" 4 V(u” — u) 0 A"

e
+ |ar + oo || (A" + AP N o (A" — AT HW}(Q)

+ H u" ® (un _ un—l) + (un _ un—l) ® un—l le(g)' (430)
We examine these four terms separately. First, (3.13), (4.27), (3.10), and (4.13) give

H V(u" — u"_l)tVﬂ'" + V(ﬂ'" — ﬂ”_l) (Vu"_l)t

L ()
<ol V(u" —u") ||W3(Q)” V" lwie) + | V(" — 7"

LT(Q)H Vur! ||Loo(Q)

I
< T =0y o T )

||W,3(Q) Lr(Q)H u"! ng(ﬂ)
94

Cr0, _
< —Hu" —u" 1HW3(Q)+ 2y

< ="~
gl

n—1
™ ||va1 Q)"
For the second term, there is a constant C' depending only on the dimension such that

nyt n _ An—1 n_ ..n—1 t n—1
| vy o(am = A" 4 V(" —u!) oA ngm)
< C(H u” ngo(fz) +| u"! HW;(Q)) " — u" ! ||W3(Q)
< Ceqoq

< " —
B!

n—1
u HWE(Q)’
and a similar estimate holds for the third and fourth terms. Thus (4.30) shows that

n .n n— n— c n n— n n—
| V- (N(u",7") = N(u"~", 7"71)) HLT(Q) < ;(H“ —u"! ||W3(Q) +|[ 7" =t ||WT1(Q))

CC”‘ || Wn—l n—2

< - W
Y

L) (4.31)

At the last step, we utilized the fact that u™ — u"~! is zero on the boundary, so we could apply (4.2) directly.
Define e = w™ — w" L. Then from (3.9)

ve+au"”-Ve=G — oy (u” — u”fl) SVwh L
G=V-(N(u",7") — N@u" ' 7). (4.32)
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Sobolev’s inequality implies that
IVl < IV Iz (4.33)
for any r > d/2 (r > 1 if d = 2). Applying (4.8), (4.31), (4.33), and (4.25) implies

n n— CCT n— n— n n— n—
vl w" —w IHLT(Q) =7 [w'™ —w 2|Lr(9)+|0‘1‘||u —u IHL‘X’(Q)HW IHW}(Q)
Ce, n— n_ n e e
=< ~ | w f-w 2|L7'(Q)+|a1‘c/||u -u 1”W3(Q)||W 1||W}(Q)
CCT n— n— 3I/|Oé |C/ n n—
S ~ (R L7(Q) TS%H —u"! ||W3(Q)' (4.34)
Applying (4.2) to (4.34), we get
n e 1/Cc 3lag|d e e
| w" —w 1HLT(Q)S7< Vr+ C;CT)HW 1w 2‘”9). (4.35)
Taking ~ sufficiently large, that is,
o 2Cec,  6lag|d
V=3 = max{ﬁz, + Onen }7 (4.36)

where 72 is defined in (4.26), and correspondingly restricting the size of the data as in (4.11), (4.19), and (4.22),
if necessary, we conclude from (4.35) and (4.36) that

H w — wn—l |

n—2 |

<sfwrt—w

LT () Lr(Q)

Therefore the sequence w” converges geometrically in L"(€2)¢. Subtracting iterates in (3.9), we find

—AU" ")+ VA" - =wr w2 inQ,

V-"—u"1)=0 inQ, u"—u"'=0 on 0f).

Thus (4.2) implies that

n

[u (4.37)

_ u’n—l HWTz(Q) =+ H at— 71_’n—l HWTI(Q) < C’I‘H Wn—l _ Wn—2 |

LI(Q) )

and thus the sequence u” converges geometrically in W?2(Q)? and the sequence 7" converges geometrically in
W2L(€). This completes the proof of Theorem 4.1.

5. COMPUTATIONAL EXPERIMENTS

Here we explore computational techniques for implementing the grade-two algorithm. Table 1 presents results
for the algorithm (3.9) for v = @; = as = 1, implemented using quadratic and cubic elements using the iterated-
penalty method (IPM) [9], on the unit square domain (B.1) with L = 1 and boundary data (B.11) with U = 1.
The exact 7 is quadratic as indicated in (B.8). Using piecewise degree k elements for Vj, results in piecewise
degree k — 1 elements for the pressure approximation. Thus for & = 2, the pressure approximation is only
piecewise linear, and the approximation of m dominates the overall errors. Table 1a indicates that the error e,
is close to second order. But for k£ = 3, the exact 7 is in the pressure space, and we get essentially round-off
error. Due to some sort of instability, the errors grow as the mesh size is reduced, but they are significantly
smaller than for the case k = 2. Figure 2 shows that there is a localized error that occurs in w; (which should
be identically zero) near the corners of the inflow boundary. This pollutes the component wsy (which is isolated
in Tab. 1) and causes errors in u and . Computations for k = 4 yielded similar results as for the k = 3 case.

The error for approximating w in H' are much worse than for other errors. But we know from Section 4.2
that the transport problem does not have uniform bounds in H*, so the larger errors are not surprising.
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TABLE 1. Grade-two simulations of Poiseuille flow in the domain (B.1) with L =1 and v =1
and boundary data (B.11) with U = 1 using (a) piecewise quadratics for V}, and (b) piecewise
cubics for V3. The mesh consisted of an M x M array of Malkus splits (squares divided into four
triangles by the bisectors) [26]. The algorithm (3.9) was implemented using the iterated penalty
method (3.15). The column “iters” indicates the number of iterations of (3.9). The pressure was
computed via USA [22] as described in (3.16) with II;, begin continuous piecewise polynomials

of degree k — 1. Errors: ey = [|[u—up || g1, exr = |7 — 7 || 12, ewrt = | W — Wi | g1, €0y =
[wr —wip g5 €w, = [Jw2 = wap g1, w2l W —wi |12

M U [e %1 a2 iters  eu en Cw, H! €w, Cwsy Ew, L2

8 1.0 1.0 1.0 23 3.20e-03  1.44e-02 1.72e-01 2.37e-02 1.70e-01  2.43e-02

16 1.0 1.0 1.0 29 1.15e-03  4.65e-03 1.36e-01 1.70e-02 1.35e-01  1.29e-02
(a) 32 1.0 1.0 1.0 37 3.48¢-04  1.38e-03 1.02e-01 1.18e-02 1.01e-01  5.82e-03

64 1.0 1.0 1.0 46 9.86e-05 3.88e-04 7.44e-02 8.31e-03 7.40e-02 2.37e-03

128 1.0 1.0 1.0 58 2.76e-05 1.07e-04 5.35e-02 5.87e-03 5.32e-02 9.11e-04

256 1.0 1.0 1.0 &0 7.59e-06  2.92e-05 3.82e-02 4.15e-03 3.80e-02  3.39e-04

8 1.0 10 1.0 2 4.13e-10  6.30e-10  5.15e-08 1.27e-08 4.99e-08  3.15e-09

16 1.0 10 1.0 2 8.75e-10  1.89e-09 3.71le-07 4.17e-08 3.69e-07 1.17e-08
(b) 32 1.0 10 1.0 2 2.03e-09  6.97e-09 2.89e-06 1.52e-07 2.89e-06 4.61e-08

64 1.0 1.0 10 2 5.67e-09 2.76e-08 2.30e-05 7.02e-07 2.30e-05 1.84e-07

128 1.0 1.0 10 3 2.09e-08  1.03e-07 1.88e-04 4.39e-06 1.88e-04 7.59e-07

Sy
1
n
0 ¥
!
1 0

FIGURE 2. The component w; for the computations in Table 1b with M = 16.

6. CONCLUSIONS

1021

We developed an algorithm for solving the general grade-two model of non-Newtonian fluids which for the first
time allows nontrivial inflow boundary conditions. The new algorithm couples a Stokes equation for the fluid
velocity with a transport equation for an auxiliary vector-valued function. As a third-order partial differential
equation, the grade-two model requires an additional boundary condition, and our new formulation leads to a
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condition with a clear physical interpretation. We prove that the model is well posed using an iterative algorithm
in function space by proving the iteration converges geometrically for sufficiently small data.

Finally, we demonstrated computationally that this algorithm can be successfully discretized. In subsequent
work we will investigate the numerical discretization of the model in more detail.

APPENDIX A. SPACES

Here we collect the notation used for various Sobolev spaces and norms. We denote by LP(Q2) the Lebesgue
spaces [9] of p-th power integrable functions, with norm

1/p
1 fllzoge) = (/Q |f(x)[P ddf) -

Note that we can easily apply the same notation to vector or tensor valued f. We think of tensors of any arity
as vectors of the appropriate length, and we think of | f(x)| as the Euclidean length of this vector. For tensors of
arity 2 (i.e., matrices) this is the same as the Frobenius norm. We will write the spaces for such tensor-valued
functions as LP(Q)™ for the appropriate m (e.g., m = d? for arity 2). Similarly, we denote by L>°() the
Lebesgue space of essentially bounded functions, with

Il f HLM(Q) = sup{\f(x)| ’ a.e.x € Q}
Correspondingly, we define Sobolev spaces and norms of order m by

1/p

I f ||W;)"(Q) = Z | D f ||Ij:p(Q) )

la]<m

where D is the weak derivative 9%/9x!®l [9]. More precisely, the spaces W, (Q) are defined as the subspaces
of LP(Q) for which the corresponding norm is finite. The case p = 2 is denoted by H:

H™(Q) = Wi (€).

We will briefly use the space HE(Q) of f € H'(Q) such that f = 0 on 9. The dual space H(Q)? is the set
of Schwartz distributions [25] for which the dual norm

_ (u- @)
[ullg-ry= sup 7
ozperi (@) || @l o)
is finite.
APPENDIX B. DETERMINING INFLOW BOUNDARY CONDITIONS
The proposed method (3.9) requires specification of boundary conditions for w = —Au + Vx. Here we

compute the stress w for typical flow geometries.
B.1. Grade-two channel flow
To be specific, we define the domain €2 to be
Q={xeR*|0<z <L, 0<azy <1}. (B.1)

Suppose that us = 0 and u; depends only on xo. This is true for shear flow (Couette flow) and pressure-driven
flow (Poiseuille flow). For the remainder of this subsection, we refer to u; as just u to simplify notation. For
such flows, u- Vu = 0, and the strain rate Vu is given by

(o . (00
Vu = <0 O>’ vVu' = (u’())'
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Thus

A= <3, %/> u-VA=0, AcA= <(“(;)2 (u(’))2> = (u')*T,

Ao(Vu) = (8 (u(,))g) (Vu)'oA = (Alo(Va)) = (Ao(Vu))' = (8 (u9>2>7

(Vu)oA — (<“(;)2 8) Ao(Vu) = (Vu)oAY): = (Vu)oA)!

Il
R
—
o &
S~—
()
oo
Nall?

We can use the formula (2.2) to compute the stress:

Te = V(B %) +2m (8 (u9)2> + 0‘2<(u(;)2 (u9)2>
=Ty + («)? <%2 - i a2>. (B.2)

The tensor 7 is given by (2.10):

T =01 (Vu)'oA + (a; + az)AcA —u®u

~on{g ) + e () - (50)
=@ ("™ g, )~ (50 3

We can compute V-7 as follows. By definition, (V-7); = Zj Tij,j = Ti2,2 since T is constant in x; and thus

7i1,1 = 0. Therefore
_ [(T12,2) _ 0 _ s (0
V-1 = (7_2272> = <7_22’2> = (201 + a2)2u'u (1>

_ t _ 00 ne [ Q1+ ag 0 u? 0
N(u,7) = —a17Vu +T——a17r(u, 0>+(u) ( 0 2a1+a2) - (0 O)’

and from (3.5) we find

Similarly,

)+ @+ et (). o

For shear flow, u is linear, so u’ is constant, and thus T is constant. Therefore V- T = 0. Similarly, Au = 0,
and p is constant. Suppose that pg is this constant. If we specify that w|r_ = pg, then we conclude that 7 is also
constant (m = pg). Thus w = 0 as well. But there could be other solutions for other choices of |p_, leading to
nonconstant 7. In that case, w = Vr # 0.

0
V:N(u,7) = —aqu’ <7r

x1

B.2. Poiseuille flow

For Poiseuille flow, u is quadratic, and V-Tg is not even constant. Since u - Vu = 0, the top equation in
(2.3) takes the form

(—Vu;g: pxl) = VvAu+Vp=V-(Tc—Ty) = ((2a1 + aZ)((U’)z)/)

Then we get two equations for the pressure:

Pzy = Vu”, Day = (2041 + Otz)((ul)Z)I.



1024 S. POLLOCK AND L.R. SCOTT

Define
p(x) = vu"z; + (201 + a2)(W)? +¢p. (B.5)

This function satisfies the required equations for the pressure for any constant c,.
The equation relating p and 7 is p = v7m + 1 umy,, SO

v+ aqumy, = vu'r + (201 + a2)(W)? + ¢, (B.6)
Let us make the ansatz that 7(x) = u”z1 + f(z2). Computing, we find

v+ aqumy, = vu' vy +vf(ze) + aguu”
=p(x) — (201 + a2)(u)? — ¢, + vf(22) + ayun”.

Thus our ansatz if valid if

flz2) = v (201 + a2)(W)? + ¢ — aqun”). (B.7)
Therefore .
m(x) = vz + v (201 + a2) (W) — aquu) + 2 (B.8)
v
Applying (B.8) to (B.4), we get
; uf0 ; (0 ; (0
V-N(u,7m) = —aqu'u 1)+ (201 + a2)2u’u 1) = (B + 202)u’u Nk (B.9)

Let us check the first equation in (3.8). We have (recall that v" = 0)

(1 - u” - 0
Au=uqu (0)’ va = (V1(3a1 + 2a0)u’u” = w= v1(3ay + 2a0)u'u" )° (B.10)

Note that w ,, = 0. Thus (3.8) implies that
V-N =vw,

which is consistent with (B.9). Thus (B.10) gives a boundary condition for the inflow boundary I'_ suitable
for use in the algorithm (3.9) to compute Poiseuille flow. More importantly, it can be used for more complex
pressure-driven flows in which the inlet is a two-dimensional channel.

To summarize, for shear (Couette) flow, u” = 0, so w = 0. For Poiseuille flow, in the channel (B.1),

u=Uxo(L —x5), o =U(L—21x5), ' =-2U, u'v"=20?2xs— L),

so we can take

2o(L — 2U? 0
gzuzU( oL 2)), vv:—V(L—Qatg)(2a2+3a1>. (B.11)
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