Shape reconstructions by using plasmon resonances
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 2, pp. 705-726

We study the shape reconstruction of an inclusion from the faraway measurement of the associated electric field. This is an inverse problem of practical importance in biomedical imaging and is known to be notoriously ill-posed. By incorporating Drude’s model of the permittivity parameter, we propose a novel reconstruction scheme by using the plasmon resonance with a significantly enhanced resonant field. We conduct a delicate sensitivity analysis to establish a sharp relationship between the sensitivity of the reconstruction and the plasmon resonance. It is shown that when plasmon resonance occurs, the sensitivity functional blows up and hence ensures a more robust and effective construction. Then we combine the Tikhonov regularization with the Laplace approximation to solve the inverse problem, which is an organic hybridization of the deterministic and stochastic methods and can quickly calculate the minimizer while capture the uncertainty of the solution. We conduct extensive numerical experiments to illustrate the promising features of the proposed reconstruction scheme.

DOI : 10.1051/m2an/2022021
Classification : 65N21, 35R30, 78A46, 65H50
Keywords: Shape reconstruction, plasmon resonance, sensitivity analysis, Tikhonov regularization, Laplace approximation
@article{M2AN_2022__56_2_705_0,
     author = {Ding, Ming-Hui and Liu, Hongyu and Zheng, Guang-Hui},
     title = {Shape reconstructions by using plasmon resonances},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {705--726},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {2},
     doi = {10.1051/m2an/2022021},
     mrnumber = {4393618},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2022021/}
}
TY  - JOUR
AU  - Ding, Ming-Hui
AU  - Liu, Hongyu
AU  - Zheng, Guang-Hui
TI  - Shape reconstructions by using plasmon resonances
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2022
SP  - 705
EP  - 726
VL  - 56
IS  - 2
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2022021/
DO  - 10.1051/m2an/2022021
LA  - en
ID  - M2AN_2022__56_2_705_0
ER  - 
%0 Journal Article
%A Ding, Ming-Hui
%A Liu, Hongyu
%A Zheng, Guang-Hui
%T Shape reconstructions by using plasmon resonances
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2022
%P 705-726
%V 56
%N 2
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2022021/
%R 10.1051/m2an/2022021
%G en
%F M2AN_2022__56_2_705_0
Ding, Ming-Hui; Liu, Hongyu; Zheng, Guang-Hui. Shape reconstructions by using plasmon resonances. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 2, pp. 705-726. doi: 10.1051/m2an/2022021

[1] H. Ammari, H. Kang, M. Lim and H. Zribi, The generalized polarization tensors for resolved imaging. Part I: Shape reconstruction of a conductivity inclusion. Math. Comp. 81 (2012) 367–386. | MR | Zbl | DOI

[2] H. Ammari, G. Ciraolo, H. Kang, H. Lee and G. Milton, Spectral theory of a Neumann-Poincaré-type operator and analysis of cloaking due to anomalous localized resonance. Arch. Ration. Mech. Anal. 208 (2013) 667–692. | MR | Zbl | DOI

[3] H. Ammari, Y. Chow, K. Liu and J. Zou, Optimal shape design by partial spectral data. SIAM J. Sci. Comput. 37 (2015) B855–B883. | MR | DOI

[4] H. Ammari, Y. Deng and P. Millien, Surface plasmon resonance of nanoparticles and applications in imaging. Arch. Ration. Mech. Anal. 220 (2016) 109–153. | MR | DOI

[5] H. Ammari, P. Millien, M. Ruiz and H. Zhang, Mathematical analysis of plasmonic nanoparticles: the scalar case. Arch. Ration. Mech. Anal. 224 (2017) 597–658. | MR | DOI

[6] H. Ammari, Y. Chow and H. Liu, Quantum ergodicity and localization of plasmon resonances. Preprint (2020). | arXiv | MR

[7] H. Ammari, Y. Chow, H. Liu and M. Sunkula, Quantum integral systems and concentration of plasmon resonance. Preprint (2021). | arXiv

[8] H. Ammari, Y. T. Chow and H. Liu, Localized sensitivity analysis at high-curvature boundary points of reconstructing inclusions in transmission problems. SIAM J. Math. Anal. (2022). DOI: . | DOI | MR

[9] K. Ando, H. Kang and H. Liu, Plasmon resonance with finite frequencies: A validation of the quasi-static approximation for diametrically small inclusions. SIAM J. Appl. Math. 76 (2016) 731–749. | MR | DOI

[10] J. Anker, W. Hall, O. Lyandres, N. Shah, J. Zhao and R. Van Duyne, Biosensing with plasmonic nanosensors, and Applications, Cambridge University Press, New York (2010).

[11] G. Baffou, C. Girard and R. Quidant, Mapping heat origin in plasmonic structures. Phys. Rev. Lett. 104 (2010) 136805. | DOI

[12] E. Blåsten, H. Li, H. Liu and Y. Wang, Localization and geometrization in plasmon resonances and geometric structures of Neumann-Poincaré eigenfunctions. ESAIM: M2AN 54 (2020) 957–976. | MR | Zbl | Numdam | DOI

[13] E. Blåsten and H. Liu, Recovering piecewise constant refractive indices by a single far-field pattern. Inverse Probl. 36 (2020) 085005. | MR | DOI

[14] E. Blåsten and H. Liu, On corners scattering stably and stable shape determination by a single far-field pattern. Indiana Univ. Math. J. 70 (2021) 907–947. | MR | DOI

[15] E. Blåsten and H. Liu, Scattering by curvatures, radiationless sources, transmission eigenfunctions, and inverse scattering problems. SIAM J. Math. Anal. 53 (2021) 3801–3837. | MR | DOI

[16] G. Bouchitté and B. Schweizer, Cloaking of small objects by anomalous localized resonance. Quart. J. Mech. Appl. Math. 63 (2010) 437–463. | MR | Zbl | DOI

[17] X. Cao, H. Diao, H. Liu and J. Zou, On nodal and generalized singular structures of Laplacian eigenfunctions and applications to inverse scattering problems. J. Math. Pures Appl. 143 (2020) 116–161. | MR | DOI

[18] Y. T. Chow, Y. Deng, Y. He, H. Liu and X. Wang, Surface-localized transmission eigenstates, super-resolution imaging, and pseudo surface plasmon modes. SIAM J. Imaging Sci. 14 (2021) 946–975. | MR | DOI

[19] A. Cintrón-Arias, H. Banks, A. Capaldi and A. Lloyd, A sensitivity matrix methodology for inverse problem formulation. J. Inverse Ill-Pose. P. 17 (2009) 1–20. | MR | Zbl

[20] Y. Deng, J. Li and H. Liu, On identifying magnetized anomalies using geomagnetic monitoring. Arch. Ration. Mech. Anal. 231 (2019) 153–187. | MR

[21] Y. Deng, J. Li and H. Liu, On identifying magnetized anomalies using geomagnetic monitoring within a magnetohydrodynamic model. Arch. Ration. Mech. Anal. 235 (2020) 691–721. | MR

[22] Y. Deng, H. Li and H. Liu, Analysis of surface polariton resonance for nanoparticles in elastic system. SIAM J. Math. Anal. 52 (2020) 1786–1805. | MR

[23] Y. Deng, H. Liu and G. Zheng, Mathematical analysis of plasmon resonances for curved nanorods. J. Math. Pures Appl. 153 (2021) 248–280. | MR

[24] Y. Deng, H. Liu and G. Zheng, Plasmon resonances of nanorods in transverse electromagnetic scattering. J. Differ. Eqs. 318 (2022) 502–536. | MR

[25] H. Diao, X. Cao and H. Liu, On the geometric structures of transmission eigenfunctions with a conductive boundary condition and applications. Commun. Partial Differ. Equ. 46 (2021) 630–679. | MR

[26] A. Doicu, T. Trautmann and F. Schreier, Numerical regularization for atmospheric inverse problems, Springer Science & Business Media (2010). | MR | Zbl

[27] X. Fang, Y. Deng and J. Li, Plasmon resonance and heat generation in nanostructures. Math. Method. Appl. Sci. 38 (2015) 4663–4672. | MR

[28] X. Fang, Y. Deng and H. Liu, Sharp estimate of electric field from a conductive rod and application. Stud. Appl. Math. 146 (2021) 279–297. | MR

[29] T. Feng, H. Kang and H. Lee, Construction of GPT-vanishing structures using shape derivative. J. Comput. Math. 35 (2017) 569–585. | MR

[30] Y. Gao, H. Liu, X. Wang and K. Zhang, On an artificial neural network for inverse scattering problems. J. Comput. Phys. 448 (2022) 110771. | MR | DOI

[31] D. Grieser, The plasmonic eigenvalue problem. Rev. Math. Phys. 26 (2014) 1450005. | MR | Zbl | DOI

[32] M. Hanke, A regularizing Levenberg-Marquardt scheme with applications to inverse groundwater filtration problems. Inverse Probl. 13 (1997) 79. | MR | Zbl | DOI

[33] M. Hanke, Recent progress in electrical impedance tomography. Inverse Probl. 19 (2003) S65–S90. | MR | Zbl | DOI

[34] M. Hintermüller, A. Laurain and I. Yousept, Shape sensitivities for an inverse problem in magnetic induction tomography based on the eddy current model. Inverse Probl. 31 (2015) 065006. | MR | DOI

[35] M. Iglesias, K. Law and A. Stuart, Evaluation of Gaussian approximations for data assimilation in reservoir models. Comput. Geosci. 17 (2013) 851–885. | MR | DOI

[36] P. Jain, K. Lee, I. El-Sayed and M. El-Sayed, Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biomedical imaging and biomedicine. J. Phys. Chem. B 110 (2006) 7238–7248. | DOI

[37] R. Kress, Linear Integral Equations, 2nd edition, Springer (1999). | MR | Zbl

[38] H. Li and H. Liu, On anomalous localized resonance and plasmonic cloaking beyond the quasistatic limit. Proc. Roy. Soc. A 474 (2018).

[39] H. Li, J. Li and H. Liu, Quasi-static cloaking due to anomalous localized resonance in 3 . SIAM J. Appl. Math. 75 (2015) 1245–1260. | MR | DOI

[40] H. Li, J. Li and H. Liu, On novel elastic structures inducing polariton resonances with finite frequencies and cloaking due to anomalous localized resonances. J. Math. Pures Appl. 120 (2018) 195–219. | MR

[41] H. Li, S. Li, H. Liu and X. Wang, Analysis of electromagnetic scattering from plasmonic inclusions beyond the quasi-static approximation and applications. ESAIM: M2AN 53 (2019) 1351–1371. | MR | Zbl | Numdam

[42] S. Link and M. El-Sayed, Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int. Rev. Phys. Chem. 19 (2000) 409–453.

[43] H. Liu and C. H. Tsou, Stable determination of polygonal inclusions in Calderón’s problem by a single partial boundary measurement. Inverse Probl. 36 (2020) 085010. | MR

[44] H. Liu, C. H. Tsou and W. Yang, On Calderón’s inverse inclusion problem with smooth shapes by a single partial boundary measurement. Inverse Probl. 37 (2021) 055005. | MR

[45] I. Mayergoyz, D. Fredkin and Z. Zhang, Electrostatic (plasmon) resonances in nanoparticles. Phys. Rev. B 72 (2005) 155412.

[46] G. Milton and N. Nicorovici, On the cloaking effects associated with anomalous localized resonance. Proc. R. Soc. A 462 (2006) 3027–3059. | MR | Zbl

[47] J. Nam, C. Thaxton and C. Mirkin, Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 301 (2003) 1884–886.

[48] D. Nicholls and X. Tong, A high-order perturbation of surfaces algorithm for the simulation of localized surface plasmon resonances in two dimensions. J. Sci. Comput. 76 (2018) 1370–1395. | MR

[49] M. Ordal, L. Long, R. Bell, S. Bell, R. Bell, R. Alexander and C. Ward, Optical properties of the metals al, co, cu, au, fe, pb, ni, pd, pt, ag, ti, and w in the infrared and far infrared. Appl. Opt. 22 (1983) 1099–1119.

[50] G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, A. Nichtl and K. Kürzinger, Biomolecular recognition based on single gold nanoparticle light scattering. Nano Lett. 3 (2003) 935–938.

[51] D. Sarid and W. Challener, Modern Introduction to Surface Plasmons: Theory, Mathematical Modeling. Nat. Mater. 7 (2008) 442–453.

[52] C. Schillings, B. Sprungk and P. Wacker, On the Convergence of the Laplace Approximation and Noise-Level-Robustness of Laplace-based Monte Carlo Methods for Bayesian Inverse Problems. Numer. Math. 145 (2020) 915–971. | MR | Zbl

[53] S. Schultz, D. Smith, J. Mock and D. Schultz, Single-target molecule detection with nonbleaching multicolor optical immunolabels. Proc. Natl Acad. Sci. USA 97 (2000) 996–1001.

[54] C. Vogel, Computational Methods for Inverse Problems. SIAM (2002). | MR | Zbl

[55] W. Yin, W. Yang and H. Liu, A neural network scheme for recovering scattering obstacles with limited phaseless far-field data. J. Comput. Phys. 417 (2020) 109594. | MR | Zbl

[56] G. Zheng, Mathematical analysis of plasmonic resonance for 2-D photonic crystal. J. Differ. Eqs. 266 (2019) 5095–5117. | MR | Zbl

Cité par Sources :