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SHAPE RECONSTRUCTIONS BY USING PLASMON RESONANCES

MiNG-Hur DiNG!, HONGYU Liu** AND GUANG-HUI ZHENG!*

Abstract. We study the shape reconstruction of an inclusion from the faraway measurement of the
associated electric field. This is an inverse problem of practical importance in biomedical imaging and
is known to be notoriously ill-posed. By incorporating Drude’s model of the permittivity parameter, we
propose a novel reconstruction scheme by using the plasmon resonance with a significantly enhanced
resonant field. We conduct a delicate sensitivity analysis to establish a sharp relationship between the
sensitivity of the reconstruction and the plasmon resonance. It is shown that when plasmon resonance
occurs, the sensitivity functional blows up and hence ensures a more robust and effective construction.
Then we combine the Tikhonov regularization with the Laplace approximation to solve the inverse
problem, which is an organic hybridization of the deterministic and stochastic methods and can quickly
calculate the minimizer while capture the uncertainty of the solution. We conduct extensive numerical
experiments to illustrate the promising features of the proposed reconstruction scheme.
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1. INTRODUCTION

Plasmon resonance is the resonant oscillation of conduction electrons at the interface between negative and
positive permittivity material stimulated by incident field. Plasmonics is revolutionizing many light-based tech-
nologies via electron oscillations in metals. We refer to [10,11,36,47,50,53] and the references cited therein for
many striking optical, phononic, biomedical, diagnostic and therapeutic applications in the physical literature.
Recent studies have revealed the deep and intriguing connection between the plasmon resonance and the spec-
tral study of the Neumann-Poincaré operator [2,6,7,12,23,24,31,42,45]. In addition, there are many theoretical
understandings and conceptual proposals about plasmonic devices.

In [5], by analyzing the imaginary part of the Green function, it is shown that one can achieve super-resolution
and super-focusing by using plasmonic nanoparticles. In [6, 7, 12], it is shown that the plasmon resonance
concentrates and localises at high-curvature places, which can provide potential application in super-resolution
imaging of plasmon particles. We would also like to mention in passing some related studies on plasmonic
cloaking [2,9,16,22,23,38-41,46,56].
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In this paper, we study the shape reconstruction of an inclusion from the faraway measurement of the
associated electric field. This is an inverse problem of practical importance in biomedical imaging and is known
to be notoriously ill-posed. By incorporating Drude’s model of the permittivity parameter, we propose a novel
reconstruction scheme by using the plasmon resonance with a significantly enhanced resonant field.

We next introduce the mathematical formulation of the inverse shape problem for our study. Let D C R? be a
bounded domain with a connected complement R?\ D. Given a harmonic function H, we consider the following
electrostatic problem:

(1.1)

V. (eVu(x))=0  in R2,
u(z) — H(z) = O(|z[7") as |z] — +oo,

where
e = epx(D) + emx(R*\D), (1.2)

and x is the characteristic function. (1.1)—(1.2) describes the transverse electromagnetic propagation in the
quasi-static regime. u signifies the transverse electric field and e signifies the permittivity parameter of the
medium. Throughout, we shall assume that the background parameter ¢, is a positive constant, whereas €p
is a complex-valued function of the illuminating frequency and fulfils the Drude’s model. We shall supply more
details about the Drude model in what follows. The shape reconstruction problem can be formulated as follows:

Inverse Problem (IP): Identify the shape of the inclusion, namely 9D, from the measurement data u® = u— H
on 0f) with D € ) associated with a fixed incident field H. For simplicity, we take {2 to be a central ball of
radius r € R4 with r sufficiently large. Hence, the measurement represents the far-field pattern of the electric
field.

The shape reconstruction problem introduced above is severely ill-posed and highly nonlinear. First, it is well
known that due to the diffraction limit, the far field excited by the object carries information on a scale much
larger than the operating wavelength, while information on a scale smaller than the operating wavelength is
confined near the object itself. In addition, the scattering information in the quasi-static regime is very weak,
and in the presence of measurement noise, the signal-to-noise ratio in the far field is low and signal distortion is
serious [8]. We also refer to [3,7,13-15,17,18,20,21,25,28,30,33,34,43,44, 55| for related studies in the literature
on this inverse shape problem.

In this article, we first perform a shape sensitivity analysis and derive the shape sensitivity functional with
respect to domain perturbation by a delicate asymptotic analysis. We establish the spectral expansion of the
shape sensitivity functional, from which we can conclude the sharp relationship between the reconstruction
sensitivity and the plasmon resonance. It indicates that the plasmon resonant field can render a more robust
and effective reconstruction. Moreover, in order to overcome the ill-posedness, we combine the Tikhonov reg-
ularization method with the Laplace approximation (LA) to solve the inverse problem. This hybrid method
is essentially the organic combination of the deterministic method and stochastic method, which can rapidly
calculate the minimizer (Maximum a posteriori estimation point (MAP)) and capture statistical information of
the solution more effectively. To provide a global view of our study, the major contributions of this work can
be summarised as follows.

1. By using the layer-potential perturbation technique, we rigorously derive the asymptotic expansion of the
perturbed far field with respect to the shape perturbation. Furthermore, we obtain the representation formula
of the shape sensitivity functional.

2. Based on the spectral theory of the Neumann-poincaré operator, we establish the delicate spectral expansion
of the shape sensitivity functional. It indicates that when plasmon resonance occurs, the shape sensitivity
can be improved dramatically.

3. Due to the severe ill-posedness of inverse problem, we use plasmon resonance to enhance the sensitivity,
and then combine the Tikhonov regularization method with the Laplace approximation to solve the inverse
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problem and quantify the uncertainty of the solution. Compared with the standard method, our numerical
results show that the proposed method can significantly improve the accuracy and robustness of the numerical
reconstruction.

The rest of the paper is organized as follows. In Section 2, we provide preliminary knowledge on layer potential
operators and plasmon resonance. In Section 3, we conduct the sensitivity analysis for the perturbed domain,
and derive the spectral expansion of the shape sensitivity functional. In Section 4, we discuss the combination of
the Tikhonov regularization method and the Laplace approximation. Sections 5 and 6 are respectively devoted
to numerical experiments and conclusion.

2. PRELIMINARIES

2.1. Layer potentials and Neumann-Poincaré operator

We collect a number of preliminary results on the layer potentials, in particular the Neumann-Poincaré
operator for our subsequent use. Throughout this paper, we consider a domain D with a C? boundary. The L?
inner product and the corresponding norm on 9D are denoted by (-, -) and || - || in short, respectively. The single
layer potential Sp and double layer potential Dp associated with D are given by

SMﬂuwzl;ruwmwmaw,xeR%

ar(l'v y) 2
Dple](x ::/ ———(y)do(y), xe€R*\0D,
] () o ) (y)do(y) \
where ¢ € L?(0D) is the density function, and the Green function I'(z,y) to the Laplacian in R? is given by
1
I(z,y) = gln\x =yl

The notations u|+ and %H denote the traces on 0D from the outside and inside of D, respectively. The
following jump relations hold [2,3]:

OSply]

ov

@)= (i;I + /cg) lpl(), «€aD,

where K7, is known as the Neumann-Poincaré (NP) operator defined by
1 (& —y,v(z))
Kolel(x) = / o(y)do(y).
bl = 5 | I ot)do(y)

Next, we recall some useful facts about the NP operator K}, [2,23,45].

1 1
Lemma 1. (i) The Calderon identity holds: SpK}, = KpSp on H, *, where H, ? is the zero mean subspace
of H- 3 ;
1
(11) The operator K3, is compact and self-adjoint in the Hilbert space H, * equipped with the following inner
product

)

(0, V) r-op) = —(SplY], )1 1
with (-, '>_%7% being the duality pairing between H—/2(0D) and H'/?(0D)

(11i) Let H*(OD) be the space H(;%(aD) with the new inner product in (ii). Let (\;,¢;),7 =0,1,2,... be the
eigenvalue and normalized eigenfunction pair of K7, in H*(0D), then \; € (—%, %) and Aj — 0 as j — 0o;
(iv) The following representation formula holds: for any ¢ € H*(0D),

Kplel = Z Aj @, ) (oD)P;- (2.1)
j=1

o0
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2.2. Plasmon resonance

We next briefly discuss the mathematical framework of plasmon resonance. We first give the form of the
solution of equation (1.1). From [2,8,23], we have

u(z) = H(z) + Sp[¢](z), for x € R?
where ¢ € L§(9D) := {¢ € L*(OD); [,,, ¢ = 0} satisfies

H
O - K@ = 2| seap, (2)
o \sp
with A given by
€D +Em
Rl T (2.3)

The permittivities of plasmon materials, such as noble metals, are different from the ordinary materials and
may possess negative real parts. In fact, the electric permittivity ep of the plasmon material is changing with
respect to the operating frequency w. The ep can be described by the Drude’s model (see [4,27,51]),

w2
ep =ep(w) =¢p <1w(u)—im)> , (2.4)

where ¢ is the electric permittivity of the vacuum and is given by g9 = 9 x 107*2F/m. The plasmon frequency
wp and the damping parameter «y are strictly positive. When w < wj, the real part of ep can be negative. In
particular, for the gold, the value of the plasmon frequency and the damping parameter are w, = 2 x 10'°s -1
and v = 10*s, respectively. Let the operating frequency w = 6 x 10'*Hz (visible light frequency), and from
Drude’s model (2.4), the electric permittivity of gold nanoparticle is calculated as ep ~ (—9.8108 + 1.8018¢)eg.

Now by applying the spectral decomposition of the K}, to the integral equation (2.2), the density ¢ € L3(9D)
becomes

oo

V,SO H* oD
¢ Z d J ( )80], (25)
j=1

where ), are eigenvalues of K}, and they satisfy |\;| < 2. When the real part of ep(w) is negative, it holds

2
that [Re(A(w)) < 1|, where and also in what follows Re(A(w)) signifies the real part of A(w). The frequency w
is called a plasmon resonance frequency if it satisfies

Re(Aw)) = Aj, (2.6)

for some j, where \; is an eigenvalue of the NP operator K},. For this reason, (2.6) is called the plasmon
resonance condition. It is emphasized that only when the imaginary part Jm(A(w)) = 0 (lossless metal), the
resonance condition (2.6) can imply the density ¢ in (2.5) blow up.

In (2.5) the density ¢ will be amplified when the plasmon resonance condition is reached provided that
(%—57 ©j)#+(ap) is nonzero. As a result, the j-th mode of the far field v — H will show a resonant behavior, and
it is called that plasmon resonance occurs (see also [23]). As an illustration, we consider the cylindrical metal
nanorod as an example. When the external electric field lines are parallel to the circular cross-section of the
cylindrical metal nanorod, the physical process can be described by the two-dimensional mathematical model
(1.1)~(1.2). Next, we set e,, = o (vacuum) and notice that, as D is a disk, the spectrum of K}, are {0, 3}. If
Aj =0, from the plasmon resonance condition (2.6) and the fact that v is sufficiently small in (2.4), we nearly
get Re(ep(w)) = —&m,. This relationship is called the Frohlich condition (see [48]). Furthermore, by Drude’s

model (2.4), we can obtain the resonance frequency w = %’% — 2. When v = 0 (lossless metal), the resonance
frequency w = % or f = 2:—”\/57 which is called the Frohlich frequency (see [51]).
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3. SHAPE SENSITIVITY ANALYSIS

3.1. Sensitivity analysis for the perturbed domain

We consider the sensitivity analysis for the shape reconstruction problem with a perturbed domain, namely
evaluating the effect of the domain variations on the far-field measurement data.
Define the forward operator F : X — H2(9Q) on a subset X C C2%(dD):

F(0D) =u’loq, z€X,

where u®|pq = (u — H)|aq is the far-field measurement associated with (1.1) on the boundary 0.
For a small € € R, we let 0D, be an € -perturbation of D, i.e.,

0D, := {2 = x + eh(z)v(z),z € 0D},

where h € C1(dD), and v is the outward unit normal vector to dD. The solution u, to (1.1) with D, has the
following representation formula

uc = H(z) + Sp. [6](x), =€ R? (3.1)

where the density function ¢, is the solution to

_0H

(= Kp)b)@ = 55| #ean. (3:2)

€

Let ¥, be the diffeomorphism from 0D to 0D, given by
U (x) =x+ eh(z)v(z), x€dD.

Moreover, we denote U the outward unit normal vector to 9D, and dé& the line element of dD.. The following
expansions of 7 and dé hold [1]:

7(z) = v(z) — eh/ ()T (x) + O(€?), (3.3)
do (%) = do(x) — er(x)h(z)do(x) + O(€?). (3.4)

Here and throughout the rest of the paper, 7(x) signifies the curvature of 9D at x, T is the unit tangential
vector to dD, and h’ is the tangential derivative of h on 9D, i.e., h' = g—éﬁ, where % denotes the outward
normal derivative on 0D..

In view of (3.1) and (3.2), in order to obtain the asymptotic formula of the perturbed far field u?|sq := F(0D.),
we need to obtain the corresponding asymptotic expansions of the operators K7, and q~56. The following lemmas

can be found in [1].

Lemma 2. For ¢ € L?(0D,), let ¢ := ¢ o U,. Then there exists a constant C depending only on the C2-norm
of OD and || h ||c1 such that

| (Ko, 1)) 0 e — Kplg] — K5 [@] 200y < CE || ¢ | 22(m).

with the operator ICS) defined for any ¢ € L*(0D) by

K5 [¢](x) = pov. | Ki(w.y)é(doty), v €D, (3.5)
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where
K (,y) = 22 =9V @) = h(yﬂ:iu(ﬂﬁ) ~ hy)v ()
(h(z)v(z) = hy)v(y),v(z)) (z -y, 7(@)h(@)v(z) + W (2)T(x))
+ |.’I,' _ y|2 |{E — y|2

+ W(h(xﬁ(w) = h(y)v(y)).

Here, p.v. stands for the Cauchy principal value.
In fact, we can rewrite the operator ICg) in terms of more familiar operators as follows, , then we get

0 (,0Spld) ) , 9Dl

K16 =5 (1

o + hT K35 [0] — K [hr ). (3.6)

oT ov
Lemma 3. Let ¢ = (M — Ky ) o - VH], ¢ = b0V, and ¢ = (A — K%)~ v - VH]. Then we have
| ¢ — & — o || 120m)< C€* || 6 || 120D

where C' is a constant depending only on the C%-norm of D and || h ||c1 and

oM = (N —Kp)~! (h<(v2H)y, vy — I (VH,T) + /cg>¢> . (3.7)
Furthermore, for %Ig of (3.2), we can further obtain by using (3.3), that
%1;1 = VH(U(z)) - 5(¥(zx)) = %—Z(x) +eGY(z) +O(?), z€dD (3.8)
where
G = h(x)(V2H(2)v(x),v(z)) — W (2)(VH(z),T(z)). (3.9)

The asymptotic expansion of F(9D.) under small perturbations of the boundary D in terms of the asymp-
totic parameter € is given in the following theorem. We would like to point out that its proof is adapted from
those in [1,29].

Theorem 4. Suppose that ¢, pq satisfy

(O = Kp)lely) = 0| (3.10)
oD
(M — Kp)[pal(z,y) =T(z,y), =x€IQ, yedD, (3.11)

the following asymptotic expansion holds:
ui (@)oo — u®(x)]ag = e(h(y), P(z,y)) 2op) + O(¢*), €99, y € D,

where

T (y) T (y) ov(y)
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Proof. From the form of the solution (3.1), it holds that
FOD) = [ Tl pé@ia). « < on.
D.
where ¢, is solution to (3.2), d&(g) has an expansion as (3.4), and I'(x, §) has the Taylor expansion as follows

ol (z,y)

+O(e? € 9D, x € 09.
oty N

D(z,y + eh(y)v(y)) = T'(z,y) + eh(y)

By virtue of Lemma 3, we can obtain that

F(OD.) — F(9D) = /
oD

+ O(€?).

P(z, )™ (y)do(y) + ¢ /

oD

<0F(x, y)

ov(y) —7(y)(, y)> d(y)h(y)do(y)

Next, we first calculate the term [} I'(x,y)¢™M (y)do(y). From (3.7) and (3.11) we have

/ P ()™ (y)do(y) = / (AT — Kp)alz, 1)dV (y)do ()
oD

oD

= [ ¢alz,y)(N — K})oM (y)do(y)

oD
_ /o OH(y)
= [ sate) ()P E@ . v0) - 1) G52 oty
+ | dalz,y)KH [8l(w)do(y)
oD
=:l1+1s
We treat [, s separately. Since
9 OH(y)\ _ 9¢a(z,y) OH(y)
gy (eaten G ) = P T gt (TP H) T T() (.13

+ ¢a(z, y)7(y) %IZ((;)) ,

and noting that H(y) is a harmonic function and (3.13), I; has the following form

h =/ $a(,y) (h(y)<(V2H(y))V(y),V(y)> - h'(y)WH(y),T(y)))do(y)
oD

Next, by (3.6), we have

b= [ dale,y)kKS[8)(y)do(y)
oD
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B 0 ISp[8](y) 0 *
— [ st = g (0 SR 4 S Eplot) + )b lel)

K [hnb](y)} do(y)
-/ h(y)[am,y) oSpoly)) . O
oD

Ty aT() T+ au(y) L led@n)ey) + daly)r ()Xo el)

- r<y>¢><y>/cp[¢d1<x,y>]da<y>,

from which, together with the use of Proposition 4.1 in [1], we can further show that

Do), [ Ppldulien)
[ it g o) = [ 2R

Thus we obtain that

h(y)¢(y)do(y).

oy 509 - [ o[ (A550) O
+7(y)¢a(@,y)Kp0](y) — 7(y)Kplda] (2, y)o(y)
OH(y) | Opa(z,y) OH(y)

oW Gyt ort) o)

+ (B ) ot |ao) + 0@
From (3.10) and (3.11), we know that

Kblol(0) + ) = 360). Klou(e.) + Tz 5) = Aa(o.p).
Thus it follows that
F(0D) - 7o)~ [y [2os) (014 Sololo)
(a(r('x’ y) gy’iy%[(’éd}(z, y)))¢(y):| da(y) + 0(62),

which readily completes the proof. O

In order to investigate variations in the measurement resulting from variations in the shape of the underlying
object, we introduce the following definition of the shape sensitivity functional.

Definition 5. The shape sensitivity functional for the far-field measurement u®|gq with respect to the shape of
0D is defined as

SSF(OD) = lim Yelo2 = Wl

e—0 €

Remark 6. From Definition 5, it is easy to see that the shape sensitivity function is actually the shape derivative
of the forward operator F(9D) (cf., [1]). Furthermore, by using Theorem 4, the shape sensitivity function can
be rewritten as

SSF(OD) = (h, P)r2(aD),
where P is defined in (3.12).
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3.2. Shape sensitivity analysis and plasmon resonance

In this subsection, we shall derive the spectral representation of the shape sensitivity functional in this sub-
section. It indicates that, when the plasmon resonance occurs, the shape sensitivity functional will be amplified
and exhibits a large peak. Hence, the plasmon resonance can be used to significantly increase the sensitivity of
the far-field measurement with respect to the shape of the underlying domain. For simplicity, in the subsequent
spectral analysis, we always exclude the essential spectrum 0 from the spectrum set of NP operator and assume
the eigenvalues is simple.

First, we derive the asymptotic formulas for the eigenvalues and eigenfunctions of the NP operator with
respect to the asymptotic parameter e.

Lemma 7. Suppose that {\j e, je},d =0,1,2,..., are the perturbed eigenvalues and eigenfunctions of Kb,
Then we have as € — 0 that

Nje=Aj+ e)\;le) +0(é?), Vje=p;+ eap(l) +0(é?),

where

AL = 1) > (KS @), 003 om)

<IC(D)(,0],<,OJ>H*(8D) Pje = s — A
, J !
J#l

Pl

and ICg) is defined by (3.5) or (3.6).

Proof. Since K7, [¢j.c] = Aj.ej.e, and by Lemma 3.1, we can obtain the following result

(ICh + e+ O(e2))(0; + el + O(e3)) = (4 + A +O() (g, + ell) + O(e2)),
which implies that
K5e; + ’Cw = AJ cPi T M/)J - (3.14)

By inner producting ¢; in both sides of (3.14), we further have

(KS 01,0010y + Kb e, 01)rapy = A2 05, ) (o) + A0, 01) 3 o) -

Since the operator K7, is self-adjoint, we have

<’CD<P]2a<Pl>H “(aD) = <<PJEJCD<P1>H (9D) = >\z<<ﬂje’</)l>n (9D)>
and thus
Aﬁ? = (K50, i) (0D)-
From (3.14), we have
W = Kp)pl) = K5 o = A
Then it is straightforward to see that

(1)
1)~ Kp'®j e0)n-op)
Piie Z X — A wl

7 l

)

J#l

The proof is complete. O
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Let dist(A,o(K3,)) be the distance of A to the spectrum set o(K},). Next, we are ready to state our main
result in the following theorem.

Theorem 8. As e — 0, the perturbation uf|sq — u|aq has the following spectral expansion:

e2

s ] — S 0}
ul(z) — u’(z) = €7 (z)+0 (dist()\,a(lC*D))2)’ x € 09,
with
i 5595 + (G0, 03)Splips](@) + (5 0) 2(2) (3.15)
= A=A '
00 (1)
N (5 2i)Splpsl(x)
+ )
; (A=2A))?
where G is defined by (3.9), (-,-) signifies (-, ")2~op), and
ol (x,
20 = [ (T nt)e i) + el ) - b o)) daty).
ap \ Ov(y)
Proof. According to (2.1), F(0D) can be decomposed as follow
. O0H
Fo0) = [ Ta)or - kp) |G i)
oD v
> /OH
B0 P
=3 8 [ e o)
j=1 A— )\J oD
_ i (B2, 0j)Splpl(@)
; A= '
Jj=1
In a similar manner, F(0D,) can be decomposed as
. . oH .
Fo) = [ ri)r-K5) " |5 @as(i)
aD. 4
_ = <%7I;»‘Pj,e>SDe[‘Pj’e}($)
_ X e '
J=1 ’
Furthermore, using the perturbation of eigenvalues and eigenfunctions in Lemma 7, we can show that
So.leid@ = [ T@)e; o) +<2() +0(), (3.16)
D

where

2@) = [ (T e i) + T el 0) ~ T De )5 0) ) doo).

From (3.8), (3.16) and Lemma 7, we deduce that

:i (22, 0;.)Sp. [, (x)
A= Ajie

j=1
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(B2 1 G 1+ 0(?), pj + e + O(e2))(Splwj](x) + eZ(z) + O(2))
A= X — e +0(:5)

i (%2, 0;)Splps](z) + 6((%’37 e )Splpsl(a) +(GD, 0)Splps] + (2, w)Z(x)) +0(€?)
= m

; €A € €
-1 A =21 = 3355 +0(x5)

(G ensolpil@) + (Gt e DSolosla) + (6. p3)Sole](o)

_ i (5, 0)Sp[p;](x) b ( (32, p$)Splps)(@) + (G, 03)Splpsl (@) + (32, 92 ()

et A= A=
L GrenSolel @A &
(=22 dist(\, o (Kp))? )

Therefore it follows that
F(0D.) — F(OD) =€y
J

- <8%7@j>30[90j](x))\§,1€) 2
Fe (A= A5)? o <dist()\,U(IC’]5))2>'

(22, oMy 1 (GW), 0)Splps)(@) + (2, ;) Z()
Y

I
—

j=1

The proof is complete. |
Remark 9. From (3.15), one readily sees that the j-th mode in the expansion formula contains both O (ﬁ)
and O (W) Thus, for the sufficiently small loss (Jm(ep) — 0), the j-th mode will exhibit a large peak if

the plasmon resonance condition (2.6) is fulfilled.

From Theorem 8, we can straightforwardly obtain the spectral representation formula of the shape sensitivity
function as follows.

Corollary 10. If e = o (dist(X,0(K},))?), (as dist(X,0(K},)) — 0), the shape sensitivity function can be repre-
sented as

SSF(0D) =T (z),
where T (x) is defined by (3.15).

Remark 11. Similar to Remark 9, one sees that when \ = % is very close to an eigenvalue \; of the NP
operator, i.e., the plasmon resonance occurs, the shape sensitivity function SSF(0D) will be amplified dramat-
ically for the j-th mode. Hence, the plasmon resonance can improve the sensitivity of the shape construction.
Moreover, from the Drude’s model (2.4), we can compute the plasmon resonance frequency for improving the

sensitivity.

Remark 12. From a numerical point of view, the discrete version of the shape sensitivity functional is the
shape sensitivity matrix. The sensitivity of the shape reconstruction can be analysed by the singular value
decomposition of the sensitivity matrix. In Section 5, the numerical results shall show that when the plasmon
resonance occurs, the singular values of the sensitivity matrix increase dramatically. That is the plasmon res-
onance technology can enhance the stability of the Gauss-Newton iteration algorithm that we use therein (see
Sect. 4).
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4. TIKHONOV REGULARIZATION AND LAPLACE APPROXIMATION

In this section, we discuss the numerical issues for the shape reconstruction. First, a numerical implementation
requires a parametrization of the boundary 0D. Here we assume that 9D is starlike boundary curve with respect
to the origin, i.e., there exists ¢ € C?[0,27] such that

cost
o0 = (att) = a0} ). ¢ € 0,270y
The admissible set X = {qg € C2([0,2n]) : ¢ > 0}, and the forward operator maps X into Hz (9€). Without
change of notation we write F(q) = u®(x)|aq.
In order to overcome the ill-posedness of the inverse problem, we apply the Tikhonov regularization method
to tackle it. The corresponding variational functional is given as follows,

T = 5 I 7@~ 345 1 4 132020 (41)
where, u®® = (u‘;’é, u‘;"s, ..., us%) signfies the discrete measurement data on 9. Here, |- |2 denotes the 2-norm
in R™, and p is the regularization parameter. Moreover, the measurement data u*° and the exact data u®
satisfies ||u®? — u®||o < 4.

There are many iterative algorithms to solve the variational problem (4.1). In this paper, we apply the
Levenberg-Marquardt method [26,32] to find the minimize of J[g], which is essentially a variant of the Gauss-
Newton iteration. Assuming that ¢* is an approximation of ¢, then the nonlinear mapping F in (4.1) can be
replaced approximatively by its linearization around ¢*, i.e.,

Flq) = F(q") + F'(¢")(q—q").

The nonlinear inverse problem F(g) = u*° can then be converted to a linear inverse problem

Fg)a—q") = u>’ = F(q").
Thus, minimizing (4.1) can easily be seen to minimizing
J o 1 f/ * 5 $,0 F * 2 1 (S 2
lq] := 3 | F'(¢")oq — (u>° — F(q")) I3 T3 | 6a l[220,2x

where, dqg = ¢ — ¢*. We formulate the Levenberg-Marquardt iteration as Algorithm 1.

Algorithm 1 Levenberg-Marquardt algorithm.

Input: The regularization parameter p, the noise level § and the maximum iterations M
Output: gx11.

Require:

1: Imitialize the solution qo;

2: Settle the forward problem and obtain the additional data u®?;

3: While k < M

4: Compute the forward problem and set Fj, = u>° — F(q);

5: Compute the Jacobian matrix G = F'(qx);

6: Compute dgr, = (GTG + uI)H(GT Fy);
7
8
9
1

: Update the solution: gx11 = qx + dqx;
s k—k+1;

: Terminate if || dqi ||< eps

0: end
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We also decipher the inverse problem from a Bayesian perspective so that we can capture more statistical
information about the solution. From the classical Bayesian theory, and noticing that the observation error
¢ is assumed to be an independent and identically distributed Gauss random vector with mean zero and the
covariance matrix B = §%I (here I is the unit matrix), we can write the minimization functional as

1 512 H 2
J[q] < 252 | Flg) —u’ |5 +o52 I 1720020

= S 1 F@) — I oy 10 Pooam
=:JB(q),
where || - || is a covariance weighted norm given by || - ||g=|| 7 !I- ||2, and the minimizer of Jp defines the
maximum a posteriori estimator
gMAP = arg mqin Je(q). (4.2)

The Laplace approximation replaces the complicated posterior with a normal distribution located at the
maximum a posteriori value gyap. Its essence is a linearization around the MAP point guap (cf., [52]). It
consists of approximating the posterior measure (or distribution) by w =~ N(qmap, Cmap), where

Cuar = (J3) 7' = (5214' 5 GTG) (4.3)
and @G is the Jacobian matrix of the forward operator F at the point ¢. Notice that the covariance formula (4.3)
only uses the first order derivatives of F. The implementation of the Laplace approximation is presented in the
following algorithm [35].

Algorithm 2 Laplace approximation (LA) for sampling.

1: Compute gmap from (4.2) by using Algorithm 1, and Cmap from (4.3), respectively;
2: Compute the Cholesky factor L of Cuap, i.e., Cmap = LLT;
3: For j = {1,...,N.}, generate ¢ = qmap + L7 27, where 27 ~ N(0,I).

In this algorithm, samples generated by algorithm 2 are drawn from N(gmap,Cmap), and so the ensemble
of N, realizations {g; };Vel provides an approximation to N(gmap,Cnvmap) and hence the posterior. Finally, we

use the mean of the sample ¢ = N Z j=1 4 as an approximation of gvap, where the convergence of g follows
from the strong law of large numbers. From the classical Gaussian statistic theory, we find that ¢ is consistent
and the best unbiased estimate of qypap.

5. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we present several numerical examples to illustrate the salient and promising features of the
proposed reconstruction scheme.

In all of our numerical examples, the measurement boundary curve 952 is given by the circle of radius 3 and
centred at the origin, that is 9Q = {3(cost,sint),0 < t < 2x}. Set the incident field H(z) = x1. We solve the
direct problem through the Nystrom method [37], which is discretized with n = 80 grid points. Furthermore,
in an effort to avoid committing an inverse crime, the number of collocation points for obtaining the synthetic
data was chosen to be different from the number of collocation points within the inverse solver. In addition, we
approximate the radial function ¢(¢) for unknown interior boundary curve 0D by the trigonometric series

m

Zakcoskt+2bkbinkt 0<t<2r,
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where m € N and the vector ¢ = (ag, - - -, Gm, b1, . . ., by) € RZHL

In the iterative process, we choose a circle as the initial guess, which contains the inclusion D. A finite
difference method is used to calculate the Jacobian matrix G, and the maximum number of iteration steps is
100. The number of samples N, is 10000, and we use the following stopping rule

Bi = ax — aqr-1 ||z < 107°.
The noisy measured data are generated by
ut® = ud(z) + 06, x € 99Q,

where u®(x) is the exact data, § indicates the noise level, and ¢ is the Gaussian random vector with a zero mean
and unit standard deviation.

The accuracy of the approximate solution ¢y, by the LA algorithm is characterised by comparing to the
exact solution g(x) via the relative error

o Il dn. — a() ||l L2op)
K I q(x) ||L2(8D)

In particular, we specifically take the permittivity &,, = 24.8F'/m (such as alcohol) in the first example, and
in all of the examples we set ¢,, = 9. Moreover, except for Example 13, the spectrum of K7}, needs to calculated
numerically, from which one can then compute the corresponding plasmon resonance frequency. We use the
Nystrom method for spectral calculations. However, we would like to emphasise that in practice, the plasmon
resonance frequency can be measured by special apparatus, when one can observe significant enhancements in
the electric field due to the resonance.

Example 13. In this example, we consider the reconstruction of a circle object with
q(t) =05, 0<t<2m.
In the iteration algorithm, we choose a circle of radius 0.6 as the initial guess.

First, we investigate the influence of different A on the reconstruction effect. The numerical results for Example
13 with X taking different values are shown in Figure la. It is well known that the eigenvalues of ¥, are {0, %}
for D being a disk. If setting Ay = 0, from Section 2.2, we can see that the Frohlich condition is satisfied based
on the Drude’s model for metal nanorod and the plasmon resonance occurs (though our theoretical analysis
does not contain the essential spectrum case).

In particular, we take the resonance frequency wy, = 3.63 x 10 Hz, and according to the experimental data
of gold nanorod in [49] (the data coincide with the Drude model), we can get Re(ep(w1)) = —24.8, and the
imaginary part Jm(ep(w1)) = 0.797. Furthermore, by (2.3), it implies that A &2 0—8 x 10~%.

Next, we take wy = 2.30 x 1014Hz and based on the experimental data in [49], we can calculate A =
0.244—6.3 x 10734. It is obvious that when taking wo, the real part of A(ws) satisfies [Re(A(w2)) < 3|, which
is only an approximate resonance frequency. As seen in Figure la, a perfect reconstruction result is obtained
when taking the resonance frequency w;. When A\ = 0.244—6.3 x 10734, although the reconstructed result is
good, it is still poor compared to the case with the resonant frequency w;. The case with A = —0.98 indicates a
normal material, i.e., the permittivity ep = 8 is positive constant, and the reconstruction effect is poorer. The
plot in Figure 1b illustrates the relative error e, versus the iteration number with different . It can be seen
that the relative error can quickly reach the convergence and remain small when w; is the plasmon resonance
frequency. When A = 0.244—6.3 x 10734, the relative error also converges quickly, but is larger than that at
the plasmon resonance frequency. In particular, the relative error increases rapidly even up to 27%, and the
inversion is rather imprecise with A = —0.98.



SHAPE RECONSTRUCTIONS BY USING PLASMON RESONANCES

0.8

0.6

0.4

0.2

LA solution and exact solution
o

; : 035 ! ! : :
——=0-8x10""i
—_— -3
0.24-6.3x 107 0al
- - -2=-098
exact solution
025F
’ —o— )=0-8x1075
1 -3,
' 02k ——=024-63x 107%| |
1 - —e—)--098
1 o
\
N 015F
AY
(R %A A A A A A S A A A A A
0.05 \
. . . 0 } . .
-05 0 05 1 0 20 40 60 80
X k

100

FIGURE 1. Reconstruction the shape for Example 13 with 1% noise data and the regularization
parameter © = 0.01. (a) Reconstructions with different A as well as the exact solution, (b) the
relative error e, versus the iterations step k, associated to different values of A.

0.8

06

0.4

0.2

LA solution and exact solution
o

——=0-8x10""i

——=0.24-63x 107
—e—)=-0.98

—o—=0-8x107%
—— 1=0.24-6.3x 1077}
- - -2=-098

exact solution

-05 0 05 1

FIGURE 2. Reconstruction of the shape for Example 13 with 5% noise data and the regular-
ization parameter 1 = 0.05. (a) Reconstruction under different A as well as the exact solution,
(b) the accuracy error e, of the number of the iterations k, for different values of A.
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The numerical results for Example 13, which has 5% noise in the data, are shown in Figure 2a for different
A. Compared to the 1% noise in the data shown in Figure 1la, it is clear that as the noise level increases, the
reconstruction effect becomes worse. It is worth noting that when w is a plasmon resonance frequency, the
reconstruction is very good even at larger error levels. For A = —0.98 (general materials) the inversion result
deviates from the exact solution quickly as the error level increases. We also list the relative errors for different

noise levels in Table 1.
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TABLE 1. Numerical results of Example 13 for e, associated with different A and noise level 6.

A §=0.01 5 =0.05
0—8 x 10734 72x107° 94x107*
0.24—6.3 x 10~ %; 0.106 0.574
—0.98 0.276 1.546
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-
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LA solution and exact solution
o
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FIGURE 3. Reconstruction of the shape in Example 14 with 1% noise data and the regularization
parameter 1 = 0.1. (a) Reconstruction with different A as well as the exact solution, (b) the
relative error e, versus the iteration step k associated with different values of A.

TABLE 2. Numerical results of Example 14 for e, associated with different A and ¢.

A 6=001 6=0.05

0.16—107%  0.0081 0.1237
0.25—107%  0.0278 0.2810
2 0.5304 0.5804

Example 14. In this example, we consider the reconstruction of a bean contour with a radial function,

_ 4/5418/25cost + 3/25sin 2t

0<t< 27,
14+ 7/10cost ’ =r=m

q(t)

We choose a circle of radius 0.72 as the initial guess.

The numerical results for Example 14 with A taking different values are shown in Figure 3a and the relative
error e., versus the iteration number with different A in Figure 3b. The real part of A = 0.16 — 107% is the
eigenvalue of K7}, in Example 14. It represents very accurate approximations of the LA solution to the exact
solution, and in the iteration algorithm, the relative error quickly reaches a stable state and remains small.
In addition, when A = 2, the reconstruction is bad. The results show that the relative error becomes more
oscillating as the noise level ¢ increases; see Figure 4 and Table 2 for e, with different A and 4.



SHAPE RECONSTRUCTIONS BY USING PLASMON RESONANCES 721

15 T T T T 07

.- -~ | 06t

05F —o—)=0.16-10"%ify
—0—1-0.25-107%j

04l —e— 12
03\ 1

0.2f3 |
—0—=0.16-10"%i
——1=0.25-10"%i 04 i
- -2

exact solution
15 . . . 0 . . . .
-1 -0.5 0 05 1 0 20 40 60 80 100

X k

(a) (b)

05 1

ey

LA solution and exact solution
o

FIGURE 4. Reconstruction of the shape in Example 14 with 5% noise data and the regularization
parameter 1 = 0.1. (a) Reconstruction with different A as well as the exact solution, (b) the
relative error e, versus iteration steps k associated with different values of A.

Example 15. In this example, we consider that the inclusion is a peanut, and the polar radius of the peanut
is parameterized by

a(t) = \Jeos? t +0.26sin%(t + 0.5), 0 <¢ < 2m.

In the iteration, we choose a circle of radius 0.78 as the initial guess.

From [19], it is known that the singular value decomposition of the sensitivity matrix plays a key role in the
uncertainty estimation. Let the singular value decomposition (SVD) of the sensitivity matrix (Jacobian matrix)
G of the forward operator at the true solution ¢i.ue be denoted as

G(Qtrue) =U |:/3:| VT)

where U is an n x n orthogonal matrix, i.e., UTU = UUT = I,,, with U; containing the first 2m + 1 columns
of U and U, containing the last n — (2m + 1) columns, U = [U; Us]. The matrix V is an (2m + 1) x (2m + 1)
orthogonal matrix, i.e., VIV = VVT = [, and v; and u; denote the ith columns of V and U, respectively.
The diagonal matrix A = diag(si,. .., Sam+1) with strictly positive decreasing singular values s;, i.e., 57 > s9 >
... > Sam+1 = 0. Then the estimator ¢ has the following form [19]:

2m—+1
- 1 -
4= Gorue + VATUTE = grrne + E ;viufg. (5.1)
i=1 ¢

From (5.1), it can be seen that the instability of the inverse problem is caused by the small singular values.
In Example 15, the singular values of the sensitivity matrix are calculated at different values of \. In Figure 5b,
when A\(w) = 0.19—107% (w is a plasmon resonance frequency for Example 15), we can see that all the singular
values of G are lager than A = 0.25 — 1075 and A = 2. Consequently, the numerical solution computed by using
the plasmon resonance is in an excellent agreement with the exact solution (see Fig. 5a). Hence, the plasmon
resonance of the metal nanoparticles can correct the singular value of the sensitivity matrix and overcome the
numerical instability. This numerical result is in agreement with our analysis in Section 3.2 that the sensitivity
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FIGURE 6. The numerical results for Example 15 with 1% noise in the data and 95% confidence
interval for different A. (a) A =0.19 — 1075i. (b) A = 2.

of the far-field data to the shape of the underlying domain can be enhanced at the resonant frequencies, thus
reducing the ill-posedness of the inverse problem.

Next, we study the variations of the confidence intervals with different dist(\, 0(K5,)). The confidence interval
can quantify the uncertain information of the solution. The numerical results for Example 15 with different \ are
shown in Figure 6, where the blue region represents the corresponding 95% confidence region. The comparison
with A = 2 indicates that the confidence region shrinks at A = 0.19 — 10~% (the real part of A = 0.19 — 1075
is the eigenvalue of ¥, in Example 15). It can be clearly obtained that as dist(), 0(K7,)) shrinks, the accuracy
of the inversion can be improved and the sensitivity to the random error can be reduced.

Example 16. In this example, we consider that the inclusion is pear, and the polar radius of the pear is
parameterized by,
q(t) = 18/25 +3/20cos(3t), 0 <t < 2r.
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FIGURE 7. Reconstruction the shape for Example 16 with 1% noise data and regularization
parameter = 0.5. (a) Reconstruction with different A and exact solution, (b) the relative error
e, versus iterations steps k, for various values of .

TABLE 3. Numerical results of Example 16 for e, with various A and noise level 6.

A 6=0.01 6=0.05

0.14—107%  0.0054 0.0625
0.25—107%; 0.279 0.4850
2 0.4206 1.009

In the iteration, we choose a circle of radius 0.73 as the initial guess.

In Example 16, we consider reconstructing a more challenging pear-shaped inclusion and we can actually
reach similar conclusions to previous three Examples. At the same noise level, ¢n, coincides well with the exact
solution when A = 0.14 — 1075; (minimum distance of dist()\,o(K%})), and a steady, fast convergence of the
relative error e, in the iteration algorithm is shown in Figure 7. Moreover, the relative error becomes more
oscillating as the noise level  increases; see Table 3 for e, associated with different A and 4.

The choice of the regularization parameters is very important in the algorithmic calculation. In Example
16, we fixed the regularization parameter u = 0.5 associated to different values of . In order to eliminate
the influence of improper regularization parameters on the inversion results, the regularization parameters
can be considered as a random variable with uniform distribution, i.e., 4 ~ U(0,1). In fact, there are many
other selection strategies of regularization parameters, such as Morozovs discrepancy principle, The L-curve
method and so on (see [54]). But we only concern the comparative effectiveness of the plasmon resonance
case and the non-resonance case, and then above simple regularization parameters selection is used. The more
advanced selection strategies will be considered in our future works. In Figure 8, when A = 2, we obtain four
groups of random numbers from uniform distribution as the regularization parameters, while the corresponding
reconstruction results remain disappointing. Table 4 lists 10 randomly generated regularization parameters with
the relative error also exceeding 50%.
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TABLE 4. The relative errors for Example 16 with different regularization parameters p and A,
under same noise level § = 0.05.

A=2 A=0.14 —10"%
m 0.1 0.8 0.09 0.73 083 0.206 0.212 0.320 0.416 0.668 0.5
e, 0.881 0.720 1.278 0.548 1.096 1.297 1.324 1.034 0.848 0.668 0.0625

6. CONCLUSIONS

We investigate the inverse problem that utilizing the far-field measurement to reconstruct the shape of of
an inclusion. The plasmon resonance is proposed to enhance the sensitivity of the reconstruction as well as to
reduce the ill-posedness of the inverse problem. In fact, we derive the representation formula of shape sensitivity
functional by using the asymptotic expansion method. Based on the asymptotic expansion of the eigenvalues
and eigenfunctions of the Neumann-Poincaré operator, we further derive the delicate spectral representation
of the shape sensitivity functional, which indicates that the sensitivity is improved greatly as the plasmon
resonance occurs. Moreover, we combine the Tikhonov regularization method with the Laplace approximation
to solve the inverse problem. This hybrid method not only calculates the minimizer accurately and quickly, but
also captures the statistical information of the solution. Finally, extensive numerical experiments confirm our
theoretical analysis and illustrate the promising and salient features of the proposed reconstruction scheme.
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