Partial differential equations on hypergraphs and networks of surfaces: Derivation and hybrid discretizations
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 2, pp. 505-528

We introduce a general, analytical framework to express and to approximate partial differential equations (PDEs) numerically on graphs and networks of surfaces – generalized by the term hypergraphs. To this end, we consider PDEs on hypergraphs as singular limits of PDEs in networks of thin domains (such as fault planes, pipes, etc.), and we observe that (mixed) hybrid formulations offer useful tools to formulate such PDEs. Thus, our numerical framework is based on hybrid finite element methods (in particular, the class of hybrid discontinuous Galerkin methods).

DOI : 10.1051/m2an/2022011
Classification : 65M60, 65N30, 68N30, 53Z99, 57N99
Keywords: Conservation equations, hypergraphs, hybrid discontinuous Galerkin
@article{M2AN_2022__56_2_505_0,
     author = {Rupp, Andreas and Gahn, Markus and Kanschat, Guido},
     title = {Partial differential equations on hypergraphs and networks of surfaces: {Derivation} and hybrid discretizations},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {505--528},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {2},
     doi = {10.1051/m2an/2022011},
     mrnumber = {4385103},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2022011/}
}
TY  - JOUR
AU  - Rupp, Andreas
AU  - Gahn, Markus
AU  - Kanschat, Guido
TI  - Partial differential equations on hypergraphs and networks of surfaces: Derivation and hybrid discretizations
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2022
SP  - 505
EP  - 528
VL  - 56
IS  - 2
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2022011/
DO  - 10.1051/m2an/2022011
LA  - en
ID  - M2AN_2022__56_2_505_0
ER  - 
%0 Journal Article
%A Rupp, Andreas
%A Gahn, Markus
%A Kanschat, Guido
%T Partial differential equations on hypergraphs and networks of surfaces: Derivation and hybrid discretizations
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2022
%P 505-528
%V 56
%N 2
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2022011/
%R 10.1051/m2an/2022011
%G en
%F M2AN_2022__56_2_505_0
Rupp, Andreas; Gahn, Markus; Kanschat, Guido. Partial differential equations on hypergraphs and networks of surfaces: Derivation and hybrid discretizations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 2, pp. 505-528. doi: 10.1051/m2an/2022011

[1] O. Bauchau and J. Craig, Structural Analysis: With Applications to Aerospace Structures. Solid Mechanics and Its Applications. Springer, Netherlands (2009). | DOI

[2] L. Beirão Da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini and A. Russo, Basic principles of virtual element methods. Math. Mod. Meth. Appl. Sci. 23 (2013) 199–214. | MR | Zbl | DOI

[3] L. Beirão Da Veiga, C. Lovadina and A. Russo, Stability analysis for the virtual element method. Math. Mod. Meth. Appl. Sci. 27 (2017) 2557–2594. | MR | DOI

[4] M. Ben-Artzi and P. G. Lefloch, Well-posedness theory for geometry-compatible hyperbolic conservation laws on manifolds. Ann. Inst. Henri Poincaré C, Anal. Non Linéaire 24 (2007) 989–1008. | MR | Zbl | Numdam | DOI

[5] I. Berre, F. Doster and E. Keilegavlen, Flow in fractured porous media: A review of conceptual models and discretization approaches. Transp. Porous Media 130 (2019) 215–236. | MR | DOI

[6] D. Boffi, F. Brezzi and M. Fortin, Mixed Finite Element Methods and Applications. Springer Series in Computational Mathematics. Vol 15, Springer, Berlin, Heidelberg (2013). | MR | Zbl | DOI

[7] A. Bressan, S. Čanić, M. Garavello, M. Herty and B. Piccoli, Flows on networks: Recent results and perspectives. EMS Surv. Math. Sci. 1 (2014) 47–111. | MR | Zbl | DOI

[8] F. Brezzi, J. Douglas and D. Marini, Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47 (1985) 217–235. | MR | Zbl | DOI

[9] E. Burman and A. Ern, An unfitted hybrid high-order method for elliptic interface problems. SIAM J. Numer. Anal. 56 (2018) 1525–1546. | MR | DOI

[10] P. Ciarlet, Mathematical Elasticity: Volume II: Theory of Plates. Elsevier (1997). | MR | Zbl

[11] P. Ciarlet, Theory of Shells. Elsevier (2000).

[12] B. Cockburn, J. Gopalakrishnan and R. Lazarov, Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47 (2009) 1319–1365. | MR | Zbl | DOI

[13] B. Cockburn, J. Guzmán and H. Wang, Superconvergent discontinuous Galerkin methods for second-order elliptic problems. Math. Comput. 78 (2009) 1–24. | MR | Zbl | DOI

[14] D. A. Di Pietro and A. Ern, A hybrid high-order locking-free method for linear elasticity on general meshes. Comput. Meth. Appl. Mech. Eng. 283 (2015) 1–21. | MR | DOI

[15] G. Dziuk and C. M. Elliott, Finite element methods for surface PDEs. Acta Numer. 22 (2013) 289–396. | MR | Zbl | DOI

[16] V. Eremeyev, Two- and three-dimensional elastic networks with rigid junctions: Modeling within the theory of micropolar shells and solids. Acta Mech. 230 (2019) 3875–3887. | MR | DOI

[17] L. C. Evans, Partial Differential Equations. American Mathematical Society (1998). | MR | Zbl

[18] I. Fatt, The network model of porous media. Trans. AIME 207 (1956) 144–181. | DOI

[19] U. S. Fjordholm, M. Musch and N. H. Risebro, Well-posedness theory for nonlinear scalar conservation laws on networks. Preprint (2021). | arXiv | MR

[20] M. Garavello, A review of conservation laws on networks. Netw. Heterog. Media 5 (2010) 565. | MR | Zbl | DOI

[21] F. Hédin, G. Pichot and A. Ern, A hybrid high-order method for flow simulations in discrete fracture networks. In: ENUMATH – European Numerical Mathematics and Advanced Applications Conference 2019. Springer Professional (2019). | MR

[22] C. Heussinger, On the elasticity of stiff polymer networks. Ph.D. thesis, Ludwig-Maximilians-Universität München (2007).

[23] C. Heussinger and E. Frey, Stiff polymers, foams, and fiber networks. Phys. Rev. Lett. 96 (2006) 017802. | DOI

[24] C. Heussinger, B. Schaefer and E. Frey, Nonaffine rubber elasticity for stiff polymer networks. Phys. Rev. E 76 (2007) 031906. | DOI

[25] R. V. S. Kanda and M. Simons, An elastic plate model for interseismic deformation in subduction zones. J. Geophys. Res.: Solid Earth 115 (2010) 19.

[26] J. E. Lagnese and G. Leugering, Modelling of dynamic networks of thin elastic plates. Math. Methods Appl. Sci. 16 (1993) 379–407. | MR | Zbl | DOI

[27] H. Le Dret, Folded plates revisited. Comput. Mech. 5 (1989) 345–365. | Zbl | DOI

[28] O. Lieleg, M. M. A. E. Claessens, C. Heussinger, E. Frey and A. R. Bausch, Mechanics of bundled semiflexible polymer networks, Phys. Rev. Lett. 99 (2007) 088102. | DOI

[29] E. Marušić-Paloka, Rigorous justification of the Kirchhoff law for junction of thin pipes filled with viscous fluid. Asymptot. Anal. 33 (2003) 51–66. | MR | Zbl

[30] E. Marušić-Paloka, Mathematical modeling of junctions in fluid mechanics via two-scale convergence. J. Math. Anal. Appl. 480 (2019) 1–25. | MR | DOI

[31] I. Perugia, P. Pietra and A. Russo, A plane wave virtual element method for the helmholtz problem. ESAIM: M2AN 50 (2016) 783–808. | MR | Zbl | Numdam | DOI

[32] W. Qiu, M. Solano and P. Vega, A high order HDG method for curved-interface problems via approximations from straight triangulations. J. Sci. Comput. 69 (2016) 1384–1407. | MR | DOI

[33] P. A. Raviart and J. M. Thomas, A mixed finite element method for 2-nd order elliptic problems. In: Mathematical Aspects of Finite Element Methods, edited by I. Galligani and E. Magenes. Springer Berlin Heidelberg, Berlin, Heidelberg (1977) 292–315. | Zbl | DOI

[34] P. A. Raviart and J. M. Thomas, Primal hybrid finite element methods for 2nd order elliptic equations. Math. Comput. 31 (1977) 391–413. | MR | Zbl | DOI

[35] N. Ray, A. Rupp, R. Schulz and P. Knabner, Old and new approaches predicting the diffusion in porous media. Transp. Porous Media 124 (2018) 803–824. | DOI

[36] V. Reichenberger, H. Jakobs, P. Bastian and R. Helmig, A mixed-dimensional finite volume method for two-phase flow in fractured porous media. Adv. Water Res. 29 (2006) 1020–1036. | DOI

[37] F. Rüffler, V. Mehrmann and F. Hante, Optimal model switching for gas flow in pipe networks. Netw. Heterog. Media 13 (2018) 641. | MR | DOI

[38] A. Rupp and G. Kanschat, HyperHDG: Hybrid discontinuous Galerkin methods for PDEs on hypergraphs (2021). Published online.

[39] R. Schulz, N. Ray, S. Zech, A. Rupp and P. Knabner, Beyond Kozeny–Carman: Predicting the permeability in porous media. Transp. Porous Media 130 (2019) 487–512. | MR | DOI

[40] K. Weishaupt, V. Joekar-Niasar and R. Helmig, An efficient coupling of free flow and porous media flow using the pore-network modeling approach. J. Comput. Phys. 1 (2019) 100011. | MR

Cité par Sources :