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PARTIAL DIFFERENTIAL EQUATIONS ON HYPERGRAPHS AND
NETWORKS OF SURFACES: DERIVATION AND HYBRID DISCRETIZATIONS

Andreas Rupp1 , Markus Gahn2 and Guido Kanschat2,*

Abstract. We introduce a general, analytical framework to express and to approximate partial dif-
ferential equations (PDEs) numerically on graphs and networks of surfaces – generalized by the term
hypergraphs. To this end, we consider PDEs on hypergraphs as singular limits of PDEs in networks of
thin domains (such as fault planes, pipes, etc.), and we observe that (mixed) hybrid formulations offer
useful tools to formulate such PDEs. Thus, our numerical framework is based on hybrid finite element
methods (in particular, the class of hybrid discontinuous Galerkin methods).
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1. Introduction

This manuscript establishes a general approach to formulate partial differential equations (PDEs) on networks
of (hyper)surfaces, referred to as hypergraphs. Such PDEs consist of differential expressions with respect to all
hyperedges (surfaces) and compatibility conditions on the hypernodes (joints, intersections of surfaces). These
compatibility conditions ensure conservation properties (in case of continuity equations) or incorporate other
properties – motivated by physical or mathematical modeling. We illuminate how to discretize such equations
numerically using hybrid discontinuous Galerkin (HDG) methods. They consist of local solvers (encoding the
differential expressions on hyperedges) and a global compatibility condition (related to our hypernode condi-
tions). We complement the physically motivated compatibility conditions by a derivation through a singular
limit analysis of thinning structures yielding the same results.

Albeit many physical, sociological, engineering, and economic processes have been described by partial differ-
ential equations posed on domains which cannot be described as subsets of linear spaces or smooth manifolds,
there is still a lack of mathematical tools and general purpose software specifically addressing the challenges
arising from the discretization of these models.

Fractured porous media (see [5] for a comprehensive review) have gained substantial attention and have
become an active field of research due to their critical role with respect to flow patterns in several applications
in the subsurface, in material science, and in biology. Most commonly, a fracture is described as a very thin,
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not necessarily planar object in which, for example Darcy’s equation holds. This motivates the singular limit
approximation in which a fracture is assumed to be a two dimensional surface within the three dimensional
space. When several of these fractures meet, they form a fracture network of two-dimensional surfaces. Thus,
fracture networks illustrate a physical application of the type of problem we investigate in this publication.
Moreover, a model in which the joints of two (or more) fractures are assigned additional physical properties can
be found in [36]. Beyond this, fracture networks have been simulated using hybrid high order (HHO) methods
[21].

Graph based models for porous media (without fractures) consist of simulating preferential flow paths within
the porous matrix. One of the first publications implementing this idea is [18] who observed that a network of
tubes might approximate the flow of porous media better than the classical model of tube bundles, which has
also been used in the most common upscaling techniques – see [35,39] and the references therein for a discussion
of those tube models in upscaling procedures. The tube network approach [18] has been successfully applied to
couple porous media flow to free (Navier–) Stokes flow [40].

PDEs on hypergraphs are especially suitable to be used in the description of elastic networks [16]: Here, we
discriminate between one dimensional elastic beam (rod) networks, trusses, etc. and two dimensional elastic
plate (shell) networks [26], respectively. Beam networks have been used to model truss bridges and towers
(most prominently the Eiffel tower) and other mechanical structures, originating the field of elastic beam theory
(for instance [1] for an introduction which also covers elastic plate models). Elastic plate models describe the
stability of houses and have several engineering applications such as the description of the stability of (bend)
plates (used in automobile industries and several others). They have even been used to understand interseismic
surface deformation at subduction zones [25].

Elastic beam networks have been used to evaluate elastic constants in amorphous materials. That is, the
elastic properties of stiff, beam like polymers have been investigated. Such polymers are key to understanding
the cytoskeleton which is an important part of biological cells [22,28], but they are also important for the healing
of wounds (fibrin), for skin stability (collagen), and for the properties of paper. Moreover, such models can be
used for modelling rubber [24], foams, and fiber networks [23].

Conservation laws in the form of PDEs on hypergraphs have been used in the simulation and optimization
of gas networks [37] and other networks of pipelines. They have been extended to networks of traffic (streets
and data), (tele-)communication, and blood flow. For an overview of the main ideas that are related to these
applications, the reader may consult [7, 20]. Additionally, rigorous mathematical analysis of such problems is
developing to a field of current research [19].

We conclude the overview over some applications by stating that regular surfaces and volumes can also
be interpreted as hypergraphs. Thus, PDEs on surfaces [15] and standard “volume” problems (in which the
hyperedges have the same dimension as the surrounding space and at most two hyperedges meet in a common
hypernode) are also covered by our approach.

Hypergraph models usually are approximations of problems in higher dimensional networks of thin structures,
for example a network of thin pipes or thin plates in 3D. As a model example we give a rigorous derivation of
a diffusion equation on a hypergraph. More precisely, we consider a network of thin plates in three dimensions,
where the thickness of the plates is small compared to their length. We denote the ratio between the thickness
and the length by the small parameter 0 < 𝜖 ≪ 1. Due to the different scales the computational effort for
numerical simulations is very high. To overcome this problem the idea is to replace the thin-structure by a
hypergraph. For this we give a rigorous mathematical justification using asymptotic analysis. We pass to the
limit 𝜖 → 0 in the weak formulation of the problem, and derive a limit problem stated on the hypergraph. The
solution of this limit-problem is an approximation of the model in the higher-dimensional thin domain. Singular
limits for thin plates and shells (leading to lower-dimensional manifolds in the limit 𝜖 → 0) in elesticity can
be found in [10, 11]. Dimension reduction for a folded elastic plate is treated in [27]. Singular limits leading to
hypergraphs for fluid equations can be found in [29], where a Kirchhoff law in a junction of thin pipes is derived,
and [30] where junctions of thin pipes and plates are treated using the method of two-scale convergence.



PARTIAL DIFFERENTIAL EQUATIONS ON HYPERGRAPHS 507

Figure 1. A hypergraph with three hyperedges of dimension 2, a hypernode (red) connecting
them, and 9 boundary hypernodes (blue). Embedded hypergraph (left) in R3 and without
embedding (right). Isometries 𝜄 only shown for the interior hypernode.

The remainder of this manuscript is structured as follows: First, we discuss conservation equations on hyper-
graphs. Second, we rigorously formulate an elliptic model equation and investigate some of its properties in
Section 3. Third, we discuss its discretization by means of the HDG method in Section 4. Fourth, we discuss
how PDEs on hypergpahs can be obtained by a model reduction approach, in particular, by considering singular
limits. The publication is wrapped up, by a section on possible conclusions.

2. Conservation equations on geometric hypergraphs

2.1. Hypergraphs

A hypergraph 𝒢 = (𝒩 , ℰ) consists of a finite set ℰ of hyperedges and a finite set 𝒩 of hypernodes. We refer
to it as a geometric hypergraph if the hyperedges are smooth, open manifolds of dimension d with piecewise
smooth, Lipschitz boundary and the hypernodes can be identified with smooth subsets of the boundaries of
these hyperedges. More specifically, the boundary of each hyperedge 𝐸𝑒 ∈ ℰ is subdivided into 𝑘𝑒 nonoverlapping
subsets Γ𝑒

𝑖 such that 𝜕𝐸𝑒 =
⋃︀

Γ𝑒
𝑖 . We associate to 𝐸𝑒 an index vector 𝜂𝑒

1, . . . , 𝜂
𝑒
𝑘𝑒

and isometries

𝜄𝑒𝑖 : Γ𝑒
𝑖 → 𝑁𝜂𝑒

𝑖
, 𝑖 = 1, . . . , 𝑘𝑒. (2.1)

The hypernodes are thus identified with the closures of the subsets of the boundaries of one or more hyperedges.
Their dimension is d− 1.
𝒢 has the structure of a hypergraph in the classical sense as each edge 𝐸𝑒 ∈ ℰ connects a set of nodes

{𝑁𝜂𝑒
1
, . . . , 𝑁𝜂𝑒

𝑘𝑒
} ⊂ 𝒩 . The dual hypergraph 𝒢* = (ℰ ,𝒩 ) describes the situation where each hypernode 𝑁𝑛 ∈ 𝒩

connects ℓ𝑛 hyperedges with indices 𝜈𝑛
1 , . . . , 𝜈𝑛

ℓ𝑛
.

We call a hypernode 𝑁𝑛 ∈ 𝒩 a boundary hypernode if ℓ𝑛 = 1, i.e., it is part of the boundary of only a
single hyperedge. Accordingly, we define the set of boundary hypernodes 𝒩B and the set of interior hypernodes
𝒩I = 𝒩 ∖𝒩B.

As special cases: a geometric graph is a geometric hypergraph where the edges are smooth curves and the
nodes are their end points. If every hypernode is either at the boundary or connects exactly two hyperedges,
the hypergraph represents a piecewise smooth manifold.

The structure might become more evident if we consider an embedded geometric hypergraph in some ambient
space RD, as in Figure 1 on the left. In this case, the isometries 𝜄𝑒𝑖 are identical mappings and the hypernodes
are identified with the boundary pieces Γ𝑒

𝑖 . On the right of this figure, the same hypergraph is displayed without
embedding. In this case, the hyperedges are objects in R2, possibly with a non-flat metric. Hypernodes are
intervals in R, inheriting their metric through the isometries 𝜄.
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Figure 2. The hypergraph of Figure 1 with the illustration of an open ball. The ball’s center
is located on the shared hypernode, and its radius is 𝑟.

Due to the isometries 𝜄, every point of a hypernode 𝑁 is uniquely identified with a point on the boundary of
each of the hyperedges it connects. Thus, convergence of a point sequence in the union of these hyperedges to
a point on the hypernode is well-defined, for instance by considering the (finitely many) subsequences on each
hyperedge. Also, a distance between two points on different hyperedges sharing a hypernode is defined locally
by these isometries and triangle inequality.

The domain Ω of the hypergraph, its closure, and its boundary are

Ω =
⋃︁

𝐸∈ℰ
𝐸 ∪

⋃︁
𝑁∈𝒩

𝑁, 𝜕Ω =
⋃︁

𝑁∈𝒩B

𝑁, Ω = Ω ∖ 𝜕Ω. (2.2)

In this definition, the hyperedges are considered open with respect to their topology and do not contain their
boundaries. The hypernodes are closed. We introduce the skeletal domain

Σ =
⋃︁

𝑁∈𝒩
𝑁. (2.3)

We make the assumption that Ω is connected. Note that this implies that any two hyperedges are either
connected by a common hypernode or not connected, since Ω is open, see (2.2). Without such an assumption,
the problems of partial differential equations below separate into subproblems, which then can be analyzed and
solved independently.

In Figure 1, 𝜕Ω comprises all blue hypernodes, which also include the end points of the red hypernode. The
union of the red and blue hypernodes is Σ. The domain Ω consists of the interior of the red hypernode and the
the three hyperedges.

Many concepts of standard domains in Rd transfer to Ω, even if it is not a manifold. In particular, the notion
of a small open ball 𝐵𝑟(𝑥) with radius 𝑟 > 0 around 𝑥 ∈ Ω, see Figure 2, in Ω is maintained by construction
and thus the notion of open subsets. A subset is called compactly embedded in Ω if its closure is contained in
Ω and thus has a positive distance to 𝜕Ω.

A function is continuous on Ω, if it is continuous inside each hyperedge and its limits on a hypernode are
consistent between all hyperedges connected by this hypernode. Analogously, a function is in 𝐿2(Ω) if it is in
𝐿2(𝐸) for all 𝐸 ∈ ℰ and it is in 𝐿2(Σ) if it is in 𝐿2(𝑁) for all 𝑁 ∈ 𝒩 .

Remark 2.1 (Comparison to standard nomenclatures). In this article, we mix concepts from graph theory,
partial differential equations, and finite elements. Thus, a clash of names was unavoidable. What is referred to
as a hypernode here, is a face – an edge in two dimensions – in finite element literature, while the hyperedges
here correspond to mesh cells or elements. In order to reduce ensuing confusion, we consistently use the term
“hyperedge”. Another difference to finite element literature is established by the fact that we consider the
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hypergraph fixed and are not concerned with refinement limits. Finally, we would like to point out that there
has been a concept of geometric hypergraphs in the literature; it is nevertheless very limited, such that we coin
this term in a new way here, meaning a hypergraph whose elements are geometric shapes themselves.

2.2. Continuity equations on hypergraphs

Next, we conduct a heuristic derivation, employing control volumes 𝑉 in the shape of infinitesimal, open
hyperballs. Let 𝜌 be a conserved quantity and J be its flux. Then, the conservation property of 𝜌 is usually
stated in integral form such that for any such control volume 𝑉 there holds

d
dt

∫︁
𝑉

𝜌 d𝑥 = −
∫︁

𝜕𝑉

J · n d𝜎. (2.4)

When 𝑉 is a subset of a Lipschitz manifold 𝐸, the meaning of this statement is clear if J is a smooth tangential
vector field in 𝐸̄ and n is the outer normal vector to 𝜕𝑉 in the tangential plane of 𝐸. The term d𝑥 denotes the
volume element of the manifold, and d𝜎 is the induced surface element.

If the hyperball 𝑉 intersects a hypernode 𝑁 in which several edges meet, meaning can be given to equa-
tion (2.4) by the following observation: if 𝐸1, . . . , 𝐸ℓ are the hyperedges which meet in 𝑁 inside 𝑉 , then for
𝑖 ∈ {1, . . . , ℓ} the intersection 𝑉𝑖 = 𝑉 ∩𝐸𝑖 has a piecewise smooth boundary 𝜕𝑉𝑖. We observe that 𝑁𝑉 = 𝑉 ∩𝑁
is in the interior of 𝑉 (see Fig. 2 for an illustration) and the boundary of 𝑉 is nowhere tangential to 𝑁 . Thus,
with the assumption that no mass is created or destroyed in the hypernode 𝑁 , the conservation property (2.4)
can be restated as

d
dt

∫︁
𝑉

𝜌 d𝑥 =
d
dt

ℓ∑︁
𝑖=1

∫︁
𝑉𝑖

𝜌 d𝑥 = −
ℓ∑︁

𝑖=1

∫︁
𝜕𝑉𝑖∖𝑁𝑉

J · n d𝜎. (2.5)

Again, the flux J and the outer normal vector n to 𝑉 are well defined along 𝜕𝑉𝑖 in the tangential plane of 𝐸𝑖.
As a generalization of (2.5), we allow for sinks and sources 𝑓 living in the hyperedges and 𝑔 living within

hypernode 𝑁 : This can be implemented by setting

d
dt

∫︁
𝑉

𝜌 d𝑥 = −
ℓ∑︁

𝑖=1

∫︁
𝜕𝑉𝑖∖𝑁𝑉

J · n d𝜎 +
∫︁
𝑉

𝑓 d𝑥 +
∫︁

𝑁𝑉

𝑔 d𝜎, (2.6)

where positive 𝑓 and 𝑔 describe sources, while negative 𝑓 and 𝑔 describes sinks.
Before we convert (2.4) into a problem of partial differential equations, we make the simplifying assumption

that the hyperedges and hypernodes are planar and that d𝑥 is the standard Lebesgue measure. This way, we
avoid delving into the complexities of surface partial differential equations. This simplification is purely for
the ease of presentation and we refer the readers to [15] and [4] for more general surfaces in the elliptic and
hyperbolic settings, respectively.

Thus, in the interior of each hyperedge 𝐸, we can apply Gauss’ divergence theorem in standard form to
obtain ∫︁

𝜕𝑉

J · n d𝜎 =
∫︁

𝑉

∇·J d𝑥. (2.7)

If on the other hand 𝑉 overlaps a hypernode 𝑁 which connects hyperedges 𝐸1 . . . , 𝐸ℓ, we can still apply the
divergence theorem in each hyperedge to obtain∫︁

𝜕𝑉

J · n d𝜎 =
ℓ∑︁

𝑖=1

[︂∫︁
𝑉𝑖

∇·J d𝑥−
∫︁

𝑁𝑉

J · n d𝜎

]︂
. (2.8)
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This notion also extends to control volumes 𝑉 intersecting with several hypernodes in a natural way. Then,
rearranging the sum over boundary integrals yields∫︁

𝜕𝑉

J · n d𝜎 =
∑︁
𝐸∈ℰ

∫︁
𝑉 ∩𝐸

∇·J d𝑥−
∑︁

𝑁∈𝒩I

∫︁
𝑉 ∩𝑁

[[J · n]] d𝜎, (2.9)

for any control volume 𝑉 ⊂ Ω. Here, ∇·J is the standard divergence of the differentiable vector field and [[·]] is
the summation operator such that on a hypernode 𝑁 with hyperedges 𝐸1, . . . , 𝐸ℓ there holds

[[J · n]] =
ℓ∑︁

𝑖=1

J|𝐸𝑖
· n𝐸𝑖 , (2.10)

where n𝐸𝑖
denotes the outward pointing unit normal with respect to hyperedge 𝐸𝑖. A vector field J is usually

called solenoidal, if the left side of equation (2.9) vanishes for any control volume 𝑉 . The right hand side of this
equation generalizes this notion from standard domains to hypergraphs. Therefore, we call a piecewise smooth
vector field J solenoidal, if

∇·J(𝑥) = 0 for all 𝑥 ∈ 𝐸 and 𝐸 ∈ ℰ , (2.11a)
[[J · n]](𝑥) = 0 for all 𝑥 ∈ 𝑁 and 𝑁 ∈ 𝒩I. (2.11b)

Note that the second condition is an extension of Kirchhoff’s junction rule from points to higher dimensional
hypernodes.

To put it in a nutshell, assuming there are no leaks and sources in hypernodes and hyperedges, the conservation
condition (2.5) induces the PDE–interface problem to find 𝜌 and J such that

𝜕𝑡𝜌 +∇·J = 0 in all 𝐸 ∈ ℰ , (2.12a)
[[J · n]] = 0 on all 𝑁 ∈ 𝒩I. (2.12b)

Analogously, the continuity condition (2.6) induces the PDE interface problem to find 𝜌 and J such that

𝜕𝑡𝜌 +∇·J = 𝑓 in all 𝐸 ∈ ℰ , (2.13a)
[[J · n]] = 𝑔 on all 𝑁 ∈ 𝒩I. (2.13b)

In (2.12) and (2.13), 𝜌 and J might be linked by some phenomenological description, i.e., J = J(𝜌) (depending
on the specific application). Both equations are complemented by appropriate initial and boundary conditions.
Beyond this, additional continuity constraints might be formulated, such as 𝜌 ∈ 𝐶(Ω) and 𝜌 ∈ 𝐶∞(

⋃︀
𝐸).

Remark 2.2. The interface problems in (2.12) and (2.13) resemble the hybrid or hybridized formulation of
a PDE, which was introduced for instance in context of the mixed elements of Raviart–Thomas and Brezzi–
Douglas–Marini in [8, 33,34].

We are going to discuss the continuity equation (2.12) in the context of diffusion problems in Section 3.

3. Elliptic model equation

The standard diffusion equation in mixed form defined on a hypergraph 𝒢 = (ℰ ,𝒩 ) is a conservation equation
of type (2.12) for the flux J = −𝜅∇𝑢 of a scalar function 𝑢. This is for instance known as Fourier’s law of thermal
conduction, where 𝑢 is the temperature and 𝜅 is the dimensionless heat conductivity of the material. It is also
Fick’s law of diffusion where 𝑢 is a concentration and 𝜅 is the diffusion coefficient.

Like in the previous section, we simplify the presentation by assuming that all hyperedges are flat and thus
can be identified with a domain in Rd. In the more general case, the differential operators must be replaced by
their differential geometric counterparts as in [15].
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We focus on the stationary case and set the time derivative in (2.12) to zero. Thus, the discussion of the
previous section leads to the following problem: find 𝑢 satisfying

−∇·(𝜅∇𝑢) = 𝑓 in all 𝐸 ∈ ℰ , (3.1a)
𝑢 = 𝑢D on all 𝑁 ∈ 𝒩D, (3.1b)

𝑢|𝐸1 = 𝑢|𝐸2 on all 𝑁 ∈ 𝒩 , 𝑁 ⊂ 𝜕𝐸1 ∩ 𝜕𝐸2, (3.1c)
−[[𝜅∇𝑢 · n]] = 𝑔 on all 𝑁 ∈ 𝒩 ∖ 𝒩D, (3.1d)

for all 𝐸1, 𝐸2 ∈ ℰ , right hand sides 𝑓 and 𝑔, and a diffusion coefficient 𝜅 ≥ 𝜅0 > 0. A justification by taking the
limit of thin domains can be found in Section 5 below.

We observe that in (3.1) the diffusion equation (3.1a) is complemented by three boundary and interface
conditions. First, it is closed by a “Dirichlet” boundary condition (3.1b): We choose a non-empty set 𝒩D ⊂ 𝒩
of “Dirichlet” hypernodes, on which we impose 𝑢 = 𝑢D for a prescribed boundary value 𝑢𝐷. In (3.1c), we
employ a continuity constraint. This constraint prohibits jumps in the primary unknown across interior nodes,
and therefore, loosely speaking, imitates the standard constraint that 𝑢 ∈ 𝐻1 of the domain.

On interior nodes 𝑁 ∈ 𝒩I ⊂ 𝒩 ∖ 𝒩D, we set out with Kirchhoff’s junction law, but with the option of a
concentrated source 𝑔 in (3.1d). This equation also incorporates the Neumann condition −𝜅∇𝑢 ·n = 𝑔, since on
a boundary hypernode the sum in the definition (2.10) of the operator [[·]] reduces to a single hyperedge. Note
that (3.1d) for 𝑔 = 0 on interior nodes serves as compatibility condition for mimicking −𝜅∇𝑢 ∈ 𝐻div.

Definition 3.1 (Function spaces on hypergraphs). For each 𝐸 ∈ ℰ let 𝐻1(𝐸) be the standard Sobolev space
on 𝐸 and 𝛾 : 𝐻1(𝐸) → 𝐻1/2(𝜕𝐸) be the standard trace operator.

Then, we define

ℋ =

{︃
𝑢 ∈

⨁︁
𝐸∈ℰ

𝐻1(𝐸)

⃒⃒⃒⃒
⃒ 𝛾1𝑢 = 𝛾2𝑢

on 𝑁 = 𝜕𝐸1 ∩ 𝜕𝐸2, 𝑁 ∈ 𝒩

}︃
, (3.2)

where 𝛾1𝑢 and 𝛾2𝑢 are the traces of 𝑢 from the hyperedges 𝐸1 and 𝐸2 on 𝑁 , respectively. Due to the equality
of traces in the definition of ℋ, we can define the trace operator to the skeleton

𝛾 : ℋ →ℳ :=
{︂

𝜇 ∈ 𝐿2(Σ)
⃒⃒⃒⃒

𝜇|𝜕𝐸 ∈ 𝐻1/2(𝜕𝐸)
for all 𝐸 ∈ ℰ

}︂
. (3.3)

Additionally, the spaces ℋ0 and ℳ0 are defined as

ℳ0 :={𝜇 ∈ℳ : 𝜇|𝑁 = 0 for all 𝑁 ∈ 𝒩D}, (3.4)
ℋ0 :={𝑢 ∈ ℋ : 𝛾𝑢 ∈ℳ0}, (3.5)

and we denote the dual spaces of ℋ0 by ℋ⋆
0 and of ℳ0 by ℳ⋆

0.
Norms (‖ · ‖ℋ and ‖ · ‖ℳ) on the respective spaces (ℋ and ℳ) are induced by summed versions of the local

scalar-products:

(𝑢, 𝑣)ℋ :=
∑︁
𝐸∈ℰ

(𝑢|𝐸 , 𝑣|𝐸)𝐻1(𝐸), ‖𝑢‖2ℋ := (𝑢, 𝑢)ℋ, (3.6)

⟨𝜆, 𝜇⟩ℳ :=
∑︁
𝐸∈ℰ

⟨𝜆|𝐸 , 𝜇|𝐸⟩𝐻1/2(𝜕𝐸), ‖𝜇‖2ℳ := ⟨𝜇, 𝜇⟩ℳ, (3.7)

such that

‖𝑢‖2ℋ =
∑︁
𝐸∈ℰ

‖𝑢|𝐸‖2𝐻1(𝐸) and ‖𝜇‖2ℳ =
∑︁
𝐸∈ℰ

‖𝜇|𝜕𝐸‖2𝐻1/2(𝜕𝐸), (3.8)
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where the 𝐻1/2-norm with respect to a hyperedge’s boundary is defined as

‖𝜇|𝜕𝐸‖2𝐻1/2(𝜕𝐸) := ‖𝜇‖2𝐿2(𝜕𝐸) +
∫︁

𝜕𝐸

∫︁
𝜕𝐸

|𝜇|𝜕𝐸(𝑥)− 𝜇|𝜕𝐸(𝑦)|2

|𝑥− 𝑦|d
d𝜎𝑥d𝜎𝑦.

These definitions have a few immediate consequences:

(1) 𝛾 : ℋ →ℳ is a well-defined and surjective, linear, and continuous operator.
(2) We have the Gelfand triple relations

ℋ0 →˓ 𝐿2(Ω) ∼= [𝐿2(Ω)]⋆ →˓ ℋ⋆
0, (3.9)

ℳ0 →˓ 𝐿2(Σ) ∼= [𝐿2(Σ)]⋆ →˓ ℳ⋆
0. (3.10)

Note that ℳ⋆ is analogous to space 𝑀 of Raviart and Thomas [33].

Lemma 3.2. The space ℋ with inner product (·, ·)ℋ is a Hilbert space.

Proof. Obviously, ℋ is a subspace of the Hilbert space
⨁︀

𝐻1(𝐸), and the function

ℎ :
⨁︁
𝐸∈ℰ

𝐻1(𝐸) ∋ 𝑢 ↦→
∑︁

𝑁∈𝒩I

∑︁
𝐸̄1,𝐸̄2⊃𝑁

‖𝑢|𝐸1 − 𝑢|𝐸2‖2𝐿2(𝑁) ∈ R

is continuous and ℋ is its kernel. Thus, ℋ is closed. �

Definition 3.3. A weak solution to the primal formulation of (3.1) with 𝜅 ∈ 𝐿∞(Ω), 𝑓 ∈ ℋ⋆
0, and 𝑔 ∈ ℳ⋆

0 is
a function 𝑢 ∈ ℋ with 𝛾𝑢 = 𝑢D on all 𝑁 ∈ 𝒩D, and∑︁

𝐸∈ℰ

∫︁
𝐸

𝜅∇𝑢 · ∇𝑣 d𝑥 = ⟨𝑓, 𝑣⟩ℋ⋆
0 ,ℋ0 − ⟨𝑔, 𝑣⟩ℳ⋆

0 ,ℳ0 ∀𝑣 ∈ ℋ0. (3.11)

In particular, if 𝑓 ∈ 𝐿2(Ω) and 𝑔 ∈ 𝐿2(Σ), we can rewrite (3.11) as∑︁
𝐸∈ℰ

∫︁
𝐸

𝜅∇𝑢 · ∇𝑣 d𝑥 =
∫︁

Ω

𝑓𝑣 d𝑥−
∑︁

𝑁∈𝒩

∫︁
𝑁

𝑔𝑣 d𝜎 ∀𝑣 ∈ ℋ0. (3.12)

3.1. Existence and uniqueness of solutions

Theorem 3.4. Assume for 𝑢D that there is a lifting 𝑢̄D ∈ ℋ with 𝑢̄D = 𝑢D on all 𝑁 ∈ 𝒩D. If 𝜅 ∈ 𝐿∞(Ω) with
𝜅 ≥ 𝜅0 > 0 a. e., 𝑓 ∈ ℋ⋆

0, 𝑔 ∈ ℳ⋆
0, and all 𝐸 ∈ ℰ are Lipschitz domains, there is an unique weak solution 𝑢

according to Definition 3.3, which continuously depends on the data.

Proof. Due to the existence of 𝑢̄D, we can reduce the problem to the one with homogeneous Dirichlet values if
we replace 𝑢 by 𝑢− 𝑢̄D and modifying the right hand side accordingly. Since the right hand side is bounded and
ℋ0 is a Hilbert space, it suffices to show ellipticity of the weak form to conclude the proof by the Lax–Milgram
lemma. We note that for 𝑣 ∈ ℋ0 there holds∑︁

𝐸∈ℰ

∫︁
𝐸

𝜅∇𝑣 · ∇𝑣 d𝑥 ≥ 𝜅0

∑︁
𝐸∈ℰ

‖∇𝑣‖2𝐿2(𝐸). (3.13)

Thus, the following Poincaré–Friedrichs inequality implies ellipticity and concludes the proof. �

Lemma 3.5 (Poincaré–Friedrichs inequality for ℋ0). For all 𝑣 ∈ ℋ0 it holds that

‖𝑣‖𝐿2(Ω) ≤ 𝐶
∑︁
𝐸∈ℰ

‖∇𝑣‖𝐿2(𝐸).
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Proof. Similar to the standard case of subdomains in Rd, this inequality follows easily by contradiction: To this
end, we assume that there is a sequence (𝑣𝑛)𝑛=1,... ⊂ ℋ0 with

‖𝑣𝑛‖𝐿2(Ω) = 1 and
∑︁
𝐸∈ℰ

‖∇𝑣𝑛‖𝐿2(𝐸) ≤
1
𝑛
· (3.14)

Thus, 𝑣𝑛|𝐸 is bounded in 𝐻1(𝐸) for all 𝐸 ∈ ℰ . Hence, by the weak compactness of the unit ball in 𝐻1(𝐸) and
the Rellich–Kondrachov theorem, there exists a subsequence (also denoted 𝑣𝑛) such that

𝑣𝑛|𝐸 → 𝑣|𝐸 in 𝐿2(𝐸), and 𝑣𝑛|𝐸 ⇀ 𝑣|𝐸 in 𝐻1(𝐸). (3.15)

We have that 𝑣 ∈ ℋ0 (due to its completeness), and that the seminorm
∑︀

𝐸∈ℰ ‖∇𝑣‖𝐿2(𝐸) = 0. Thus, 𝑣 is
constant in all 𝐸 ∈ ℰ and overall continuous. Therefore it is overall constant and has to be zero, due to the zero
boundary condition on Dirichlet nodes and the connectedness of Ω. Hence, the strong convergence of 𝑣𝑛|𝐸 in
𝐿2(𝐸) implies ‖𝑣𝑛|𝐸‖𝐿2(𝐸) → 0, which contradicts ‖𝑣‖𝐿2(Ω) = 1. Therefore, the Poincaré–Friedrichs inequality
is valid. �

4. HDG method for elliptic model equation

When we derived PDE problems on hypergraphs, we were led to a formulation local on each hyperedge
with coupling conditions on hypernodes. This is a structure which is nicely reflected in hybridized methods.
Indeed, there the separation goes one step further. By putting degrees of freedom on the hypernode, values
on hyperedges are not coupling anymore to other hyperedges across these hypernodes, but only to the values
on the hypernodes constituting their boundary. Thus, differing from standard or discontinuous finite element
methods, the number of hyperedges attached to a hypernode does not affect the solution process on a single
hyperedge. Therefore, we consider hybridized methods ideally suited to PDEs on hypergraphs.

Hybridized discontinuous Galerkin (HDG) methods break the continuity condition (3.1c) by introducing
Lagrange multipliers on each hypernode which enforce the continuity of fluxes (3.1d) weakly. It turns out
though, that the Lagrange multiplier is an approximation to the solution 𝑢 of (3.1) on the skeleton itself.

With such methods, the actual PDE (3.1a) is represented locally on each hyperedge by Steklov–Poincaré
operators on the hyperedges, which transform function values to flux values on the boundary of the hyperedges,
a process called “local solver” in HDG terminology. The global problem is posed in terms of the degrees of
freedom on the hypernodes only, yielding a square, linear system of equations.

In this respect, HDG methods have a similar structure as the family of HHO methods. These are based on
hybridizing the primal formulation and lead to a rather simple error analysis on polytopic meshes where only
𝐿2 projections are used (as opposed to the rather complicated projections used for HDG). This is achieved by
a novel stabilization design [14]. Since HHO methods and HDG methods have a similar structure and similar
numerical properties, we expect them to work similarly well on hypergraphs. However, we are no experts on
HHO methods and, thus, focus on the HDG approach. For recent developments in hybrid high-order and HDG
methods, the reader may consult [9, 32].

The separation of the local solution of bulk problems from the global coupling of interface variables is also
achieved by the virtual element method [2, 3]. Thus, it fits into our view of coupled differential equations on
connected hyperedges. Different to the methods discussed so far, it does not rely on polynomial shape functions
inside mesh cells but rather on forms of fundamental solutions of any shape [31]. Accordingly, when applied to
hypergraphs, the actual type of local solvers and of the specific boundary trace operators will differ from our
approach, but remain within the same principal concept.

Beyond the aforementioned approaches, the solution of elliptic equations on hypergraphs can be approximated
by 𝐻1-conforming finite elements, where integrals are only taken over hyperedges. In this case, the continuity
across hypernodes is enforced by degrees of freedom associated to these hypernodes. In particular, degrees of
freedom must be associated with all lower-dimensional intersections of hypernodes, which requires more effort
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in the implementation of mesh structures. In order to avoid such complications, a standard DG method might
be employed. Note that in this case, the “jump terms” of DG must be generalized to more than two hyperedges
attached to a hypernode, while such an adaptation is achieved elegantly by hybridized methods.

4.1. The hybridized dual mixed formulation

In physical applications, there often is a need to receive reasonable approximations for both the primal
unknown 𝑢 and the dual unknown q = −𝜅∇𝑢. In other words, considering diffusion, we would like to know both
the distribution of some species’ concentration and the species “movement” (flux). This becomes particularly
important if we interpret 𝑢 as pressure and q as fluid flow through a porous medium (Darcy’s equation). In this
situation, the flow field q will govern the movement of chemical species dissolved within the fluid. It is often
the main quantity of interest and conservativity is crucial. Therefore, we turn to the mixed formulation.

The mixed HDG methods use the weak, dual, mixed, hybrid formulation of (3.1), i.e., find (𝑢,q, 𝜆) ∈
𝐿2(Ω)×

⨁︀
Hdiv(𝐸)×ℳ with 𝜆 = 𝑢D on all 𝑁 ∈ 𝒩D such that∫︁

𝐸

[︀
𝑢(∇·p)− 𝜅−1q · p

]︀
d𝑥 =

∫︁
𝜕𝐸

𝜆p · n d𝜎 ∀p ∈
⨁︁
𝐸∈ℰ

Hdiv(𝐸), (4.1a)∫︁
𝐸

𝑣∇·q d𝑥 =
∫︁

𝐸

𝑓𝑣 d𝑥 ∀𝑣 ∈ 𝐿2(Ω), (4.1b)∑︁
𝐸∈ℰ

∫︁
𝜕𝐸

(q · n)𝜇 d𝜎 = ⟨𝑔, 𝜇⟩ℳ⋆
0 ,ℳ0 ∀𝜇 ∈ℳ0. (4.1c)

Well-posedness of this formulation can be deduced from Theorem 3.4 if 𝑓 ∈ 𝐿2(Ω). Indeed, on the one hand,
this implies that the (uniquely existing) solution 𝑢 of Definition 3.3 solves (4.1) with 𝑢 = 𝑢, q = −𝜅∇𝑢, and
𝜆 = 𝛾𝑢. On the other hand, for any solution (𝑢,q, 𝜆) ∈ 𝐿2(Ω)×

⨁︀
Hdiv(𝐸)×ℳ of (4.1), we have 𝑢 ∈ ℋ (by the

space’s definition), and q = −𝜅∇𝑢 in the weak sense. Therefore, any solution to (4.1) satisfies Definition 3.3.
Equations (4.1a) and (4.1b) are local equations on the hyperedge, like in the standard case of a domain.

They only couple to the Lagrange multipliers on the boundary of the hyperedge. Thus, we can eliminate them
locally in the fashion of the Schur complement method. To this effect, we introduce the local solution operator
𝑆𝐸 : ℳ → ℳ* for the right hand side 𝑓 = 0. It is in fact a Steklov–Poincaré operator on 𝐸 mapping the
Dirichlet data 𝜆 to the normal trace of the flux in (4.1c).

Then, the solution 𝜆 of (4.1) can be characterized as∑︁
𝐸

⟨𝑆𝐸𝜆, 𝜇⟩ℳ⋆
0 ,ℳ0 = ⟨𝑔, 𝜇⟩ℳ⋆

0 ,ℳ0 . (4.2)

Remark 4.1. The Steklov–Poincaré operators 𝑆𝐸 in this equation are the same ones as in the case of a manifold.
They do not depend on the connectivity of a hypernode to other hyperedges. Thus, their implementation does
not differ from that of a standard finite element method. The only difference lies in the structure of the sum on
the left, and is thus almost purely of algebraic nature.

For a right hand side 𝑓 ∈ 𝐿2(Ω), we define the operators

(𝒰 , 𝒬̃) : 𝐿2(Ω) → 𝐿2(Ω)×
⨁︁
𝐸∈ℰ

Hdiv(𝐸)

𝑓 ↦→ (𝑢,q)
(4.3)

by an hyperedge-wise solution of (4.1a) and (4.1b) with 𝜆 ≡ 0.
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In order to obtain a better understanding of the Steklov–Poincaré operators, we follow the route laid out in
[12] for the discrete version and define the solution operators

(𝒰 ,𝒬) : ℳ→ 𝐿2(Ω)×
⨁︁
𝐸∈ℰ

Hdiv(𝐸)

𝜆 ↦→ (𝑢,q)
(4.4)

which map a given 𝜆 to the hyperedge-wise solution of (4.1a) and (4.1b) with 𝑓 ≡ 0.
The well-posedness and linearity of all local solution operators follow directly from the fact (see for instance

[6]) that the mixed formulation on a single hyperedge is well-posed for any given 𝜆 ∈ 𝐻1/2(𝜕𝐸) and its solution
depends continuously on 𝜆. Entering these solution operators into (4.1c) yields as an equivalent formulation

−
∑︁
𝐸∈ℰ

∫︁
𝜕𝐸

(𝒬𝜆 · n)𝜇 d𝜎 =
∑︁
𝐸∈ℰ

∫︁
𝜕𝐸

(𝒬̃𝑓 · n)𝜇 d𝜎 − ⟨𝑔, 𝜇⟩ℳ⋆
0 ,ℳ0 , (4.5)

since q = 𝒬𝜆 + 𝒬̃𝑓 . In other words, 𝜆 is a part of the solution triplet to (4.1) if, and only if, 𝜆 solves (4.5).
By some simple transformations of (4.1), we can write (4.2) with inhomogeneous right hand sides in terms of
bilinear and linear forms. This argument allows to reduce the problem to finding 𝜆 ∈ ℳ with 𝜆 = 𝑢D on all
𝑁 ∈ 𝒩D, such that

𝑎(𝜆, 𝜇) = 𝑏(𝜇) ∀𝜇 ∈ℳ0, (4.6a)

𝑎(𝜆, 𝜇) =
∑︁
𝐸∈ℰ

∫︁
𝐸

𝜅−1𝒬𝜆 · 𝒬𝜇 d𝑥, (4.6b)

𝑏(𝜇) =
∑︁
𝐸∈ℰ

∫︁
𝜕𝐸

(𝒬̃𝑓 · n)𝜇 d𝜎 − ⟨𝑔, 𝜇⟩ℳ⋆
0 ,ℳ0 . (4.6c)

Obviously, bilinear form 𝑎 and linear form 𝑏 are continuous due to the continuity of operators 𝒬 and 𝒬̃.
Surprisingly, we have recovered a symmetric bilinear form. The following lemma is a key to the discrete well-
posedness and adds the fact that this form is even ℳ0-elliptic.

Lemma 4.2. If 𝜅 ≥ 𝜅0 > 0 and 𝜅 ∈ 𝐿∞(Ω), bilinear form 𝑎 from (4.6b) is ℳ0 elliptic.

Proof. Like in the proof of the Poincaré–Friedrichs inequality, we prove ellipticity of 𝑎(·, ·) by a contradiction
argument. To this end, let 𝜆𝑛 be a sequence in ℳ0 such that

‖𝜆𝑛‖ℳ = 1 and ‖𝒬𝜆𝑛‖𝐿2(Ω) → 0. (4.7)

Thus, there exists a subsequence 𝜆𝑛 ⇀ 𝜆̃ in ℳ, and by the compact embedding of 𝐻1/2(𝜕𝐸) in 𝐿2(𝜕𝐸) there
holds again for a subsequence 𝜆𝑛 → 𝜆̃ in 𝐿2(Σ). Since 𝒬 is continuous and 𝜆𝑛 converges weakly in 𝐻

1
2 (𝜕𝐸) we

obtain 𝒬𝜆𝑛 ⇀ 𝑄𝜆̃ weakly in Hdiv(𝐸) for each hyperdege and therefore also in 𝐿2(Ω). Thus, (4.7) implies that
𝒬𝜆̃ = 0. We denote by (𝑢,q) the solution to (4.1a) and (4.1b) associated to 𝜆̃, especially we have q = 𝒬𝜆̃ = 0.
Hence, for every 𝐸 ∈ ℰ we have ∫︁

𝐸

𝑢(∇·p) d𝑥 =
∫︁

𝜕𝐸

𝜆p · n d𝜎 ∀p ∈ Hdiv(𝐸). (4.8)

Moreover, we have that the divergence operator

div : 𝐻1
0 (𝐸)d → 𝐿2

0(𝐸) :=
{︂

𝑢 ∈ 𝐿2(𝐸) :
∫︁

𝐸

𝑢 = 0
}︂

(4.9)
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is surjective, and therefore ∫︁
𝐸

𝑢𝜙 d𝑥 = 0 ∀𝜙 ∈ 𝐿2
0(𝐸). (4.10)

This, however, implies that 𝑢 is constant on 𝐸. Furthermore, since 𝑢 is constant on 𝐸, we can deduce by (4.8)
and Gauss’ divergence theorem that 𝜆̃ = 𝑢 is constant and

𝜆̃ ≡ const on 𝜕𝐸 ∀𝐸 ∈ ℰ . (4.11)

The contradiction argument is concluded by the fact that some hyperedges are adjacent to the Dirichlet nodes
and thus 𝜆̃ = 0 on their boundary. For the other hyperedges, 𝜆̃ = 0 follows from connectedness of Ω. Thus,
𝜆̃ ≡ 0 on Σ in contradiction to ‖𝜆‖ℳ = 1. Altogether we showed that for all 𝜆 ∈ℳ0 it holds that

‖𝜆‖ℳ . ‖𝒬𝜆‖𝐿2(Ω).

Together with (4.6b) we obtain for a positive constant 𝛼

𝑎(𝜆, 𝜆) ≥ 𝛼‖𝜆‖2ℳ,

i.e., the ellipticity of 𝑎 on ℳ0.
Thus, the Lax–Milgram lemma guarantees a unique solution as soon as it is clear that 𝑓 and 𝑔 generate a

right hand side in the dual of ℳ0. But for 𝑔 this is obvious as ℳ0 ⊂ 𝐿2(Σ). For 𝑓 ∈ 𝐿2(Ω), there is a unique
solution of (4.1a) and (4.1b) with 𝜆 = 0. Its trace q · n is in 𝐻−1/2(𝜕𝐸) for each hyperedge and thus bounded
on ℳ. �

4.2. HDG methods in dual mixed form

The derivation of the HDG methods follows the exposition in [12], which covers the case of “standard”
domains. Let 𝑀̂ be some finite dimensional, scalar function space. Then, we define the space of discrete functions
on the skeleton Σ by

𝑀 :=
{︂

𝜆 ∈ 𝐿2(Σ)
⃒⃒⃒⃒

𝜆|𝑁 ∈ 𝑀̂ ∀𝑁 ∈ 𝒩
𝜆|𝑁 = 0 ∀𝑁 ∈ 𝒩D

}︂
. (4.12)

The mixed HDG methods involve a local solver on each hyperedge 𝐸 ∈ ℰ , producing hyperedge-wise approxi-
mations 𝑈𝐸 ∈ 𝑉𝐸 and and Q𝐸 ∈ W𝐸 of the functions 𝑢 and q in equation (4.1), respectively. Here, 𝑉𝐸 is some
finite dimensional, scalar function space, and W𝐸 is some finite dimensional, vector valued function space. We
will also use the concatenations of the spaces 𝑉𝐸 and W𝐸 , respectively, as a function space on Ω, namely

𝑉 :=
{︀
𝑣 ∈ 𝐿2(Ω)

⃒⃒
𝑣|𝐸 ∈ 𝑉𝐸 , ∀𝐸 ∈ ℰ

}︀
,

W :=
{︀
q ∈ 𝐿2(Ω; R𝑑)

⃒⃒
q|𝐸 ∈ W𝐸 , ∀𝐸 ∈ ℰ

}︀
.

(4.13)

The HDG scheme for (4.1) on a hypergraph 𝒢 consists of the local solver and a global coupling equation. The
local solver is defined hyperedge-wise by a weak formulation of (4.1) in the discrete spaces 𝑉𝐸×W𝐸 and defining
suitable numerical traces and fluxes. Namely, given 𝜆 ∈ 𝑀 find 𝑈𝐸 ∈ 𝑉𝐸 and Q𝐸 ∈ W𝐸 , such that∫︁

𝐸

1
𝜅
Q𝐸 · p d𝑥−

∫︁
𝐸

𝑈𝐸∇𝐸 ·p d𝑥 = −
∫︁

𝜕𝐸

𝜆p · n d𝜎 (4.14a)∫︁
𝜕𝐸

(Q𝐸 · n + 𝜏𝑈𝐸)𝑣 d𝜎 −
∫︁

𝐸

Q𝐸 · ∇𝐸𝑣 d𝑥 = 𝜏

∫︁
𝜕𝐸

𝜆𝑣 d𝜎 (4.14b)

hold for all 𝑣 ∈ 𝑉𝐸 , and all p ∈ W𝐸 , and for all 𝐸 ∈ ℰ . Here, 𝜏 ≥ 0 is the penalty coefficient. While the local
solvers are implemented hyperedge by hyperedge, it is helpful for the analysis to combine them by concatenation.
Thus, the local solvers define a mapping

𝑀 → 𝑉 ×W

𝜆 ↦→ (𝒰𝜆,𝒬𝜆),
(4.15)
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Table 1. Combinations of local polynomial spaces and stabilization parameters for various
hybridized methods on simplices.

Method 𝑀̂ 𝑉𝐸 W𝐸 𝜏

LDG-H 𝒫𝑝 𝒫𝑝 𝒫𝑑
𝑝 >0

RT-H 𝒫𝑝 𝒫𝑝 𝒫𝑑
𝑝 + x𝒫𝑝 =0

BDM-H 𝒫𝑝 𝒫𝑝−1 𝒫𝑑
𝑝 =0

where for each hyperedge 𝐸 ∈ ℰ holds 𝒰𝜆 = 𝑈𝐸 and 𝒬𝜆 = Q𝐸 . Analogously, we set 𝒰(𝑓, 𝑢D) and 𝒬(𝑓, 𝑢D),
where now the local solutions are defined by the system∫︁

𝐸

1
𝜅
Q𝐸 · p d𝑥−

∫︁
𝐸

𝑈𝐸∇𝐸 ·p d𝑥 = −
∫︁

𝜕𝐸

𝑢Dp · n d𝜎 (4.16a)∫︁
𝜕𝐸

(Q𝐸 · n + 𝜏𝑈𝐸)𝑣 d𝜎 −
∫︁

𝐸

Q𝐸 · ∇𝐸𝑣 d𝑥 =
∫︁

𝐸

𝑓𝑣 d𝑥 + 𝜏

∫︁
𝜕𝐸

𝑢D𝑣 d𝜎. (4.16b)

Once 𝜆 has been computed, the HDG approximation to (4.1) on 𝒢 will be computed as

𝑈 = 𝒰𝜆 + 𝒰(𝑓, 𝑢D), Q = 𝒬𝜆 +𝒬(𝑓, 𝑢D). (4.17)

The global coupling condition is derived through a discontinuous Galerkin version of mass balance and reads:
Find 𝜆 ∈ 𝑀 , such that for all 𝜇 ∈ 𝑀∑︁

𝐸∈ℰ

∑︁
𝑁∈𝒩∖𝒩D

𝑁⊂𝜕𝐸

∫︁
𝑁

[Q · n + 𝜏(𝑈 − 𝜆)] 𝜇 d𝜎 =
∑︁

𝑁∈𝒩∖𝒩D

∫︁
𝑁

𝑔𝜇 d𝜎. (4.18)

Using the summation operator [[·]] from (2.10) the left-hand side of (4.18) can equivalently be written as∑︁
𝑁∈𝒩∖𝒩D

∫︁
𝑁

[[Q · n + 𝜏(𝑈 − 𝜆)]]𝜇 d𝜎 =
∑︁
𝐸∈ℰ

∑︁
𝑁∈𝒩∖𝒩D

𝑁⊂𝜕𝐸

∫︁
𝑁

[Q · n + 𝜏(𝑈 − 𝜆)] 𝜇 d𝜎.

Remark 4.3. Hybridized DG methods in dual mixed form differ by the choice of local polynomial spaces and
the stabilization parameter 𝜏 . Defining 𝒫𝑝 as the space of multivariate polynomials of degree at most 𝑝, Table 1
lists some well-known combinations on simplices.

Well-posedness of the local solvers for all of them is proven in [12] and the works cited there. Analogous
combinations based on tensor product polynomials exist for hypercubes.

Existence and uniqueness of the discrete solution 𝜆, 𝑈 , and Q to the HDG method can be shown repeating the
arguments mentioned in Section 4.1 in the finite-dimensional setting. A natural assumption is the well-posedness
of the local problems (4.14), see Remark 4.3.

Given the local solvers, the HDG method for elliptic diffusion problems is consistent with respect to the
solution to (4.1). Using consistency, we can immediately apply the analysis in [13], as it proceeds locally for
each hyperedge. Thus, we obtain optimal convergence rates for LDG-H (and also RT-H by slight adaptions) on
simplicial hypergraphs. They also transfer to quadrilateral hypergraphs, since these allow for a Raviart–Thomas
projection satisfying equation (2.7) in [13].
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Figure 3. Pictures of the computational domains for d = 2, and different combinations of
filling 𝑖 and refinement 𝑟. I all three illustrations, the same corner of the “cubes” has been
removed in the plots to illustrate the interior structure of the “cubes”.

4.3. Numerical convergence tests for LDG-H

Next, we consider a convergence example on a hypergraph. It is constructed to approximate

−∇ · (𝜅∇𝑢) = 𝑓 in 𝐸 ∈ ℰ , 𝑢 = 𝑢D on 𝑁 ∈ 𝒩D, (4.19)

where the Dirichlet nodes are those that are located on the boundary of [0, 1]D with D = 3.
The filling 𝑖 indicates that the cube has been 𝑖 times uniformly refined (in the standard three dimensional

sense), and the calculation is conducted on the d dimensional “surfaces” of this filling. These surfaces themselves
might be further refined 𝑟 times, and these refined surfaces are identified to be our standard hyperedges, see
Figure 3 for an illustration.

The d−1 dimensional faces of this approach are interpreted as nodes and the nodes located on the boundary
of the unit cube are considered Dirichlet nodes. All other nodes are supposed to be interior nodes. The solution
is constructed to be 𝑢 = −𝑥2 − 𝑦2 − 𝑧2, diffusion coefficient 𝜅 = 1, and right-hand side 𝑓 = 2d. Of course,
polynomial degrees ≥2 are supposed to exactly reproduce the given solution, which is true in our numerical
experiments. Thus, we only plot the errors for 𝑝 = 1 in Table 2.

Interestingly, the 𝐿2 errors converge also with filling 𝑖, although the computational domain increases for d = 1
and d = 2. However, the rate of convergence deteriorates by 1 if d = 1, and 1

2 if d = 2. The optimal order is
obtained for d = 3.

Beyond this, the refinement indicated with 𝑟 uses filling level 𝑖 = 2 and then uniformly refines the respective
faces. This does not lead to an increase of the computational domain (even if d < D) and, therefore, gives the
optimal convergence rate 𝑝 = 2.

Next, we vary the polynomial degree of the HDG approximation. To this end, we consider the hypergraph
depicted in the left picture of Figure 3, i.e., a cube with filling 𝑖 = 1. The approximated analytical solution is
set to be 𝑢 = sin(2𝜋𝑥) + sin(2𝜋𝑦) + sin(2𝜋𝑧) and 𝜅 = 1

4𝜋2 . All other values are set accordingly. Table 3 shows
the errors and estimated orders of convergence for different orders of shape functions if the surfaces are refined
𝑟 times. We evaluate the results for both the standard HDG approximate to 𝑢 and a postprocessed solution,
which is assumed to have an enhanced convergence speed by one order.

We can see that the orders of convergence are 𝑝+1 for the HDG approximate and 𝑝+2 for the postprocessed
approximate, which are exactly the expected rates for ‘standard’ domains.

The aforementioned results have been obtained using our code HyperHDG [38].
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Table 2. 𝐿2 errors (err) and estimated orders of convergence (eoc) of linear approximation to
the diffusion equation for hypergraphs with hyperedge dimension d.

d = 1 d = 2 d = 3
Mesh err eoc err eoc err eoc

F
il
li
n
g

𝑖 = 0 2.71e-1 – 2.64e-1 – 1.31e-1 –
𝑖 = 1 9.82e-2 1.5 7.96e-2 1.7 3.24e-2 2.0
𝑖 = 2 4.05e-2 1.3 2.55e-2 1.6 8.07e-3 2.0
𝑖 = 3 1.81e-2 1.2 8.56e-3 1.6 2.01e-3 2.0
𝑖 = 4 8.57e-3 1.1 2.94e-3 1.5 5.04e-4 2.0
𝑖 = 5 4.16e-3 1.0 1.02e-3 1.5 1.26e-4 2.0

R
efi

n
em

en
t 𝑟 = 0 4.05e-2 – 2.55e-2 – 8.07e-3 –

𝑟 = 1 1.00e-2 2.0 6.38e-3 2.0 2.01e-3 2.0
𝑟 = 2 2.52e-3 2.0 1.59e-3 2.0 5.04e-4 2.0
𝑟 = 3 6.30e-4 2.0 3.98e-4 2.0 1.26e-4 2.0

Table 3. 𝐿2 errors (err) and estimated orders of convergence (eoc) of the HDG approximation
to the diffusion equation without and with postprocessing.

𝑝 = 1 𝑝 = 2 𝑝 = 3
Refinement err eoc err eoc err eoc

S
ta

n
d
a
rd

H
D

G 𝑟 = 1 3.58e-1 – 4.24e-2 – 1.79e-3 –
𝑟 = 2 8.05e-2 2.2 5.06e-3 3.1 7.77e-5 4.5
𝑟 = 3 1.86e-2 2.1 6.01e-4 3.1 3.34e-6 4.5
𝑟 = 4 4.47e-3 2.1 7.34e-5 3.0 1.66e-7 4.3
𝑟 = 5 1.10e-3 2.0 9.11e-6 3.0 9.74e-9 4.1
𝑟 = 6 2.75e-4 2.0 1.13e-6 3.0 6.06e-10 4.0

P
o
st

p
ro

ce
ss

ed

𝑟 = 1 2.87e-1 – 2.97e-2 – 2.35e-3 –
𝑟 = 2 5.12e-2 2.5 2.67e-3 3.5 9.63e-5 4.6
𝑟 = 3 8.20e-3 2.6 2.05e-4 3.7 3.51e-6 4.7
𝑟 = 4 1.19e-3 2.8 1.43e-5 3.8 1.19e-7 4.9
𝑟 = 5 1.63e-4 2.9 9.50e-7 3.9 3.90e-9 4.9
𝑟 = 6 2.14e-5 2.9 6.12e-8 4.0 1.24e-10 5.0

5. Hypergraph PDE as singular limit

The aim of this section is to derive the hypergraph model (3.1) as a singular limit of a 3D-model problem as
illustrated in Figure 4. We use the figure to illuminate the basic ideas: We assume to have a diffusion problem
on a domain consisting of three thin plates (in gray) and a (red) joint. This is the problem, which we would
like to solve. However, we do not want to solve it in three spatial dimensions, but would like to reduce it to a
two-dimensional problem in order to save computational cost and memory. Thus, we let the thickness of the
three plates (and therefore also the thickness of the joint) go to zero by considering 𝜖 ↘ 0, and construct a
two dimensional limit problem. The solution of this two dimensional problem lives on the mid-planes of the
three planes and their joint. It in some sense is supposed to approximate the solution of the original (three-
dimensional) problem for which 𝜖 is a small, positive number.

The principal idea of the limit process is to map equations on the thin structures depending on 𝜖 to fixed
reference domains independent of 𝜖, where we can use standard compactness methods from functional analysis.
However, the transformed problem includes 𝜖-dependent coefficients. Thus, the crucial point for the derivation
of the limit model is to establish a priori estimates that are uniform with respect to 𝜖 > 0.
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Figure 4. Model problem of a hypergraph as singular limit. Extruded domain with red 𝑁
(𝜔 is red checkerboard), and homogeneous Dirichlet boundary green on the left. Singular limit
with 𝑁 depicted red, and homogeneous Dirichlet node highlighted green on the right.

5.1. Description of the 3D model problem

We consider the simplified case of one hypernode 𝑁 with length 𝐿 connecting 𝑚 hyperedges 𝐸𝑖 for 𝑖 = 1, . . . ,𝑚
which are rectangles with side lengths 𝐿 and 𝐿𝑖. Thus, Figure 4 shows the case with 𝑚 = 3. The opposite node
of 𝑁 with respect to 𝐸𝑖 is denoted by 𝑁𝑖,𝑒 (and is a boundary node). Without loss of generality, we assume
that 𝑁 lies in the 𝑥1-axis and we have

𝑁 = {𝑠𝑒1 : 𝑠 ∈ (0, 𝐿)}. (5.1)

We denote by 𝜈𝑖 a unit normal vector to 𝐸𝑖 and define extruded hyperedges for 0 < 𝜖 ≪ 1 and 0 < 𝑑𝑖

𝐸̃𝜖
𝑖 :=

{︂
𝑥 ∈ R3 : 𝑥 = 𝑦 + 𝑠𝜈𝑖 for 𝑠 ∈

(︂
−𝑑𝑖𝜖

2
,
𝑑𝑖𝜖

2

)︂
, 𝑦 ∈ 𝐸𝑖

}︂
.

Hence, 𝐸̃𝜖
𝑖 is a hexahedron with side lengths 𝐿 and 𝐿𝑖, and with thickness 𝑑𝑖𝜖. We construct now a domain Ω𝜖

which contains the union of all these extruded hyperedges and a nonoverlapping decomposition of this domain.
To this end, let 𝛼 > 0 be chosen such that the sets

𝐸𝜖
𝑖 :=

{︁
𝑥 ∈ 𝐸̃𝜖

𝑖 : dist(𝑥, 𝑆𝜖
𝑖 ) > 𝛼𝜖

}︁
, (5.2)

do not overlap. We denote the side of 𝐸̃𝜖
𝑖 that contains 𝑁 by 𝑆𝜖

𝑖 , and define

𝑆𝜖
𝑖 := int

{︁
𝑥 ∈ 𝜕𝐸𝜖

𝑖 : dist(𝑥, 𝑆𝜖
𝑖 ) = 𝛼𝜖

}︁
.

The side lengths of 𝐸𝜖
𝑖 are 𝐿 and 𝐿𝑖 − 𝛼𝜖. Additionally, we define the convex hull of the node 𝑁 and the sides

𝑆𝜖
𝑖 :

𝑁 𝜖 := int
(︀
conv{𝑁, 𝑆𝜖

1, . . . , 𝑆
𝜖
𝑚}
)︀
.

By construction, we have
𝑁 𝜖 = (0, 𝐿)× 𝜖𝜔.

Then, we define the thin domain Ω𝜖 as

Ω𝜖 := 𝑁 𝜖 ∪
𝑚⋃︁

𝑖=1

(𝐸𝜖
𝑖 ∪ 𝑆𝜖

𝑖 ) .
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On Ω𝜖 we define a diffusion problem and then pass to the limit 𝜖 ↘ 0 in order to derive a problem on
the hypergraph Ω = 𝑁 ∪

⋃︀𝑚
𝑖=1 𝐸𝑖. To ensure uniqueness for our model we assume a zero-Dirichlet boundary

condition on one face 𝑆𝜖
𝐷. We consider the following problem for the unknown 𝑢𝜖 : Ω𝜖 → R

−∇ ·
(︀
𝜅𝜖∇𝑢𝜖

)︀
= 𝑓 𝜖 in Ω𝜖, (5.3a)

𝑢𝜖 = 0 on 𝑆𝜖
𝐷, (5.3b)

−𝜅𝜖∇𝑢𝜖 · 𝜈 = 0 on 𝜕Ω𝜖 ∖ 𝑆𝜖
𝐷. (5.3c)

Here we assume that 𝜅𝜖 is piecewise constant on 𝐸𝜖
𝑖 and 𝑁 , i.e. we have 𝜅𝜖|𝐸𝜖

𝑖
= 𝜅𝑖 > 0 and 𝜅𝜖|𝑁 = 𝜅𝑁 > 0.

For 𝑓 𝜖 we assume that 𝑓 𝜖|𝐸𝜖
𝑖

= 𝑓𝑖 with 𝑓𝑖 ∈ 𝐶0(R3) and

𝑓 𝜖|𝑁𝜖(𝑥) =
1

𝜖|𝜔|
𝑔(𝑥) (5.4)

with 𝑔 ∈ 𝐶0(R3).

Remark 5.1. We emphasize that the function 𝑓 𝜖
𝑁 is of order 𝜖−1. That is, a nonzero source term 𝑔 on a

hypernode can only be caused by a large sink/source which converges to a measure on the hypernode.

Definition 5.2. Let

𝐻1
𝐷(Ω𝜖) =

{︀
𝑢 ∈ 𝐻1(Ω𝜖)

⃒⃒
𝑢𝜖
|𝑆𝜖

𝐷
= 0
}︀
. (5.5)

We call 𝑢𝜖 ∈ 𝐻1
𝐷(Ω𝜖) a weak solution of (5.3) if for all 𝜑𝜖 ∈ 𝐻1

𝐷(Ω𝜖) there holds∫︁
Ω𝜖

𝜅𝜖∇𝑢𝜖 · ∇𝜑𝜖 d𝑥 =
∫︁

Ω𝜖

𝑓 𝜖𝜑𝜖 d𝑥. (5.6)

As the standard solution theory for elliptic equations applies to Ω𝜖, the Lax–Milgram lemma immediately
implies the existence of a unique weak solution of (5.3) for all 𝜖 > 0.

5.2. Transformation to 𝜖 independent domains

First, we map the domains 𝐸𝜖
𝑖 and 𝑁 𝜖 to fixed domains 𝐸ref and 𝑁ref , respectively:

𝐸ref := (0, 𝐿)× (0, 𝐿)×
(︂
−1

2
,

1
2

)︂
,

𝑁ref := (0, 𝐿)× 𝜔.

For 𝑁 𝜖 we just use a simple scaling:

Φ𝜖
𝑁 : 𝑁 𝜖 → 𝑁ref , Φ𝜖

𝑁 (𝑥) = 𝐴𝜖
𝑁𝑥,

where the matrix 𝐴𝜖
𝑁 ∈ R3×3 is given via

𝐴𝜖
𝑁 =

⎛⎝1 0 0
0 𝜖−1 0
0 0 𝜖−1

⎞⎠ .

The transformation between 𝐸𝜖
𝑖 and 𝐸ref is defined by (𝑖 = 1, . . . ,𝑚)

Φ𝜖
𝑖 : 𝐸𝜖

𝑖 → 𝐸ref , Φ𝜖
𝑖(𝑥) = 𝐴𝜖

𝑖𝑅𝑖𝑥 + 𝑎𝜖
𝑖 , (5.7)
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where 𝑅𝑖 ∈ R3×3 is a rotation around the 𝑥1-axis, 𝐴𝜖
𝑖 ∈ R3×3 and 𝑎𝜖

𝑖 ∈ R3 are given by

𝑅𝑖 =
(︂

1 0
0 𝑅̄𝑖

)︂
, 𝐴𝜖

𝑖 =

⎛⎝1 0 0
0 𝐿

𝐿𝑖−𝛼𝜖 0
0 0 1

𝑑𝑖𝜖

⎞⎠ , 𝑎𝜖
𝑖 =

⎛⎝ 0
− 𝐿

𝐿𝑖−𝛼𝜖𝛼𝜖
0

⎞⎠ ,

where the matrix 𝑅̄𝑖 ∈ R2×2 is a rotation. More precisely, 𝑅𝑖 can be determined by the equation 𝑅𝑖𝜈𝑖 = 𝑒3,
where 𝑒3 is the unit vector in 𝑥3-direction and 𝜈𝑖 is a unit normal on 𝐸𝑖.

Further, we write

Ψ𝜖
𝑁 (𝑥) := (Φ𝜖

𝑁 )−1(𝑥) = (𝐴𝜖
𝑁 )−1𝑥,

Ψ𝜖
𝑖(𝑥) := (Φ𝜖

𝑖)
−1(𝑥) = 𝑅−1

𝑖 (𝐴𝜖
𝑖)
−1
(︀
𝑥− 𝑎𝜖

𝑖

)︀
.

The side of 𝐸ref with the homogeneous Dirichlet boundary condition on 𝐸𝑚 is denoted by 𝑆𝐷. It is characterized
via

𝑆𝐷 := Φ𝜖
𝑖(𝑆

𝜖
𝐷) = (0, 𝐿)× {𝐿} ×

(︂
−1

2
,

1
2

)︂
·

The sides of 𝑁ref where 𝑁 𝜖 interfaces to the hyperedges are

𝑆𝑖 = Φ𝜖
𝑁 (𝑆𝜖

𝑖 ) ⊂ (0, 𝐿)× 𝜕𝜔.

Now we make a change of variables to transform equation (5.6) to the fixed domains 𝐸ref and 𝑁ref . Then we
define

𝑢𝜖
𝑖(𝑥) := 𝑢𝜖

(︀
Ψ𝜖

𝑖(𝑥)
)︀

for almost every 𝑥 ∈ 𝐸ref ,

𝑢𝜖
𝑁 (𝑥) := 𝑢𝜖

(︀
Ψ𝜖

𝑁 (𝑥)
)︀

for almost every 𝑥 ∈ 𝑁ref .

In other words, we identify the function 𝑢𝜖 ∈ 𝐻1
𝐷(Ω𝜖) with the tuple

(𝑢𝜖
1, . . . , 𝑢

𝜖
𝑚, 𝑢𝜖

𝑁 ) ∈ 𝐻1(𝐸ref)𝑚 ×𝐻1(𝑁ref),

together with the interface and boundary conditions

𝑢𝜖
𝑁 = 𝑢𝜖

𝑖 ∘ Φ𝜖
𝑖 ∘Ψ𝜖

𝑁 on 𝑆𝑖, 𝑢𝜖
𝑚 = 0 on 𝑆𝐷. (5.8)

Next, we use the fact that

(Φ𝜖
𝑖 ∘Ψ𝜖

𝑁 )|𝑆𝑖 : 𝑆𝑖 → 𝑆 := (0, 𝐿)× {0} ×
(︂
−1

2
,

1
2

)︂
(5.9a)

is an isomorphism between a face of 𝑁ref and 𝐸ref . Thus, we can write it in the 𝜖-independent form

(Φ𝜖
𝑖 ∘Ψ𝜖

𝑁 )|𝑆𝑖
=

⎛⎝1 0 0
0 1 0
0 0 𝑑−1

𝑖

⎞⎠
⏟  ⏞  

=:𝐴𝑖

𝑅𝑖𝑥− 𝑑𝑒2. (5.9b)

Note that here, the first and second component of the mapping can be obtained by a simple concatenation of
Φ𝜖

𝑖 and Ψ𝜖
𝑁 , in particular, the second component is zero – cf. the definition of S in (5.9a), since (𝑅𝑖𝑥)2 = 𝑑 for

all 𝑥 ∈ 𝑆𝑖.
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By a change of coordinates and an elemental calculation we obtain

𝜖2
∫︁

𝑁ref

𝜅𝑁 (𝐴𝜖
𝑁 )2∇𝑢𝜖

𝑁 · ∇𝜑𝑁 d𝑥 +
𝑚∑︁

𝑖=1

(𝐿𝑖 − 𝛼𝜖)𝑑𝑖𝜖

𝐿

∫︁
𝐸ref

𝜅𝑖(𝐴𝜖
𝑖)

2∇𝑢𝜖
𝑖 · ∇𝜑𝑖 d𝑥

=
𝜖

|𝜔|

∫︁
𝑁ref

𝑔 ∘Ψ𝜖
𝑁𝜑𝑁 d𝑥 +

𝑚∑︁
𝑖=1

(𝐿𝑖 − 𝛼𝜖)𝑑𝑖𝜖

𝐿

∫︁
𝐸ref

𝑓𝑖 ∘Ψ𝜖
𝑖𝜑𝑖 d𝑥 (5.10)

for all 𝜑 = (𝜑1, . . . , 𝜑𝑚, 𝜑𝑁 ) ∈ 𝐻1(𝐸ref)𝑚 × 𝐻1(𝑁ref) which fulfills the boundary and interface conditions in
(5.8).

5.3. A priori estimates that are uniform in 𝜖

In the following we use for 𝑥 ∈ R3 the notation 𝑥‖ = (𝑥1, 𝑥2) and 𝑥⊥ = (𝑥2, 𝑥3), as well as ∇‖ = (𝜕1, 𝜕2)𝑇

and ∇⊥ = (𝜕2, 𝜕3)𝑇 .
In a first step, we derive a priori estimates for 𝑢𝜖

𝑁 and 𝑢𝜖
𝑖 uniformly with respect to 𝜖. We define the space

𝐻1(𝑁ref ,∇⊥) :=
{︀
𝜑𝑁 ∈ 𝐿2(𝑁ref) : ∇⊥𝜑𝑁 ∈ 𝐿2(𝑁ref)2

}︀
,

with the norm ‖𝜑𝑁‖2𝐻1(𝑁ref ,∇⊥) := ‖𝜑𝑁‖2𝐿2(𝑁ref )
+ ‖∇⊥𝜑𝑁‖2𝐿2(𝑁ref )

. The proof of the trace theorem in Chapter
5.5, Theorem 1 of [17] implies the existence of a bounded linear trace operator

𝛾∇⊥ : 𝐻1(𝑁ref ,∇⊥) → 𝐿2(𝑆𝑁 )

for 𝑆𝑁 := (0, 𝐿) × 𝜕𝜔. We use the abbreviations 𝜑𝑁 |𝑆𝑁
:= 𝛾∇⊥(𝜑𝑁 ) and 𝜑𝑁 |𝑆𝑖

for the restriction to 𝑆𝑖,
respectively. Additionally, we have the following Poincaré-inequality:

Lemma 5.3. For all 𝑣 = (𝑣1, . . . , 𝑣𝑚, 𝑣𝑁 ) ⊂ 𝐻1(𝐸ref)𝑚 ×𝐻1(𝑁ref) with the boundary conditions (5.8) it holds

𝑚∑︁
𝑖=1

‖𝑣𝑖‖𝐿2(𝐸ref ) + ‖𝑣𝑁‖𝐿2(𝑁ref ) ≤ 𝐶

(︃
‖∇⊥𝑣𝑁‖𝐿2(𝑁ref ) +

𝑚∑︁
𝑖=1

‖∇𝑣𝑖‖𝐿2(𝐸ref )

)︃
.

Proof. As for the Poincaré-inequality in the proof of Theorem 3.4 we use a contradiction argument. We assume
that there exists a sequence (𝑣𝑛

1 , . . . , 𝑣𝑛
𝑚, 𝑣𝑛

𝑁 )𝑛 ⊂ 𝐻1(𝐸ref)𝑚 × 𝐻1(𝑁ref) with the boundary conditions (5.8),
such that

1 =
𝑚∑︁

𝑖=1

‖𝑣𝑛
𝑖 ‖𝐿2(𝐸ref ) + ‖𝑣𝑛

𝑁‖𝐿2(𝑁ref ) ≥ 𝑛

(︃
‖∇⊥𝑣𝑛

𝑁‖𝐿2(𝑁ref ) +
𝑚∑︁

𝑖=1

‖∇𝑣𝑛
𝑖 ‖𝐿2(𝐸ref )

)︃
. (5.11)

Since 𝑣𝑛
𝑖 is bounded in 𝐻1(𝐸ref) and 𝑣𝑛

𝑁 is bounded in 𝐻1(𝑁ref ,∇⊥), there exist 𝑣𝑖 and 𝑣𝑁 , such that up to a
subsequence

𝑣𝑛
𝑖 ⇀ 𝑣𝑖 weakly in 𝐻1(𝐸ref),

𝑣𝑛
𝑖 → 𝑣𝑖 in 𝐿2(𝐸ref),

𝑣𝑛
𝑁 ⇀ 𝑣𝑁 weakly in 𝐻1(𝑁ref ,∇⊥).

Further, due to (5.11) we have ∇𝑣𝑖 = 0 and ∇⊥𝑣𝑁 = 0. This implies that 𝑣𝑖 is constant on 𝐸ref (and 𝑣𝑚 = 0
due to the zero boundary condition on 𝑆𝐷) and there exists 𝑣𝑁 ∈ 𝐿2(𝑁) such that 𝑣𝑁 (𝑥) = 𝑣𝑁 (𝑥1) for almost
every 𝑥 ∈ 𝑁ref . The continuity of the usual trace operator on 𝐻1(𝐸ref) and the continuity of 𝛾∇⊥ imply that
𝑣𝑖(𝐴𝑖𝑅𝑖𝑥 − 𝑑𝑒2)|𝑆𝑖

= 𝑣(𝑥1) on 𝑆𝑖. Further, the continuity of the trace operator implies the weak convergence
of the traces (from both sides). Additionally we used, that we have 𝑣𝑛

𝑁 |𝑆𝑖 = 𝑣𝑛
𝑖 |𝑆𝑖 , which can be shown by a

density argument. This implies 𝑣𝑖 = 0 and 𝑣𝑁 = 0, which contradicts 1 =
∑︀𝑚

𝑖=1 ‖𝑣𝑖‖𝐿2(𝐸ref ) + ‖𝑣𝑁‖𝐿2(𝑁ref ). �
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Now, we obtain the following a priori estimates:

Lemma 5.4. For 𝑢𝜖
𝑖 and 𝑢𝜖

𝑁 it holds that

𝜖‖𝜕1𝑢
𝜖
𝑁‖𝐿2(𝑁ref ) + ‖∇⊥𝑢𝜖

𝑁‖𝐿2(𝑁ref ) +
𝑚∑︁

𝑖=1

{︀√
𝜖‖∇‖𝑢𝜖

𝑖‖𝐿2(𝐸ref ) + ‖𝜕3𝑢
𝜖
𝑖‖𝐿2(𝐸ref )

}︀
≤ 𝐶

√
𝜖

for a constant 𝐶 > 0 independent of 𝜖.

Proof. Choosing 𝜑𝑖 = 𝑢𝜖
𝑖 and 𝜑𝑁 = 𝑢𝜖

𝑁 as a test-function in (5.10) and using the positivity of 𝜅𝜖 and the
assumptions on 𝑓 𝜖, as well as the trace-inequality and the Poincaré-inequality from Lemma 5.3, we obtain

𝜖2‖𝜕1𝑢
𝜖
𝑁‖2𝐿2(𝑁ref )

+ ‖∇⊥𝑢𝜖
𝑁‖2𝐿2(𝑁ref )

+
𝑚∑︁

𝑖=1

{︁
𝜖‖∇‖𝑢𝜖

𝑖‖2𝐿2(𝐸ref )
+ ‖𝜕3𝑢

𝜖
𝑖‖𝐿2(𝐸ref )

}︁
≤ 𝐶𝜖‖𝑔 ∘Ψ𝜖

𝑁‖𝐿2(𝑁ref )‖𝑢
𝜖
𝑁‖𝐿2(𝑁ref ) + 𝐶𝜖

𝑚∑︁
𝑖=1

‖𝑓𝑖 ∘Ψ𝜖
𝑖‖𝐿2(𝐸ref )‖𝑢

𝜖
𝑖‖𝐿2(𝐸ref )

≤ 𝐶𝜖‖𝑢𝜖
𝑁‖𝐿2(𝑁ref ) + 𝐶𝜖

𝑚∑︁
𝑖=1

‖𝑢𝜖
𝑖‖𝐿2(𝐸ref )

≤ 𝐶𝜖 +
1
2

(︃
‖∇⊥𝑢𝜖

𝑁‖2𝐿2(𝑁ref )
+ 𝜖

𝑚∑︁
𝑖=1

‖∇𝑢𝜖
𝑖‖2𝐿2(𝐸ref )

)︃
.

The second term on the right-hand side can be absorbed from the left-hand side and we obtain the desired
result. �

5.4. Convergence by compactness results and characterization of limit problem

Using the weak compactness of the unit ball in 𝐿2 and the Rellich–Kondrachov theorem we immediately
obtain the following compactness result:

Corollary 5.5. There exists 𝑢0
𝑁 ∈ 𝐿2(𝑁ref) with ∇⊥𝑢0

𝑁 = 0 in the weak sense, and 𝑢0
𝑖 ∈ 𝐻1(𝐸ref) for 𝑖 =

1, . . . ,𝑚, such that up to a subsequence

𝑢𝜖
𝑁 ⇀ 𝑢0

𝑁 weakly in 𝐿2(𝑁ref),
𝑢𝜖

𝑖 → 𝑢0
𝑖 strongly in 𝐿2(𝐸ref),

∇𝑢𝜖
𝑖 ⇀ ∇𝑢0

𝑖 weakly in 𝐿2(𝐸ref),
∇⊥𝑢𝜖

𝑁 → 0 strongly in 𝐿2(𝑁ref),
𝜕3𝑢

𝜖
𝑖 → 0 strongly in 𝐿2(𝐸ref).

Especially the last two convergences imply ∇⊥𝑢̃0
𝑁 = 0 and 𝜕3𝑢̃

0
𝑖 = 0 in the weak sense. Hence, there exist

𝑢0
𝑁 ∈ 𝐿2(𝑁) and 𝑢0

𝑖 ∈ 𝐻1((0, 𝐿)2) such that 𝑢̃0
𝑁 (𝑥) = 𝑢0

𝑁 (𝑥1) for almost every 𝑥 ∈ 𝑁ref and 𝑢̃0
𝑖 (𝑥) = 𝑢0

𝑖 (𝑥‖) for
almost every 𝑥 ∈ 𝐸ref .

In the following, we drop the notation ·̃ and just use the notation 𝑢0
𝑁 ∈ 𝐿2(𝑁ref) and 𝑢0

𝑖 ∈ 𝐻1(𝐸ref) for the limit
functions. Let us consider the interface and boundary conditions for these limits. Obviously, the zero boundary
condition 𝑢𝜖

𝑚 = 0 on 𝑆𝐷 is inherited to 𝑢𝑚
0 by the continuity of the trace operator on 𝐻1(𝐸ref).

The weak convergence of 𝑢𝜖
𝑁 in 𝐻1(𝑁ref ,∇⊥) to 𝑢0

𝑁 implies the weak convergence 𝑢𝜖
𝑁 |𝑆𝑖 ⇀ 𝑢0

𝑁 in 𝐿2(𝑆𝑖).
Further, the weak convergence of 𝑢𝜖

𝑖 in 𝐻1(𝐸ref) and the compactness of the embedding 𝐻1(𝐸ref) →˓ 𝐿2(𝜕𝐸ref)
implies the strong convergence 𝑢𝜖

𝑖 |𝑆𝑖
→ 𝑢0

𝑖 in 𝐿2(𝑆𝑖). Using (5.8) and (5.9b) we obtain for all 𝜑 ∈ 𝐶∞0 (𝑆𝑖)∫︁
𝑆𝑖

𝑢0
𝑁𝜑d𝜎 = lim

𝜖→0

∫︁
𝑆𝑖

𝑢𝜖
𝑁𝜑d𝜎 = lim

𝜖→0

∫︁
𝑆𝑖

𝑢𝜖
𝑖(𝐴𝑖𝑅𝑖𝑥− 𝑑𝑒2)𝜑d𝜎 =

∫︁
𝑆𝑖

𝑢0
𝑖 (𝐴𝑖𝑅𝑖𝑥− 𝑑𝑒2)𝜑d𝜎.
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This implies the interface condition

𝑢𝑁
0 |𝑆𝑖

(𝑥) = 𝑢0
𝑖 |𝑆(𝐴𝑖𝑅𝑖𝑥− 𝑑𝑒2) for almost every 𝑥 ∈ 𝑆𝑖. (5.12)

Now, let us pass to the limit in the variational equation (5.10) for suitable test-functions. We choose 𝜑𝑁 ∈ 𝐶∞(𝑁)
(hence 𝜑𝑁 is constant on every section {𝑥1} × 𝜔 of 𝑁ref) and 𝜑𝑖 ∈ 𝐶∞((0, 𝐿)2) with 𝜑𝑖 = 𝜑𝑁 on (0, 𝐿) × {0}
(𝜑𝑖 is constant in 𝑥3-direction) and 𝜑𝑚 has compact support away from 𝑆𝐷. Obviously, (𝜑1, . . . , 𝜑𝑚, 𝜑𝑁 ) is an
admissible test-function for (5.10). We multiply (5.10) with 1/𝜖 and obtain

𝜖

∫︁
𝑁ref

𝜅𝑁𝜕1𝑢
𝜖
𝑁𝜕1𝜑𝑁 d𝑥 +

𝑚∑︁
𝑖=1

(𝐿𝑖 − 𝛼𝜖)𝑑𝑖

𝐿

∫︁
𝐸ref

𝜅𝑖(𝐴𝜖
𝑖)

2∇𝑢𝜖
𝑖 · ∇𝜑𝑖 d𝑥

=
∫︁

𝑁

𝑔 ∘Ψ𝜖
𝑁𝜑𝑁 d𝑥1 +

𝑚∑︁
𝑖=1

(𝐿𝑖 − 𝛼𝜖)𝑑𝑖

𝐿

∫︁
𝐸ref

𝑓𝑖 ∘Ψ𝜖
𝑖𝜑𝑖 d𝑥. (5.13)

Now, we pass to the limit 𝜖 → 0 in every single term. From Lemma 5.4 we immediately obtain that the first
term on the left-hand side is of order

√
𝜖 and vanishes for 𝜖 → 0. The convergence of ∇𝑢𝜖

𝑖 from Corollary 5.5
implies

(𝐿𝑖 − 𝛼𝜖)𝑑𝑖

𝐿

∫︁
𝐸ref

𝜅𝑖(𝐴𝜖
𝑖)

2∇𝑢𝜖
𝑖 · ∇𝜑𝑖 d𝑥

𝜖→0−→ 𝐿𝑖𝑑𝑖

𝐿

∫︁
(0,𝐿)2

𝜅𝑖

(︂
𝜕1𝑢

0
𝑖 𝜕1𝜑𝑖 +

𝐿2

𝐿2
𝑖

𝜕2𝑢
0
𝑖 𝜕2𝜑𝑖

)︂
d𝑥‖.

Further, we have

(𝐿𝑖 − 𝛼𝜖)𝑑𝑖

𝐿

∫︁
𝐸ref

𝑓𝑖 ∘Ψ𝜖
𝑖𝜑𝑖 d𝑥

𝜖→0−→ 𝐿𝑖

𝐿
𝑑𝑖

∫︁
(0,𝐿)2

𝑓𝑖 ∘Ψ0
𝑖 𝜑𝑖 d𝑥‖,

with

Ψ0
𝑖 (𝑥) := 𝑅−1

𝑖

⎛⎝1 0 0
0 𝐿

𝐿𝑖
0

0 0 0

⎞⎠𝑥,

and in a similar way we get ∫︁
𝑁

𝑔 ∘Ψ𝜖
𝑁𝜑𝑁 d𝑥1

𝜖→0−→
∫︁

𝑁

𝑔(𝑥1, 0, 0)𝜑𝑁 d𝑥1.

Now, we define the function 𝑢0 on the hypergraph Ω in the following way: For almost every 𝑥 ∈ 𝐸𝑖 we define
(we emphasize that (𝑅𝑖𝑥)3 = 0)

𝑢0(𝑥) := 𝑢0
𝑖 (𝐶𝑖𝑅𝑖𝑥) with 𝐶𝑖 =

⎛⎝1 0 0
0 𝐿

𝐿𝑖
0

0 0 0

⎞⎠ .

Hence, we have 𝑢0 ∈ ℋ with 𝑢0|𝐸𝑚 = 0 on 𝑁𝑚,𝑒 (see Def. 3.3), and altogether, we obtain for 𝜖 → 0 in (5.13)
after a change of coordinates for all 𝜑 ∈ ℋ with 𝜑𝑚 = 0 on 𝑁𝑚,𝑒

𝑚∑︁
𝑖=1

𝑑𝑖

∫︁
𝐸𝑖

𝜅𝑖∇𝐸𝑖𝑢
0
𝑖 · ∇𝐸𝑖𝜑 d𝑥 =

∫︁
𝑁

𝑔(𝑥1, 0, 0)𝜑|𝑁 d𝑥1 +
𝑛∑︁

𝑖=1

𝑑𝑖

∫︁
𝐸𝑖

𝑓𝑖𝜑𝑖 d𝑥. (5.14)

In other words, 𝑢0 is the unique weak solution of (𝜅̃𝑖 = 𝜅̃|𝐸𝑖
= 𝑑𝑖𝜅𝑖)

−∇𝐸𝑖
· (𝜅̃𝑖∇𝐸𝑖

𝑢0) = 𝑑𝑖𝑓𝑖 for 𝑖 = 1, . . . ,𝑚, (5.15a)
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𝑢0 = 0 on 𝑁𝑚,𝑒, (5.15b)
−[[𝜅̃∇𝐸𝑢0 · n]] = 𝑔 on 𝑁, (5.15c)
−𝜅̃𝑖∇𝐸𝑖

𝑢0 · n = 0 on 𝑁𝑖,𝑒 for 𝑖 = 1, . . . ,𝑚− 1, (5.15d)
𝑢0|𝐸𝑖

= 𝑢0|𝐸𝑗
on 𝑁 for 𝑖, 𝑗 = 1, . . . ,𝑚. (5.15e)

5.5. Concluding remarks

For the ease of presentation, we have just performed the limit analysis for a very simple model case. Therefore,
we have to discuss the validity of our analysis in more general cases.

(1) Different combinations of boundary conditions, Dirichlet, (inhomogeneous) Neumann, or Robin will yield
the same result as long as the variation of boundary functions in direction normal to the hyperedges 𝐸𝑖

vanishes for 𝜖 ↘ 0.
(2) A hyperedge with several “interior” hypernodes: after changing the definition of 𝐸𝜖

𝑖 in (5.2) and the reference
mapping Φ𝜖

𝑖 in (5.7), two hypernode domains 𝑁 𝜖
𝑖 meeting in the same corner will have an intersection,

which we have to treat separately in order to have a nonoverlapping decomposition of Ω𝜖. But then, the
integrals over these corner domains converge to zero by one order faster than the first term in (5.13). Thus,
they do not enter the limit equation. Obviously, not all nodes can be located in the 𝑥-axis, but an affine
transformation to the reference node 𝑁ref can always be found and the analysis works in the same way as
shown.

(3) General hypergraphs with planar hyperedges: after the previous point, it is clear that we can construct and
decompose Ω𝜖 in the same fashion for any finite hypergraph, provided 𝜖 sufficiently small.

(4) Hypergraphs with smooth nonplanar hyperedges: in this case, the reference mappings become nonlinear
mappings and many aspects become technically much more involved. The cross section 𝜖𝜔 of the node 𝑁 𝜖

may depend smoothly on the tangential coordinate, but it will always have positive diameter and will be
bounded as long as the hyperedges are smooth manifolds. Again, there will be an upper bound for 𝜖, but
the limit properties will not be affected.

(5) Higher dimensional hypergraphs and graphs: here we end up in a situation with new reference domains

𝐸ref := (0, 𝐿)d ×
(︂
−1

2
,

1
2

)︂D−d

𝑁ref := (0, 𝐿)d−1 × 𝜔,

with |𝜖𝜔| ∼ 𝜖D+1−d.
(6) More general assumptions on 𝜅𝜖 are possible. For example continuity of 𝜅𝜖 on 𝐸𝜖

𝑖 and 𝑁 as in the definition of
𝑓 𝜖 is enough (jumps between the different compartments are valid). Another possible choice is to construct
𝜅𝜖 from a 𝐿∞-function on 𝐸𝑖 and 𝑁 , constantly extended in normal direction with respect to 𝐸𝑖 resp. 𝑁 .

We conclude this section with some observations about the singular limit model and the 3D model problem:
First, we observe that in the limit problem the angles under which two or more hyperedges meet have become

irrelevant, while these angles certainly have been relevant for the 3D model problem. Note that the definition
of 𝜔 needs that there are no angles of zero degrees and if there are small angles, the shape of 𝜔 will compensate
this drawback. Since we take 𝜖 ↘ 0, this shape as well as the volume of 𝜔 is does not affect the limit problem.
This effect implies that the 𝜖-limit of solutions will be approached slower when angles become small.

Second, nodal sources 𝑔 correspond to “strong” sources 𝑓 𝜖
𝑁 : Since the measures (and thereby the effects) of

hypernodes are scaled by 𝜖2 and vanish more quickly than those of hyperedges, sources on hypernodes are only
relevant if they are of order of 𝜖−1, cf. Remark 5.1. That is, analytically sources even become stronger during
the limiting process.
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6. Conclusions

We have motivated the formulation of PDEs on geometric hypergraphs, which generalize the notions of
“domains”, “graphs”, and “network of surfaces”. Using a simple singular limit example in which several thin
subdomains meet in a common inter-domain, we underlined that problems on hypergraphs might evolve from
practical applications, and that the hybrid formulations of PDEs is particular useful for their expression. Thus,
we used hybrid methods (in particular HDG methods), which intrinsically fit to this formulation, to approximate
the solution of simple PDEs on hypergraphs. Doing so, we obtained the optimal convergence behavior, which
is predicted by the theory of these methods applied to PDEs on standard domains.

In many problems in applications, we have to consider additional physical and biochemical effects on the
hypernodes, leading to mixed dimensional PDEs in the problem. This situation is more complicated, starting
with a rigorous weak formulation (and the choice of suitable function spaces) for the problem. Even if the
generalization is not straightforward, we expect that our methods can be extended to the case where hypernodes
are one dimension less than hyperedges, where our solution space has to be extended to function spaces with
more regular traces. However, a rigorous treatment of such kind of problems is necessary and part of our ongoing
work.
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