High order approximation of Hodge Laplace problems with local coderivatives on cubical meshes
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 3, pp. 867-891

In mixed finite element approximations of Hodge Laplace problems associated with the de Rham complex, the exterior derivative operators are computed exactly, so the spatial locality is preserved. However, the numerical approximations of the associated coderivatives are nonlocal and can be regarded as an undesired effect of standard mixed methods. For numerical methods with local coderivatives, a perturbation of low order mixed methods in the sense of variational crimes has been developed for simplicial and cubical meshes. In this paper we extend the low order method to all high orders on cubical meshes using a new family of finite element differential forms on cubical meshes. The key theoretical contribution is a generalization of the linear degree, in the construction of the serendipity family of differential forms, and this generalization is essential in the unisolvency proof of the new family of finite element differential forms.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1051/m2an/2022009
Classification : 65N30
Keywords: Perturbed mixed methods, local constitutive laws
@article{M2AN_2022__56_3_867_0,
     author = {Lee, Jeonghun J.},
     title = {High order approximation of {Hodge} {Laplace} problems with local coderivatives on cubical meshes},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {867--891},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {3},
     doi = {10.1051/m2an/2022009},
     mrnumber = {4411484},
     zbl = {1487.65181},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2022009/}
}
TY  - JOUR
AU  - Lee, Jeonghun J.
TI  - High order approximation of Hodge Laplace problems with local coderivatives on cubical meshes
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2022
SP  - 867
EP  - 891
VL  - 56
IS  - 3
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2022009/
DO  - 10.1051/m2an/2022009
LA  - en
ID  - M2AN_2022__56_3_867_0
ER  - 
%0 Journal Article
%A Lee, Jeonghun J.
%T High order approximation of Hodge Laplace problems with local coderivatives on cubical meshes
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2022
%P 867-891
%V 56
%N 3
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2022009/
%R 10.1051/m2an/2022009
%G en
%F M2AN_2022__56_3_867_0
Lee, Jeonghun J. High order approximation of Hodge Laplace problems with local coderivatives on cubical meshes. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 3, pp. 867-891. doi: 10.1051/m2an/2022009

[1] I. Aavatsmark, An introduction to multipoint flux approximations for quadrilateral grids. Comput. Geosci. 6 (2002) 405–432. | MR | Zbl

[2] I. Aavatsmark, Interpretation of a two-point flux stencil for skew parallelogram grids. Comput. Geosci. 11 (2007) 199–206. | Zbl

[3] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards Applied Mathematics Series. Vol. 55, For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, DC (1964). | MR | Zbl

[4] I. Ambartsumyan, E. Khattatov, J. J. Lee and I. Yotov, Higher order multipoint flux mixed finite element methods on quadrilaterals and hexahedra. Math. Models Methods Appl. Sci. 29 (2019) 1037–1077. | MR | Zbl

[5] D. N. Arnold and G. Awanou, Finite element differential forms on cubical meshes. Math. Comp. 83 (2014) 1551–1570. | MR | Zbl

[6] D. N. Arnold, R. S. Falk and R. Winther, Finite element exterior calculus, homological techniques, and applications. Acta Numer. 15 (2006) 1–155. | MR | Zbl

[7] D. N. Arnold, R. S. Falk and R. Winther, Finite element exterior calculus: from Hodge theory to numerical stability. Bull. Amer. Math. Soc. (N.S.) 47 (2010) 281–354. | MR | Zbl

[8] D. N. Arnold, D. Boffi and F. Bonizzoni, Finite element differential forms on curvilinear cubic meshes and their approximation properties. Numer. Math. 129 (2015) 1–20. | MR | Zbl

[9] J. Baranger, J.-F. Maitre and F. Oudin, Connection between finite volume and mixed finite element methods. RAIRO: M2AN 30 (1996) 445–465. | MR | Zbl | Numdam

[10] M. Bause, J. Hoffmann and P. Knabner, First-order convergence of multi-point flux approximation on triangular grids and comparison with mixed finite element methods. Numer. Math. 116 (2010) 1–29. | MR | Zbl | DOI

[11] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics. Vol. 15. Springer (1992). | MR | Zbl

[12] F. Brezzi, M. Fortin and L. D. Marini, Error analysis of piecewise constant pressure approximations of Darcy’s law. Comput. Methods Appl. Mech. Eng. 195 (2006) 1547–1559. | MR | Zbl | DOI

[13] S. H. Christiansen and A. Gillette, Constructions of some minimal finite element systems. ESAIM: M2AN 50 (2016) 833–850. | MR | Zbl | Numdam | DOI

[14] B. Cockburn and W. Qiu, Commuting diagrams for the TNT elements on cubes. Math. Comp. 83 (2014) 603–633. | MR | Zbl | DOI

[15] G. Cohen and P. Monk, Gauss point mass lumping schemes for Maxwell’s equations. Numer. Methods Part. Differ. Equ. 14 (1998) 63–88. | MR | Zbl | DOI

[16] M. Desbrun, A. N. Hirani, M. Leok and J. E. Marsden, Discrete exterior calculus. Preprint (2005). | arXiv

[17] J. Droniou and R. Eymard, A mixed finite volume scheme for anisotropic diffusion problems on any grid. Numer. Math. 105 (2006) 35–71. | MR | Zbl | DOI

[18] A. Gillette and T. Kloefkorn, Trimmed serendipity finite element differential forms. Math. Comp. 88 (2019) 583–606. | MR | Zbl | DOI

[19] R. Hiptmair, Discrete Hodge operators. Numer. Math. 90 (2001) 265–289. | MR | Zbl | DOI

[20] A. N. Hirani, Discrete exterior calculus. Ph.D. thesis, California Institute of Technology ProQuest LLC, Ann Arbor, MI (2003). | MR

[21] R. Ingram, M. F. Wheeler and I. Yotov, A multipoint flux mixed finite element method on hexahedra. SIAM J. Numer. Anal. 48 (2010) 1281–1312. | MR | Zbl | DOI

[22] R. A. Klausen and R. Winther, Convergence of multipoint flux approximations on quadrilateral grids. Numer. Methods Part. Differ. Equ. 22 (2006) 1438–1454. | MR | Zbl | DOI

[23] R. A. Klausen and R. Winther, Robust convergence of multi point flux approximation on rough grids. Numer. Math. 104 (2006) 317–337. | MR | Zbl | DOI

[24] J. J. Lee and R. Winther, Local coderivatives and approximation of Hodge Laplace problems. Math. Comp. 87 (2018) 2709–2735. | MR | Zbl | DOI

[25] E. Schulz and G. Tsogtgerel, Convergence of discrete exterior calculus approximations for Poisson problems. Discrete Comput. Geom. 63 (2020) 346–376. | MR | Zbl | DOI

[26] M. Vohralik and B. I. Wohlmuth, Mixed finite element methods: implementation with one unknown per element, local flux expressions, positivity, polygonal meshes, and relations to other methods. Math. Models Methods Appl. Sci. 23 (2013) 803–838. | MR | Zbl | DOI

[27] M. F. Wheeler and I. Yotov, A multipoint flux mixed finite element method. SIAM J. Numer. Anal. 44 (2006) 2082–2106. | MR | Zbl | DOI

[28] M. Wheeler, G. Xue and I. Yotov, A multipoint flux mixed finite element method on distorted quadrilaterals and hexahedra. Numer. Math. 121 (2012) 165–204. | MR | Zbl | DOI

Cité par Sources :