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HIGH ORDER APPROXIMATION OF HODGE LAPLACE PROBLEMS WITH
LOCAL CODERIVATIVES ON CUBICAL MESHES

JEONGHUN J. LEE*

Abstract. In mixed finite element approximations of Hodge Laplace problems associated with the
de Rham complex, the exterior derivative operators are computed exactly, so the spatial locality is
preserved. However, the numerical approximations of the associated coderivatives are nonlocal and
can be regarded as an undesired effect of standard mixed methods. For numerical methods with local
coderivatives, a perturbation of low order mixed methods in the sense of variational crimes has been
developed for simplicial and cubical meshes. In this paper we extend the low order method to all high
orders on cubical meshes using a new family of finite element differential forms on cubical meshes.
The key theoretical contribution is a generalization of the linear degree, in the construction of the
serendipity family of differential forms, and this generalization is essential in the unisolvency proof of
the new family of finite element differential forms.
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1. INTRODUCTION

In this paper we consider finite element methods for the Hodge Laplace problems of the de Rham complex
where both the approximation of the exterior derivative and the associated coderivative are spatially local
operators. The locality of the coderivative operator is not fulfilled in standard mixed methods for these problems
(cf. [6,7]). In fact, pursuing numerical methods with local coderivative is related to the development of various
numerical methods for the Darcy flow problems.

To discuss this local coderivative property in a more familiar context, let us consider the mixed form of a model
second-order elliptic equation with the vanishing Dirichlet boundary condition: Find (o, u) € H(div, Q) x L*(Q)
such that

<K710, T> — (u,divr) =0, V7 € H(div, ),
(diveo,v) = (f,v), Yo € L3(Q), (1.1)

where the unknown functions ¢ and u are vector and scalar fields defined on a bounded domain €2 in R™. The
coefficient K is symmetric, matrix-valued, spatially varying, and uniformly positive definite. Note that u is the
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scalar field of the pressure and o is the fluid velocity given by the Darcy law ¢ = —K grad u. The standard
mixed finite element method for this problem is:
Find (op,up) € Xp, x V}, such that

(Ko, ) — (up, divr) =0, VT € (1.2)
(div op,v) = (f,v), Yo € Vi, (1.3)
where ¥, C H(div, Q) and V}, C L?(Q) are finite element spaces, and oy, is an approximation of ¢ = — K grad u.

Here the notation (-, -) is used to denote the L? inner product for both scalar fields and vector fields defined on
Q.

The mixed method (1.2) has a local mass conservation property, and its stability conditions and error esti-
mates are well-studied (c¢f. [11]). However, the mixed method (1.2) does not preserve the local property of the
map u — o = —K gradu in the continuous problem. In other words, the map w, +— o, defined by the first
equation of (1.2), is not local because the inverse of the so-called “mass matrix” derived from the L? inner
product <K L > on Xj is nonlocal. Since constitutive laws are spatially local relations of quantities in many
physical models, construction of local numerical constitutive laws is one of key issues in the development of
numerical methods following physical derivation of constitutive laws such as the finite volume methods and the
multi-point flux approximations.

Here we give a brief overview on previous studies of numerical methods with local coderivatives mainly for
the Darcy flow problems but we have to admit that this overview and the list of literature here are by no means
complete.

An early work for the locality property by perturbing the mixed method (1.2) was done in [9] on triangular
meshes with the lowest order Raviart—Thomas space. The approach leads to a two-point flux method, which
approximate flux across the interface of two cells by two point values of pressure field in the two cells, but
the two-point flux method is not consistent in general for anisotropic K, cf. [1,2]. To circumvent this defect,
various multi-point flux approximation schemes were derived (cf. [1]) but the stability and error estimates of
these schemes are usually nontrivial and are restricted to low order cases. It seems that the most useful approach
for the stability and error estimates for these numerical schemes is to utilize connections between the schemes
and perturbed mixed finite element methods, cf. [10,17,22,23,26,27]. An alternative approach to perturbed
mixed finite element methods for the local coderivative property was proposed in [12,27] independently for
simplicial and quadrilateral meshes. The key to achieve local coderivatives in this approach is a mass-lumping
for vector-valued finite elements. Further extensions to hexahedral grids are studied in [21,28]. Extensions to
all high order methods are studied in [4] with the development of a new family of H(div) finite elements on
quadrilateral and hexahedral meshes, which is inspired by the new family of low order finite elements in [24]. For
the Maxwell equations, Cohen and Monk studied perturbed mixed methods based on anisotropic mass-lumping
of vector-valued finite elements but the methods may not be consistent when the material coefficients are not
isotropic (cf. [15]). For the Hodge Laplace problems the discrete exterior calculus, proposed in [16,20], ¢f. also
[19], has a natural local coderivative property by construction. However, a satisfactory convergence theory seems
to be limited except in the 0-form case (cf. [25]).

The purpose of this paper is to extend the results in [4,24] to the discrete Hodge Laplace problems on
cubical meshes. More precisely, we will construct high order perturbed mixed methods for the discrete Hodge
Laplace problems on cubical meshes which have the local numerical coderivatives. Since many problems can
be understood as a special case of the Hodge Laplace problems, the numerical method in the present paper
can be used to develop numerical methods with the locality property for other problems. For example, the
methods with the newly developed finite elements have potential applications to high order mass-lumping for
the time-dependent Maxwell equations. However, we will restrict our discussion only to stationary problems in
the paper because developing the methods for stationary problems is already quite involved.

The paper is organized as follows. In the following section we present a brief review of the exterior calculus,
the de Rham complex with its discretizations, and the abstract analysis results in [24] for the analysis framework
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to be used in later sections. In Section 3 we develop a new family of finite element differential forms on cubical
meshes, say Q,A*. by defining the shape functions and the degrees of freedom, and proving the unisolvency. We
also prove some properties of the new elements for construction of numerical methods with the local coderivative
property. In Section 4, we construct numerical methods with local coderivatives using Q,A* and the framework
in Section 2. Finally, we summarize our results with some concluding remarks in Section 5.

2. PRELIMINARIES

Here we review the language of the finite element exterior calculus [6,7] and also introduce new concepts of
the differential forms with polynomial coefficients. In the paper we assume that 2 C R" is a bounded domain
with a polyhedral boundary, and consider finite element approximations of a differential equation which has a
differential form defined on €2 as an unknown. Let Altk(R”) be the space of alternating k-linear maps on R™.

For 1 < k < n let us define ¥ by

Y = the set of increasing injective maps from {1,...,k} to {1,...,n}. (2.1)

Then we can define an inner product on Alt"(R™) by

(@) p = Y aloy, €0 )b(€q,s - €0,),  a,b € ALF(R™),

OEX
where o; denotes o (i) for 1 <i < k and {eq,...,e,} is any orthonormal basis of R". The differential k-forms on
Q are maps defined on  with values in Altk(R"). If u is a differential k-form and ¢1, ..., are vectors in R",

then u,(t1,...,t) denotes the value of w applied to the vectors t1,...,tx at the point € Q. The differential
form w is an element of the space L2A*(Q) if and only if the map

x = ug(t1, ..., tk)

is in L2() for all tuples ty,...,t. In fact, L2A*(Q2) is a Hilbert space with inner product given by

(u,v) :/Q<ugc,vm>Mt dz.

The exterior derivative of a k-form wu is a (k + 1)-form du given by

k+1
dum(tl, e tk+1) == Z(*I)J+16tjur (tl, SN ,fj, e ,tk+1),

j=1

where fj implies that ¢; is not included, and J;; denotes the directional derivative. The Hilbert space H AF(Q)
is the corresponding space of k-forms u on €, which is in L2A*(€2), and where its exterior derivative, du = d*u,
is also in L2A¥1(Q). The L? version of the de Rham complex then takes the form

HAYQ) & gat@) 45 0 gan). (2.2)

In the setting of k-forms, the Hodge Laplace problem takes the form
Lu=(d*d+dd")u = f, (2.3)

where d = d* is the exterior derivative mapping differential k-forms to differential (k + 1)-forms, and the
coderivative d* = dj can be seen as the formal adjoint of d*~1. Hence, the Hodge Laplace operator L above
is more precisely expressed as L = dj Jrld’c + dk’ld,”;. A typical model problem studied in [6,7] is of the form
(2.3) and with appropriate boundary conditions. The mixed finite element methods are derived from a weak
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formulation, where ¢ = d*u is introduced as an additional variable. If € is homologically trivial, then the
variational form for mixed methods is the following:
Find (o,u) € HA*1(Q) x HA*(Q) such that

(o,7) — <u7dk_17'> =0, T e HAF1(Q),
(d* o, v) + (dPu, d*v) = (f,v), v e HA(Q). (2.4)

Here (-,-) denotes the inner products of all the spaces of the form L?A7(£)) which appears in the formulation,
i.e., j =k —1,k/k+ 1. We refer to Sections 2 and 7 of [6] for more details. We note that only the exterior
derivate d is used explicitly in the weak formulation above, while the relation o = dju is formulated weakly in
the first equation. The formulation also contains the proper natural boundary conditions. The problem (2.4)
with kK = n — 1 corresponds to a weak formulation of the elliptic equation (2.3) in the case when the coefficient
K is the identity matrix. The weak formulations (2.4) can be modified for variable coefficient by changing
the L? inner products to the inner product with the variable coefficient, see Section 7.3 of [6]. Throughout
the discussion below we will restrict our discussion to the constant coefficient case but the extension of the
discussion to problems with piecewise constant coefficients with respect to the mesh, is straightforward. We
refer to Section 6 of [24] for details.

If the domain € is not homologically trivial, then there may exist nontrivial harmonic forms, i.e., nontrivial
elements of the space

9*(Q) = {v € HA¥(Q) : dv = 0 and (v,d7) = 0 for all 7 € HA*1(Q)},

and the solutions of the system (2.4) may not be unique. To obtain a system with a unique solution, an extra

condition requiring orthogonality with respect to the harmonic forms:
Find (o,u,p) € HAF1(Q) x HAF(Q) x $*(Q) such that

(o,7) = (d1,u) =0, T e HA*1(Q),
(do,v) + (du, dv) + (p,v) = (f,v), ve HAF(Q), (2.5)
<U7q> = Oa qc ﬁk(Q)

The key of the finite element exterior calculus is to use a subcomplex of (2.2),
veLyrd L dyn

for discretization of (2.5) where the spaces V}¥ are finite dimensional subspaces of HA*(Q).

The finite element methods studied in [6,7] are based on the weak formulation (2.4). These methods are
obtained by simply replacing the Sobolev spaces HA*~1(Q) and HA*(2) by the finite element spaces fo ! and
V;k. More precisely, we are searching for a triple (6, @, Pn) € thfl x VE x 9% such that

(Gp,7) — (d7,03) = 0, Te v
(A&, v) + (diip, dv) + (r,v) = (f,v), v eV, (2.6)
<7-Lh7q> :07 qeﬁfm

where the space f)’,fb, approximating the harmonic forms, is given by
o ={veVy:dv=0and (v,dr) =0forall 7 € Vi

Stability and error estimates for the numerical solution of (2.6) are discussed in Theorem 3.9 of 7] with an
error estimate of the form

(0, u,p) = (G, tn, Pr)llxy < Inf (o u,p) — (7, 0,9) || x + Enlw) (2.7)
(T,0,) EXYY

with
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i —
(o, w,p) Ly == (loll® + ldol® + ful® + lldull® + [Ipll?)*, Xy = Vii™" = Vi < i,

and & (u) comes from the nonconformity of the space of discrete harmonic forms, $¥, to the space of continuous
harmonic forms $*. &, (u) vanishes if there is no nontrivial harmonic forms, and will usually be of higher order
than the other terms on the right-hand side of (2.7). We refer to Section 7.6 of [6] and Section 3.4 of [7] for
more details.

In this paper we develop numerical methods which have the local coderivative property by perturbing (2.6).
More precisely, the perturbation is to replace the standard inner product for {5y, 7) in (2.6) by another bilinear
form (-,-), which gives a block-diagonal mass matrix in the spirit of mass-lumping. The perturbed system is to
find a solution (o, un,pn) € XF of

(on, 7)), — (d7,un) =0, e V}ic—l,
<d0hav> + <dUh,dU> + <ph"[}> = <f,'U>7 = Vhfcj (2.8)
(un,q) =0, g€ 9t

Assume that (-,-), gives an inner product on V}ffl, and the shape functions associated to a set of degrees of
freedom of V¥~ are (2.8) gives a stable and convergent numerical method with (-, -), that gives a block diagonal
mass matrix such that each block is associated to a set of the degrees of freedom supported on a local domain.
Then, a numerical local coderivative operator th — V}ffl can be made as follows. For given uy € Vf we can
solve the first equation in (2.8) for o5, € V7! The mass matrix from (-,-), is block diagonal, and the degrees
of freedom of th717 only on a local domain, are associated to each block. So, the value of ¢, on one simplex will
be determined by the values of u;, on a local neighborhood of the simplex. Since (2.8) is stable and convergent,
the map up — o), gives a good approximation of the continuous coderivative.

Existence of such a bilinear form (-,-), which gives a block diagonal mass matrix is not obvious for general
finite elements. Furthermore, equations (2.8) is a variational crime of the standard mixed method, so the stability
and the error estimates of this perturbed mixed method are not guaranteed in general. In fact, developing a
stable and convergent perturbed mixed method (2.8) is not trivial even for the lowest order cases for simplicial
and cubical meshes [24]. It is known that the diagonal of the mass matrix does not give a consistent mass-lumping
method for vector-valued finite elements in general (c¢f. [9]). To overcome this, a mass-lumping of vector-valued
finite elements based on special nodal degrees of freedom is introduced in [12,27]. Such nodal degrees of freedom
do not exist for all vector-valued finite elements, so one of the main contributions in [24] is to construct low
order cubical finite element differential forms, S;” A*, which have such nodal degrees of freedom. In [4], the S;" A*
family is extended to all higher orders for the Darcy flow problems in the two and three dimensions on cubical
meshes, and as a consequence, higher order numerical methods satisfying the local coderivative property in the
two and three dimensional Darcy flow problems on weakly distorted quadrilateral and hexahedral meshes are
constructed.

The goal of this paper is developing high order numerical methods for the Hodge Laplace equations satisfying
the local coderivative property on cubical meshes by extending the perturbation idea to higher orders. We will
use the abstract conditions developed in [24] for the stability and the error estimate of our perturbed mixed
methods. The main contributions of this paper are constructing a new family of finite element differential forms
extending S;"A* to higher orders and developing new theoretical tools for the development of the new finite
elements. Although the new family is a higher order extension of S;" A*, we will call it 9, A* family in this paper
because it is closely related to the Q,A* space rather than the S, A* family. One characteristic feature of the new
Q, AF family is that the number of local degrees of freedom is same as the one of Q,A¥, and same nodal global
degree of freedom by evaluation on the tensor product of Gauss—Lobatto quadrature points can be taken as
global degrees of freedom. This nodal global degree of freedom property is crucial to define (-, -), for Q,A*(Ty,).
However, we point out that it does not mean that Q,A* can be replaced by Q,A*, an H' conforming finite
element, because the commuting diagram property in the de Rham complex is essential for stable numerical
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methods for the Hodge Laplace equations. The definition (-,-), for O, A* will be given in (4.3), and the local
coderivative operator for the proposed numerical method with O, A* will be briefly discussed after Corollary 4.5.
Here we summarize the abstract conditions for stability and error estimates established in [24].

(A) There is a symmetric bounded coercive bilinear form (-,-), on V™1 x V¥~ such that the norm ||, :=

(T, 7'>,11/ % is equivalent to ||7|| for 7 € V;F=1 with constants independent of h.

(B) There exist discrete subspaces Wy~ ¢ L2ZAP1(Q), VF~! ¢ VF~! satisfying
(r,70) = (1, 70),  TEVE L meW; (2.9)
and a linear map IIy, : V}Z“l — f/}ffl satisfying dIl,T = d7, [|[I7|| < ||7|| for 7 € V,ffl, and
M7, 70), = (1,70),, T€VFmewr L (2.10)
If these assumptions are satisfied, The following result is proved in [24].

Theorem 2.1. Suppose that the assumptions (A) and (B) hold. Then the solution of (2.8), (on,un,pn), sat-
1sfies

(o = Gnyun — tn, pr — Pu)llx S llo = Pw,oll + [lo — anll, (2.11)

where Py, is the L?-orthogonal projection into W,{f*l. As a corollary of (2.7) we have

(0 = on,u—un,p—pn)lla S llo = Pw,ol| + |lo —anll (2.12)
+ inf (o, u,p) — (7,0, 9)||x + En(w).
(1,0,q)EX}]

3. CONSTRUCTION OF Q, A*

In this section we construct a new family of finite element differential forms QTA’“(’Z}) on cubical meshes 7,
of  where the elements in 7;, are Cartesian product of intervals. If » = 1, then O, A* is the S A¥ space in
[24]. For n = 2,3 and k = n — 1, O, A* spaces are the H(div) finite element spaces which were discussed in
[4]. The idea of the new finite element construction in [24] is enriching the shape function space of the Q; A*
elements on cubical meshes with d-free shape functions in order to associate a basis of the shape function
space to the degrees of freedom given by nodal point evaluation. This idea is used in [4] to develop similar but
higher order numerical methods for the mixed formulation of second order elliptic problems by enriching the
Raviart—Thomas—Nedelec H (div) elements on cubical meshes with divergence-free shape functions. The biggest
technical difficulty of these new construction in [4] is the unisolvency proof. For this, the authors in [4] used
some features of the enriched shape functions observed from their explicit expressions. However, it is highly
nontrivial to use the same argument to 9, A for general n and k because explicit forms of the enriched shape
functions for general n and k are too complicated to use conventional unisolvency arguments. To circumvent
this difficulty we will introduce new quantities of polynomial differential forms which allow us to extract useful
features of polynomial differential forms for unisolvency proof.

For a multi-index « of n nonnegative integers,

(0%

€T :x?l...ma"

n

for x = (z1,...,2,) € R™. In this paper we define Q,.(R™) by

Q,(r") i span{s* : nx fa} < v},

1<i<n
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In this paper the spaces of polynomial or polynomial differential forms without specified domain are the spaces
with domain R™. Thus, Q, = Q,(R") and Q,A* is the subspace of L2A¥(R") consists of polynomial coefficient
differential forms such that the polynomial coefficients are in Q,.(R™). We use PA* C L2A*(R™) to denote the
space of all differential forms on R™ with polynomial coefficients. Note that we use Q,A* to denote a space
of polynomial coefficient vector space on R", not a space of finite element differential form with inter-element
continuity.

For later discussion we introduce some additional notation for cubes in a hyperspace in R™. For given 7 =
{i1,..-,im} C {1,...,n} with i1 < iy < ... < i, consider an m-dimensional cube f in the m-dimensional
hyperspace in R" determined by {# € R" : x; = ¢;,j ¢ Z} for some constants {c;};¢z. We define Z; by 7 to
indicate the relation between f and Z. We also define Xx(f) with 1 < k& < m by the set of increasing injective
maps from {1,...,k} to Zy.

For o € ¥k (f) we will use [o] to denote the range of o, i.e.,

lo] ={o1,09,...,01} C Iy,
and o* for o € ¥ (f) is the complementary sequence in %,,_(f) such that
[e]Ulo*] =Zs.

For o € 3 (f) with 1 < k < m we will use ¢ — i for i € o] to denote the element 7 € Xj;_1(f) such that
[7] = [o] \ {¢}. For 0 € Zy(f) with 0 <k <m — 1, o + j is defined similarly for j € [o*]. For i € [o*] we let
€(i,o) = (=1)! where | = |{j € [0] : j < i}|. For each o € X4(f) we define dz, = dz,, A--- A dz,, and the set
{dz, : 0 € $i(f)} is a basis of Alt"(f).

Recall the definition of X in (2.1). A differential k-form u on € then admits the representation

u = g Usdxy,

ocEYX

where the coefficients u,’s are scalar functions on 2. Furthermore, the exterior derivative du can be expressed
as

du = Z i Oiugdz; Adz,,

o€X 1=1

if O;uy is well-defined as a function on Q. The Koszul operator x : Alt*(R") — Alt""}(R") is defined by the
contraction with the vector x, i.e., (ku), = Z_ug. As a consequence of the alternating property of Alt®(R™), it
therefore follows that « o x = 0. It also follows that

k
k(dzy) = k(dze, A+ Aday,) = Z(—l)i'*'loc(,idac(71 ARERWA cfv; A ANdag,,
i=1

where (Ec; means that the term dz,, is omitted. This definition is extended to the space of differential k-form
on (2 by linearity, i.e.,

KU = K Z Ugdr, = Z Uek(dzy).

oEX oEX

For future reference we note that

kdz, = Z €(i,o0 —i)x;dzy_;. (3.1)
i€lo]
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If f is the (n — 1)-dimensional hyperspace of R™ obtained by
f={zeR":z,=¢1<i<n}
with a constant ¢, then we can define the Koszul operator xy for a differential form v on f by
(kfv)e = (x — 2f) v,

where z7 is the vector in R™ such that its i-th coordinate is ¢ and the other coordinates are zero. We note that
the vector x — 2/ is in the tangent space of f for z € f. Since tr¢((z — 2f)u) = (x — 27) tryu for x € f and
(ku)y = (z — 27) Ju, + 2/ Ju,, we can conclude that

trywu = kptryu+ trp (e u). (3.2)

If wis in Q,A*, the space of polynomial k-forms with tensor product polynomials of order r, then v can be
expressed as

u = Z Usdz,, Uy € Q.

oEY
Denoting H,A* the space of differential k-forms with homogeneous polynomial coefficients of degree 7, we also
have the identity
(kd + dr)u = (r + k)u, u € H, A, (3.3)
¢f. Section 3 of [6]. Finally, throughout this paper we set T = [—1,1]™.

3.1. The shape function space and the degrees of freedom of O, A*

In this subsection we define the shape function space of QTAk. The shape functions of QTA]f will be obtained
by enriching the shape functions of Q; A¥. There are other families of cubical finite element differential forms,
¢f. for example [5,13,14,18], but these spaces are not involved in the construction of our new elements.

If m is a k-form given by m = pdx,, where o € ¥ and the coefficient polynomial p is a monomial, then we
will call m form monomial. Before we define the shape functions of Q,A¥, let us introduce new quantities of
form monomials. For a polynomial differential form u,dxz, we call the indices in [o] (in [o0*], resp.) conforming
indices (nonconforming indices, resp.). For a form monomial m = c,x®dz, # 0 and a; = s for a conforming
(nonconforming, resp.) index 4 of m, we call ¢ a conforming (nonconforming, resp.) index of degree s. We also
define the conforming and nonconforming s-degrees of m = c,x%dz, by

cdeg,(m) = |{i: i € [o] and «; = s}|,
nedeg,(m) = [{i:i € [o"] and o; = s}|.

We remark that ncdeg, (m) is same as the linear degree in [5] for a form monomial m. However, in contrast to
the linear degree, we do not define cdeg,(u) and ncdeg,(u) for general u € PAF.
The conforming degree gives a new characterization of the shape function space of Q,; A* by

9, A* = span{z®dz, € Q,A" : cdeg, (z*dz,) = 0}. (3.4)
Defining B, A* as

B.AF = span{xadmg € QA : cdeg,. (z%dz,) > O}, (3.5)
it is easy to see that

Q,A* = O AF @ B.AF. (3.6)
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We define the shape function space O, A* as
O, AF = Q7 A¥ + dkB, A", (3.7)

The changes of cdeg, and ncdeg, under d and x operators are crucial for our discussions below, extensions of
the low-order results in [24].

Lemma 3.1. Let m = z%dz, € PAF, 1 < k < n — 1, be given with a multi-index o and a positive integer s.
Assume that m' and m” are given as m' = O;x®dx;Adw, withi & [o] and m” = 2%2,,dwe, A+ Adxg, A - -AdTg,
with j € [o]. Then the following identities hold:

ncdeg, (m’) = nedeg,(m) — s o, (3.8)
nedeg, (m”) = nedeg, (m) + da, 51, (3.9)
nedeg, | (m) + cdeg,(m) = nedeg, ,, (m’) + cdeg, (m') (3.10)

= nCdegs+1 (m”) + Cdegs (mH)

where 0; ; is the Kronecker delta. In particular, if m € B,A* and m" is a form monomial of km with j which
is a nonconforming index of degree (r + 1), then j is a conforming index of degree r in m.

Proof. We show (3.8) and the first identity in (3.10). If o; = s, then ¢ is a nonconforming index of degree s
of m but not of m/, and the other nonconforming indices of degree s of m and m’ are same, so ncedeg,(m') =
ncdeg,(m) — 1. If s > 1, then the set of conforming indices of m’ with degree s — 1 is the union of the set of
conforming indices of m with degree s — 1 and {i}. Therefore the first identity in (3.10) holds. If a; # s, then
the sets of nonconforming indices of degree s of both m and m' are same, so ncdeg,(m’) = ncdeg,(m). If s > 1,
then the sets of conforming indices of degree s — 1 of both m and m’ are same as well, so the first identity in
(3.10) holds.

We show (3.9) and the second identity in (3.10). If o; = s — 1, then j is a nonconforming index of degree s
of m” in addition to the nonconforming indices of degree s of m, so (3.9) holds. If o; # s — 1, then the sets of
nonconforming indices of degree s of m and m” are same, so (3.9) again holds. The second identity in (3.10)
can be verified in a way similar to the argument used for the first identity in (3.10).

In particular, if m € B.A¥ and m” is a form monomial of xm which has a nonconforming index of degree
(r + 1), then the nonconforming index of m” must be o; and a,;, = r because oy < 7 for 1 <1 < n and
ag; +1 =17+ 1. This completes the proof. a

Corollary 3.2. Let m be a form monomial. Then for any form monomial m in dm, cdeg (m) > cdeg,(m) for
any s > 1. Similarly, for any form monomial m in dm, ncdeg, () > nedeg,(m) if s > 1.

Proof. 1t is easy to check the assertions by Lemma 3.1. (I
Corollary 3.3. The following inclusions hold:

kQIAF C QT AR (3.11)

dB.A* c B, AR ndkB, AT (3.12)

dQ,A* C O, AMY, (3.13)

dkQ, A% C O, AF. (3.14)

Proof. The inclusion (3.11) and dB,A¥ C B, A**! can be easily checked by the characterizations of Q- A*, B, A*

in (3.4), (3.5), and by Lemma 3.1. To show (3.12), let u € H A¥ N B, A* for a positive integer s. By (3.3),

(dk + kd)du = (s + k)du = drdu € deB.A**1. As a consequence, du € B, A*1 N dxB,A*+1. The inclusion

(3.13) follows from (3.12) and dQ, A* C Q, A*!. Finally, the inclusion (3.14) follows from (3.6), (3.11), the
fact dQAF c Q- AFH1 and (3.13). O



876 J.J. LEE

We now prove that Q,«Ak is invariant under dilation and translation. The lemma below is an extension of
Lemma 5.1 for higher orders using Lemma 3.1.

Lemma 3.4. If ¢ : R" — R" is a composition of dilation and translation, then ¢*Q,A* C O, AF, where ¢* is
the pullback of ¢.

Proof. Let ¢(z) = Ax + b for a given invertible n x n diagonal matrix A and a vector b € R". To show
¢*Q,A* C Q,A* assume that u € Q, A" is written as u = v~ + dku™ with = € Q7 A* and ut € B.A*. Then
we have

¢*u = ¢*u” + ¢*drut = ¢*u” +do*kut = ¢*u” +dre*u + bod(d*u™)

where we used ¢*kut = k¢*uT + bi(¢p*uT) in the last equality (cf. [6], Sect. 3.2). We can easily check ¢*u~ €
Q- AF from the definition of ¢*, and dx Q- A¥ C O A* from (3.9) and (3.8). From (3.6) we have

drg*ut € deQ,AF = dr(Q; A* @ B,A¥) ¢ Q7 A* + drB,A* = O, AF.
It remains to show
d(ba(¢*u't)) € Q,.AF. (3.15)
To see this, note that bu(¢*ut) € Q,A*~1. By (3.13) we have d(bi(¢*u™)) € Q,A*, so (3.15) is proved. O
The following lemma is a generalization of some results in Lemma 5.2 of [24].
Lemma 3.5. The operator dr is injective on B,A¥.

Proof. For m = x*dx, € B.A¥ there is at least one conforming index o; such that a,, = r. Then x%k(dz,) has
at least one form monomial such that o; is a nonconforming index and its polynomial coefficient has xf,i“ as a
factor.

For the injectivity of dx on B, A, it suffices to show that s is injective on B, A* because d is injective on
the image of k. To show & is injective on B,A*, we show that form monomials with positive nonconforming
(r + 1)-degree generated by xm for m € B := {z*dz, : cdeg,(z*dz,) > 0} are distinct. More precisely, if
rkm and km for m,m € B have a same form monomial (up to £1) whose nonconforming (r + 1)-degree is 1,
then m = m. To show it by contradiction, let m = z%dz, and m = x%dzs be two distinct elements in B and
assume that km and km have a common form monomial with nonconforming index of degree (r +1). From the
definition of x and the common form monomial assumption, there exist o; € [o] and &; € [§] such that

Lo, ATy A A d/a:; A ANdzg, = fx5,2%2s, A A (Ec; A ANdzg, . (3.16)

Since o; and &; are the only nonconforming indices of degree (r + 1) by (3.9) and (3.10), o; = &; and therefore
dz, = dzs. Moreover, comparison of z® and z® leads to o = &, so it contradicts to z*dz, #* x%dxs. O

The following result is a consequence of the above lemma, a generalization of Theorem 5.3 from [24].

Theorem 3.6. For 0 <k <n
O, AF = Q7 A* @ dkB,A*,  dim O,AF = (Z) (r+1)" (3.17)

Proof. By Lemma 3.5 (b), the spaces dsB,A* and B, A have the same dimension, so it suffices to show that
Q- A* N dkB.A¥ = {0}. Suppose that 0 # u € B,A* and dku € Q; AF. Every form monomial m of dxu
satisfies cdeg,.(m) > 1 by (3.5) and Lemma 3.1 because ncdeg,.,;(m) = 0. However, it is a contradiction to the
characterization of Q, A* in (3.4), so u = 0. O
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3.2. Degrees of freedom and unisolvence of Q. Ak

In this subsection we define the degrees of freedom of Q,A* and prove the unisolvency for the degrees of
freedom.

For the degrees of freedom we define two polynomial spaces for o € Xy (f) for a cube f included in an
m-~dimensional hyperspace by

Qr,a(f) = ® ,Pr(xi)v QT,O'* (f) = ® Pr(xl)

i€fo] i€fo~]

where P,.(z;) is the space of polynomials of ;; with degree less than or equal to r. We adopt some conventionnal
identities for simplicity of notation. We assume that Yo(f) is a singleton for any f € A;(T). For 7 € Zo(f),

dz, =1, Q,.(f) = {1}, and Q, .« (f) = Q,(f). The degrees of freedom of O, \* (T) is

uw—>/trfu/\v, fe AZ<T),I<: <li<n, ve S (Quor®Qur)(f)de, (3.18)
f

TEXk(f)

where (Qr72,'r & Qr,'r*)(f) = Qr72,'r(f) & Qr,'r* (f)
Theorem 3.7. The number of degrees of freedom given by (3.18) is

(’;) (r+1)"

dim Q, o, (f) = (r— 1"  dim Q, (f) = (r + 1)~

Proof. For 7 € ;4 (f) with f € A (T) 1>k

We can easily check that

’AZ(T)‘ _ <nﬁl>2nl, IS e (f)] = <l—lk> for f € 2(T).

Therefore the number of degrees of freedom given by (3.18) is

n — l _ n!(r +1)* n—k)! e —k
2 (n—Z>2 l(l—k)(r‘l)l 1) mgnk))! 2 (n<l)!(l)k)!2 LU

k<I<n k<I<n
_ k (n —k)! n—k—i(,. 1\
= (k (r+1) O<Z;7k 7(71—/4:—@')!@'!2 (r—1)
= <Z> (r+1)",

so the proof is complete. O

The following result will be useful to derive a reduced unisolvency proof. A special case with r = 1 appeared
in Theorem 5.5 of [24]

Theorem 3.8 (Trace property). Let f and [’ be l- and l'-dimensinal hyperspaces in R™ such that f' C f, and
f, [ are determined by fizing n — | and n — I’ coordinates, respectively. Then

trp Q. AF(f) € O AR(f).

This inclusion can be strengthened to equality later after the unisolvence proof is completed.
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Proof. For the two hyperspaces f' C f C R™ and u € PAF we have try tryu = trp u by definition. Therefore,
it is enough to prove the claim for m = n — 1 by induction. Without loss of generality we assume that f = {z €
R"™ : z,, = c} for some constant c. It is easy to check by definition that try Q, AF C Q7 A*(f), so it is enough
to show that tr; deB,A* C Q. AF(f). We will show tr; dk(z®dz,) € Q. A¥(f) for all 2*dz, € B,A* below. By
(3.2) and the commutativity of try and d,

try de(z®dey) = dkjg try(z®da,) + dtry (:ch(xade))

where 2/ is the vector field (0,...,0,c) on R".

If n € [o], then try(z*dz,) = 0 and try (z/ 2(z*da,)) = (c2|s,=c)dzs € QrAF71(f) where ds is defined by
dz, = dxs Adz,. From (3.13) we can conclude that try dr(z¥dz,) € Q. A*(f). If n & [o], then 2/ 4(z*dz,) = 0.
Since try(z%dz,) = 2%|;, —cdz, € Q. AF(f), the conclusion follows from (3.14). O

Before we start the unisolvence proof we need a lemma and auxiliary definitions.

Lemma 3.9. Suppose that 0,6 € Xy, 1 <k <n—1, 0 # & satisfy o +i = & +1 for some i € [5], i € [o].
Then

e(i,o)e(t, 6 —i) — 6(2, 5)6(2, o— E) ~0.
Proof. We first prove it under the assumption i > 7. Let
a=|{l:1<ile[o]n[5]}

b=|{l:i<l<ilelo]n[5]}],
c={lri<ile[o]n[a]}.

Then one can check

E(i,U) = (_1)a+b+17 f(gv 5)~: (_1)(17

e(i,6 —i) = (-1)***,  e(i,o —i) = (-1),
so the assertion follows. If 7 < 7, then we set
a={l:1<lela]n][c]},
b=I|{l:i<l<ile[o]n[5]}],
c={l:i<lle]o]Nn[5]}

)

and one can check that

6(i,0) = (71)a7 6(7;,5') = (71)a+b+1,
' (.

™
—
\.N
Qv
|
~
N~—
Il
—~
|
—_
N
e
™
—
\.N.
[
|
=~
N
|

The proof is complete. O
We define DNA’C as
D, AF = {ue PA* . ncdeg, ,;(m) + cdeg,(m) = [ for every form monomial m in u}.

By Lemma 3.1 dk maps D, ;A* into itself. Considering the decomposition of B, A*

BA = P P HA'ND A NBAF

1<i<kr<s<nr

we have a decomposition of dxB,A*
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dsBA* = B P HA ND AT NdRBAF (3.19)

1<i<k r<s<nr
Let us recall the degrees of freedom of Q;” A* (T) with vanishing trace in [8]. If u € Q; A¥ (T) and tryu =0
for all f e A, (T), then

/ uAv=0, Yue Q;lA"*’“(T) (3.20)
T

implies that u = 0.
We are now ready to prove unisolvency of Q, A* (T), r > 1, with the degrees of freedom (3.18).
Proposition 3.10 (Unisolvence with vanishing trace assumption). Suppose that u € O, AF (T), r > 1, and

trpu=0 forall f e Ap_y (T) If

/ uANv=0 Yu € Z (Qr—2r® QT,T*)(T) dz,, (3.21)

T €S, i (T)

then u = 0. Here we accept Q_1 = ) for convention.

Proof. If k =0 or k = n, then Q,AF (T) = Q,AF (T) and (3.21) gives a standard set of degrees of freedom for
the shape functions with vanishing traces, so there is nothing to prove.
Assume that 0 < k < n, and let u = Zaezk(f) ugdz, € O, AF (T) be a shape function with vanishing trace.

From the vanishing trace assumption tryu = 0 for all f € A, (T)7 u, vanishes on all faces f € A, (T)
determined by x; = £1 for any ¢ € [o]. Therefore u, = by+ti, With by« := Hle[[g*]](l —a}) for all 0 € 3 (T)
In the degree properties (3.8), (3.9), (3.10), the coefficients of all form monomials in O, A* (T) have at most

one variable of degree (r + 1). From this observation and (3.21), u has a form

u= Z bo+ Z LY (z:)ps | dae (3.22)

UEEk(T) i€fo*]
where LY(t) is the monic Legendre polynomial of degree s on [—1,1] with weight (1 — #?), and
Doyi € (Qro ® Qrfz,g*)@;), Do,i 1s independent of x;.
Recall the decomposition (3.19) and let
u=u+ Y we € A(T) o @ @ HA(T) DA (T) N drBAH(T).
l,s 1<I<k r<s<nr
Let Iy be the largest index [ such that u; ; # 0 for some s, and let sy be the largest index s such that v, s # 0.

Suppose that we can prove vy, 5, = 0. By induction, this implies that v = ug € Q- AF (T), and therefore u = 0
by (3.21), (3.20), and the inclusion

Q, A F (T) - Z (Qr—2,7 @ Qpr+) (T) dz,.

€S, i (T)

Therefore, we devote to show vy, s, = 0 in the rest of proof.



880 J.J. LEE

We will prove vy, s, = 0 for the two cases [p = 1 and [y > 1 separately. Before we get into the proof of each
case, we first give observations for later usage. In the form (3.22), if py is a monomial of p,; for fixed o, then

cdeg,.(podz,) < lo

because any form monomial m containing the factors xf“ and pq in its polynomial coefficient, which comes from

the expansion of the coeflicient of dz, in (3.22), satisfies both of ncdeg,., ; (m) = 1 and ncdeg,. , ; (m)+cdeg,.(m) <
lp by the definitions of Iy, sg, and the definition of DMA’“. Note that it also implies that u;, s, does not have
any form monomial m such that cdeg,(m) = lp. Let ¢,; be the homogeneous polynomial of p,; in (3.22) for
each ¢ and ¢ € [o*] which contribute to consist wuy, s,, i€,

woso = ] 2| D, 27 ¢0 |dao. (3.23)

oexy(T) t€lo*] i€fo*]
Since wy, s, does not have any form monomial m of cdeg,.(m) = I,

cdeg, (qo,idrs) =1lo — 1 (3.24)

holds. Moreover, w;, s, € dkB,A* (T) by definition, so du;, s, = 0.

We now prove vy, s, = 0 for lp = 1. If Iy = 1, then ¢o; € (Qr—1,6 ® Qr—27g*)<T) by (3.24). We claim that
gs,i = 0 for all o and 7. To prove it we show that the form monomials in du,, s, with conforming r-degree 1, are
all distinct. Note that such form monomials are of the form

(r+1) H ziel g, idx; A da, (3.25)
lefo*]

for i € [o*] from the expression (3.23). For fixed o the form monomials in (3.25) are all distinct for different i’s

because i is the only conforming index of degree r. Further, if we assume that there is ¢ € X, (T) with 6 # o

and i € [6*] such that the form monomials in

(r+1) H x%x’{ﬂq&’;dx; Adzs
lefo*]

are not linearly independent with the ones in (3.25), then it leads to a contradiction because ¢ and i are the only
conforming indices of degree r in these form monomials, and therefore i = i, 0 = . Thus, all form monomials
in duy, s, with conforming r-degree 1 are distinct and have the form (3.25). From duy, s, = 0, ¢»; = 0 for all
o€ (T) and i € [o*], and therefore u;, 5, = 0 by (3.23).

We now prove vy, s, = 0 for [y > 1, the final but most lengthy step of this proof. For this we consider the
expression of ¢,; as a sum of homogeneous polynomials

qo,i = Z H x§q0'7i,7' (326)

TC[eo],|r|=lo—1JET

in which ¢y, € (Qr—1,6 ® Qr—z,g*)<T) is independent of the variables z; and z;’s for j € 7. Here ¢, , can

be vanishing for some 7 C [o]. In the discussion below, we make a system of equations such that all ¢, ; »’s are
its unknowns. The equations are obtained from kv, s, and duy, s,, and the right-hand sides are zero. We then
show that the system is well-posed, so all g, ; .’s vanish.
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To derive equations from kuy, s,, recall that rkdkB,A* (T) = kB,.AF (T) by (3.3). Note that kug, s, €

kdrB, A* (T) = kB,.A* (T), so the nonconforming (r + 1)-degree of form monomials in kug, s, is at most 1

by Lemma 3.1. In the formal expression of Kuy, s, for fixed o using (3.23), (3.26) and (3.1), the form monomials
which have nonconforming (r + 1)-degree 2 are of the form

H x?mgil H xije(j, 0 — j)qg,i,'rdxofj (327)
lefo*] ler

for o € &y, (T), i € [o*], 7 C [o] with |7| =1lp — 1, and j € 7. The sum of all form monomials in ruy, s, which

have nonconforming (r + 1)-degree 2 is zero, so we obtain the equation that the sum of the expression (3.27)

for o € X, (T), i € [o*], 7 C o] with |7| =1y — 1, and j € 7, is zero. However, this equation is too large, so
we will reduce this equation into smaller equations in the following two reduction steps.

In the first reduction step we claim that all terms of the form (3.27) are linearly independent for fixed
o€ Yy (T) To show this claim, assume that the form (3.27) with (i, 7, j) and (¢, 77, ') are linearly dependent
for i’ € [o*], 7 C [o], §/ € 7 with (¢,7,j") # (i,7,). A direct comparison of the nonconforming indices with
degree (r+1) leads to either i =4/, j = j ori=j', j =4.If i =4 and j = j/, then 7 = 7/ from the comparison
of conforming indices of degree r, so it is a contradiction. If ¢ = j' and j = ¢/, then dz,_; # dz,—;, so they
cannot be linearly dependent. Therefore the terms of the form (3.27) are all linearly independent for fixed o.

In the second reduction step we assume that (3.27) with (0,7, 7,7) and (5,1, 7, j) are linearly dependent for
& # o, and characterize the relation of these two quadruples. Comparing the nonconforming indices of degree
(r+1), either ¢ = i,j=jori=j,j=aiis true. However, if i = ¢ and j = j, then dzs—; = dzs_; Is true,
and implies that ¢ = & which is a contradiction. Therefore, i = j and j = ¢ hold. Regarding these relations and
comparing the conforming indices of degree r, linear dependence of the terms of the form (3.27) occurs only
when

i=7,j=1, TU{il=7U{i}, o—i=6—i. (3.28)

As a consequence of the reduction of equations, for fixed (o,4,7,j) with ¢ € [o] and j € 7, there is a unique
quadruple (6,%,7’,3) determined by (3.28) which may generate a linearly dependent polynomial differential
form in the form of (3.27). Since the sum all form monomials which have nonconforming (r + 1)-degree 2 are
vanishing, we have a reduced equation

e(i,0 = 1)qoir +€(i,6 —i)gz ;5 =0 (3.29)

for the quadruples (0,14, 7, j) and (&,2,%,5) satisfying (3.28).
We now derive another set of equations of g, ; ,’s. For this consider the expressions of form monomials with
conforming r-degree ly in duy, s,. From (3.23) and (3.26), they have a form

(r+41)af 2 H ] Hx}”e(i, 0)qo,i,rdToti. (3.30)
lefo*] let

For fixed o, by checking the differential form component and the conforming indices of degree r, one can check
that all of these terms are distinct over ¢ € [o*] and 7 C [o] with |7| = lp — 1. As in the reduction of the
equations from kuy, s,, we consider (0,4, 7) and (&, i, 7’) which generate linearly dependent differential forms of
the form (3.30), and characterize the relation of those two triples. A direct comparison gives

oti=6+1, TU{i}=7U{i} (3.31)
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which is same as (3.28) because we assume o # &, and therefore i # i. In consideration of this relation, the
identity duy, s, = 0 with (3.30) gives

€(i,0)qoir + €(1,6)qz ;.- = 0. (3.32)

In conclusion, the aforementioned set of equations from ku, s, and the equation duy, s, = 0 give the reduced
equations (3.29) and (3.32) for ¢,,;» and g; ; - when (3.28) (equivalently (3.31)) is true. By Lemma 3.9, (3.29),
and (3.32), it follows that ¢, ;, = 4557 =0. Since this is true for any o, i, 7, we can conclude that v, 5, = 0,
and this completes the proof. O

Theorem 3.11 (Unisolvence). Let u € Q,AF (T) If

/ trpufv=0  Yoe 3 (Qar®Qur)(f)drs, (3.33)
f

TES—k(f)

for all f € A1<T),lz k, then u = 0.

Proof. Tf 1 =k, then trpu € O, AF(f) = Q,A*(f) for f € Ay (T) by Theorem 3.8, and (3.33) gives a standard
set of degrees of freedom for Q,A*(f), so tryu = 0. Suppose that tryu = 0 for all f € A, (T) for some | > k.

For any given f € Apyq (T), triue 9, AF (f) and try trpu=trpu=0 for all f € Ay (f) by the assumption.
By Proposition 3.10 and the degrees of freedom (3.33), tryu = 0. By induction, we can show that tryu =0 for
all feA, 1 (T), so u = 0 by Proposition 3.10. O

We remark that the inclusion in Theorem 3.8 is equality by following the argument in [5]. To see it, we assume
that f = R™ and f’ C R" is a hyperspace of codimension 1 without loss of generality. Let T be a cube in R™
such that its one side boundary is a subset of f’. For v € Q,A*(@T N f’) we can choose ¥ € Q,A¥(T) such that
the degrees of freedom of © on 9T N f’ by (3.18) is same as those of v. Since the degrees of freedom on T N f’
determines an element in Q,A*(dT N f') uniquely, tr U =n.

3.3. Nodal tensor product degrees of freedom

In this subsection we show that Q,A* (T) has a set of degrees of freedom given by evaluating nodal values

at a set of points in T'. This alternative set of degrees of freedom will be used to define numerical methods with
local coderivatives in the next section.

The Gauss—Lobatto quadrature rule with r + 1(r > 1) points uses 7 — 1 interior points and two end points of
I = [—1,1] with positive weights and gives exact integration of polynomials of order 2r — 1.

Let {fj};:o be the quadrature points of the Gauss—Lobatto quadrature on I and {/\j };:0 with ¥ > 0 be
the weights at the points (cf. [3]). We can define a quadrature rule on 7' by taking tensor products of the
Gauss—Lobatto quadrature nodes and weights, and we discuss the formal expressions for the tensor product
quadrature rules below.

For o € X}, (T) let N, be the set of points in ®1§i§k I(z,,) defined by

Now ={(o,- - 20,) = (€., €)1 0< i <1 1< U< k.

Ny« is defined similarly as

Na*,r: {(xafa'”vxa;iik) = (gjlu"'vfjnik) Oéjl Sﬁl Slén—k},
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the set of points in the (n — k)-dimensional cube ®1<i<n_k I(a:gi*). Therefore the tensor product N, := Ny, ®
Ny« is the set given by the tensor product of Gauss-Lobatto quadrature points on T. Letting N be the set of
nonnegative integers, we will use £ and ¢2. with multi-indices 4 € N* and j € N*~* to denote the points in
Ny and Ny- ., respectively. We also use M and M. to denote the corresponding tensor-product weights of the
Gauss—Lobatto quadrature.

For a continuous function v on 7', we define R,.(v), E, i (v), Er(v) as

R, (v) = (v(gj,@gg*)) . eRO
ELQREILEN,
Bog)= > Mo(ded.),
si*eth*
E,(v)= Y ME.(v).
ELEN, ,

Similarly, for polynomial differential forms u = u,dz, € PA* (T) we define R,(u) as the element in RM @ A*

n

with M = (k

)(r + 1)™, which consists of R,(u,) ® dz, for o € ¥y (T)

Lemma 3.12. Forv = Zoezk(T> vedx, suppose that a polynomial v, has a form with

Vo = ba*f)ow ba* = H (]- - x%)a /EU S (Qrfl,a* & Qr,a)(T>~
lefo*]
Suppose also that nonconforming (r+1)-degree of every form monomial in v,dx, is at most 1 for allo € Xy, (T)
If Ro(vy) =0 all o0 € Z‘k(T) then v = 0.

Proof. 1f we rewrite 0, with the weighted Legendre polynomial L}’s, then the assumption on nonconforming
(r + 1)-degree leads us to have

Uo= Y LY (2i)poi + Uop (3.34)
i€fo*]

with p,; € (Qrs ® Qr,g’g*)(jﬂ) independent of z;, in which 7, is a sum of polynomials of the form

IT 28 @)ga(,) (3.35)

i€fo*]

where d = (dU;, e dULk) € N F with max;c[,+j{di} <7 —2and g4 € Q6 (T)

We first to show that 0,9 = 0. Let 0 # ¢ = Hie[[o*]] Ly (%i) € Qr2,0+ (T) with d}’s satisfying 0 < d}, < r—2,
i € [o*]. We claim that

E,¢i (bg+ Ly (2i)poith) = 0

for all i € [o*] and 5}; € N, . To see it, note that the quadrature along z; coordinate can be replaced by
integration with z; variable on [—1, 1] because the degree of x; variable is r + 1+ d; < 2r — 1 and LY ;(z;) is
orthogonal to LY (z;) with (1 — 2?) weight. Therefore we have
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E,¢i (v9) = E, ¢i (bo-Ug,00).

If we consider the expression of 7, o in (3.35), a completely analogous argument using orthogonality of Legendre
polynomials gives

ET,&}; (U¢) = Er,ﬁf; (ba* 11[}2 (1‘0* )Qd’ (xa))

where d’ = (d:,if, cey dszi ) Note that this result is obtained without using the assumption R, (v,) = 0. Since
R.(vs) = 0, the above quantity vanishes. By the definition of E,. ¢:, we have either b, (§f,>w(§f,> =0 for all

3,; € Ny o+ Or qg (5},) = 0. However, the first case implies that b,+1 = 0 because the nodal value evaluations
at the points in NV, - is already a set of degrees of freedom for Q, ;- (T ), and that is a contradiction to 1) # 0.
Therefore g4 vanishes at £¢, and we can show that gq vanishes at any point in N,., with the same argument.
Recall that g4 € O, (T), so these vanishing conditions of ¢4 implies that g = 0. This holds for any d’, and

therefore 049 = 0.
To show v = 0, we notice that v, with (3.34) is exactly the form of u, in (3.22), so the same argument in
the proof of Proposition 3.10 can be used to show v = 0. g

Theorem 3.13. Suppose that v € O, A* (T) and R,(v) =0 holds. Then v = 0.

Proof. Note that tryv € Q,A*(f) = Q. A*(f) for f € Ay, (T) Since the restriction of R, on f becomes a set of
quadrature degrees of freedom of Q,A*(f), trpv =0 for all f € Ay (T) holds. For try v with g € Agqq (T), all

traces of try v on k-dimensional subcubes are vanishing, so the assumption of Lemma 3.12 is satisfied for try v.

Applying Lemma 3.12 with the restriction of R, on g, one can conclude that tryv = 0 for any g € Apyq (T)

The trace property in Theorem 3.8 allows us to continue this argument inductively for any g € A; (T)7 I >k+1,
so the assertion follows. O

4. NUMERICAL METHODS WITH LOCAL CODERIVATIVES

We construct numerical methods with local coderivatives using Q,.A¥(T3,). For this we need a modified bilinear
form (-,-), in (A), and the auxiliary spaces V,*"*, W}F~! and the map IIj, in (B). The conditions (A), (B) are
stated with index k — 1 but for simplicity we will check the conditions in this section for th» V,f, W}f which we
choose as

Vi = QANTh), Vi = QAN Th), Wi = Ql A%(Th) (4.1)
where Q¢ | A¥(7},) is defined by
QY AM(Ty) = {7 € L*A*(Q) : 7|r € Q1 A¥(T),T € T}

We will show that the finite elements O, A*(7;,) and Q,” A¥(Tj,) satisfy the conditions (A), (B). In addition to
the conditions in (A) and (B), for local coderivatives, we also need to show that (-,-), on Q,A*(7j,) can give
a block diagonal matrix with appropriate choice of global DOFs.

We have shown that Q,A* (T ) has a set of DOFs determined by evaluations at nodal points. For T € 7}, we
can define the evaluation operator E! for continuous functions on 7' with the scaled Gauss-Lobatto quadrature
rules on 7.
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For u,v € Q,A*(T) with expressions u = Y oes(r) UoldTo, V=3 c5, (1) VodZo, We define (u,v), by
(W, v, =1T| > El(ugv,). (4.2)
oceX,(T)

It is easy to see that (-,-), , is an inner product on Q,A*(T) and the norm defined by this inner product is

equivalent to the L? norm with constants independent on the scaling of 7. We can define the inner product
(,7)p on Q-A®(Th) by

(u,v)), = Z <u|T7U|T>h,T (4.3)

TeTy

for u,v € Q,A*(7;), and the norm || - ||;, defined by this inner product is equivalent to the L? norm with
constants independent of h. Therefore (A) is satisfied.

We now verify (B), but with k-forms instead of (k — 1)-forms for notational convenience. Recall that we
already defined V;* and W} in (4.1), so verification of (B) consists of the following three steps:

Step 1. Prove (2.9).
Step 2. Define II;, satisfying the conditions in (B).
Step 3. Prove (2.10).

The following lemma completes Step 1.
Lemma 4.1. For (-,-), in (4.3) it holds that
(u,v), = (u,v),  we Q A¥T,), wve Qi AYTp).

Proof. Tt is enough to show the equality for the restrictions of polynomial differential forms on any 7" € 7.
Moreover, by scaling argument, it suffices to show the equality on the reference element T, i.e.,

(u,v)y 3 = (u,0), u e Q A* (T)7 ve Q. 1AF (T)

In fact, this equality is true because the Gauss—Lobatto quadrature rule with (r+1) points give exact integration
for polynomials of degree 2r — 1. This completes the proof. O

The following result completes Step 2.
Theorem 4.2. Let IIj, : Q. A*(T;,) — Q, A*(Ty,) be the interpolation operator defined by the canonical degrees
of freedom of Q; A*(T1,), i.e., Iyu for u € Q.A*(T) is characterized by
[esmuno= [uwune, v e O AH(f), f € AT 1> k. (4.4)
f f
Then 11}, is bounded in L*A*(Q) with a norm independent of h, and d(u — Iyu) = 0 for u € Q.A*(T;). The
norm of Il may depend on 7.

Proof. Note the identity

Q;Ak = @ Qa,r—l & Qa*,rdza

cEXy

from the characterization of Q- A*. By the definitions of the degrees of freedom of Q;A*¥ and Q,A*, the
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degrees of freedom of Q- A¥(7},) is a subset of the degrees of freedom of Q,A¥(T,). Therefore the uniform L2
boundedness of I, is a consequence of equivalence of the L? norm and a discerete norm defined by the degrees
of freedom on each of these spaces.

To show d(u — Hpu) = 0, without loss of generality, we consider u defined only on one element T. Since
d(u — Oyu) € Q; AKTH(T), it is sufficient to show that

/trf dlu—Tu)Av=0 Yoe Q. AF1f), feA(T),l>k+1 (4.5)
f

by the canonical degrees of freedom of Q- A*+1(T). These vanishing identities follow from the commutativity
of d and try, and Stokes’ theorem by

/trfd(u—Hhu)/\vz/dtrf(u—Hhu)/\v
f !

:/ traftrf(ufﬂhu)/\trafv+/trf(ufﬂhu)/\dv
af f
=0

where the last equality follows from tra try = tras, the hierarchical trace property of Q;” A¥ spaces, the inclusion
dv e Q; A'F(f), and (4.4). 0

For Step 3, we can reduce (2.10) to the corresponding identity on T, i.e., it is enough to show

(u—pu,v)), 7 =0

for u € O, AF (T) and v € Q,_1A¥ (T)

Before we start its proof, recall that the quadrature nodes of the Gauss-Lobatto rule with (r + 1) points are
the zeros of £ L,(t) on [—1,1]. We also note that

(4 D)Ly (8) = Loa (1) = @0+ (L) — Lra (1) = 2+ 1)+ SL,00),

SO

Ly (&)= Lia(¢)=0  0<j<m (4.6)

i.e., the evaluation of L,11(t) — L,—_1(t) at the quadrature nodes of the Gauss-Lobatto rule with (r + 1) points
vanishes. A } R X
As II;,, we define IIj, : Q,A* (T) — Q;Ak (T) as

/u/\v :/ﬁhu/\v ve Qo ATR(f), f e AZ(T),Z > k.
f f
Theorem 4.3. Let v =u — f[hu foru € O, A* (T) Inv= ZaeEk(T) vedx, every v, has a form

Vo = Z (L’l‘+1(xi) - erl(-ri))pa,i + Vs,0 (47)
i€o*]

where Do € Qo r (T) ® Qo r—1 (T) , and every term in v, o written with the Legendre polynomials has a factor
of L,(x;) for some j € [o].
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Proof. Let v = u — Mu = ZUEEk(T) vsdx, be given. To prove the assertion by induction we need to show
the following two results. First, for f € Ay (T) every polynomial coefficient of tryv € Q,AF(f) satisfies (4.7).
Second, if every polynomial coefficient of try v satisfies (4.7) for all f € A, (T) with given [ > k, then tryv

satisfies the same property corresponding to (4.7) for all g € Ajyq (T)

We prove the first claim. Recalling tryv € Q.A*(f) = Q,A*(f) for f € Au(T) and the definition of Iy,
the polynomial coefficient of try v is a polynomial in Q,(f) which is orthogonal to all Q,_1(f) in the L? inner
product. Then it has at least one factor of L, (z;) for j € [o], therefore it is a form of (4.7).

For the second claim, from the trace property and the definition of 1), commuting with the trace operator
tr, we can reduce the claim to the case [ = n — 1 without loss of generality. Suppose that every polynomial

coefficient of try v satisfies (4.7) for all f € A,,_4 (T)
By (4.4) and the definition of shape function space of Q,A* (T), v, has a form

D Lera(@)Pog + Vo0 + Vo1
lefo*]

where py; € (Qor r®@Qor—1) (T) but p,; is independent of z;, vy o is as in the assertion, and v,,; is a polynomial

such that every term in its expression with the Legendre polynomials, has a factor of L, (x;) or L,_1(z;) for
some [ € [o*]. We remark that v, ¢ may have polynomial terms of degree greater than r. Let us rewrite v, as

Vo = Z (Lrs1(21) = Lr—1(21))poi + Vo0 + 4o
lefo*]

where ¢, € (Qo+r ® Qo r—1) (T) Note that g, is a polynomial such that every term in its Legendre polynomial

expression has L,(x;) factor for some [ € [o*] or is in Q,_; (T) Let f be an (n — 1)-dimensional hyperspace

determined by z; = 1 for some ¢ € [o]. Then the polynomial coefficient of the differential form dz, in try v is

Z (Lrs1(z1) = Le—1(21))po

1€o*],ii

zi=1 1 UU,O|xi=1 + qg|a:1,=1-

Since try v can be written in the form of (4.7), the comparison of the above and expressions in the form of (4.7)
on f leads to ¢y|s;=1 = 0. Since it holds for any i € [o*] with z; = £1,

=0 [[ 1-23), Go€(Qrae QU,T_l)(T)

i€fo*]

If we set n = ¢,dx,~, then fT v An =0 due to the fact v=u — II,u and the definition of II;,. However,

/UAn:i/vgqgvolfzi/ H (l—xf)(ﬁvolf,

T T T i lov]
therefore ¢, = 0. As a consequence v, has the form (4.7). g
We now complete Step 3.
Corollary 4.4. Foru € Q,A*(T;,) and v € Q% | A*(T}),

(u — IMpu,v), = 0.
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Proof. Tt suffices to show the assertion for u € Q,A*(T) and v € Q% | A¥(T) for any T € 7;. We define
i € O,AF (T) and 9 € Q¢ | AF (T) as the pullbacks ¢*u and ¢*v with the dilation map ¢ : T — T. From
the definition of II;, and the property of pullback on differential forms, ¢*(u — Ipu) = @ — I1,4 holds. Since
(u— Hhu,v>h7T is a constant multiple of <ﬂ - ﬂha’ﬁ>h,f with the constant depending on scaling. By the

characterization of @ — 11,4 in Theorem 4.3, the exactness of the Gauss-Lobatto quadrature rule for polynomials
of degree 2r — 1, the orthogonality of Legendre polynomials, and (4.6), <ﬂ — 1,4, 1}>h _=0. O
T
We can define the modified mixed method (2.8) using the spaces in (4.1). As a consequence of Theorem 2.1
we have optimal error bounds.

Corollary 4.5. For a given domain Q and a cubical mesh T;, of Q let Vhlf*l = QTAkfl(’]}L), V}f*l =
QO A*=U(T3), ViF = Q- A¥(Ty,). The discrete inner product (-,-), on VF™1 is defined by extending (4.2) on Ty,.
Suppose that (o,u,p) and (o, un,pp) are the solutions of (2.5) and (2.8), respectively. Then For u € Q,A*(T},)
and v € Q% A*(Tp),

(o = on,u—un,p—pn)llx S
if o, u, p are sufficiently reqular.
Proof. The conclusion follows from (2.12) and approximation properties of the spaces V}ffl, th7 and f)]h“. (]

Finally, we check that the proposed method give local coderivatives with an argument completely analogous
to the one in [24].

To see more details, let the set of nodal degrees of freedom and the basis of Q,A*(7},) associated to the nodal
degrees of freedom be

{021 2€ N.(T), T € Tp,}, {2 : 2 € N(T), T € T},

such that ¢ (7 .) (l/J(T’,z/)) = dpr10,, with the Kronecker delta. For each z € N,.(T') for some T € 7}, and we can
consider the set of all basis functions 97/ .y with the common point z. We denote this set of basis functions by
V.. Then the quadrature bilinear form (-, -), with {¢(7.)} gives a block diagonal matrix such that each block
is associated to ¥, for some z. The influence of the inverse of this block matrix associated to ¥, is only on the
local domain consists of {T"} such that ¢z ) € ¥, so it is a spatially local operator and then gives a local
coderivative.

5. CONCLUDING REMARKS

In this paper we develop high order numerical methods with finite elements for the Hodge Laplace problems
on cubical meshes that admit local approximations of the coderivatives. The main task of the development is
construction of a new family of finite element differential forms on cubical meshes which satisfy the properties
for the stability analysis framework presented in Section 2.

This study has considered Hodge-Laplace problems with the identity coefficient. However, the discussion
can be easily extended to a matrix-valued coefficient K ™' which is symmetric positive definite, and piecewise
constant on 7;,. We point out that this is an important difference between our approach and the work in [15]
for the Maxwell equations. More precisely, the quadrature rules in [15] are combinations of Gauss and Gauss—
Lobatto rules for different components, so the methods are not robust for matrix-valued coefficients because the
matrix-valued coefficients in bilinear forms mix the components with different quadrature rules. We refer the
interested readers to Section 6 of [24] for details of the analysis with K ' # I.

Finally, the extension of the methods to curvilinear meshes is not easy because the conditions in (B) strongly
rely on the properties of quadrature rules on cubical meshes which do not hold on distorted cubical (or called



HIGH ORDER APPROXIMATION OF HODGE LAPLACE PROBLEMS

889

curvilinear) meshes. In [4], this extension was done for weakly distorted quadrilateral and hexahedral meshes
by measuring changes of bilinear forms and related quantities under mesh distortion. However, this is possible
in these cases because explicit forms of the bilinear and trilinear maps and their derivatives are available for

the specific setting kK =n — 1 and n = 2, 3. The extension to general n and k is completely open.

APPENDIX A.

In this section we give an explicit description of Q,A! (R3) using a one-to-one correspondence between
differential 1-forms and vector fields. We use x1, x2, x5 as the variables of R, and define the one-to-one

correspondence ¢ by

3 Uz

D E Ug, i | = | Ug,
i=1

1 Uy

Then one can check that

3 3
P (H <Z uwidmi> ) = Z Tilg,,
i=1 i

d (dn (i undx,> ) = | Os, (Z?Zl xluT7)

By (3.4),
g
(I)(Q:Al(R3)):span 0 0<a; <r—1,0<b,e1 <r
0
0
@ span x(f?:rgzx;f 0<b <r—1,0<as,co <r
0
0
@ span 0 :0<ec3<r—1,0<as, b3 <r
By the characterization in (3.5),
wias g
(B, A (R3)) = span 0 :0<b,e1 <7r
0
0

®spanq | 72x5252 | 0 < ag,co <7
0

(A.3)
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0
@ span 0 :0<as,bz3<r

asz, bz .r
Ly Xy T3

By (A.2) and (A.3) we obtain an explicit form of ®(dxB,A'(R?)):

(r+ 1)x{xglx§1
®(drB, A" (R?)) =spanq | bya el tas | 10 < b0 <7

1 by ei—1
crwi gt

C2

—1_r+1
Loy T3

asx|?
@ span (r+1)z{?x5z5? | :0<ag,ca <r
02x(112x;+11'§2_1

asx{®” 195153 335“

@ spanq | bgzfray ettt | 10 <as, by <7

r4+ Da®ab3
1 T2° %3

Then, @(Q,«Al (RS)) = @(Q;Al (R3)) e @(dnBrAl (RB)) from (3.17) gives an explicit form of ® (QrAl (RS)).
Let T = [—1,1]3 and assume that v € ® (QTA1 (T)) . We use z;, x, z; to denote the three different rectangular

variables in R?, and {e;, e;, e} is an orthonormal basis with unit vectors parallel to the x;, z;, ; axes.
The moment-based degrees of freedom (3.18) in vector-field forms are described as follows:

v v ejqdry, q € Pr(z1),
{Ii:Ei,IJ‘ZEJ’}ﬂT

v v ejqiqdz; Adzy, q; € Pr(zj),q € Pr_a(x1),
{Ii:Ei}ﬂT

V= / V- €iqiq;q dx; A dl‘j ANdzy, q; € 'Pr(l‘i), q; € Prfg(.%'j% q € 'Prfg(l‘l)
T

where €;,€; = £1.
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