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HIGH ORDER APPROXIMATION OF HODGE LAPLACE PROBLEMS WITH
LOCAL CODERIVATIVES ON CUBICAL MESHES

Jeonghun J. Lee*

Abstract. In mixed finite element approximations of Hodge Laplace problems associated with the
de Rham complex, the exterior derivative operators are computed exactly, so the spatial locality is
preserved. However, the numerical approximations of the associated coderivatives are nonlocal and
can be regarded as an undesired effect of standard mixed methods. For numerical methods with local
coderivatives, a perturbation of low order mixed methods in the sense of variational crimes has been
developed for simplicial and cubical meshes. In this paper we extend the low order method to all high
orders on cubical meshes using a new family of finite element differential forms on cubical meshes.
The key theoretical contribution is a generalization of the linear degree, in the construction of the
serendipity family of differential forms, and this generalization is essential in the unisolvency proof of
the new family of finite element differential forms.
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1. Introduction

In this paper we consider finite element methods for the Hodge Laplace problems of the de Rham complex
where both the approximation of the exterior derivative and the associated coderivative are spatially local
operators. The locality of the coderivative operator is not fulfilled in standard mixed methods for these problems
(cf. [6,7]). In fact, pursuing numerical methods with local coderivative is related to the development of various
numerical methods for the Darcy flow problems.

To discuss this local coderivative property in a more familiar context, let us consider the mixed form of a model
second-order elliptic equation with the vanishing Dirichlet boundary condition: Find (𝜎, 𝑢) ∈ 𝐻(div,Ω)×𝐿2(Ω)
such that ⟨︀

𝐾−1𝜎, 𝜏
⟩︀
− ⟨𝑢,div 𝜏⟩ = 0, ∀𝜏 ∈ 𝐻(div,Ω),
⟨div 𝜎, 𝑣⟩ = ⟨𝑓, 𝑣⟩, ∀𝑣 ∈ 𝐿2(Ω), (1.1)

where the unknown functions 𝜎 and 𝑢 are vector and scalar fields defined on a bounded domain Ω in R𝑛. The
coefficient 𝐾 is symmetric, matrix-valued, spatially varying, and uniformly positive definite. Note that 𝑢 is the
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scalar field of the pressure and 𝜎 is the fluid velocity given by the Darcy law 𝜎 = −𝐾 grad𝑢. The standard
mixed finite element method for this problem is:

Find (𝜎ℎ, 𝑢ℎ) ∈ Σℎ × 𝑉ℎ such that⟨︀
𝐾−1𝜎ℎ, 𝜏

⟩︀
− ⟨𝑢ℎ,div 𝜏⟩ = 0, ∀𝜏 ∈ Σℎ, (1.2)
⟨div 𝜎ℎ, 𝑣⟩ = ⟨𝑓, 𝑣⟩, ∀𝑣 ∈ 𝑉ℎ, (1.3)

where Σℎ ⊂ 𝐻(div,Ω) and 𝑉ℎ ⊂ 𝐿2(Ω) are finite element spaces, and 𝜎ℎ is an approximation of 𝜎 = −𝐾 grad𝑢.
Here the notation ⟨·, ·⟩ is used to denote the 𝐿2 inner product for both scalar fields and vector fields defined on
Ω.

The mixed method (1.2) has a local mass conservation property, and its stability conditions and error esti-
mates are well-studied (cf. [11]). However, the mixed method (1.2) does not preserve the local property of the
map 𝑢 ↦→ 𝜎 = −𝐾 grad𝑢 in the continuous problem. In other words, the map 𝑢ℎ ↦→ 𝜎ℎ, defined by the first
equation of (1.2), is not local because the inverse of the so-called “mass matrix” derived from the 𝐿2 inner
product

⟨︀
𝐾−1𝜏, 𝜏 ′

⟩︀
on Σℎ is nonlocal. Since constitutive laws are spatially local relations of quantities in many

physical models, construction of local numerical constitutive laws is one of key issues in the development of
numerical methods following physical derivation of constitutive laws such as the finite volume methods and the
multi-point flux approximations.

Here we give a brief overview on previous studies of numerical methods with local coderivatives mainly for
the Darcy flow problems but we have to admit that this overview and the list of literature here are by no means
complete.

An early work for the locality property by perturbing the mixed method (1.2) was done in [9] on triangular
meshes with the lowest order Raviart–Thomas space. The approach leads to a two-point flux method, which
approximate flux across the interface of two cells by two point values of pressure field in the two cells, but
the two-point flux method is not consistent in general for anisotropic 𝐾, cf. [1, 2]. To circumvent this defect,
various multi-point flux approximation schemes were derived (cf. [1]) but the stability and error estimates of
these schemes are usually nontrivial and are restricted to low order cases. It seems that the most useful approach
for the stability and error estimates for these numerical schemes is to utilize connections between the schemes
and perturbed mixed finite element methods, cf. [10, 17, 22, 23, 26, 27]. An alternative approach to perturbed
mixed finite element methods for the local coderivative property was proposed in [12, 27] independently for
simplicial and quadrilateral meshes. The key to achieve local coderivatives in this approach is a mass-lumping
for vector-valued finite elements. Further extensions to hexahedral grids are studied in [21, 28]. Extensions to
all high order methods are studied in [4] with the development of a new family of 𝐻(div) finite elements on
quadrilateral and hexahedral meshes, which is inspired by the new family of low order finite elements in [24]. For
the Maxwell equations, Cohen and Monk studied perturbed mixed methods based on anisotropic mass-lumping
of vector-valued finite elements but the methods may not be consistent when the material coefficients are not
isotropic (cf. [15]). For the Hodge Laplace problems the discrete exterior calculus, proposed in [16, 20], cf. also
[19], has a natural local coderivative property by construction. However, a satisfactory convergence theory seems
to be limited except in the 0-form case (cf. [25]).

The purpose of this paper is to extend the results in [4, 24] to the discrete Hodge Laplace problems on
cubical meshes. More precisely, we will construct high order perturbed mixed methods for the discrete Hodge
Laplace problems on cubical meshes which have the local numerical coderivatives. Since many problems can
be understood as a special case of the Hodge Laplace problems, the numerical method in the present paper
can be used to develop numerical methods with the locality property for other problems. For example, the
methods with the newly developed finite elements have potential applications to high order mass-lumping for
the time-dependent Maxwell equations. However, we will restrict our discussion only to stationary problems in
the paper because developing the methods for stationary problems is already quite involved.

The paper is organized as follows. In the following section we present a brief review of the exterior calculus,
the de Rham complex with its discretizations, and the abstract analysis results in [24] for the analysis framework
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to be used in later sections. In Section 3 we develop a new family of finite element differential forms on cubical
meshes, say 𝒬̃𝑟Λ𝑘, by defining the shape functions and the degrees of freedom, and proving the unisolvency. We
also prove some properties of the new elements for construction of numerical methods with the local coderivative
property. In Section 4, we construct numerical methods with local coderivatives using 𝒬̃𝑟Λ𝑘 and the framework
in Section 2. Finally, we summarize our results with some concluding remarks in Section 5.

2. Preliminaries

Here we review the language of the finite element exterior calculus [6, 7] and also introduce new concepts of
the differential forms with polynomial coefficients. In the paper we assume that Ω ⊂ R𝑛 is a bounded domain
with a polyhedral boundary, and consider finite element approximations of a differential equation which has a
differential form defined on Ω as an unknown. Let Alt𝑘(R𝑛) be the space of alternating 𝑘-linear maps on R𝑛.

For 1 ≤ 𝑘 ≤ 𝑛 let us define Σ𝑘 by

Σ𝑘 = the set of increasing injective maps from {1, . . . , 𝑘} to {1, . . . , 𝑛}. (2.1)

Then we can define an inner product on Alt𝑘(R𝑛) by

⟨𝑎, 𝑏⟩Alt =
∑︁

𝜎∈Σ𝑘

𝑎(𝑒𝜎1 , . . . , 𝑒𝜎𝑘
)𝑏(𝑒𝜎1 , . . . , 𝑒𝜎𝑘

), 𝑎, 𝑏 ∈ Alt𝑘(R𝑛),

where 𝜎𝑖 denotes 𝜎(𝑖) for 1 ≤ 𝑖 ≤ 𝑘 and {𝑒1, . . . , 𝑒𝑛} is any orthonormal basis of R𝑛. The differential 𝑘-forms on
Ω are maps defined on Ω with values in Alt𝑘(R𝑛). If 𝑢 is a differential 𝑘-form and 𝑡1, . . . , 𝑡𝑘 are vectors in R𝑛,
then 𝑢𝑥(𝑡1, . . . , 𝑡𝑘) denotes the value of 𝑢 applied to the vectors 𝑡1, . . . , 𝑡𝑘 at the point 𝑥 ∈ Ω. The differential
form 𝑢 is an element of the space 𝐿2Λ𝑘(Ω) if and only if the map

𝑥 ↦→ 𝑢𝑥(𝑡1, . . . , 𝑡𝑘)

is in 𝐿2(Ω) for all tuples 𝑡1, . . . , 𝑡𝑘. In fact, 𝐿2Λ𝑘(Ω) is a Hilbert space with inner product given by

⟨𝑢, 𝑣⟩ =
∫︁

Ω

⟨𝑢𝑥, 𝑣𝑥⟩Alt d𝑥.

The exterior derivative of a 𝑘-form 𝑢 is a (𝑘 + 1)-form d𝑢 given by

d𝑢𝑥(𝑡1, . . . 𝑡𝑘+1) =
𝑘+1∑︁
𝑗=1

(−1)𝑗+1𝜕𝑡𝑗
𝑢𝑥

(︀
𝑡1, . . . , 𝑡𝑗 , . . . , 𝑡𝑘+1

)︀
,

where 𝑡𝑗 implies that 𝑡𝑗 is not included, and 𝜕𝑡𝑗
denotes the directional derivative. The Hilbert space 𝐻Λ𝑘(Ω)

is the corresponding space of 𝑘-forms 𝑢 on Ω, which is in 𝐿2Λ𝑘(Ω), and where its exterior derivative, d𝑢 = d𝑘𝑢,
is also in 𝐿2Λ𝑘+1(Ω). The 𝐿2 version of the de Rham complex then takes the form

𝐻Λ0(Ω) d0

−→ 𝐻Λ1(Ω) d1

−→ · · · d𝑛−1

−−−→ 𝐻Λ𝑛(Ω). (2.2)

In the setting of 𝑘-forms, the Hodge Laplace problem takes the form

𝐿𝑢 = (d*d + dd*)𝑢 = 𝑓, (2.3)

where d = d𝑘 is the exterior derivative mapping differential 𝑘-forms to differential (𝑘 + 1)-forms, and the
coderivative d* = d*𝑘 can be seen as the formal adjoint of d𝑘−1. Hence, the Hodge Laplace operator 𝐿 above
is more precisely expressed as 𝐿 = d*𝑘+1d𝑘 + d𝑘−1d*𝑘. A typical model problem studied in [6, 7] is of the form
(2.3) and with appropriate boundary conditions. The mixed finite element methods are derived from a weak
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formulation, where 𝜎 = d*𝑢 is introduced as an additional variable. If Ω is homologically trivial, then the
variational form for mixed methods is the following:

Find (𝜎, 𝑢) ∈ 𝐻Λ𝑘−1(Ω)×𝐻Λ𝑘(Ω) such that

⟨𝜎, 𝜏⟩ −
⟨︀
𝑢,d𝑘−1𝜏

⟩︀
= 0, 𝜏 ∈ 𝐻Λ𝑘−1(Ω),⟨︀

d𝑘−1𝜎, 𝑣
⟩︀

+
⟨︀
d𝑘𝑢,d𝑘𝑣

⟩︀
= ⟨𝑓, 𝑣⟩, 𝑣 ∈ 𝐻Λ𝑘(Ω). (2.4)

Here ⟨·, ·⟩ denotes the inner products of all the spaces of the form 𝐿2Λ𝑗(Ω) which appears in the formulation,
i.e., 𝑗 = 𝑘 − 1, 𝑘, 𝑘 + 1. We refer to Sections 2 and 7 of [6] for more details. We note that only the exterior
derivate d is used explicitly in the weak formulation above, while the relation 𝜎 = d*𝑘𝑢 is formulated weakly in
the first equation. The formulation also contains the proper natural boundary conditions. The problem (2.4)
with 𝑘 = 𝑛− 1 corresponds to a weak formulation of the elliptic equation (2.3) in the case when the coefficient
𝐾 is the identity matrix. The weak formulations (2.4) can be modified for variable coefficient by changing
the 𝐿2 inner products to the inner product with the variable coefficient, see Section 7.3 of [6]. Throughout
the discussion below we will restrict our discussion to the constant coefficient case but the extension of the
discussion to problems with piecewise constant coefficients with respect to the mesh, is straightforward. We
refer to Section 6 of [24] for details.

If the domain Ω is not homologically trivial, then there may exist nontrivial harmonic forms, i.e., nontrivial
elements of the space

H𝑘(Ω) = {𝑣 ∈ 𝐻Λ𝑘(Ω) : d𝑣 = 0 and ⟨𝑣,d𝜏⟩ = 0 for all 𝜏 ∈ 𝐻Λ𝑘−1(Ω)},

and the solutions of the system (2.4) may not be unique. To obtain a system with a unique solution, an extra
condition requiring orthogonality with respect to the harmonic forms:

Find (𝜎, 𝑢, 𝑝) ∈ 𝐻Λ𝑘−1(Ω)×𝐻Λ𝑘(Ω)× H𝑘(Ω) such that

⟨𝜎, 𝜏⟩ − ⟨d𝜏, 𝑢⟩ = 0, 𝜏 ∈ 𝐻Λ𝑘−1(Ω),

⟨d𝜎, 𝑣⟩+ ⟨d𝑢,d𝑣⟩+ ⟨𝑝, 𝑣⟩ = ⟨𝑓, 𝑣⟩, 𝑣 ∈ 𝐻Λ𝑘(Ω), (2.5)

⟨𝑢, 𝑞⟩ = 0, 𝑞 ∈ H𝑘(Ω).

The key of the finite element exterior calculus is to use a subcomplex of (2.2),

𝑉 0
ℎ

d−→ 𝑉 1
ℎ

d−→ · · · d−→ 𝑉 𝑛
ℎ ,

for discretization of (2.5) where the spaces 𝑉 𝑘
ℎ are finite dimensional subspaces of 𝐻Λ𝑘(Ω).

The finite element methods studied in [6, 7] are based on the weak formulation (2.4). These methods are
obtained by simply replacing the Sobolev spaces 𝐻Λ𝑘−1(Ω) and 𝐻Λ𝑘(Ω) by the finite element spaces 𝑉 𝑘−1

ℎ and
𝑉 𝑘

ℎ . More precisely, we are searching for a triple (𝜎̃ℎ, 𝑢̃ℎ, 𝑝ℎ) ∈ 𝑉 𝑘−1
ℎ × 𝑉 𝑘

ℎ × H𝑘
ℎ such that

⟨𝜎̃ℎ, 𝜏⟩ − ⟨d𝜏, 𝑢̃ℎ⟩ = 0, 𝜏 ∈ 𝑉 𝑘−1
ℎ ,

⟨d𝜎̃ℎ, 𝑣⟩+ ⟨d𝑢̃ℎ,d𝑣⟩+ ⟨𝑝ℎ, 𝑣⟩ = ⟨𝑓, 𝑣⟩, 𝑣 ∈ 𝑉 𝑘
ℎ , (2.6)

⟨𝑢̃ℎ, 𝑞⟩ = 0, 𝑞 ∈ H𝑘
ℎ,

where the space H𝑘
ℎ, approximating the harmonic forms, is given by

H𝑘
ℎ =

{︀
𝑣 ∈ 𝑉 𝑘

ℎ : d𝑣 = 0 and ⟨𝑣,d𝜏⟩ = 0 for all 𝜏 ∈ 𝑉 𝑘−1
ℎ

}︀
.

Stability and error estimates for the numerical solution of (2.6) are discussed in Theorem 3.9 of [7] with an
error estimate of the form

‖(𝜎, 𝑢, 𝑝)− (𝜎̃ℎ, 𝑢̃ℎ, 𝑝ℎ)‖𝒳 . inf
(𝜏,𝑣,𝑞)∈𝒳𝑘

ℎ

‖(𝜎, 𝑢, 𝑝)− (𝜏, 𝑣, 𝑞)‖𝒳 + ℰℎ(𝑢) (2.7)

with
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‖(𝜎, 𝑢, 𝑝)‖𝒳 :=
(︀
‖𝜎‖2 + ‖d𝜎‖2 + ‖𝑢‖2 + ‖d𝑢‖2 + ‖𝑝‖2

)︀ 1
2 , 𝒳 𝑘

ℎ := 𝑉 𝑘−1
ℎ × 𝑉 𝑘

ℎ × H𝑘
ℎ,

and ℰℎ(𝑢) comes from the nonconformity of the space of discrete harmonic forms, H𝑘
ℎ, to the space of continuous

harmonic forms H𝑘. ℰℎ(𝑢) vanishes if there is no nontrivial harmonic forms, and will usually be of higher order
than the other terms on the right-hand side of (2.7). We refer to Section 7.6 of [6] and Section 3.4 of [7] for
more details.

In this paper we develop numerical methods which have the local coderivative property by perturbing (2.6).
More precisely, the perturbation is to replace the standard inner product for ⟨𝜎̃ℎ, 𝜏⟩ in (2.6) by another bilinear
form ⟨·, ·⟩ℎ which gives a block-diagonal mass matrix in the spirit of mass-lumping. The perturbed system is to
find a solution (𝜎ℎ, 𝑢ℎ, 𝑝ℎ) ∈ 𝒳 𝑘

ℎ of

⟨𝜎ℎ, 𝜏⟩ℎ − ⟨d𝜏, 𝑢ℎ⟩ = 0, 𝜏 ∈ 𝑉 𝑘−1
ℎ ,

⟨d𝜎ℎ, 𝑣⟩+ ⟨d𝑢ℎ,d𝑣⟩+ ⟨𝑝ℎ, 𝑣⟩ = ⟨𝑓, 𝑣⟩, 𝑣 ∈ 𝑉 𝑘
ℎ , (2.8)

⟨𝑢ℎ, 𝑞⟩ = 0, 𝑞 ∈ H𝑘
ℎ.

Assume that ⟨·, ·⟩ℎ gives an inner product on 𝑉 𝑘−1
ℎ , and the shape functions associated to a set of degrees of

freedom of 𝑉 𝑘−1
ℎ are (2.8) gives a stable and convergent numerical method with ⟨·, ·⟩ℎ that gives a block diagonal

mass matrix such that each block is associated to a set of the degrees of freedom supported on a local domain.
Then, a numerical local coderivative operator 𝑉 𝑘

ℎ → 𝑉 𝑘−1
ℎ can be made as follows. For given 𝑢ℎ ∈ 𝑉 𝑘

ℎ we can
solve the first equation in (2.8) for 𝜎ℎ ∈ 𝑉 𝑘−1

ℎ . The mass matrix from ⟨·, ·⟩ℎ is block diagonal, and the degrees
of freedom of 𝑉 𝑘−1

ℎ , only on a local domain, are associated to each block. So, the value of 𝜎ℎ on one simplex will
be determined by the values of 𝑢ℎ on a local neighborhood of the simplex. Since (2.8) is stable and convergent,
the map 𝑢ℎ ↦→ 𝜎ℎ gives a good approximation of the continuous coderivative.

Existence of such a bilinear form ⟨·, ·⟩ℎ which gives a block diagonal mass matrix is not obvious for general
finite elements. Furthermore, equations (2.8) is a variational crime of the standard mixed method, so the stability
and the error estimates of this perturbed mixed method are not guaranteed in general. In fact, developing a
stable and convergent perturbed mixed method (2.8) is not trivial even for the lowest order cases for simplicial
and cubical meshes [24]. It is known that the diagonal of the mass matrix does not give a consistent mass-lumping
method for vector-valued finite elements in general (cf. [9]). To overcome this, a mass-lumping of vector-valued
finite elements based on special nodal degrees of freedom is introduced in [12,27]. Such nodal degrees of freedom
do not exist for all vector-valued finite elements, so one of the main contributions in [24] is to construct low
order cubical finite element differential forms, 𝒮+

1 Λ𝑘, which have such nodal degrees of freedom. In [4], the 𝒮+
1 Λ𝑘

family is extended to all higher orders for the Darcy flow problems in the two and three dimensions on cubical
meshes, and as a consequence, higher order numerical methods satisfying the local coderivative property in the
two and three dimensional Darcy flow problems on weakly distorted quadrilateral and hexahedral meshes are
constructed.

The goal of this paper is developing high order numerical methods for the Hodge Laplace equations satisfying
the local coderivative property on cubical meshes by extending the perturbation idea to higher orders. We will
use the abstract conditions developed in [24] for the stability and the error estimate of our perturbed mixed
methods. The main contributions of this paper are constructing a new family of finite element differential forms
extending 𝒮+

1 Λ𝑘 to higher orders and developing new theoretical tools for the development of the new finite
elements. Although the new family is a higher order extension of 𝒮+

1 Λ𝑘, we will call it 𝒬̃𝑟Λ𝑘 family in this paper
because it is closely related to the 𝒬𝑟Λ𝑘 space rather than the 𝒮𝑟Λ𝑘 family. One characteristic feature of the new
𝒬̃𝑟Λ𝑘 family is that the number of local degrees of freedom is same as the one of 𝒬𝑟Λ𝑘, and same nodal global
degree of freedom by evaluation on the tensor product of Gauss–Lobatto quadrature points can be taken as
global degrees of freedom. This nodal global degree of freedom property is crucial to define ⟨·, ·⟩ℎ for 𝒬̃𝑟Λ𝑘(𝒯ℎ).
However, we point out that it does not mean that 𝒬̃𝑟Λ𝑘 can be replaced by 𝒬𝑟Λ𝑘, an 𝐻1 conforming finite
element, because the commuting diagram property in the de Rham complex is essential for stable numerical
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methods for the Hodge Laplace equations. The definition ⟨·, ·⟩ℎ for 𝒬̃𝑟Λ𝑘 will be given in (4.3), and the local
coderivative operator for the proposed numerical method with 𝒬̃𝑟Λ𝑘 will be briefly discussed after Corollary 4.5.

Here we summarize the abstract conditions for stability and error estimates established in [24].

(A) There is a symmetric bounded coercive bilinear form ⟨·, ·⟩ℎ on 𝑉 𝑘−1
ℎ × 𝑉 𝑘−1

ℎ such that the norm ‖𝜏‖ℎ :=
⟨𝜏, 𝜏⟩1/2

ℎ is equivalent to ‖𝜏‖ for 𝜏 ∈ 𝑉 𝑘−1
ℎ with constants independent of ℎ.

(B) There exist discrete subspaces 𝑊 𝑘−1
ℎ ⊂ 𝐿2Λ𝑘−1(Ω), 𝑉 𝑘−1

ℎ ⊂ 𝑉 𝑘−1
ℎ satisfying

⟨𝜏, 𝜏0⟩ = ⟨𝜏, 𝜏0⟩ℎ, 𝜏 ∈ 𝑉 𝑘−1
ℎ , 𝜏0 ∈𝑊 𝑘−1

ℎ , (2.9)

and a linear map Πℎ : 𝑉 𝑘−1
ℎ → 𝑉 𝑘−1

ℎ satisfying dΠℎ𝜏 = d𝜏 , ‖Πℎ𝜏‖ . ‖𝜏‖ for 𝜏 ∈ 𝑉 𝑘−1
ℎ , and

⟨Πℎ𝜏, 𝜏0⟩ℎ = ⟨𝜏, 𝜏0⟩ℎ, 𝜏 ∈ 𝑉 𝑘−1
ℎ , 𝜏0 ∈𝑊 𝑘−1

ℎ . (2.10)

If these assumptions are satisfied, The following result is proved in [24].

Theorem 2.1. Suppose that the assumptions (A) and (B) hold. Then the solution of (2.8), (𝜎ℎ, 𝑢ℎ, 𝑝ℎ), sat-
isfies

‖(𝜎ℎ − 𝜎̃ℎ, 𝑢ℎ − 𝑢̃ℎ, 𝑝ℎ − 𝑝ℎ)‖𝒳 . ‖𝜎 − 𝑃𝑊ℎ
𝜎‖+ ‖𝜎 − 𝜎̃ℎ‖, (2.11)

where 𝑃𝑊ℎ
is the 𝐿2-orthogonal projection into 𝑊 𝑘−1

ℎ . As a corollary of (2.7) we have

‖(𝜎 − 𝜎ℎ, 𝑢− 𝑢ℎ, 𝑝− 𝑝ℎ)‖𝒳 . ‖𝜎 − 𝑃𝑊ℎ
𝜎‖+ ‖𝜎 − 𝜎̃ℎ‖ (2.12)

+ inf
(𝜏,𝑣,𝑞)∈𝒳𝑘

ℎ

‖(𝜎, 𝑢, 𝑝)− (𝜏, 𝑣, 𝑞)‖𝒳 + ℰℎ(𝑢).

3. Construction of 𝒬̃𝑟Λ
𝑘

In this section we construct a new family of finite element differential forms 𝒬̃𝑟Λ𝑘(𝒯ℎ) on cubical meshes 𝒯ℎ

of Ω where the elements in 𝒯ℎ are Cartesian product of intervals. If 𝑟 = 1, then 𝒬̃𝑟Λ𝑘 is the 𝒮+
1 Λ𝑘 space in

[24]. For 𝑛 = 2, 3 and 𝑘 = 𝑛 − 1, 𝒬̃𝑟Λ𝑘 spaces are the 𝐻(div) finite element spaces which were discussed in
[4]. The idea of the new finite element construction in [24] is enriching the shape function space of the 𝒬−1 Λ𝑘

elements on cubical meshes with d-free shape functions in order to associate a basis of the shape function
space to the degrees of freedom given by nodal point evaluation. This idea is used in [4] to develop similar but
higher order numerical methods for the mixed formulation of second order elliptic problems by enriching the
Raviart–Thomas–Nedelec 𝐻(div) elements on cubical meshes with divergence-free shape functions. The biggest
technical difficulty of these new construction in [4] is the unisolvency proof. For this, the authors in [4] used
some features of the enriched shape functions observed from their explicit expressions. However, it is highly
nontrivial to use the same argument to 𝒬̃𝑟Λ𝑘 for general 𝑛 and 𝑘 because explicit forms of the enriched shape
functions for general 𝑛 and 𝑘 are too complicated to use conventional unisolvency arguments. To circumvent
this difficulty we will introduce new quantities of polynomial differential forms which allow us to extract useful
features of polynomial differential forms for unisolvency proof.

For a multi-index 𝛼 of 𝑛 nonnegative integers,

𝑥𝛼 = 𝑥𝛼1
1 · · ·𝑥𝛼𝑛

𝑛

for 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ R𝑛. In this paper we define 𝒬𝑟(R𝑛) by

𝒬𝑟(R𝑛) := span
{︂
𝑥𝛼 : max

1≤𝑖≤𝑛
{𝛼𝑖} ≤ 𝑟

}︂
.
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In this paper the spaces of polynomial or polynomial differential forms without specified domain are the spaces
with domain R𝑛. Thus, 𝒬𝑟 = 𝒬𝑟(R𝑛) and 𝒬𝑟Λ𝑘 is the subspace of 𝐿2Λ𝑘(R𝑛) consists of polynomial coefficient
differential forms such that the polynomial coefficients are in 𝒬𝑟(R𝑛). We use 𝒫Λ𝑘 ⊂ 𝐿2Λ𝑘(R𝑛) to denote the
space of all differential forms on R𝑛 with polynomial coefficients. Note that we use 𝒬𝑟Λ𝑘 to denote a space
of polynomial coefficient vector space on R𝑛, not a space of finite element differential form with inter-element
continuity.

For later discussion we introduce some additional notation for cubes in a hyperspace in R𝑛. For given ℐ =
{𝑖1, . . . , 𝑖𝑚} ⊂ {1, . . . , 𝑛} with 𝑖1 < 𝑖2 < . . . < 𝑖𝑚, consider an 𝑚-dimensional cube 𝑓 in the 𝑚-dimensional
hyperspace in R𝑛 determined by {𝑥 ∈ R𝑛 : 𝑥𝑗 = 𝑐𝑗 , 𝑗 ̸∈ ℐ} for some constants {𝑐𝑗}𝑗 ̸∈ℐ . We define ℐ𝑓 by ℐ to
indicate the relation between 𝑓 and ℐ. We also define Σ𝑘(𝑓) with 1 ≤ 𝑘 ≤ 𝑚 by the set of increasing injective
maps from {1, . . . , 𝑘} to ℐ𝑓 .

For 𝜎 ∈ Σ𝑘(𝑓) we will use J𝜎K to denote the range of 𝜎, i.e.,

J𝜎K = {𝜎1, 𝜎2, . . . , 𝜎𝑘} ⊂ ℐ𝑓 ,

and 𝜎* for 𝜎 ∈ Σ𝑘(𝑓) is the complementary sequence in Σ𝑚−𝑘(𝑓) such that

J𝜎K ∪ J𝜎*K = ℐ𝑓 .

For 𝜎 ∈ Σ𝑘(𝑓) with 1 ≤ 𝑘 ≤ 𝑚 we will use 𝜎 − 𝑖 for 𝑖 ∈ [[𝜎]] to denote the element 𝜏 ∈ Σ𝑘−1(𝑓) such that
[[𝜏 ]] = [[𝜎]] ∖ {𝑖}. For 𝜎 ∈ Σ𝑘(𝑓) with 0 ≤ 𝑘 ≤ 𝑚 − 1, 𝜎 + 𝑗 is defined similarly for 𝑗 ∈ [[𝜎*]]. For 𝑖 ∈ [[𝜎*]] we let
𝜖(𝑖, 𝜎) = (−1)𝑙 where 𝑙 = |{𝑗 ∈ [[𝜎]] : 𝑗 < 𝑖}|. For each 𝜎 ∈ Σ𝑘(𝑓) we define d𝑥𝜎 = d𝑥𝜎1 ∧ · · · ∧ d𝑥𝜎𝑘

and the set
{d𝑥𝜎 : 𝜎 ∈ Σ𝑘(𝑓) } is a basis of Alt𝑘(𝑓).

Recall the definition of Σ𝑘 in (2.1). A differential 𝑘-form 𝑢 on Ω then admits the representation

𝑢 =
∑︁

𝜎∈Σ𝑘

𝑢𝜎d𝑥𝜎,

where the coefficients 𝑢𝜎’s are scalar functions on Ω. Furthermore, the exterior derivative d𝑢 can be expressed
as

d𝑢 =
∑︁

𝜎∈Σ𝑘

𝑛∑︁
𝑖=1

𝜕𝑖𝑢𝜎d𝑥𝑖 ∧ d𝑥𝜎,

if 𝜕𝑖𝑢𝜎 is well-defined as a function on Ω. The Koszul operator 𝜅 : Alt𝑘(R𝑛) → Alt𝑘−1(R𝑛) is defined by the
contraction with the vector 𝑥, i.e., (𝜅𝑢)𝑥 = 𝑥y𝑢𝑥. As a consequence of the alternating property of Alt𝑘(R𝑛), it
therefore follows that 𝜅 ∘ 𝜅 = 0. It also follows that

𝜅(d𝑥𝜎) = 𝜅(d𝑥𝜎1 ∧ · · · ∧ d𝑥𝜎𝑘
) =

𝑘∑︁
𝑖=1

(−1)𝑖+1𝑥𝜎𝑖
d𝑥𝜎1 ∧ · · · ∧ ̂︂d𝑥𝜎𝑖

∧ · · · ∧ d𝑥𝜎𝑘
,

where ̂︂d𝑥𝜎𝑖
means that the term d𝑥𝜎𝑖

is omitted. This definition is extended to the space of differential 𝑘-form
on Ω by linearity, i.e.,

𝜅𝑢 = 𝜅
∑︁

𝜎∈Σ𝑘

𝑢𝜎d𝑥𝜎 =
∑︁

𝜎∈Σ𝑘

𝑢𝜎𝜅(d𝑥𝜎).

For future reference we note that

𝜅d𝑥𝜎 =
∑︁

𝑖∈[[𝜎]]

𝜖(𝑖, 𝜎 − 𝑖)𝑥𝑖d𝑥𝜎−𝑖. (3.1)
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If 𝑓 is the (𝑛− 1)-dimensional hyperspace of R𝑛 obtained by

𝑓 = {𝑥 ∈ R𝑛 : 𝑥𝑖 = 𝑐, 1 ≤ 𝑖 ≤ 𝑛}

with a constant 𝑐, then we can define the Koszul operator 𝜅𝑓 for a differential form 𝑣 on 𝑓 by

(𝜅𝑓𝑣)𝑥 = (𝑥− 𝑥𝑓 )y𝑣𝑥

where 𝑥𝑓 is the vector in R𝑛 such that its 𝑖-th coordinate is 𝑐 and the other coordinates are zero. We note that
the vector 𝑥− 𝑥𝑓 is in the tangent space of 𝑓 for 𝑥 ∈ 𝑓 . Since tr𝑓 ((𝑥− 𝑥𝑓 )y𝑢) = (𝑥− 𝑥𝑓 )y tr𝑓 𝑢 for 𝑥 ∈ 𝑓 and
(𝜅𝑢)𝑥 = (𝑥− 𝑥𝑓 )y𝑢𝑥 + 𝑥𝑓y𝑢𝑥, we can conclude that

tr𝑓 𝜅𝑢 = 𝜅𝑓 tr𝑓 𝑢+ tr𝑓 (𝑥𝑓y𝑢). (3.2)

If 𝑢 is in 𝒬𝑟Λ𝑘, the space of polynomial 𝑘-forms with tensor product polynomials of order 𝑟, then 𝑢 can be
expressed as

𝑢 =
∑︁

𝜎∈Σ𝑘

𝑢𝜎d𝑥𝜎, 𝑢𝜎 ∈ 𝒬𝑟.

Denoting ℋ𝑟Λ𝑘 the space of differential 𝑘-forms with homogeneous polynomial coefficients of degree 𝑟, we also
have the identity

(𝜅d + d𝜅)𝑢 = (𝑟 + 𝑘)𝑢, 𝑢 ∈ ℋ𝑟Λ𝑘, (3.3)

cf. Section 3 of [6]. Finally, throughout this paper we set 𝑇 = [−1, 1]𝑛.

3.1. The shape function space and the degrees of freedom of 𝒬̃𝑟Λ𝑘

In this subsection we define the shape function space of 𝒬̃𝑟Λ𝑘. The shape functions of 𝒬̃𝑟Λ𝑘 will be obtained
by enriching the shape functions of 𝒬−𝑟 Λ𝑘. There are other families of cubical finite element differential forms,
cf. for example [5, 13,14,18], but these spaces are not involved in the construction of our new elements.

If 𝑚 is a 𝑘-form given by 𝑚 = 𝑝 d𝑥𝜎, where 𝜎 ∈ Σ𝑘 and the coefficient polynomial 𝑝 is a monomial, then we
will call 𝑚 form monomial. Before we define the shape functions of 𝒬̃𝑟Λ𝑘, let us introduce new quantities of
form monomials. For a polynomial differential form 𝑢𝜎d𝑥𝜎 we call the indices in [[𝜎]] (in [[𝜎*]], resp.) conforming
indices (nonconforming indices, resp.). For a form monomial 𝑚 = 𝑐𝛼𝑥

𝛼d𝑥𝜎 ̸= 0 and 𝛼𝑖 = 𝑠 for a conforming
(nonconforming, resp.) index 𝑖 of 𝑚, we call 𝑖 a conforming (nonconforming, resp.) index of degree 𝑠. We also
define the conforming and nonconforming 𝑠-degrees of 𝑚 = 𝑐𝛼𝑥

𝛼d𝑥𝜎 by

cdeg𝑠(𝑚) = |{𝑖 : 𝑖 ∈ [[𝜎]] and 𝛼𝑖 = 𝑠}|,
ncdeg𝑠(𝑚) = |{𝑖 : 𝑖 ∈ [[𝜎*]] and 𝛼𝑖 = 𝑠}|.

We remark that ncdeg1(𝑚) is same as the linear degree in [5] for a form monomial 𝑚. However, in contrast to
the linear degree, we do not define cdeg𝑠(𝑢) and ncdeg𝑠(𝑢) for general 𝑢 ∈ 𝒫Λ𝑘.

The conforming degree gives a new characterization of the shape function space of 𝒬−𝑟 Λ𝑘 by

𝒬−𝑟 Λ𝑘 = span
{︀
𝑥𝛼d𝑥𝜎 ∈ 𝒬𝑟Λ𝑘 : cdeg𝑟(𝑥𝛼d𝑥𝜎) = 0

}︀
. (3.4)

Defining ℬ𝑟Λ𝑘 as

ℬ𝑟Λ𝑘 = span
{︀
𝑥𝛼d𝑥𝜎 ∈ 𝒬𝑟Λ𝑘 : cdeg𝑟(𝑥𝛼d𝑥𝜎) > 0

}︀
, (3.5)

it is easy to see that

𝒬𝑟Λ𝑘 = 𝒬−𝑟 Λ𝑘 ⊕ ℬ𝑟Λ𝑘. (3.6)
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We define the shape function space 𝒬̃𝑟Λ𝑘 as

𝒬̃𝑟Λ𝑘 = 𝒬−𝑟 Λ𝑘 + d𝜅ℬ𝑟Λ𝑘. (3.7)

The changes of cdeg𝑠 and ncdeg𝑠 under d and 𝜅 operators are crucial for our discussions below, extensions of
the low-order results in [24].

Lemma 3.1. Let 𝑚 = 𝑥𝛼d𝑥𝜎 ∈ 𝒫Λ𝑘, 1 ≤ 𝑘 ≤ 𝑛 − 1, be given with a multi-index 𝛼 and a positive integer 𝑠.
Assume that 𝑚′ and 𝑚′′ are given as 𝑚′ = 𝜕𝑖𝑥

𝛼d𝑥𝑖∧d𝑥𝜎 with 𝑖 ̸∈ [[𝜎]] and 𝑚′′ = 𝑥𝛼𝑥𝜎𝑗
d𝑥𝜎1∧· · ·∧̂︂d𝑥𝜎𝑗

∧· · ·∧d𝑥𝜎𝑘

with 𝑗 ∈ [[𝜎]]. Then the following identities hold:

ncdeg𝑠(𝑚′) = ncdeg𝑠(𝑚)− 𝛿𝑠,𝛼𝑖
, (3.8)

ncdeg𝑠(𝑚′′) = ncdeg𝑠(𝑚) + 𝛿𝛼𝜎𝑗
,𝑠−1, (3.9)

ncdeg𝑠+1(𝑚) + cdeg𝑠(𝑚) = ncdeg𝑠+1(𝑚′) + cdeg𝑠(𝑚′) (3.10)
= ncdeg𝑠+1(𝑚′′) + cdeg𝑠(𝑚′′)

where 𝛿𝑖,𝑗 is the Kronecker delta. In particular, if 𝑚 ∈ ℬ𝑟Λ𝑘 and 𝑚′′ is a form monomial of 𝜅𝑚 with 𝑗 which
is a nonconforming index of degree (𝑟 + 1), then 𝑗 is a conforming index of degree 𝑟 in 𝑚.

Proof. We show (3.8) and the first identity in (3.10). If 𝛼𝑖 = 𝑠, then 𝑖 is a nonconforming index of degree 𝑠
of 𝑚 but not of 𝑚′, and the other nonconforming indices of degree 𝑠 of 𝑚 and 𝑚′ are same, so ncdeg𝑠(𝑚′) =
ncdeg𝑠(𝑚) − 1. If 𝑠 > 1, then the set of conforming indices of 𝑚′ with degree 𝑠 − 1 is the union of the set of
conforming indices of 𝑚 with degree 𝑠 − 1 and {𝑖}. Therefore the first identity in (3.10) holds. If 𝛼𝑖 ̸= 𝑠, then
the sets of nonconforming indices of degree 𝑠 of both 𝑚 and 𝑚′ are same, so ncdeg𝑠(𝑚′) = ncdeg𝑠(𝑚). If 𝑠 > 1,
then the sets of conforming indices of degree 𝑠 − 1 of both 𝑚 and 𝑚′ are same as well, so the first identity in
(3.10) holds.

We show (3.9) and the second identity in (3.10). If 𝛼𝑗 = 𝑠− 1, then 𝑗 is a nonconforming index of degree 𝑠
of 𝑚′′ in addition to the nonconforming indices of degree 𝑠 of 𝑚, so (3.9) holds. If 𝛼𝑖 ̸= 𝑠− 1, then the sets of
nonconforming indices of degree 𝑠 of 𝑚 and 𝑚′′ are same, so (3.9) again holds. The second identity in (3.10)
can be verified in a way similar to the argument used for the first identity in (3.10).

In particular, if 𝑚 ∈ ℬ𝑟Λ𝑘 and 𝑚′′ is a form monomial of 𝜅𝑚 which has a nonconforming index of degree
(𝑟 + 1), then the nonconforming index of 𝑚′′ must be 𝜎𝑗 and 𝛼𝜎𝑗

= 𝑟 because 𝛼𝑙 ≤ 𝑟 for 1 ≤ 𝑙 ≤ 𝑛 and
𝛼𝜎𝑗 + 1 = 𝑟 + 1. This completes the proof. �

Corollary 3.2. Let 𝑚 be a form monomial. Then for any form monomial 𝑚̃ in d𝑚, cdeg𝑠(𝑚̃) ≥ cdeg𝑠(𝑚) for
any 𝑠 ≥ 1. Similarly, for any form monomial 𝑚̃ in d𝑚, ncdeg𝑠(𝑚̃) ≥ ncdeg𝑠(𝑚) if 𝑠 ≥ 1.

Proof. It is easy to check the assertions by Lemma 3.1. �

Corollary 3.3. The following inclusions hold:

𝜅𝒬−𝑟 Λ𝑘 ⊂ 𝒬−𝑟 Λ𝑘−1, (3.11)

dℬ𝑟Λ𝑘 ⊂ ℬ𝑟Λ𝑘+1 ∩ d𝜅ℬ𝑟Λ𝑘+1, (3.12)

d𝒬𝑟Λ𝑘 ⊂ 𝒬̃𝑟Λ𝑘+1, (3.13)

d𝜅𝒬𝑟Λ𝑘 ⊂ 𝒬̃𝑟Λ𝑘. (3.14)

Proof. The inclusion (3.11) and dℬ𝑟Λ𝑘 ⊂ ℬ𝑟Λ𝑘+1 can be easily checked by the characterizations of 𝒬−𝑟 Λ𝑘, ℬ𝑟Λ𝑘

in (3.4), (3.5), and by Lemma 3.1. To show (3.12), let 𝑢 ∈ ℋ𝑠Λ𝑘 ∩ ℬ𝑟Λ𝑘 for a positive integer 𝑠. By (3.3),
(d𝜅 + 𝜅d)d𝑢 = (𝑠 + 𝑘)d𝑢 = d𝜅d𝑢 ∈ d𝜅ℬ𝑟Λ𝑘+1. As a consequence, d𝑢 ∈ ℬ𝑟Λ𝑘+1 ∩ d𝜅ℬ𝑟Λ𝑘+1. The inclusion
(3.13) follows from (3.12) and d𝒬−𝑟 Λ𝑘 ⊂ 𝒬−𝑟 Λ𝑘+1. Finally, the inclusion (3.14) follows from (3.6), (3.11), the
fact d𝒬−𝑟 Λ𝑘 ⊂ 𝒬−𝑟 Λ𝑘+1, and (3.13). �
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We now prove that 𝒬̃𝑟Λ𝑘 is invariant under dilation and translation. The lemma below is an extension of
Lemma 5.1 for higher orders using Lemma 3.1.

Lemma 3.4. If 𝜑 : R𝑛 → R𝑛 is a composition of dilation and translation, then 𝜑*𝒬̃𝑟Λ𝑘 ⊂ 𝒬̃𝑟Λ𝑘, where 𝜑* is
the pullback of 𝜑.

Proof. Let 𝜑(𝑥) = 𝐴𝑥 + 𝑏 for a given invertible 𝑛 × 𝑛 diagonal matrix 𝐴 and a vector 𝑏 ∈ R𝑛. To show
𝜑*𝒬̃𝑟Λ𝑘 ⊂ 𝒬̃𝑟Λ𝑘, assume that 𝑢 ∈ 𝒬̃𝑟Λ𝑘 is written as 𝑢 = 𝑢− + d𝜅𝑢+ with 𝑢− ∈ 𝒬−𝑟 Λ𝑘 and 𝑢+ ∈ ℬ𝑟Λ𝑘. Then
we have

𝜑*𝑢 = 𝜑*𝑢− + 𝜑*d𝜅𝑢+ = 𝜑*𝑢− + d𝜑*𝜅𝑢+ = 𝜑*𝑢− + d𝜅𝜑*𝑢+ + 𝑏yd(𝜑*𝑢+)

where we used 𝜑*𝜅𝑢+ = 𝜅𝜑*𝑢+ + 𝑏y(𝜑*𝑢+) in the last equality (cf. [6], Sect. 3.2). We can easily check 𝜑*𝑢− ∈
𝒬−𝑟 Λ𝑘 from the definition of 𝜑*, and d𝜅𝒬−𝑟 Λ𝑘 ⊂ 𝒬−𝑟 Λ𝑘 from (3.9) and (3.8). From (3.6) we have

d𝜅𝜑*𝑢+ ∈ d𝜅𝒬𝑟Λ𝑘 = d𝜅(𝒬−𝑟 Λ𝑘 ⊕ ℬ𝑟Λ𝑘) ⊂ 𝒬−𝑟 Λ𝑘 + d𝜅ℬ𝑟Λ𝑘 = 𝒬̃𝑟Λ𝑘.

It remains to show

d(𝑏y(𝜑*𝑢+)) ∈ 𝒬̃𝑟Λ𝑘. (3.15)

To see this, note that 𝑏y(𝜑*𝑢+) ∈ 𝒬𝑟Λ𝑘−1. By (3.13) we have d(𝑏y(𝜑*𝑢+)) ∈ 𝒬̃𝑟Λ𝑘, so (3.15) is proved. �

The following lemma is a generalization of some results in Lemma 5.2 of [24].

Lemma 3.5. The operator d𝜅 is injective on ℬ𝑟Λ𝑘.

Proof. For 𝑚 = 𝑥𝛼d𝑥𝜎 ∈ ℬ𝑟Λ𝑘 there is at least one conforming index 𝜎𝑖 such that 𝛼𝜎𝑖 = 𝑟. Then 𝑥𝛼𝜅(d𝑥𝜎) has
at least one form monomial such that 𝜎𝑖 is a nonconforming index and its polynomial coefficient has 𝑥𝑟+1

𝜎𝑖
as a

factor.
For the injectivity of d𝜅 on ℬ𝑟Λ𝑘, it suffices to show that 𝜅 is injective on ℬ𝑟Λ𝑘 because d is injective on

the image of 𝜅. To show 𝜅 is injective on ℬ𝑟Λ𝑘, we show that form monomials with positive nonconforming
(𝑟 + 1)-degree generated by 𝜅𝑚 for 𝑚 ∈ ℬ := {𝑥𝛼d𝑥𝜎 : cdeg𝑟(𝑥𝛼d𝑥𝜎) > 0} are distinct. More precisely, if
𝜅𝑚 and 𝜅𝑚̃ for 𝑚, 𝑚̃ ∈ ℬ have a same form monomial (up to ±1) whose nonconforming (𝑟 + 1)-degree is 1,
then 𝑚 = 𝑚̃. To show it by contradiction, let 𝑚 = 𝑥𝛼d𝑥𝜎 and 𝑚̃ = 𝑥𝛼̃d𝑥𝜎̃ be two distinct elements in ℬ and
assume that 𝜅𝑚 and 𝜅𝑚̃ have a common form monomial with nonconforming index of degree (𝑟+ 1). From the
definition of 𝜅 and the common form monomial assumption, there exist 𝜎𝑖 ∈ [[𝜎]] and 𝜎̃𝑖 ∈ [[𝜎̃]] such that

𝑥𝜎𝑖
𝑥𝛼d𝑥𝜎1 ∧ · · · ∧ ̂︂d𝑥𝜎𝑖

∧ · · · ∧ d𝑥𝜎𝑘
= ±𝑥𝜎̃𝑖

𝑥𝛼̃d𝑥𝜎̃1 ∧ · · · ∧ ̂︂d𝑥𝜎̃𝑖
∧ · · · ∧ d𝑥𝜎̃𝑘

. (3.16)

Since 𝜎𝑖 and 𝜎̃𝑖 are the only nonconforming indices of degree (𝑟 + 1) by (3.9) and (3.10), 𝜎𝑖 = 𝜎̃𝑖 and therefore
d𝑥𝜎 = d𝑥𝜎̃. Moreover, comparison of 𝑥𝛼 and 𝑥𝛼̃ leads to 𝛼 = 𝛼̃, so it contradicts to 𝑥𝛼d𝑥𝜎 ̸= 𝑥𝛼̃d𝑥𝜎̃. �

The following result is a consequence of the above lemma, a generalization of Theorem 5.3 from [24].

Theorem 3.6. For 0 ≤ 𝑘 ≤ 𝑛

𝒬̃𝑟Λ𝑘 = 𝒬−𝑟 Λ𝑘 ⊕ d𝜅ℬ𝑟Λ𝑘, dim 𝒬̃𝑟Λ𝑘 =
(︂
𝑛
𝑘

)︂
(𝑟 + 1)𝑛. (3.17)

Proof. By Lemma 3.5 (b), the spaces d𝜅ℬ𝑟Λ𝑘 and ℬ𝑟Λ𝑘 have the same dimension, so it suffices to show that
𝒬−𝑟 Λ𝑘 ∩ d𝜅ℬ𝑟Λ𝑘 = {0}. Suppose that 0 ̸= 𝑢 ∈ ℬ𝑟Λ𝑘 and d𝜅𝑢 ∈ 𝒬−𝑟 Λ𝑘. Every form monomial 𝑚 of d𝜅𝑢
satisfies cdeg𝑟(𝑚) ≥ 1 by (3.5) and Lemma 3.1 because ncdeg𝑟+1(𝑚) = 0. However, it is a contradiction to the
characterization of 𝒬−𝑟 Λ𝑘 in (3.4), so 𝑢 = 0. �



HIGH ORDER APPROXIMATION OF HODGE LAPLACE PROBLEMS 877

3.2. Degrees of freedom and unisolvence of 𝒬̃𝑟Λ𝑘

In this subsection we define the degrees of freedom of 𝒬̃𝑟Λ𝑘 and prove the unisolvency for the degrees of
freedom.

For the degrees of freedom we define two polynomial spaces for 𝜎 ∈ Σ𝑘(𝑓) for a cube 𝑓 included in an
𝑚-dimensional hyperspace by

𝒬𝑟,𝜎(𝑓) =
⨂︁
𝑖∈[[𝜎]]

𝒫𝑟(𝑥𝑖), 𝒬𝑟,𝜎*(𝑓) =
⨂︁

𝑖∈[[𝜎*]]

𝒫𝑟(𝑥𝑖)

where 𝒫𝑟(𝑥𝑖) is the space of polynomials of 𝑥𝑖 with degree less than or equal to 𝑟. We adopt some conventionnal
identities for simplicity of notation. We assume that Σ0(𝑓) is a singleton for any 𝑓 ∈ ∆𝑙(𝑇 ). For 𝜏 ∈ Σ0(𝑓),
d𝑥𝜏 = 1, 𝒬𝑟,𝜏 (𝑓) = {1}, and 𝒬𝑟,𝜏*(𝑓) = 𝒬𝑟(𝑓). The degrees of freedom of 𝒬̃𝑟Λ𝑘

(︁
𝑇
)︁

is

𝑢 ↦→
∫︁

𝑓

tr𝑓 𝑢 ∧ 𝑣, 𝑓 ∈ ∆𝑙

(︁
𝑇
)︁
, 𝑘 ≤ 𝑙 ≤ 𝑛, 𝑣 ∈

∑︁
𝜏∈Σ𝑙−𝑘(𝑓)

(𝒬𝑟−2,𝜏 ⊗𝒬𝑟,𝜏*)(𝑓)d𝑥𝜏 (3.18)

where (𝒬𝑟−2,𝜏 ⊗𝒬𝑟,𝜏*)(𝑓) = 𝒬𝑟−2,𝜏 (𝑓)⊗𝒬𝑟,𝜏*(𝑓).

Theorem 3.7. The number of degrees of freedom given by (3.18) is(︂
𝑛
𝑘

)︂
(𝑟 + 1)𝑛.

Proof. For 𝜏 ∈ Σ𝑙−𝑘(𝑓) with 𝑓 ∈ ∆𝑙

(︁
𝑇
)︁

, 𝑙 ≥ 𝑘,

dim𝒬𝑟−2,𝜏 (𝑓) = (𝑟 − 1)𝑙−𝑘, dim𝒬𝑟,𝜏*(𝑓) = (𝑟 + 1)𝑘.

We can easily check that⃒⃒⃒
∆𝑙

(︁
𝑇
)︁⃒⃒⃒

=
(︂

𝑛
𝑛− 𝑙

)︂
2𝑛−𝑙, |Σ𝑙−𝑘(𝑓)| =

(︂
𝑙

𝑙 − 𝑘

)︂
for 𝑓 ∈ ∆𝑙

(︁
𝑇
)︁
.

Therefore the number of degrees of freedom given by (3.18) is∑︁
𝑘≤𝑙≤𝑛

(︂
𝑛

𝑛− 𝑙

)︂
2𝑛−𝑙

(︂
𝑙

𝑙 − 𝑘

)︂
(𝑟 − 1)𝑙−𝑘(𝑟 + 1)𝑘 =

𝑛!(𝑟 + 1)𝑘

𝑘!(𝑛− 𝑘)!

∑︁
𝑘≤𝑙≤𝑛

(𝑛− 𝑘)!
(𝑛− 𝑙)!(𝑙 − 𝑘)!

2𝑛−𝑙(𝑟 − 1)𝑙−𝑘

=
(︂
𝑛
𝑘

)︂
(𝑟 + 1)𝑘

∑︁
0≤𝑖≤𝑛−𝑘

(𝑛− 𝑘)!
(𝑛− 𝑘 − 𝑖)!𝑖!

2𝑛−𝑘−𝑖(𝑟 − 1)𝑖

=
(︂
𝑛
𝑘

)︂
(𝑟 + 1)𝑛,

so the proof is complete. �

The following result will be useful to derive a reduced unisolvency proof. A special case with 𝑟 = 1 appeared
in Theorem 5.5 of [24]

Theorem 3.8 (Trace property). Let 𝑓 and 𝑓 ′ be 𝑙- and 𝑙′-dimensinal hyperspaces in R𝑛 such that 𝑓 ′ ⊂ 𝑓 , and
𝑓 , 𝑓 ′ are determined by fixing 𝑛− 𝑙 and 𝑛− 𝑙′ coordinates, respectively. Then

tr𝑓 ′ 𝒬̃𝑟Λ𝑘(𝑓) ⊂ 𝒬̃𝑟Λ𝑘(𝑓 ′).

This inclusion can be strengthened to equality later after the unisolvence proof is completed.
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Proof. For the two hyperspaces 𝑓 ′ ⊂ 𝑓 ⊂ R𝑛 and 𝑢 ∈ 𝒫Λ𝑘 we have tr𝑓 ′ tr𝑓 𝑢 = tr𝑓 ′ 𝑢 by definition. Therefore,
it is enough to prove the claim for 𝑚 = 𝑛− 1 by induction. Without loss of generality we assume that 𝑓 = {𝑥 ∈
R𝑛 : 𝑥𝑛 = 𝑐} for some constant 𝑐. It is easy to check by definition that tr𝑓 𝒬−𝑟 Λ𝑘 ⊂ 𝒬−𝑟 Λ𝑘(𝑓), so it is enough
to show that tr𝑓 d𝜅ℬ𝑟Λ𝑘 ⊂ 𝒬̃𝑟Λ𝑘(𝑓). We will show tr𝑓 d𝜅(𝑥𝛼d𝑥𝜎) ∈ 𝒬̃𝑟Λ𝑘(𝑓) for all 𝑥𝛼d𝑥𝜎 ∈ ℬ𝑟Λ𝑘 below. By
(3.2) and the commutativity of tr𝑓 and d,

tr𝑓 d𝜅(𝑥𝛼d𝑥𝜎) = d𝜅𝑓 tr𝑓 (𝑥𝛼d𝑥𝜎) + d tr𝑓

(︀
𝑥𝑓y(𝑥𝛼d𝑥𝜎)

)︀
where 𝑥𝑓 is the vector field (0, . . . , 0, 𝑐) on R𝑛.

If 𝑛 ∈ [[𝜎]], then tr𝑓 (𝑥𝛼d𝑥𝜎) = 0 and tr𝑓

(︀
𝑥𝑓y(𝑥𝛼d𝑥𝜎)

)︀
= (𝑐𝑥𝛼|𝑥𝑛=𝑐)d𝑥𝜎̃ ∈ 𝒬𝑟Λ𝑘−1(𝑓) where d𝑥𝜎̃ is defined by

d𝑥𝜎 = d𝑥𝜎̃∧d𝑥𝑛. From (3.13) we can conclude that tr𝑓 d𝜅(𝑥𝛼d𝑥𝜎) ∈ 𝒬̃𝑟Λ𝑘(𝑓). If 𝑛 ̸∈ [[𝜎]], then 𝑥𝑓y(𝑥𝛼d𝑥𝜎) = 0.
Since tr𝑓 (𝑥𝛼d𝑥𝜎) = 𝑥𝛼|𝑥𝑛=𝑐d𝑥𝜎 ∈ 𝒬𝑟Λ𝑘(𝑓), the conclusion follows from (3.14). �

Before we start the unisolvence proof we need a lemma and auxiliary definitions.

Lemma 3.9. Suppose that 𝜎, 𝜎̃ ∈ Σ𝑘, 1 ≤ 𝑘 ≤ 𝑛 − 1, 𝜎 ̸= 𝜎̃ satisfy 𝜎 + 𝑖 = 𝜎̃ + 𝑖̃ for some 𝑖 ∈ [[𝜎̃]], 𝑖̃ ∈ [[𝜎]].
Then

𝜖(𝑖, 𝜎)𝜖(𝑖, 𝜎̃ − 𝑖)− 𝜖
(︀
𝑖, 𝜎̃
)︀
𝜖
(︀
𝑖, 𝜎 − 𝑖̃

)︀
̸ =0.

Proof. We first prove it under the assumption 𝑖 > 𝑖̃. Let

𝑎 =
⃒⃒{︀
𝑙 : 𝑙 < 𝑖̃, 𝑙 ∈ [[𝜎]] ∩ [[𝜎̃]]

}︀⃒⃒
,

𝑏 =
⃒⃒{︀
𝑙 : 𝑖̃ < 𝑙 < 𝑖, 𝑙 ∈ [[𝜎]] ∩ [[𝜎̃]]

}︀⃒⃒
,

𝑐 = |{𝑙 : 𝑖 < 𝑙, 𝑙 ∈ [[𝜎]] ∩ [[𝜎̃]]}|.

Then one can check

𝜖(𝑖, 𝜎) = (−1)𝑎+𝑏+1, 𝜖
(︀
𝑖, 𝜎̃
)︀

= (−1)𝑎,

𝜖(𝑖, 𝜎̃ − 𝑖) = (−1)𝑎+𝑏, 𝜖
(︀
𝑖, 𝜎 − 𝑖̃

)︀
= (−1)𝑎,

so the assertion follows. If 𝑖 < 𝑖̃, then we set

𝑎 = |{𝑙 : 𝑙 < 𝑖, 𝑙 ∈ [[𝜎]] ∩ [[𝜎̃]]}|,
𝑏 =

⃒⃒{︀
𝑙 : 𝑖 < 𝑙 < 𝑖̃, 𝑙 ∈ [[𝜎]] ∩ [[𝜎̃]]

}︀⃒⃒
,

𝑐 =
⃒⃒{︀
𝑙 : 𝑖̃ < 𝑙, 𝑙 ∈ [[𝜎]] ∩ [[𝜎̃]]

}︀⃒⃒
,

and one can check that

𝜖(𝑖, 𝜎) = (−1)𝑎, 𝜖
(︀
𝑖, 𝜎̃
)︀

= (−1)𝑎+𝑏+1,

𝜖(𝑖, 𝜎̃ − 𝑖) = (−1)𝑎, 𝜖(̃𝑖, 𝜎 − 𝑖̃) = (−1)𝑎+𝑏.

The proof is complete. �

We define 𝒟𝑟,𝑙Λ𝑘 as

𝒟𝑟,𝑙Λ𝑘 :=
{︀
𝑢 ∈ 𝒫Λ𝑘 : ncdeg𝑟+1(𝑚) + cdeg𝑟(𝑚) = 𝑙 for every form monomial 𝑚 in 𝑢

}︀
.

By Lemma 3.1 d𝜅 maps 𝒟𝑟,𝑙Λ𝑘 into itself. Considering the decomposition of ℬ𝑟Λ𝑘

ℬ𝑟Λ𝑘 =
⨁︁

1≤𝑙≤𝑘

⨁︁
𝑟≤𝑠≤𝑛𝑟

ℋ𝑠Λ𝑘 ∩ 𝒟𝑟,𝑙Λ𝑘 ∩ ℬ𝑟Λ𝑘

we have a decomposition of d𝜅ℬ𝑟Λ𝑘
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d𝜅ℬ𝑟Λ𝑘 =
⨁︁

1≤𝑙≤𝑘

⨁︁
𝑟≤𝑠≤𝑛𝑟

ℋ𝑠Λ𝑘 ∩ 𝒟𝑟,𝑙Λ𝑘 ∩ d𝜅ℬ𝑟Λ𝑘. (3.19)

Let us recall the degrees of freedom of 𝒬−𝑟 Λ𝑘
(︁
𝑇
)︁

with vanishing trace in [8]. If 𝑢 ∈ 𝒬−𝑟 Λ𝑘
(︁
𝑇
)︁

and tr𝑓 𝑢 = 0

for all 𝑓 ∈ ∆𝑛−1

(︁
𝑇
)︁

, then ∫︁
𝑇

𝑢 ∧ 𝑣 = 0, ∀𝑣 ∈ 𝒬−𝑟−1Λ𝑛−𝑘
(︁
𝑇
)︁

(3.20)

implies that 𝑢 = 0.
We are now ready to prove unisolvency of 𝒬̃𝑟Λ𝑘

(︁
𝑇
)︁

, 𝑟 ≥ 1, with the degrees of freedom (3.18).

Proposition 3.10 (Unisolvence with vanishing trace assumption). Suppose that 𝑢 ∈ 𝒬̃𝑟Λ𝑘
(︁
𝑇
)︁
, 𝑟 ≥ 1, and

tr𝑓 𝑢 = 0 for all 𝑓 ∈ ∆𝑛−1

(︁
𝑇
)︁
. If∫︁

𝑇

𝑢 ∧ 𝑣 = 0 ∀𝑣 ∈
∑︁

𝜏∈Σ𝑛−𝑘(𝑇)
(𝒬𝑟−2,𝜏 ⊗𝒬𝑟,𝜏*)

(︁
𝑇
)︁

d𝑥𝜏 , (3.21)

then 𝑢 = 0. Here we accept 𝒬−1 = ∅ for convention.

Proof. If 𝑘 = 0 or 𝑘 = 𝑛, then 𝒬̃𝑟Λ𝑘
(︁
𝑇
)︁

= 𝒬𝑟Λ𝑘
(︁
𝑇
)︁

and (3.21) gives a standard set of degrees of freedom for
the shape functions with vanishing traces, so there is nothing to prove.

Assume that 0 < 𝑘 < 𝑛, and let 𝑢 =
∑︀

𝜎∈Σ𝑘(𝑇) 𝑢𝜎d𝑥𝜎 ∈ 𝒬̃𝑟Λ𝑘
(︁
𝑇
)︁

be a shape function with vanishing trace.

From the vanishing trace assumption tr𝑓 𝑢 = 0 for all 𝑓 ∈ ∆𝑛−1

(︁
𝑇
)︁

, 𝑢𝜎 vanishes on all faces 𝑓 ∈ ∆𝑛−1

(︁
𝑇
)︁

determined by 𝑥𝑖 = ±1 for any 𝑖 ∈ [[𝜎]]. Therefore 𝑢𝜎 = 𝑏𝜎* 𝑢̃𝜎 with 𝑏𝜎* :=
∏︀

𝑙∈[[𝜎*]](1− 𝑥2
𝑙 ) for all 𝜎 ∈ Σ𝑘

(︁
𝑇
)︁

.

In the degree properties (3.8), (3.9), (3.10), the coefficients of all form monomials in 𝒬̃𝑟Λ𝑘
(︁
𝑇
)︁

have at most
one variable of degree (𝑟 + 1). From this observation and (3.21), 𝑢 has a form

𝑢 =
∑︁

𝜎∈Σ𝑘(𝑇)
𝑏𝜎*

⎛⎝ ∑︁
𝑖∈[[𝜎*]]

𝐿𝑤
𝑟−1(𝑥𝑖)𝑝𝜎,𝑖

⎞⎠d𝑥𝜎 (3.22)

where 𝐿𝑤
𝑠 (𝑡) is the monic Legendre polynomial of degree 𝑠 on [−1, 1] with weight (1− 𝑡2), and

𝑝𝜎,𝑖 ∈ (𝒬𝑟,𝜎 ⊗𝒬𝑟−2,𝜎*)
(︁
𝑇
)︁
, 𝑝𝜎,𝑖 is independent of 𝑥𝑖.

Recall the decomposition (3.19) and let

𝑢 = 𝑢0 +
∑︁
𝑙,𝑠

𝑢𝑙,𝑠 ∈ 𝒬−𝑟 Λ𝑘
(︁
𝑇
)︁
⊕
⨁︁

1≤𝑙≤𝑘

⨁︁
𝑟≤𝑠≤𝑛𝑟

ℋ𝑠Λ𝑘
(︁
𝑇
)︁
∩ 𝒟𝑟,𝑙Λ𝑘

(︁
𝑇
)︁
∩ d𝜅ℬ𝑟Λ𝑘

(︁
𝑇
)︁
.

Let 𝑙0 be the largest index 𝑙 such that 𝑢𝑙,𝑠 ̸= 0 for some 𝑠, and let 𝑠0 be the largest index 𝑠 such that 𝑢𝑙0,𝑠 ̸= 0.

Suppose that we can prove 𝑢𝑙0,𝑠0 = 0. By induction, this implies that 𝑢 = 𝑢0 ∈ 𝒬−𝑟 Λ𝑘
(︁
𝑇
)︁

, and therefore 𝑢 = 0
by (3.21), (3.20), and the inclusion

𝒬−𝑟−1Λ𝑛−𝑘
(︁
𝑇
)︁
⊂

∑︁
𝜏∈Σ𝑛−𝑘(𝑇)

(𝒬𝑟−2,𝜏 ⊗𝒬𝑟,𝜏*)
(︁
𝑇
)︁

d𝑥𝜏 .

Therefore, we devote to show 𝑢𝑙0,𝑠0 = 0 in the rest of proof.
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We will prove 𝑢𝑙0,𝑠0 = 0 for the two cases 𝑙0 = 1 and 𝑙0 > 1 separately. Before we get into the proof of each
case, we first give observations for later usage. In the form (3.22), if 𝑝0 is a monomial of 𝑝𝜎,𝑖 for fixed 𝜎, then

cdeg𝑟(𝑝0d𝑥𝜎) < 𝑙0

because any form monomial 𝑚 containing the factors 𝑥𝑟+1
𝑖 and 𝑝0 in its polynomial coefficient, which comes from

the expansion of the coefficient of d𝑥𝜎 in (3.22), satisfies both of ncdeg𝑟+1(𝑚) = 1 and ncdeg𝑟+1(𝑚)+cdeg𝑟(𝑚) ≤
𝑙0 by the definitions of 𝑙0, 𝑠0, and the definition of 𝒟𝑟,𝑙Λ𝑘. Note that it also implies that 𝑢𝑙0,𝑠0 does not have
any form monomial 𝑚 such that cdeg𝑟(𝑚) = 𝑙0. Let 𝑞𝜎,𝑖 be the homogeneous polynomial of 𝑝𝜎,𝑖 in (3.22) for
each 𝜎 and 𝑖 ∈ [[𝜎*]] which contribute to consist 𝑢𝑙0,𝑠0 , i.e.,

𝑢𝑙0,𝑠0 =
∑︁

𝜎∈Σ𝑘(𝑇)

∏︁
𝑙∈[[𝜎*]]

𝑥2
𝑙

⎛⎝ ∑︁
𝑖∈[[𝜎*]]

𝑥𝑟−1
𝑖 𝑞𝜎,𝑖

⎞⎠d𝑥𝜎. (3.23)

Since 𝑢𝑙0,𝑠0 does not have any form monomial 𝑚 of cdeg𝑟(𝑚) = 𝑙0,

cdeg𝑟(𝑞𝜎,𝑖d𝑥𝜎) = 𝑙0 − 1 (3.24)

holds. Moreover, 𝑢𝑙0,𝑠0 ∈ d𝜅ℬ𝑟Λ𝑘
(︁
𝑇
)︁

by definition, so d𝑢𝑙0,𝑠0 = 0.

We now prove 𝑢𝑙0,𝑠0 = 0 for 𝑙0 = 1. If 𝑙0 = 1, then 𝑞𝜎,𝑖 ∈ (𝒬𝑟−1,𝜎 ⊗𝒬𝑟−2,𝜎*)
(︁
𝑇
)︁

by (3.24). We claim that
𝑞𝜎,𝑖 = 0 for all 𝜎 and 𝑖. To prove it we show that the form monomials in d𝑢𝑙0,𝑠0 with conforming 𝑟-degree 1, are
all distinct. Note that such form monomials are of the form

(𝑟 + 1)
∏︁

𝑙∈[[𝜎*]]

𝑥2
𝑙 𝑥

𝑟−2
𝑖 𝑞𝜎,𝑖d𝑥𝑖 ∧ d𝑥𝜎 (3.25)

for 𝑖 ∈ [[𝜎*]] from the expression (3.23). For fixed 𝜎 the form monomials in (3.25) are all distinct for different 𝑖’s
because 𝑖 is the only conforming index of degree 𝑟. Further, if we assume that there is 𝜎̃ ∈ Σ𝑘

(︁
𝑇
)︁

with 𝜎̃ ̸= 𝜎

and 𝑖̃ ∈ [[𝜎̃*]] such that the form monomials in

(𝑟 + 1)
∏︁

𝑙∈[[𝜎̃*]]

𝑥2
𝑙 𝑥

𝑟−2
𝑖 𝑞𝜎̃,̃𝑖d𝑥𝑖̃ ∧ d𝑥𝜎̃

are not linearly independent with the ones in (3.25), then it leads to a contradiction because 𝑖 and 𝑖̃ are the only
conforming indices of degree 𝑟 in these form monomials, and therefore 𝑖 = 𝑖̃, 𝜎 = 𝜎̃. Thus, all form monomials
in d𝑢𝑙0,𝑠0 with conforming 𝑟-degree 1 are distinct and have the form (3.25). From d𝑢𝑙0,𝑠0 = 0, 𝑞𝜎,𝑖 = 0 for all

𝜎 ∈ Σ𝑘

(︁
𝑇
)︁

and 𝑖 ∈ [[𝜎*]], and therefore 𝑢𝑙0,𝑠0 = 0 by (3.23).
We now prove 𝑢𝑙0,𝑠0 = 0 for 𝑙0 > 1, the final but most lengthy step of this proof. For this we consider the

expression of 𝑞𝜎,𝑖 as a sum of homogeneous polynomials

𝑞𝜎,𝑖 =
∑︁

𝜏⊂[[𝜎]],|𝜏 |=𝑙0−1

∏︁
𝑗∈𝜏

𝑥𝑟
𝑗𝑞𝜎,𝑖,𝜏 (3.26)

in which 𝑞𝜎,𝑖,𝜏 ∈ (𝒬𝑟−1,𝜎 ⊗𝒬𝑟−2,𝜎*)
(︁
𝑇
)︁

is independent of the variables 𝑥𝑖 and 𝑥𝑗 ’s for 𝑗 ∈ 𝜏 . Here 𝑞𝜎,𝑖,𝜏 can
be vanishing for some 𝜏 ⊂ [[𝜎]]. In the discussion below, we make a system of equations such that all 𝑞𝜎,𝑖,𝜏 ’s are
its unknowns. The equations are obtained from 𝜅𝑢𝑙0,𝑠0 and d𝑢𝑙0,𝑠0 , and the right-hand sides are zero. We then
show that the system is well-posed, so all 𝑞𝜎,𝑖,𝜏 ’s vanish.
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To derive equations from 𝜅𝑢𝑙0,𝑠0 , recall that 𝜅d𝜅ℬ𝑟Λ𝑘
(︁
𝑇
)︁

= 𝜅ℬ𝑟Λ𝑘
(︁
𝑇
)︁

by (3.3). Note that 𝜅𝑢𝑙0,𝑠0 ∈

𝜅d𝜅ℬ𝑟Λ𝑘
(︁
𝑇
)︁

= 𝜅ℬ𝑟Λ𝑘
(︁
𝑇
)︁

, so the nonconforming (𝑟 + 1)-degree of form monomials in 𝜅𝑢𝑙0,𝑠0 is at most 1
by Lemma 3.1. In the formal expression of 𝜅𝑢𝑙0,𝑠0 for fixed 𝜎 using (3.23), (3.26) and (3.1), the form monomials
which have nonconforming (𝑟 + 1)-degree 2 are of the form∏︁

𝑙∈[[𝜎*]]

𝑥2
𝑙 𝑥

𝑟−1
𝑖

∏︁
𝑙∈𝜏

𝑥𝑟
𝑙 𝑥𝑗𝜖(𝑗, 𝜎 − 𝑗)𝑞𝜎,𝑖,𝜏 d𝑥𝜎−𝑗 (3.27)

for 𝜎 ∈ Σ𝑘

(︁
𝑇
)︁

, 𝑖 ∈ [[𝜎*]], 𝜏 ⊂ [[𝜎]] with |𝜏 | = 𝑙0 − 1, and 𝑗 ∈ 𝜏 . The sum of all form monomials in 𝜅𝑢𝑙0,𝑠0 which
have nonconforming (𝑟 + 1)-degree 2 is zero, so we obtain the equation that the sum of the expression (3.27)
for 𝜎 ∈ Σ𝑘

(︁
𝑇
)︁

, 𝑖 ∈ [[𝜎*]], 𝜏 ⊂ [[𝜎]] with |𝜏 | = 𝑙0 − 1, and 𝑗 ∈ 𝜏 , is zero. However, this equation is too large, so
we will reduce this equation into smaller equations in the following two reduction steps.

In the first reduction step we claim that all terms of the form (3.27) are linearly independent for fixed
𝜎 ∈ Σ𝑘

(︁
𝑇
)︁

. To show this claim, assume that the form (3.27) with (𝑖, 𝜏, 𝑗) and (𝑖′, 𝜏 ′, 𝑗′) are linearly dependent
for 𝑖′ ∈ [[𝜎*]], 𝜏 ′ ⊂ [[𝜎]], 𝑗′ ∈ 𝜏 ′ with (𝑖′, 𝜏 ′, 𝑗′) ̸= (𝑖, 𝜏, 𝑗). A direct comparison of the nonconforming indices with
degree (𝑟+ 1) leads to either 𝑖 = 𝑖′, 𝑗 = 𝑗′ or 𝑖 = 𝑗′, 𝑗 = 𝑖′. If 𝑖 = 𝑖′ and 𝑗 = 𝑗′, then 𝜏 = 𝜏 ′ from the comparison
of conforming indices of degree 𝑟, so it is a contradiction. If 𝑖 = 𝑗′ and 𝑗 = 𝑖′, then d𝑥𝜎−𝑗 ̸= d𝑥𝜎−𝑗′ , so they
cannot be linearly dependent. Therefore the terms of the form (3.27) are all linearly independent for fixed 𝜎.

In the second reduction step we assume that (3.27) with (𝜎, 𝑖, 𝜏, 𝑗) and
(︀
𝜎̃, 𝑖̃, 𝜏 , 𝑗̃

)︀
are linearly dependent for

𝜎̃ ̸= 𝜎, and characterize the relation of these two quadruples. Comparing the nonconforming indices of degree
(𝑟 + 1), either 𝑖 = 𝑖̃, 𝑗 = 𝑗̃ or 𝑖 = 𝑗̃, 𝑗 = 𝑖̃ is true. However, if 𝑖 = 𝑖̃ and 𝑗 = 𝑗̃, then d𝑥𝜎−𝑗 = d𝑥𝜎̃−𝑗̃ is true,
and implies that 𝜎 = 𝜎̃ which is a contradiction. Therefore, 𝑖 = 𝑗̃ and 𝑗 = 𝑖̃ hold. Regarding these relations and
comparing the conforming indices of degree 𝑟, linear dependence of the terms of the form (3.27) occurs only
when

𝑖 = 𝑗̃, 𝑗 = 𝑖̃, 𝜏 ∪ {𝑖} = 𝜏 ∪ {̃𝑖}, 𝜎 − 𝑖̃ = 𝜎̃ − 𝑖. (3.28)

As a consequence of the reduction of equations, for fixed (𝜎, 𝑖, 𝜏, 𝑗) with 𝑖 ∈ [[𝜎]] and 𝑗 ∈ 𝜏 , there is a unique
quadruple

(︀
𝜎̃, 𝑖̃, 𝜏 , 𝑗̃

)︀
determined by (3.28) which may generate a linearly dependent polynomial differential

form in the form of (3.27). Since the sum all form monomials which have nonconforming (𝑟 + 1)-degree 2 are
vanishing, we have a reduced equation

𝜖
(︀
𝑖, 𝜎 − 𝑖̃

)︀
𝑞𝜎,𝑖,𝜏 + 𝜖(𝑖, 𝜎̃ − 𝑖)𝑞𝜎̃,̃𝑖,𝜏 = 0 (3.29)

for the quadruples (𝜎, 𝑖, 𝜏, 𝑗) and
(︀
𝜎̃, 𝑖̃, 𝜏 , 𝑗̃

)︀
satisfying (3.28).

We now derive another set of equations of 𝑞𝜎,𝑖,𝜏 ’s. For this consider the expressions of form monomials with
conforming 𝑟-degree 𝑙0 in d𝑢𝑙0,𝑠0 . From (3.23) and (3.26), they have a form

(𝑟 + 1)𝑥𝑟−2
𝑖

∏︁
𝑙∈[[𝜎*]]

𝑥2
𝑙

∏︁
𝑙∈𝜏

𝑥𝑟
𝑙 𝜖(𝑖, 𝜎)𝑞𝜎,𝑖,𝜏 d𝑥𝜎+𝑖. (3.30)

For fixed 𝜎, by checking the differential form component and the conforming indices of degree 𝑟, one can check
that all of these terms are distinct over 𝑖 ∈ [[𝜎*]] and 𝜏 ⊂ [[𝜎]] with |𝜏 | = 𝑙0 − 1. As in the reduction of the
equations from 𝜅𝑢𝑙0,𝑠0 , we consider (𝜎, 𝑖, 𝜏) and

(︀
𝜎̃, 𝑖̃, 𝜏

)︀
which generate linearly dependent differential forms of

the form (3.30), and characterize the relation of those two triples. A direct comparison gives

𝜎 + 𝑖 = 𝜎̃ + 𝑖̃, 𝜏 ∪ {𝑖} = 𝜏 ∪ {̃𝑖} (3.31)



882 J.J. LEE

which is same as (3.28) because we assume 𝜎 ̸= 𝜎̃, and therefore 𝑖 ̸= 𝑖̃. In consideration of this relation, the
identity d𝑢𝑙0,𝑠0 = 0 with (3.30) gives

𝜖(𝑖, 𝜎)𝑞𝜎,𝑖,𝜏 + 𝜖
(︀
𝑖, 𝜎̃
)︀
𝑞𝜎̃,̃𝑖,𝜏 = 0. (3.32)

In conclusion, the aforementioned set of equations from 𝜅𝑢𝑙0,𝑠0 and the equation d𝑢𝑙0,𝑠0 = 0 give the reduced
equations (3.29) and (3.32) for 𝑞𝜎,𝑖,𝜏 and 𝑞𝜎̃,̃𝑖,𝜏 when (3.28) (equivalently (3.31)) is true. By Lemma 3.9, (3.29),
and (3.32), it follows that 𝑞𝜎,𝑖,𝜏 = 𝑞𝜎̃,̃𝑖,𝜏 = 0. Since this is true for any 𝜎, 𝑖, 𝜏 , we can conclude that 𝑢𝑙0,𝑠0 = 0,
and this completes the proof. �

Theorem 3.11 (Unisolvence). Let 𝑢 ∈ 𝒬̃𝑟Λ𝑘
(︁
𝑇
)︁
. If∫︁

𝑓

tr𝑓 𝑢 ∧ 𝑣 = 0 ∀𝑣 ∈
∑︁

𝜏∈Σ𝑙−𝑘(𝑓)

(𝒬𝑟−2,𝜏 ⊗𝒬𝑟,𝜏*)(𝑓)d𝑥𝜏 , (3.33)

for all 𝑓 ∈ ∆𝑙

(︁
𝑇
)︁
, 𝑙 ≥ 𝑘, then 𝑢 = 0.

Proof. If 𝑙 = 𝑘, then tr𝑓 𝑢 ∈ 𝒬̃𝑟Λ𝑘(𝑓) = 𝒬𝑟Λ𝑘(𝑓) for 𝑓 ∈ ∆𝑘

(︁
𝑇
)︁

by Theorem 3.8, and (3.33) gives a standard

set of degrees of freedom for 𝒬𝑟Λ𝑘(𝑓), so tr𝑓 𝑢 = 0. Suppose that tr𝑓 𝑢 = 0 for all 𝑓 ∈ ∆𝑙

(︁
𝑇
)︁

for some 𝑙 ≥ 𝑘.

For any given 𝑓 ∈ ∆𝑙+1

(︁
𝑇
)︁

, tr𝑓 𝑢 ∈ 𝒬̃𝑟Λ𝑘
(︁
𝑓
)︁

and tr𝑓 tr𝑓 𝑢 = tr𝑓 𝑢 = 0 for all 𝑓 ∈ ∆𝑙

(︁
𝑓
)︁

by the assumption.
By Proposition 3.10 and the degrees of freedom (3.33), tr𝑓 𝑢 = 0. By induction, we can show that tr𝑓 𝑢 = 0 for

all 𝑓 ∈ ∆𝑛−1

(︁
𝑇
)︁

, so 𝑢 = 0 by Proposition 3.10. �

We remark that the inclusion in Theorem 3.8 is equality by following the argument in [5]. To see it, we assume
that 𝑓 = R𝑛 and 𝑓 ′ ( R𝑛 is a hyperspace of codimension 1 without loss of generality. Let 𝑇 be a cube in R𝑛

such that its one side boundary is a subset of 𝑓 ′. For 𝑣 ∈ 𝒬̃𝑟Λ𝑘(𝜕𝑇 ∩ 𝑓 ′) we can choose 𝑣 ∈ 𝒬̃𝑟Λ𝑘(𝑇 ) such that
the degrees of freedom of 𝑣 on 𝜕𝑇 ∩ 𝑓 ′ by (3.18) is same as those of 𝑣. Since the degrees of freedom on 𝜕𝑇 ∩ 𝑓 ′
determines an element in 𝒬̃𝑟Λ𝑘(𝜕𝑇 ∩ 𝑓 ′) uniquely, tr𝑓 ′ 𝑣 = 𝑣.

3.3. Nodal tensor product degrees of freedom

In this subsection we show that 𝒬̃𝑟Λ𝑘
(︁
𝑇
)︁

has a set of degrees of freedom given by evaluating nodal values

at a set of points in 𝑇 . This alternative set of degrees of freedom will be used to define numerical methods with
local coderivatives in the next section.

The Gauss–Lobatto quadrature rule with 𝑟+ 1(𝑟 ≥ 1) points uses 𝑟− 1 interior points and two end points of
𝐼 = [−1, 1] with positive weights and gives exact integration of polynomials of order 2𝑟 − 1.

Let
{︀
𝜉𝑗
}︀𝑟

𝑗=0
be the quadrature points of the Gauss–Lobatto quadrature on 𝐼 and

{︀
𝜆𝑗
}︀𝑟

𝑗=0
with 𝜆𝑗 > 0 be

the weights at the points (cf. [3]). We can define a quadrature rule on 𝑇 by taking tensor products of the
Gauss–Lobatto quadrature nodes and weights, and we discuss the formal expressions for the tensor product
quadrature rules below.

For 𝜎 ∈ Σ𝑘

(︁
𝑇
)︁

let 𝑁𝜎,𝑟 be the set of points in
⨂︀

1≤𝑖≤𝑘 𝐼(𝑥𝜎𝑖
) defined by

𝑁𝜎,𝑟 =
{︀

(𝑥𝜎1 , . . . , 𝑥𝜎𝑘
) =

(︀
𝜉𝑗1 , . . . , 𝜉𝑗𝑘

)︀
: 0 ≤ 𝑗𝑙 ≤ 𝑟, 1 ≤ 𝑙 ≤ 𝑘

}︀
.

𝑁𝜎*,𝑟 is defined similarly as

𝑁𝜎*,𝑟 =
{︁(︁
𝑥𝜎*1

, . . . , 𝑥𝜎*𝑛−𝑘

)︁
=
(︀
𝜉𝑗1 , . . . , 𝜉𝑗𝑛−𝑘

)︀
: 0 ≤ 𝑗𝑙 ≤ 𝑟, 1 ≤ 𝑙 ≤ 𝑛− 𝑘

}︁
,
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the set of points in the (𝑛− 𝑘)-dimensional cube
⨂︀

1≤𝑖≤𝑛−𝑘 𝐼
(︀
𝑥𝜎*𝑖

)︀
. Therefore the tensor product 𝑁𝑟 := 𝑁𝜎,𝑟 ⊗

𝑁𝜎*,𝑟 is the set given by the tensor product of Gauss–Lobatto quadrature points on 𝑇 . Letting N be the set of
nonnegative integers, we will use 𝜉𝑖

𝜎 and 𝜉𝑗
𝜎* with multi-indices 𝑖 ∈ N𝑘 and 𝑗 ∈ N𝑛−𝑘 to denote the points in

𝑁𝜎,𝑟 and 𝑁𝜎*,𝑟, respectively. We also use 𝜆𝑗
𝜎 and 𝜆𝑗

𝜎* to denote the corresponding tensor-product weights of the
Gauss–Lobatto quadrature.

For a continuous function 𝑣 on 𝑇 , we define 𝑅𝑟(𝑣), 𝐸𝑟,𝜉𝑖
𝜎
(𝑣), 𝐸𝑟(𝑣) as

𝑅𝑟(𝑣) =
(︁
𝑣
(︁
𝜉𝑖
𝜎 ⊗ 𝜉𝑗

𝜎*

)︁)︁
𝜉𝑖

𝜎⊗𝜉𝑗
𝜎*∈𝑁𝑟

∈ R(𝑟+1)𝑛

,

𝐸𝑟,𝜉𝑖
𝜎
(𝑣) =

∑︁
𝜉𝑗

𝜎*∈𝑁𝑟,𝜎*

𝜆𝑗
𝜎*𝑣
(︁
𝜉𝑖
𝜎 ⊗ 𝜉𝑗

𝜎*

)︁
,

𝐸𝑟(𝑣) =
∑︁

𝜉𝑖
𝜎∈𝑁𝑟,𝜎

𝜆𝑖
𝜎𝐸𝑟,𝜉𝑖

𝜎
(𝑣).

Similarly, for polynomial differential forms 𝑢 = 𝑢𝜎d𝑥𝜎 ∈ 𝒫Λ𝑘
(︁
𝑇
)︁

we define 𝑅𝑟(𝑢) as the element in R𝑀 ⊗ Λ𝑘

with 𝑀 =
(︂
𝑛
𝑘

)︂
(𝑟 + 1)𝑛, which consists of 𝑅𝑟(𝑢𝜎)⊗ d𝑥𝜎 for 𝜎 ∈ Σ𝑘

(︁
𝑇
)︁

.

Lemma 3.12. For 𝑣 =
∑︀

𝜎∈Σ𝑘(𝑇) 𝑣𝜎d𝑥𝜎 suppose that a polynomial 𝑣𝜎 has a form with

𝑣𝜎 = 𝑏𝜎*𝑣𝜎, 𝑏𝜎* :=
∏︁

𝑙∈[[𝜎*]]

(︀
1− 𝑥2

𝑙

)︀
, 𝑣𝜎 ∈ (𝒬𝑟−1,𝜎* ⊗𝒬𝑟,𝜎)

(︁
𝑇
)︁
.

Suppose also that nonconforming (𝑟+1)-degree of every form monomial in 𝑣𝜎d𝑥𝜎 is at most 1 for all 𝜎 ∈ Σ𝑘

(︁
𝑇
)︁
.

If 𝑅𝑟(𝑣𝜎) = 0 all 𝜎 ∈ Σ𝑘

(︁
𝑇
)︁
, then 𝑣 = 0.

Proof. If we rewrite 𝑣𝜎 with the weighted Legendre polynomial 𝐿𝑤
𝑗 ’s, then the assumption on nonconforming

(𝑟 + 1)-degree leads us to have

𝑣𝜎 =
∑︁

𝑖∈[[𝜎*]]

𝐿𝑤
𝑟−1(𝑥𝑖)𝑝𝜎,𝑖 + 𝑣𝜎,0 (3.34)

with 𝑝𝜎,𝑖 ∈ (𝒬𝑟,𝜎 ⊗𝒬𝑟−2,𝜎*)
(︁
𝑇
)︁

independent of 𝑥𝑖, in which 𝑣𝜎,0 is a sum of polynomials of the form∏︁
𝑖∈[[𝜎*]]

𝐿𝑤
𝑑𝑖

(𝑥𝑖)𝑞𝑑(𝑥𝜎) (3.35)

where 𝑑 =
(︁
𝑑𝜎*1

, . . . , 𝑑𝜎*𝑛−𝑘

)︁
∈ N𝑛−𝑘 with max𝑖∈[[𝜎*]]{𝑑𝑖} ≤ 𝑟 − 2 and 𝑞𝑑 ∈ 𝒬𝑟,𝜎

(︁
𝑇
)︁

.

We first to show that 𝑣𝜎,0 = 0. Let 0 ̸= 𝜓 =
∏︀

𝑖∈[[𝜎*]] 𝐿
𝑤
𝑑′𝑖

(𝑥𝑖) ∈ 𝒬𝑟−2,𝜎*

(︁
𝑇
)︁

with 𝑑′𝑖’s satisfying 0 ≤ 𝑑′𝑖 ≤ 𝑟−2,
𝑖 ∈ [[𝜎*]]. We claim that

𝐸𝑟,𝜉𝑖
𝜎

(︀
𝑏𝜎*𝐿

𝑤
𝑟−1(𝑥𝑖)𝑝𝜎,𝑖𝜓

)︀
= 0

for all 𝑖 ∈ [[𝜎*]] and 𝜉𝑖
𝜎 ∈ 𝑁𝑟,𝜎. To see it, note that the quadrature along 𝑥𝑖 coordinate can be replaced by

integration with 𝑥𝑖 variable on [−1, 1] because the degree of 𝑥𝑖 variable is 𝑟 + 1 + 𝑑′𝑖 ≤ 2𝑟 − 1 and 𝐿𝑤
𝑟−1(𝑥𝑖) is

orthogonal to 𝐿𝑤
𝑑′𝑖

(𝑥𝑖) with (1− 𝑥2
𝑖 ) weight. Therefore we have
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𝐸𝑟,𝜉𝑖
𝜎
(𝑣𝜑) = 𝐸𝑟,𝜉𝑖

𝜎
(𝑏𝜎*𝑣𝜎,0𝜓).

If we consider the expression of 𝑣𝜎,0 in (3.35), a completely analogous argument using orthogonality of Legendre
polynomials gives

𝐸𝑟,𝜉𝑖
𝜎
(𝑣𝜑) = 𝐸𝑟,𝜉𝑖

𝜎

(︀
𝑏𝜎*𝜓

2(𝑥𝜎*)𝑞𝑑′(𝑥𝜎)
)︀

where 𝑑′ =
(︁
𝑑′𝜎*1 , . . . , 𝑑

′
𝜎*𝑛−𝑘

)︁
. Note that this result is obtained without using the assumption 𝑅𝑟(𝑣𝜎) = 0. Since

𝑅𝑟(𝑣𝜎) = 0, the above quantity vanishes. By the definition of 𝐸𝑟,𝜉𝑖
𝜎
, we have either 𝑏𝜎*

(︁
𝜉𝑗
𝜎*

)︁
𝜓
(︁
𝜉𝑗
𝜎*

)︁
= 0 for all

𝜉𝑗
𝜎* ∈ 𝑁𝑟,𝜎* or 𝑞𝑑′

(︀
𝜉𝑖
𝜎

)︀
= 0. However, the first case implies that 𝑏𝜎*𝜓 = 0 because the nodal value evaluations

at the points in 𝑁𝑟,𝜎* is already a set of degrees of freedom for 𝒬𝑟,𝜎*

(︁
𝑇
)︁

, and that is a contradiction to 𝜓 ̸= 0.

Therefore 𝑞𝑑 vanishes at 𝜉𝑖
𝜎, and we can show that 𝑞𝑑 vanishes at any point in 𝑁𝑟,𝜎 with the same argument.

Recall that 𝑞𝑑′ ∈ 𝒬𝑟,𝜎

(︁
𝑇
)︁

, so these vanishing conditions of 𝑞𝑑′ implies that 𝑞𝑑′ = 0. This holds for any 𝑑′, and
therefore 𝑣𝜎,0 = 0.

To show 𝑣 = 0, we notice that 𝑣𝜎 with (3.34) is exactly the form of 𝑢𝜎 in (3.22), so the same argument in
the proof of Proposition 3.10 can be used to show 𝑣 = 0. �

Theorem 3.13. Suppose that 𝑣 ∈ 𝒬̃𝑟Λ𝑘
(︁
𝑇
)︁

and 𝑅𝑟(𝑣) = 0 holds. Then 𝑣 = 0.

Proof. Note that tr𝑓 𝑣 ∈ 𝒬̃𝑟Λ𝑘(𝑓) = 𝒬𝑟Λ𝑘(𝑓) for 𝑓 ∈ ∆𝑘

(︁
𝑇
)︁

. Since the restriction of 𝑅𝑟 on 𝑓 becomes a set of

quadrature degrees of freedom of 𝒬𝑟Λ𝑘(𝑓), tr𝑓 𝑣 = 0 for all 𝑓 ∈ ∆𝑘

(︁
𝑇
)︁

holds. For tr𝑔 𝑣 with 𝑔 ∈ ∆𝑘+1

(︁
𝑇
)︁

, all
traces of tr𝑔 𝑣 on 𝑘-dimensional subcubes are vanishing, so the assumption of Lemma 3.12 is satisfied for tr𝑔 𝑣.

Applying Lemma 3.12 with the restriction of 𝑅𝑟 on 𝑔, one can conclude that tr𝑔 𝑣 = 0 for any 𝑔 ∈ ∆𝑘+1

(︁
𝑇
)︁

.

The trace property in Theorem 3.8 allows us to continue this argument inductively for any 𝑔 ∈ ∆𝑙

(︁
𝑇
)︁

, 𝑙 ≥ 𝑘+1,
so the assertion follows. �

4. Numerical methods with local coderivatives

We construct numerical methods with local coderivatives using 𝒬̃𝑟Λ𝑘(𝒯ℎ). For this we need a modified bilinear
form ⟨·, ·⟩ℎ in (A), and the auxiliary spaces 𝑉 𝑘−1

ℎ , 𝑊 𝑘−1
ℎ and the map Πℎ in (B). The conditions (A), (B) are

stated with index 𝑘− 1 but for simplicity we will check the conditions in this section for 𝑉 𝑘
ℎ , 𝑉 𝑘

ℎ , 𝑊 𝑘
ℎ which we

choose as

𝑉 𝑘
ℎ = 𝒬̃𝑟Λ𝑘(𝒯ℎ), 𝑉 𝑘

ℎ = 𝒬−𝑟 Λ𝑘(𝒯ℎ), 𝑊 𝑘
ℎ = 𝒬𝑑

𝑟−1Λ𝑘(𝒯ℎ) (4.1)

where 𝒬𝑑
𝑟−1Λ𝑘(𝒯ℎ) is defined by

𝒬𝑑
𝑟−1Λ𝑘(𝒯ℎ) =

{︀
𝜏 ∈ 𝐿2Λ𝑘(Ω) : 𝜏 |𝑇 ∈ 𝒬𝑑

𝑟−1Λ𝑘(𝑇 ), 𝑇 ∈ 𝒯ℎ

}︀
.

We will show that the finite elements 𝒬̃𝑟Λ𝑘(𝒯ℎ) and 𝒬−𝑟 Λ𝑘(𝒯ℎ) satisfy the conditions (A), (B). In addition to
the conditions in (A) and (B), for local coderivatives, we also need to show that ⟨·, ·⟩ℎ on 𝒬̃𝑟Λ𝑘(𝒯ℎ) can give
a block diagonal matrix with appropriate choice of global DOFs.

We have shown that 𝒬̃𝑟Λ𝑘(𝑇 ) has a set of DOFs determined by evaluations at nodal points. For 𝑇 ∈ 𝒯ℎ we
can define the evaluation operator 𝐸𝑇

𝑟 for continuous functions on 𝑇 with the scaled Gauss–Lobatto quadrature
rules on 𝑇 .
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For 𝑢, 𝑣 ∈ 𝒬̃𝑟Λ𝑘(𝑇 ) with expressions 𝑢 =
∑︀

𝜎∈Σ𝑘(𝑇 ) 𝑢𝜎d𝑥𝜎, 𝑣 =
∑︀

𝜎∈Σ𝑘(𝑇 ) 𝑣𝜎d𝑥𝜎, we define ⟨𝑢, 𝑣⟩ℎ,𝑇 by

⟨𝑢, 𝑣⟩ℎ,𝑇 = |𝑇 |
∑︁

𝜎∈Σ𝑘(𝑇 )

𝐸𝑇
𝑟 (𝑢𝜎𝑣𝜎). (4.2)

It is easy to see that ⟨·, ·⟩ℎ,𝑇 is an inner product on 𝒬̃𝑟Λ𝑘(𝑇 ) and the norm defined by this inner product is
equivalent to the 𝐿2 norm with constants independent on the scaling of 𝑇 . We can define the inner product
⟨·, ·⟩ℎ on 𝒬̃𝑟Λ𝑘(𝒯ℎ) by

⟨𝑢, 𝑣⟩ℎ =
∑︁

𝑇∈𝒯ℎ

⟨𝑢|𝑇 , 𝑣|𝑇 ⟩ℎ,𝑇 (4.3)

for 𝑢, 𝑣 ∈ 𝒬̃𝑟Λ𝑘(𝒯ℎ), and the norm ‖ · ‖ℎ defined by this inner product is equivalent to the 𝐿2 norm with
constants independent of ℎ. Therefore (A) is satisfied.

We now verify (B), but with 𝑘-forms instead of (𝑘 − 1)-forms for notational convenience. Recall that we
already defined 𝑉 𝑘

ℎ and 𝑊 𝑘
ℎ in (4.1), so verification of (B) consists of the following three steps:

Step 1. Prove (2.9).
Step 2. Define Πℎ satisfying the conditions in (B).
Step 3. Prove (2.10).

The following lemma completes Step 1.

Lemma 4.1. For ⟨·, ·⟩ℎ in (4.3) it holds that

⟨𝑢, 𝑣⟩ℎ = ⟨𝑢, 𝑣⟩, 𝑢 ∈ 𝒬−𝑟 Λ𝑘(𝒯ℎ), 𝑣 ∈ 𝒬𝑑
𝑟−1Λ𝑘(𝒯ℎ).

Proof. It is enough to show the equality for the restrictions of polynomial differential forms on any 𝑇 ∈ 𝒯ℎ.
Moreover, by scaling argument, it suffices to show the equality on the reference element 𝑇 , i.e.,

⟨𝑢, 𝑣⟩ℎ,𝑇 = ⟨𝑢, 𝑣⟩, 𝑢 ∈ 𝒬−𝑟 Λ𝑘
(︁
𝑇
)︁
, 𝑣 ∈ 𝒬𝑟−1Λ𝑘

(︁
𝑇
)︁
.

In fact, this equality is true because the Gauss–Lobatto quadrature rule with (𝑟+1) points give exact integration
for polynomials of degree 2𝑟 − 1. This completes the proof. �

The following result completes Step 2.

Theorem 4.2. Let Πℎ : 𝒬̃𝑟Λ𝑘(𝒯ℎ) → 𝒬−𝑟 Λ𝑘(𝒯ℎ) be the interpolation operator defined by the canonical degrees
of freedom of 𝒬−𝑟 Λ𝑘(𝒯ℎ), i.e., Πℎ𝑢 for 𝑢 ∈ 𝒬̃𝑟Λ𝑘(𝑇 ) is characterized by∫︁

𝑓

tr𝑓 Πℎ𝑢 ∧ 𝑣 =
∫︁

𝑓

tr𝑓 𝑢 ∧ 𝑣, 𝑣 ∈ 𝒬−𝑟−1Λ𝑙−𝑘(𝑓), 𝑓 ∈ ∆𝑙(𝒯ℎ), 𝑙 ≥ 𝑘. (4.4)

Then Πℎ is bounded in 𝐿2Λ𝑘(Ω) with a norm independent of ℎ, and d(𝑢−Πℎ𝑢) = 0 for 𝑢 ∈ 𝒬̃𝑟Λ𝑘(𝒯ℎ). The
norm of Πℎ may depend on 𝑟.

Proof. Note the identity

𝒬−𝑟 Λ𝑘 =
⨁︁

𝜎∈Σ𝑘

𝒬𝜎,𝑟−1 ⊗𝒬𝜎*,𝑟d𝑥𝜎

from the characterization of 𝒬−𝑟 Λ𝑘. By the definitions of the degrees of freedom of 𝒬−𝑟 Λ𝑘 and 𝒬̃𝑟Λ𝑘, the
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degrees of freedom of 𝒬−𝑟 Λ𝑘(𝒯ℎ) is a subset of the degrees of freedom of 𝒬̃𝑟Λ𝑘(𝒯ℎ). Therefore the uniform 𝐿2

boundedness of Πℎ is a consequence of equivalence of the 𝐿2 norm and a discerete norm defined by the degrees
of freedom on each of these spaces.

To show d(𝑢−Πℎ𝑢) = 0, without loss of generality, we consider 𝑢 defined only on one element 𝑇 . Since
d(𝑢−Πℎ𝑢) ∈ 𝒬−𝑟 Λ𝑘+1(𝑇 ), it is sufficient to show that∫︁

𝑓

tr𝑓 d(𝑢−Πℎ𝑢) ∧ 𝑣 = 0 ∀𝑣 ∈ 𝒬−𝑟−1Λ𝑙−𝑘−1(𝑓), 𝑓 ∈ ∆𝑙(𝑇 ), 𝑙 ≥ 𝑘 + 1 (4.5)

by the canonical degrees of freedom of 𝒬−𝑟 Λ𝑘+1(𝑇 ). These vanishing identities follow from the commutativity
of d and tr𝑓 , and Stokes’ theorem by∫︁

𝑓

tr𝑓 d(𝑢−Πℎ𝑢) ∧ 𝑣 =
∫︁

𝑓

d tr𝑓 (𝑢−Πℎ𝑢) ∧ 𝑣

=
∫︁

𝜕𝑓

tr𝜕𝑓 tr𝑓 (𝑢−Πℎ𝑢) ∧ tr𝜕𝑓 𝑣 +
∫︁

𝑓

tr𝑓 (𝑢−Πℎ𝑢) ∧ d𝑣

= 0

where the last equality follows from tr𝜕𝑓 tr𝑓 = tr𝜕𝑓 , the hierarchical trace property of 𝒬−𝑟 Λ𝑘 spaces, the inclusion
d𝑣 ∈ 𝒬−𝑟−1Λ𝑙−𝑘(𝑓), and (4.4). �

For Step 3, we can reduce (2.10) to the corresponding identity on 𝑇 , i.e., it is enough to show

⟨𝑢−Πℎ𝑢, 𝑣⟩ℎ,𝑇 = 0

for 𝑢 ∈ 𝒬̃𝑟Λ𝑘
(︁
𝑇
)︁

and 𝑣 ∈ 𝒬𝑟−1Λ𝑘
(︁
𝑇
)︁

.
Before we start its proof, recall that the quadrature nodes of the Gauss–Lobatto rule with (𝑟+ 1) points are

the zeros of d
d𝑡𝐿𝑟(𝑡) on [−1, 1]. We also note that

(𝑟 + 1)(𝐿𝑟+1(𝑡)− 𝐿𝑟−1(𝑡)) = (2𝑟 + 1)(𝑡𝐿𝑟(𝑡)− 𝐿𝑟−1(𝑡)) = (2𝑟 + 1)
𝑡2 − 1
𝑟

d
d𝑡
𝐿𝑟(𝑡),

so

𝐿𝑟+1(𝜉𝑗)− 𝐿𝑟−1(𝜉𝑗) = 0 0 ≤ 𝑗 ≤ 𝑟, (4.6)

i.e., the evaluation of 𝐿𝑟+1(𝑡)−𝐿𝑟−1(𝑡) at the quadrature nodes of the Gauss–Lobatto rule with (𝑟+ 1) points
vanishes.

As Πℎ, we define Π̂ℎ : 𝒬̃𝑟Λ𝑘
(︁
𝑇
)︁
→ 𝒬−𝑟 Λ𝑘

(︁
𝑇
)︁

as∫︁
𝑓

𝑢 ∧ 𝑣 =
∫︁

𝑓

Π̂ℎ𝑢 ∧ 𝑣 𝑣 ∈ 𝒬−𝑟−1Λ𝑙−𝑘(𝑓), 𝑓 ∈ ∆𝑙

(︁
𝑇
)︁
, 𝑙 ≥ 𝑘.

Theorem 4.3. Let 𝑣 = 𝑢− Π̂ℎ𝑢 for 𝑢 ∈ 𝒬̃𝑟Λ𝑘
(︁
𝑇
)︁
. In 𝑣 =

∑︀
𝜎∈Σ𝑘(𝑇) 𝑣𝜎d𝑥𝜎 every 𝑣𝜎 has a form

𝑣𝜎 =
∑︁

𝑖∈[[𝜎*]]

(𝐿𝑟+1(𝑥𝑖)− 𝐿𝑟−1(𝑥𝑖))𝑝𝜎,𝑖 + 𝑣𝜎,0 (4.7)

where 𝑝𝜎,𝑖 ∈ 𝒬𝜎*,𝑟

(︁
𝑇
)︁
⊗𝒬𝜎,𝑟−1

(︁
𝑇
)︁
, and every term in 𝑣𝜎,0 written with the Legendre polynomials has a factor

of 𝐿𝑟(𝑥𝑗) for some 𝑗 ∈ [[𝜎]].
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Proof. Let 𝑣 = 𝑢 − Π̂ℎ𝑢 =
∑︀

𝜎∈Σ𝑘(𝑇) 𝑣𝜎d𝑥𝜎 be given. To prove the assertion by induction we need to show

the following two results. First, for 𝑓 ∈ ∆𝑘

(︁
𝑇
)︁

every polynomial coefficient of tr𝑓 𝑣 ∈ 𝒬̃𝑟Λ𝑘(𝑓) satisfies (4.7).

Second, if every polynomial coefficient of tr𝑓 𝑣 satisfies (4.7) for all 𝑓 ∈ ∆𝑙

(︁
𝑇
)︁

with given 𝑙 ≥ 𝑘, then tr𝑔 𝑣

satisfies the same property corresponding to (4.7) for all 𝑔 ∈ ∆𝑙+1

(︁
𝑇
)︁

.

We prove the first claim. Recalling tr𝑓 𝑣 ∈ 𝒬̃𝑟Λ𝑘(𝑓) = 𝒬𝑟Λ𝑘(𝑓) for 𝑓 ∈ ∆𝑘(𝑇 ) and the definition of Π̂ℎ,
the polynomial coefficient of tr𝑓 𝑣 is a polynomial in 𝒬𝑟(𝑓) which is orthogonal to all 𝒬𝑟−1(𝑓) in the 𝐿2 inner
product. Then it has at least one factor of 𝐿𝑟(𝑥𝑗) for 𝑗 ∈ [[𝜎]], therefore it is a form of (4.7).

For the second claim, from the trace property and the definition of Π̂ℎ commuting with the trace operator
tr, we can reduce the claim to the case 𝑙 = 𝑛 − 1 without loss of generality. Suppose that every polynomial
coefficient of tr𝑓 𝑣 satisfies (4.7) for all 𝑓 ∈ ∆𝑛−1

(︁
𝑇
)︁

.

By (4.4) and the definition of shape function space of 𝒬̃𝑟Λ𝑘
(︁
𝑇
)︁

, 𝑣𝜎 has a form∑︁
𝑙∈[[𝜎*]]

𝐿𝑟+1(𝑥𝑙)𝑝𝜎,𝑙 + 𝑣𝜎,0 + 𝑣𝜎,1

where 𝑝𝜎,𝑖 ∈ (𝒬𝜎*,𝑟⊗𝒬𝜎,𝑟−1)
(︁
𝑇
)︁

but 𝑝𝜎,𝑖 is independent of 𝑥𝑖, 𝑣𝜎,0 is as in the assertion, and 𝑣𝜎,1 is a polynomial
such that every term in its expression with the Legendre polynomials, has a factor of 𝐿𝑟(𝑥𝑙) or 𝐿𝑟−1(𝑥𝑙) for
some 𝑙 ∈ [[𝜎*]]. We remark that 𝑣𝜎,0 may have polynomial terms of degree greater than 𝑟. Let us rewrite 𝑣𝜎 as

𝑣𝜎 =
∑︁

𝑙∈[[𝜎*]]

(𝐿𝑟+1(𝑥𝑙)− 𝐿𝑟−1(𝑥𝑙))𝑝𝜎,𝑙 + 𝑣𝜎,0 + 𝑞𝜎

where 𝑞𝜎 ∈ (𝒬𝜎*,𝑟⊗𝒬𝜎,𝑟−1)
(︁
𝑇
)︁

. Note that 𝑞𝜎 is a polynomial such that every term in its Legendre polynomial

expression has 𝐿𝑟(𝑥𝑙) factor for some 𝑙 ∈ [[𝜎*]] or is in 𝒬𝑟−1

(︁
𝑇
)︁

. Let 𝑓 be an (𝑛 − 1)-dimensional hyperspace
determined by 𝑥𝑖 = 1 for some 𝑖 ∈ [[𝜎]]. Then the polynomial coefficient of the differential form d𝑥𝜎 in tr𝑓 𝑣 is∑︁

𝑙∈[[𝜎*]],𝑙 ̸=𝑖

(𝐿𝑟+1(𝑥𝑙)− 𝐿𝑟−1(𝑥𝑙))𝑝𝜎,𝑙|𝑥𝑖=1 + 𝑣𝜎,0|𝑥𝑖=1 + 𝑞𝜎|𝑥𝑖=1.

Since tr𝑓 𝑣 can be written in the form of (4.7), the comparison of the above and expressions in the form of (4.7)
on 𝑓 leads to 𝑞𝜎|𝑥𝑖=1 = 0. Since it holds for any 𝑖 ∈ [[𝜎*]] with 𝑥𝑖 = ±1,

𝑞𝜎 = 𝑞𝜎
∏︁

𝑖∈[[𝜎*]]

(︀
1− 𝑥2

𝑖

)︀
, 𝑞𝜎 ∈ (𝒬𝜎*,𝑟−2 ⊗𝒬𝜎,𝑟−1)

(︁
𝑇
)︁
.

If we set 𝜂 = 𝑞𝜎d𝑥𝜎* , then
∫︀

𝑇
𝑣 ∧ 𝜂 = 0 due to the fact 𝑣 = 𝑢− Π̂ℎ𝑢 and the definition of Π̂ℎ. However,∫︁

𝑇

𝑣 ∧ 𝜂 = ±
∫︁

𝑇

𝑣𝜎𝑞𝜎 vol𝑇 = ±
∫︁

𝑇

∏︁
𝑖∈[[𝜎*]]

(︀
1− 𝑥2

𝑖

)︀
𝑞2𝜎 vol𝑇 ,

therefore 𝑞𝜎 = 0. As a consequence 𝑣𝜎 has the form (4.7). �

We now complete Step 3.

Corollary 4.4. For 𝑢 ∈ 𝒬̃𝑟Λ𝑘(𝒯ℎ) and 𝑣 ∈ 𝒬𝑑
𝑟−1Λ𝑘(𝒯ℎ),

⟨𝑢−Πℎ𝑢, 𝑣⟩ℎ = 0.
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Proof. It suffices to show the assertion for 𝑢 ∈ 𝒬̃𝑟Λ𝑘(𝑇 ) and 𝑣 ∈ 𝒬𝑑
𝑟−1Λ𝑘(𝑇 ) for any 𝑇 ∈ 𝒯ℎ. We define

𝑢̂ ∈ 𝒬̃𝑟Λ𝑘
(︁
𝑇
)︁

and 𝑣 ∈ 𝒬𝑑
𝑟−1Λ𝑘

(︁
𝑇
)︁

as the pullbacks 𝜑*𝑢 and 𝜑*𝑣 with the dilation map 𝜑 : 𝑇 → 𝑇 . From

the definition of Πℎ and the property of pullback on differential forms, 𝜑*(𝑢−Πℎ𝑢) = 𝑢̂ − Π̂ℎ𝑢̂ holds. Since
⟨𝑢−Πℎ𝑢, 𝑣⟩ℎ,𝑇 is a constant multiple of

⟨
𝑢̂− Π̂ℎ𝑢̂, 𝑣

⟩
ℎ,𝑇

with the constant depending on scaling. By the

characterization of 𝑢̂−Π̂ℎ𝑢̂ in Theorem 4.3, the exactness of the Gauss–Lobatto quadrature rule for polynomials
of degree 2𝑟 − 1, the orthogonality of Legendre polynomials, and (4.6),

⟨
𝑢̂− Π̂ℎ𝑢̂, 𝑣

⟩
ℎ,𝑇

= 0. �

We can define the modified mixed method (2.8) using the spaces in (4.1). As a consequence of Theorem 2.1
we have optimal error bounds.

Corollary 4.5. For a given domain Ω and a cubical mesh 𝒯ℎ of Ω let 𝑉 𝑘−1
ℎ = 𝒬̃𝑟Λ𝑘−1(𝒯ℎ), 𝑉 𝑘−1

ℎ =
𝒬−𝑟 Λ𝑘−1(𝒯ℎ), 𝑉 𝑘

ℎ = 𝒬−𝑟 Λ𝑘(𝒯ℎ). The discrete inner product ⟨·, ·⟩ℎ on 𝑉 𝑘−1
ℎ is defined by extending (4.2) on 𝒯ℎ.

Suppose that (𝜎, 𝑢, 𝑝) and (𝜎ℎ, 𝑢ℎ, 𝑝ℎ) are the solutions of (2.5) and (2.8), respectively. Then For 𝑢 ∈ 𝒬̃𝑟Λ𝑘(𝒯ℎ)
and 𝑣 ∈ 𝒬𝑑

𝑟−1Λ𝑘(𝒯ℎ),

‖(𝜎 − 𝜎ℎ, 𝑢− 𝑢ℎ, 𝑝− 𝑝ℎ)‖𝒳 . ℎ𝑟

if 𝜎, 𝑢, 𝑝 are sufficiently regular.

Proof. The conclusion follows from (2.12) and approximation properties of the spaces 𝑉 𝑘−1
ℎ , 𝑉 𝑘

ℎ , and H𝑘
ℎ. �

Finally, we check that the proposed method give local coderivatives with an argument completely analogous
to the one in [24].

To see more details, let the set of nodal degrees of freedom and the basis of 𝒬̃𝑟Λ𝑘(𝒯ℎ) associated to the nodal
degrees of freedom be

{𝜑(𝑇,𝑧) : 𝑧 ∈ 𝑁𝑟(𝑇 ), 𝑇 ∈ 𝒯ℎ},
{︀
𝜓(𝑇,𝑧) : 𝑧 ∈ 𝑁𝑟(𝑇 ), 𝑇 ∈ 𝒯ℎ

}︀
,

such that 𝜑(𝑇,𝑧)

(︀
𝜓(𝑇 ′,𝑧′)

)︀
= 𝛿𝑇𝑇 ′𝛿𝑧𝑧′ with the Kronecker delta. For each 𝑧 ∈ 𝑁𝑟(𝑇 ) for some 𝑇 ∈ 𝒯ℎ and we can

consider the set of all basis functions 𝜓(𝑇 ′,𝑧) with the common point 𝑧. We denote this set of basis functions by
Ψ𝑧. Then the quadrature bilinear form ⟨·, ·⟩ℎ with {𝜓(𝑇,𝑧)} gives a block diagonal matrix such that each block
is associated to Ψ𝑧 for some 𝑧. The influence of the inverse of this block matrix associated to Ψ𝑧 is only on the
local domain consists of {𝑇 ′} such that 𝜓(𝑇 ′,𝑧) ∈ Ψ𝑧, so it is a spatially local operator and then gives a local
coderivative.

5. Concluding remarks

In this paper we develop high order numerical methods with finite elements for the Hodge Laplace problems
on cubical meshes that admit local approximations of the coderivatives. The main task of the development is
construction of a new family of finite element differential forms on cubical meshes which satisfy the properties
for the stability analysis framework presented in Section 2.

This study has considered Hodge-Laplace problems with the identity coefficient. However, the discussion
can be easily extended to a matrix-valued coefficient 𝐾−1 which is symmetric positive definite, and piecewise
constant on 𝒯ℎ. We point out that this is an important difference between our approach and the work in [15]
for the Maxwell equations. More precisely, the quadrature rules in [15] are combinations of Gauss and Gauss–
Lobatto rules for different components, so the methods are not robust for matrix-valued coefficients because the
matrix-valued coefficients in bilinear forms mix the components with different quadrature rules. We refer the
interested readers to Section 6 of [24] for details of the analysis with 𝐾−1 ̸= 𝐼.

Finally, the extension of the methods to curvilinear meshes is not easy because the conditions in (B) strongly
rely on the properties of quadrature rules on cubical meshes which do not hold on distorted cubical (or called
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curvilinear) meshes. In [4], this extension was done for weakly distorted quadrilateral and hexahedral meshes
by measuring changes of bilinear forms and related quantities under mesh distortion. However, this is possible
in these cases because explicit forms of the bilinear and trilinear maps and their derivatives are available for
the specific setting 𝑘 = 𝑛− 1 and 𝑛 = 2, 3. The extension to general 𝑛 and 𝑘 is completely open.

Appendix A.

In this section we give an explicit description of 𝒬̃𝑟Λ1
(︀
R3
)︀

using a one-to-one correspondence between
differential 1-forms and vector fields. We use 𝑥1, 𝑥2, 𝑥3 as the variables of R3, and define the one-to-one
correspondence Φ by

Φ

(︃
3∑︁

𝑖=1

𝑢𝑥𝑖
d𝑥𝑖

)︃
=

⎛⎜⎝𝑢𝑥1

𝑢𝑥2

𝑢𝑥3

⎞⎟⎠. (A.1)

Then one can check that

Φ

(︃
𝜅

(︃
3∑︁

𝑖=1

𝑢𝑥𝑖
d𝑥𝑖

)︃)︃
=

3∑︁
𝑖=1

𝑥𝑖𝑢𝑥𝑖
, (A.2)

Φ

(︃
d𝜅

(︃
3∑︁

𝑖=1

𝑢𝑥𝑖d𝑥𝑖

)︃)︃
=

⎛⎜⎜⎜⎜⎝
𝜕𝑥1

(︁∑︀3
𝑖=1 𝑥𝑖𝑢𝑥𝑖

)︁
𝜕𝑥2

(︁∑︀3
𝑖=1 𝑥𝑖𝑢𝑥𝑖

)︁
𝜕𝑥3

(︁∑︀3
𝑖=1 𝑥𝑖𝑢𝑥𝑖

)︁
⎞⎟⎟⎟⎟⎠· (A.3)

By (3.4),

Φ
(︀
𝒬−𝑟 Λ1

(︀
R3
)︀)︀

= span

⎧⎪⎨⎪⎩
⎛⎜⎝𝑥

𝑎1
1 𝑥

𝑏1
2 𝑥

𝑐1
3

0
0

⎞⎟⎠ : 0 ≤ 𝑎1 ≤ 𝑟 − 1, 0 ≤ 𝑏1, 𝑐1 ≤ 𝑟

⎫⎪⎬⎪⎭
⊕ span

⎧⎪⎨⎪⎩
⎛⎜⎝ 0

𝑥𝑎2
1 𝑥

𝑏2
2 𝑥

𝑐2
3

0

⎞⎟⎠ : 0 ≤ 𝑏2 ≤ 𝑟 − 1, 0 ≤ 𝑎2, 𝑐2 ≤ 𝑟

⎫⎪⎬⎪⎭
⊕ span

⎧⎪⎨⎪⎩
⎛⎜⎝ 0

0

𝑥𝑎3
1 𝑥

𝑏3
2 𝑥

𝑐3
3

⎞⎟⎠ : 0 ≤ 𝑐3 ≤ 𝑟 − 1, 0 ≤ 𝑎3, 𝑏3 ≤ 𝑟

⎫⎪⎬⎪⎭.
By the characterization in (3.5),

Φ(ℬ𝑟Λ1
(︀
R3
)︀
) = span

⎧⎪⎨⎪⎩
⎛⎜⎝𝑥

𝑟
1𝑥

𝑏1
2 𝑥

𝑐1
3

0
0

⎞⎟⎠ : 0 ≤ 𝑏1, 𝑐1 ≤ 𝑟

⎫⎪⎬⎪⎭
⊕ span

⎧⎪⎨⎪⎩
⎛⎜⎝ 0
𝑥𝑎2

1 𝑥
𝑟
2𝑥

𝑐2
3

0

⎞⎟⎠ : 0 ≤ 𝑎2, 𝑐2 ≤ 𝑟

⎫⎪⎬⎪⎭



890 J.J. LEE

⊕ span

⎧⎪⎨⎪⎩
⎛⎜⎝ 0

0

𝑥𝑎3
1 𝑥

𝑏3
2 𝑥

𝑟
3

⎞⎟⎠ : 0 ≤ 𝑎3, 𝑏3 ≤ 𝑟

⎫⎪⎬⎪⎭.
By (A.2) and (A.3) we obtain an explicit form of Φ

(︀
d𝜅ℬ𝑟Λ1

(︀
R3
)︀)︀

:

Φ(d𝜅ℬ𝑟Λ1
(︀
R3
)︀
) = span

⎧⎪⎨⎪⎩
⎛⎜⎝(𝑟 + 1)𝑥𝑟

1𝑥
𝑏1
2 𝑥

𝑐1
3

𝑏1𝑥
𝑟+1
1 𝑥𝑏1−1

2 𝑥𝑐1
3

𝑐1𝑥
𝑟+1
1 𝑥𝑏1

2 𝑥
𝑐1−1
3

⎞⎟⎠ : 0 ≤ 𝑏1, 𝑐1 ≤ 𝑟

⎫⎪⎬⎪⎭
⊕ span

⎧⎪⎨⎪⎩
⎛⎜⎝𝑎2𝑥

𝑎2−1
1 𝑥𝑟+1

2 𝑥𝑐2
3

(𝑟 + 1)𝑥𝑎2
1 𝑥

𝑟
2𝑥

𝑐2
3

𝑐2𝑥
𝑎2
1 𝑥

𝑟+1
2 𝑥𝑐2−1

3

⎞⎟⎠ : 0 ≤ 𝑎2, 𝑐2 ≤ 𝑟

⎫⎪⎬⎪⎭
⊕ span

⎧⎪⎨⎪⎩
⎛⎜⎝𝑎3𝑥

𝑎3−1
1 𝑥𝑏3

2 𝑥
𝑟+1
3

𝑏3𝑥
𝑎3
1 𝑥

𝑏3−1
2 𝑥𝑟+1

3

(𝑟 + 1)𝑥𝑎3
1 𝑥

𝑏3
2 𝑥

𝑟
3

⎞⎟⎠ : 0 ≤ 𝑎3, 𝑏3 ≤ 𝑟

⎫⎪⎬⎪⎭.
Then, Φ

(︁
𝒬̃𝑟Λ1

(︀
R3
)︀)︁

= Φ
(︀
𝒬−𝑟 Λ1

(︀
R3
)︀)︀
⊕Φ

(︀
d𝜅ℬ𝑟Λ1

(︀
R3
)︀)︀

from (3.17) gives an explicit form of Φ
(︁
𝒬̃𝑟Λ1

(︀
R3
)︀)︁

.

Let 𝑇 = [−1, 1]3 and assume that 𝑣 ∈ Φ
(︁
𝒬̃𝑟Λ1

(︁
𝑇
)︁)︁

. We use 𝑥𝑖, 𝑥𝑗 , 𝑥𝑙 to denote the three different rectangular

variables in R3, and {𝑒𝑖, 𝑒𝑗 , 𝑒𝑙} is an orthonormal basis with unit vectors parallel to the 𝑥𝑖, 𝑥𝑗 , 𝑥𝑙 axes.
The moment-based degrees of freedom (3.18) in vector-field forms are described as follows:

𝑣 ↦→
∫︁
{𝑥𝑖=𝜖𝑖,𝑥𝑗=𝜖𝑗}∩𝑇

𝑣 · 𝑒𝑙𝑞 d𝑥𝑙, 𝑞 ∈ 𝒫𝑟(𝑥𝑙),

𝑣 ↦→
∫︁
{𝑥𝑖=𝜖𝑖}∩𝑇

𝑣 · 𝑒𝑗𝑞𝑗𝑞𝑙 d𝑥𝑗 ∧ d𝑥𝑙, 𝑞𝑗 ∈ 𝒫𝑟(𝑥𝑗), 𝑞𝑙 ∈ 𝒫𝑟−2(𝑥𝑙),

𝑣 ↦→
∫︁

𝑇

𝑣 · 𝑒𝑖𝑞𝑖𝑞𝑗𝑞𝑙 d𝑥𝑖 ∧ d𝑥𝑗 ∧ d𝑥𝑙, 𝑞𝑖 ∈ 𝒫𝑟(𝑥𝑖), 𝑞𝑗 ∈ 𝒫𝑟−2(𝑥𝑗), 𝑞𝑙 ∈ 𝒫𝑟−2(𝑥𝑙)

where 𝜖𝑖, 𝜖𝑗 = ±1.
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