A modified Kačanov iteration scheme with application to quasilinear diffusion models
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 2, pp. 433-450

The classical Kačanov scheme for the solution of nonlinear variational problems can be interpreted as a fixed point iteration method that updates a given approximation by solving a linear problem in each step. Based on this observation, we introduce a modified Kačanov method, which allows for (adaptive) damping, and, thereby, to derive a new convergence analysis under more general assumptions and for a wider range of applications. For instance, in the specific context of quasilinear diffusion models, our new approach does no longer require a standard monotonicity condition on the nonlinear diffusion coefficient to hold. Moreover, we propose two different adaptive strategies for the practical selection of the damping parameters involved.

DOI : 10.1051/m2an/2022008
Classification : 35J62, 47J25, 47H05, 47H10, 65J15, 65N12
Keywords: Quasilinear elliptic PDE, strongly monotone problems, fixed point iterations, Kačanov method, quasi-Newtonian fluids, shear-thickening fluids
@article{M2AN_2022__56_2_433_0,
     author = {Heid, Pascal and Wihler, Thomas P.},
     title = {A modified {Ka\v{c}anov} iteration scheme with application to quasilinear diffusion models},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {433--450},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {2},
     doi = {10.1051/m2an/2022008},
     mrnumber = {4382751},
     zbl = {1484.35222},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2022008/}
}
TY  - JOUR
AU  - Heid, Pascal
AU  - Wihler, Thomas P.
TI  - A modified Kačanov iteration scheme with application to quasilinear diffusion models
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2022
SP  - 433
EP  - 450
VL  - 56
IS  - 2
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2022008/
DO  - 10.1051/m2an/2022008
LA  - en
ID  - M2AN_2022__56_2_433_0
ER  - 
%0 Journal Article
%A Heid, Pascal
%A Wihler, Thomas P.
%T A modified Kačanov iteration scheme with application to quasilinear diffusion models
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2022
%P 433-450
%V 56
%N 2
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2022008/
%R 10.1051/m2an/2022008
%G en
%F M2AN_2022__56_2_433_0
Heid, Pascal; Wihler, Thomas P. A modified Kačanov iteration scheme with application to quasilinear diffusion models. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 2, pp. 433-450. doi: 10.1051/m2an/2022008

[1] K. Astala, T. Iwaniec and G. Martin, Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane. Princeton Mathematical Series. Vol. 48. Princeton University Press, Princeton, NJ (2009). | MR | Zbl

[2] E. Carelli, J. Haehnle and A. Prohl, Convergence analysis for incompressible generalized newtonian fluid flows with nonstandard anisotropic growth conditions. SIAM J. Numer. Anal. 48 (2010) 164–190. | MR | Zbl

[3] P. Deuflhard, Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms. Springer Series in Computational Mathematics. Vol. 35, Springer-Verlag, Berlin (2004). | MR | Zbl

[4] L. Diening and M. Růžička, Interpolation operators in Orlicz-Sobolev spaces. Numer. Math. 107 (2007) 107–129. | MR | Zbl

[5] L. Diening, M. Fornasier, R. Tomasi and M. Wank, A relaxed Kačanov iteration for the p -Poisson problem. Numer. Math. 145 (2020) 1–34. | MR | Zbl

[6] F. J. Galindo-Rosales, F. J. Rubio-Hernández and A. Sevilla, An apparent viscosity function for shear thickening fluids. J. Non-Newtonian Fluid Mech. 166 (2011) 321–325. | Zbl

[7] E. M. Garau, P. Morin and C. Zuppa, Convergence of an adaptive Kačanov FEM for quasi-linear problems. Appl. Numer. Math. 61 (2011) 512–529. | MR | Zbl

[8] A. Haberl, D. Praetorius, S. Schimanko and M. Vohralk, Convergence and quasi-optimal cost of adaptive algorithms for nonlinear operators including iterative linearization and algebraic solver. Numer. Math. 147 (2021) 679–725. | MR | Zbl

[9] W. Han, S. Jensen and I. Shimansky, The Kačanov method for some nonlinear problems. Appl. Numer. Math. 24 (1997) 57–79. | MR | Zbl

[10] P. Heid and E. Süli, Adaptive iterative linearised finite element methods for implicitly constituted incompressible fluid flow problems and its application to Bingham fluids. Tech. Report (2021). | arXiv | MR | Zbl

[11] P. Heid and E. Süli, On the convergence rate of the Kačanov scheme for shear-thinning fluids. Calcolo 59 (2022) 27. | MR | Zbl

[12] P. Heid and T. P. Wihler, Adaptive iterative linearization Galerkin methods for nonlinear problems. Math. Comp. 89 (2020) 2707–2734. | MR | Zbl

[13] P. Heid and T. P. Wihler, On the convergence of adaptive iterative linearized Galerkin methods. Calcolo 57 (2020) 23. | MR | Zbl

[14] P. Heid, D. Praetorius and T. P. Wihler, Energy contraction and optimal convergence of adaptive iterative linearized finite element methods. Comput. Methods Appl. Math. 21 (2021) 407–422. | MR | Zbl

[15] L. M. Kačanov, Variational methods of solution of plasticity problems. J. Appl. Math. Mech. 23 (1959) 880–883. | MR | Zbl

[16] E. Zeidler, Nonlinear Functional Analysis and its Applications. IV. Applications to Mathematical Physics, Translated from the German and with a preface by Juergen Quandt. Springer-Verlag, New York (1988). | MR | Zbl

[17] E. Zeidler, Nonlinear Functional Analysis and its Applications. II/B. Springer-Verlag, New York (1990). | MR | Zbl

Cité par Sources :