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A MODIFIED KAČANOV ITERATION SCHEME WITH APPLICATION TO
QUASILINEAR DIFFUSION MODELS

Pascal Heid1,* and Thomas P. Wihler2

Abstract. The classical Kačanov scheme for the solution of nonlinear variational problems can be
interpreted as a fixed point iteration method that updates a given approximation by solving a linear
problem in each step. Based on this observation, we introduce a modified Kačanov method, which
allows for (adaptive) damping, and, thereby, to derive a new convergence analysis under more general
assumptions and for a wider range of applications. For instance, in the specific context of quasilinear
diffusion models, our new approach does no longer require a standard monotonicity condition on the
nonlinear diffusion coefficient to hold. Moreover, we propose two different adaptive strategies for the
practical selection of the damping parameters involved.
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1. Introduction

In this article we focus on a novel iterative Kačanov type procedure for the solution of quasilinear elliptic
partial differential equations (PDE) of the form

−div
{︁
𝜇
(︁
|∇𝑢|2

)︁
∇𝑢

}︁
= 𝑓 in Ω (1.1a)

𝑢 = 𝑔 on Γ1 (1.1b)

−𝜇
(︁
|∇𝑢|2

)︁
∇𝑢 · n = ℎ on Γ2, (1.1c)

where Ω ⊂ R𝑑, 𝑑 ∈ {2, 3}, is a non-empty, open, and bounded domain with a Lipschitz boundary 𝜕Ω. We
suppose that 𝜕Ω = Γ1 ∪ Γ2 is composed of a Dirichlet boundary part Γ1 ̸= ∅ (of non-zero surface measure)
and a Neumann boundary part Γ2, and n denotes the unit outward normal vector on Γ2. Moreover, 𝜇 is a real-
valued diffusion coefficient, and 𝑔 and ℎ are Dirichlet and Neumann boundary condition functions, respectively.
Nonlinear equations of this type are widely used in mathematical models of physical applications including, for
instance, hydro- and gas-dynamics, as well as elasticity and plasticity, see, e.g., [9] and the references therein;
we further refer to Sections 69.2 and 69.3 of [16] and Section 1.1 of [1] for a discussion of the physical meaning.
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For a given initial guess 𝑢0 with 𝑢0 = 𝑔 on Γ1, the traditional Kačanov scheme for the solution of (1.1) is
given by

−div
{︁
𝜇
(︁
|∇𝑢𝑛|2

)︁
∇𝑢𝑛+1

}︁
= 𝑓 in Ω (1.2a)

𝑢𝑛+1 = 𝑔 on Γ1 (1.2b)

−𝜇
(︁
|∇𝑢𝑛|2

)︁
∇𝑢𝑛+1 · n = ℎ on Γ2; (1.2c)

this iteration scheme was originally introduced by Kačanov in [15] in the context of variational methods for
plasticity problems. Observing that the above boundary value problem is a linear PDE for 𝑢𝑛+1 (given 𝑢𝑛), we
can see Kačanov’s scheme as an iterative linearization method, cf., the general abstract iterative linearization
methodology in [12].

In the literature, standard assumptions on the nonlinearity 𝜇, which guarantee the convergence of (1.2), are
expressed as follows, see, e.g., [7, 9, 12,17]:

(𝜇1) The diffusion function 𝜇 : [0,∞) → [0,∞) is continuously differentiable;
(𝜇2) The diffusion function 𝜇 is decreasing, i.e., 𝜇′(𝑡) ≤ 0 for all 𝑡 ≥ 0;
(𝜇3) There are positive constants 𝑚𝜇 and 𝑀𝜇 such that 𝑚𝜇 ≤ 𝜇(𝑡) ≤𝑀𝜇 for all 𝑡 ≥ 0;
(𝜇4) There exists a positive constant 𝑐𝜇 > 0 such that 2𝜇′(𝑡2)𝑡2 + 𝜇(𝑡2) ≥ 𝑐𝜇 for all 𝑡 ≥ 0; if we let

𝜑(𝑡) :=
∫︁ 𝑡

0

𝜇(𝑠2)𝑠 d𝑠, 𝑡 ≥ 0, (1.3)

then we note that this condition implies that 𝜑 is strictly convex.

Examples satisfying the assumptions (𝜇1)–(𝜇4) can be found, e.g., in [9] and the references therein.
In this work we address the open question of whether the monotonicity assumption (𝜇2) is necessary or not

for the convergence of the Kačanov scheme. For instance, this assumption can be omitted when the Picard
(also termed Zarantonello) iteration is applied, cf., Proposition 5.1 of [12]; in that context, we mention the
recent work [8], which, for a closely related type of problem, proves convergence under quasi-optimal cost of
a numerical scheme composed of an adaptive interplay of finite element discretizations, Picard iterations, and
a contractive linear algebra solver. Since the Kačanov scheme outperforms the Picard iteration in general,
however, it would be of practical relevance if the former could as well be applied without imposing assumption
(𝜇2). Here, numerical experiments in [7,12] indicate that it may indeed be dropped. Based on this observation,
in this work, we will introduce a modified Kačanov iteration method that converges without imposing condition
(𝜇2), and, thereby, allows for the application to a considerably wider range of physical models. For instance,
in the context of quasi-Newtonian fluids, the analysis of the traditional Kačanov method is limited to shear-
thinning materials corresponding to a decreasing viscosity coefficient, whilst our new scheme can be applied, in
addition, to shear-thickening substances, which have an increasing viscosity coefficient 𝜇.

We note that the classical Kačanov method was already applied to incompressible generalized Newtonian fluid
flow problems with a power-law like rheology of possibly shear-thickening fluids in [2]; in that work, however,
very restrictive conditions needed to be imposed in order to show the convergence of the sequence of iterates
to a solution of a regularized problem. Moreover, an advanced convergence analysis for the Kačanov scheme
has been carried out for a relaxed 𝑝-Poisson problem in [5]; those results are restricted to decreasing diffusion
coefficients 𝜇, however, they apply for problems with nonlinear 𝑝-growth, namely for 𝑝 ∈ (1, 2], i.e., assumption
(𝜇3), which essentially expresses linear growth, is not required there. We remark that the modified Kačanov
scheme introduced in the present work could possibly be applied as a subroutine in place of the classical Kačanov
scheme in [5] for the case 𝑝 > 2. Finally, we point to [11], where the convergence rate of the Kačanov scheme
was studied for a class of decreasing diffusion coefficients, which correspond to the viscosity function of shear-
thinning fluids with zero and infinite shear plateaus, i.e., (𝜇3) is satisfied. Indeed, the analysis in [11] can also
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be applied to the generalized Stokes problem, cf., Section 4.1 of [10], where the convergence is shown for the
Bercovier–Engelman regularization of steady Bingham fluids.

We emphasize once more that a key prerequisite in the convergence analysis of the Kačanov scheme in [5,10,
11], as well as in the classical proof, is the monotonicity of the diffusion coefficient; in fact, in all the convergence
proofs of the Kačanov scheme we are aware of, except for the one in [2], it is shown that an underlying (energy)
functional decays along the sequence generated by the Kačanov scheme, for which, again, it is standard to
assume that the diffusion coefficient is monotonically decreasing. The proof in the present work is also based
on the decay of the energy functional, which, however, can be obtained without imposing the assumption (𝜇2)
when a damping parameter is introduced.

The key idea in devising the modified scheme together with the proof of convergence is based on the fact
that (1.2) can be cast into the unified iteration scheme introduced in [12], see also [13]. To sketch the idea, for
Γ2 = ∅, upon defining the PDE residual

F := −div
{︁
𝜇
(︁
|∇(·)|2

)︁
∇(·)

}︁
− 𝑓,

and, for given 𝑢, the linear preconditioning operator

A(𝑢)(·) := −div
{︁
𝜇
(︁
|∇𝑢|2

)︁
∇(·)

}︁
,

the iterative procedure (1.2) can be written (formally) in terms of the fixed point iteration

𝑢𝑛+1 = 𝑢𝑛 − A(𝑢𝑛)−1F(𝑢𝑛), 𝑛 ≥ 0.

With the aim of obtaining an improved control of the updates in each step, we introduce a step size parameter
𝛿(𝑢𝑛) > 0 in the iteration, viz.

𝑢𝑛+1 = 𝑢𝑛 − 𝛿(𝑢𝑛)A(𝑢𝑛)−1F(𝑢𝑛), 𝑛 ≥ 0.

This yields the modified Kačanov method proposed and analyzed in this work.

Outline

We begin by deriving an appropriate framework for abstract nonlinear variational problems in Section 2.
In particular, we introduce a modified version of the classical Kačanov iteration scheme, and prove a new
convergence result under assumptions that are milder than in the classical setting. The purpose of Section 3 is
to devise two different adaptive strategies for the selection of the damping parameters in the modified method.
Subsequently, our general theory is applied to quasilinear diffusion models in Section 4, which also contains a
numerical study within the framework of finite element discretizations. Finally, we add some concluding remarks
in Section 5.

2. Abstract analysis

Throughout, 𝑌 is a reflexive real Banach space, equipped with a norm denoted by ‖ · ‖𝑌 , and 𝐾 ⊂ 𝑌 is a
closed, convex subset.

2.1. Nonlinear variational problems

Consider a (nonlinear) Gâteaux continuously differentiable functional H : 𝐾 → R that has a strongly
monotone Gâteaux derivative, i.e., there exists a constant 𝜈 > 0 such that

⟨H′(𝑢)− H′(𝑣), 𝑢− 𝑣⟩ ≥ 𝜈‖𝑢− 𝑣‖2𝑌 ∀𝑢, 𝑣 ∈ 𝐾, (2.1)

where ⟨·, ·⟩ is the duality product on 𝑌 ⋆ × 𝑌 , with 𝑌 ⋆ signifying the dual space of 𝑌 .
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Proposition 2.1. Suppose that H : 𝐾 → R is a (Gâteaux) continuously differentiable functional that satisfies
the strong monotonicity condition (2.1). Then, there exists a unique minimizer 𝑢⋆ ∈ 𝐾 of H in 𝐾, i.e., H(𝑢⋆) ≤
H(𝑣) for all 𝑣 ∈ 𝐾. Furthermore, 𝑢⋆ ∈ 𝐾 is the unique solution of the weak inequality

⟨H′(𝑢⋆), 𝑣 − 𝑢⋆⟩ ≥ 0 ∀𝑣 ∈ 𝐾. (2.2)

Proof. We follow along the lines of the proof of Theorem 25.L from [17].

(1) Since H is a Gâteaux continuously differentiable functional on 𝐾, it is, in particular, continuous on 𝐾.
Moreover, from (2.1) we infer that H is strictly convex, see, e.g., Proposition 25.10 of [17]. These two
properties, in turn, imply that H is weakly sequentially lower semicontinuous, see Proposition 25.20 of [17].

(2) If the set 𝐾 is bounded, then the functional H, being weakly sequentially lower semicontinuous, has a
minimum on 𝐾, see Theorem 25.C of [17]. Otherwise, if 𝐾 is unbounded, then we show that H is weakly
coercive. To this end, take any 𝑢, 𝑣 ∈ 𝐾, and define the scalar function

𝜙(𝑡) := H(𝑢+ 𝑡(𝑣 − 𝑢)), 𝑡 ∈ [0, 1]; (2.3)

since 𝐾 is convex, note that 𝑢+ 𝑡(𝑣 − 𝑢) ∈ 𝐾 for all 𝑡 ∈ [0, 1]. Applying the chain rule reveals that

𝜙′(𝑡) = ⟨H′(𝑢+ 𝑡(𝑣 − 𝑢)), 𝑣 − 𝑢⟩. (2.4)

Thus, by virtue of the fundamental theorem of calculus, we deduce that

H(𝑣)− H(𝑢) =
∫︁ 1

0

⟨H′(𝑢+ 𝑡(𝑣 − 𝑢)), 𝑣 − 𝑢⟩ d𝑡

=
∫︁ 1

0

⟨H′(𝑢+ 𝑡(𝑣 − 𝑢))− H′(𝑢), 𝑣 − 𝑢⟩ d𝑡+ ⟨H′(𝑢), 𝑣 − 𝑢⟩.

Therefore, exploiting (2.1), it follows that

H(𝑣)− H(𝑢) ≥ 𝜈

2
‖𝑣 − 𝑢‖2𝑌 − ‖H

′(𝑢)‖𝑌 ⋆‖𝑣 − 𝑢‖𝑌 .

Hence, we see that H(𝑣) →∞ for ‖𝑣‖𝑌 →∞, i.e., H is weakly coercive on 𝐾. Then, owing to Theorem 25.D
of [17], we conclude that H has a minimum 𝑢⋆ in 𝐾. We note that this minimum is unique since H is strictly
convex.

(3) Finally, if 𝑢⋆ is the minimum of H in 𝐾, then the function 𝜙(𝑡) from (2.3), with 𝑢 = 𝑢⋆, has a minimum at
𝑡 = 0. This implies that 𝜙′(0) ≥ 0. In turn, exploiting (2.4), this holds true if and only if ⟨H′(𝑢⋆), 𝑣 − 𝑢⋆⟩ ≥ 0,
which yields (2.2). Conversely, since H′ is strongly monotone, cf., (2.1), and 𝑢⋆ satisfies the weak inequal-
ity (2.2), the function 𝜙(𝑡) is increasing on [0, 1]. In fact, for 𝑡 ∈ (0, 1], we have

𝜙′(𝑡) =
1
𝑡
⟨H′(𝑢⋆ + 𝑡(𝑣 − 𝑢⋆))− H′(𝑢⋆), 𝑡(𝑣 − 𝑢⋆)⟩+ ⟨H′(𝑢⋆), 𝑣 − 𝑢⋆⟩

≥ 1
𝑡
⟨H′(𝑢⋆ + 𝑡(𝑣 − 𝑢⋆))− H′(𝑢⋆), 𝑡(𝑣 − 𝑢⋆)⟩ ≥ 𝜈𝑡‖𝑣 − 𝑢⋆‖2𝑌 ≥ 0.

Therefore, we obtain H(𝑣) = 𝜙(1) ≥ 𝜙(0) = H(𝑢⋆), i.e., 𝑢⋆ is the minimum of H in 𝐾 since 𝑣 was arbitrary.

This completes the proof. �

Remark 2.2. We emphasize that the application of Theorems 25.C and 25.D from [17] in the proof of Proposi-
tion 2.1 require the space 𝑌 to be reflexive. More precisely, these results make use of the fact that every bounded
sequence in a reflexive Banach space has a weakly convergent subsequence.
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Consider the following assumption on the closed and convex subset 𝐾:

(K) The set 𝑋 := {𝑢− 𝑣 : 𝑢, 𝑣 ∈ 𝐾} is a linear closed subspace of 𝑌 , and 𝑥+ 𝑦 ∈ 𝐾 for all 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝐾.

Corollary 2.3. Suppose that the subset 𝐾 has property (K), and let the assumptions of Proposition 2.1 hold
true. Then, the unique minimizer 𝑢⋆ ∈ 𝐾 of H satisfies

⟨H′(𝑢⋆), 𝑣⟩ = 0 ∀𝑣 ∈ 𝑋. (2.5)

Proof. Let 𝑢⋆ ∈ 𝐾 be the unique minimizer of H on 𝐾. Then, for any 𝑣 ∈ 𝑋, owing to property (K), it holds
that 𝑣+ 𝑢⋆ ∈ 𝐾. Thus, using (2.2), we have 0 ≤ ⟨H′(𝑢⋆), (𝑣 + 𝑢⋆)− 𝑢⋆⟩ = ⟨H′(𝑢⋆), 𝑣⟩. Similarly, upon replacing
𝑣 by −𝑣, we infer that 0 ≤ −⟨H′(𝑢⋆), 𝑣⟩, which concludes the argument. �

2.2. Modified Kačanov method

We consider mappings 𝑎 : 𝐾 × 𝑌 × 𝑋 → R and 𝑏 : 𝐾 × 𝑋 → R, with 𝑋 being the linear subspace from
property (K) above, which satisfy the following properties:

(A1) For any given 𝑢 ∈ 𝐾, we suppose that 𝑎(𝑢; ·, ·) is a bilinear form on 𝑌 ×𝑋, and 𝑏(𝑢, ·) ∈ 𝑋⋆; in the sequel,
we use the notation 𝑏(𝑢, ·) = ⟨𝑏(𝑢), ·⟩, where the dual product is evaluated on the space 𝑋⋆ ×𝑋.

(A2) There exist positive constants 𝛼, 𝛽 > 0 such that, for any 𝑢 ∈ 𝐾, the form 𝑎(𝑢; ·, ·) is uniformly bounded
on 𝑌 ×𝑋 and coercive on 𝑋 ×𝑋 in the sense that

𝑎(𝑢; 𝑣, 𝑤) ≤ 𝛽‖𝑣‖𝑌 ‖𝑤‖𝑌 ∀𝑣 ∈ 𝑌, ∀𝑤 ∈ 𝑋, (2.6)

and

𝑎(𝑢; 𝑣, 𝑣) ≥ 𝛼‖𝑣‖2𝑌 ∀𝑣 ∈ 𝑋, (2.7)

respectively; in particular, if the set 𝐾 satisfies property (K), then it follows that

𝑎(𝑢; 𝑣 − 𝑤, 𝑣 − 𝑤) ≥ 𝛼‖𝑣 − 𝑤‖2𝑌 ∀𝑣, 𝑤 ∈ 𝐾. (2.8)

(A3) There are Gâteaux continuously differentiable functionals G : 𝐾 → R and B : 𝐾 → R such that, for all
𝑢 ∈ 𝐾, it holds G′(𝑢)|𝑋 = 𝑎(𝑢;𝑢, ·) and B′(𝑢)|𝑋 = 𝑏(𝑢) in 𝑋⋆.

(A4) The (continuously differentiable) functional H : 𝐾 → R given by H(𝑢) := G(𝑢)−B(𝑢), 𝑢 ∈ 𝐾, with G and
B from (A3), satisfies the strong monotonicity condition (2.1).

If the closed and convex subset 𝐾 ⊂ 𝑌 fulfils property (K), then the unique minimizer 𝑢⋆ ∈ 𝐾 of the
functional H from (A4) solves the weak formulation

0 = ⟨H′(𝑢⋆), 𝑣⟩ = ⟨G′(𝑢⋆)− B′(𝑢⋆), 𝑣⟩ = 𝑎(𝑢⋆;𝑢⋆, 𝑣)− ⟨𝑏(𝑢⋆), 𝑣⟩ ∀𝑣 ∈ 𝑋, (2.9)

cf., Corollary 2.3. Now, for given 𝑢 ∈ 𝐾, define the linear operator A(𝑢) : 𝑌 → 𝑋⋆, 𝑣 ↦→ A(𝑢)𝑣, by

⟨A(𝑢)𝑣, 𝑤⟩ = 𝑎(𝑢; 𝑣, 𝑤) ∀𝑤 ∈ 𝑋.

Then, the weak formulation (2.9) can be expressed by

A(𝑢⋆)𝑢⋆ = 𝑏(𝑢⋆) in 𝑋⋆.

In light of (A2), for any 𝑢 ∈ 𝐾, we notice that 𝑎(𝑢; ·, ·) is a bounded and coercive bilinear form on the closed
subspace 𝑋 ×𝑋. In particular, thanks to the Lax–Milgram theorem, for any 𝑢 ∈ 𝐾 and ℓ ∈ 𝑋⋆, we conclude
that there exists a unique 𝑤𝑢,ℓ ∈ 𝑋 such that A(𝑢)𝑤𝑢,ℓ = ℓ in 𝑋⋆, i.e., A(𝑢)|𝑋 : 𝑋 → 𝑋⋆ is invertible for any
𝑢 ∈ 𝐾. Hence, noticing that

F(𝑢) := H′(𝑢) = A(𝑢)𝑢− 𝑏(𝑢) ∈ 𝑋⋆, (2.10)
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the classical Kačanov method in abstract form, for given 𝑢𝑛 ∈ 𝐾, reads as

𝑢𝑛+1 = 𝑢𝑛 − 𝜌𝑛, 𝑛 ≥ 0, (2.11a)

where 𝜌𝑛 ∈ 𝑋 is uniquely defined through

A(𝑢𝑛)𝜌𝑛 = F(𝑢𝑛) in 𝑋⋆. (2.11b)

A modification of this procedure is obtained by invoking a parameter 𝛿 : 𝐾 → (0,∞), thereby yielding the new
scheme

𝑢𝑛+1 = 𝑢𝑛 − 𝛿(𝑢𝑛)𝜌𝑛, 𝑛 ≥ 0, (2.12)

with 𝜌𝑛 as in (2.11b). Equivalently, upon introducing the forms

𝑎𝛿(𝑢)(𝑢; 𝑣, 𝑤) :=
1

𝛿(𝑢)
𝑎(𝑢; 𝑣, 𝑤), 𝑏𝛿(𝑢)(𝑢) :=

1
𝛿(𝑢)

𝑎(𝑢;𝑢, ·)− F(𝑢), (2.13)

for 𝑢 ∈ 𝐾, 𝑣 ∈ 𝑌, and 𝑤 ∈ 𝑋, we derive the modified Kačanov iteration in weak form:

𝑢𝑛+1 ∈ 𝐾 : 𝑎𝛿𝑛(𝑢𝑛;𝑢𝑛+1, 𝑣) = ⟨𝑏𝛿𝑛(𝑢𝑛), 𝑣⟩ ∀𝑣 ∈ 𝑋, 𝑛 ≥ 0, (2.14)

where we use the notation 𝛿𝑛 := 𝛿(𝑢𝑛). Clearly, for 𝛿 ≡ 1, the traditional Kačanov scheme (2.11) is recovered.

Proposition 2.4. Suppose (A1)–(A4), and that 𝐾 satisfies property (K). Then, for any initial guess 𝑢0 ∈ 𝐾,
the modified Kačanov iteration (2.14) remains well-defined for each 𝑛 ≥ 0, i.e., for given 𝑢𝑛 ∈ 𝐾, the solution
𝑢𝑛+1 ∈ 𝐾 of the weak formulation (2.14) exists and is unique.

Proof. For fixed 𝑢𝑛 ∈ 𝐾, the solution 𝜌𝑛 ∈ 𝑋 of (2.11b) exists and is unique since A(𝑢𝑛)|𝑋 : 𝑋 → 𝑋⋆ is
invertible. Moreover, owing to property (K), we infer that 𝑢𝑛+1 ∈ 𝐾 in (2.12). �

2.3. Convergence analysis

We are now in the position to state and prove the main result of our work.

Theorem 2.5. Given (A1)–(A4) and (K). We further assume the following conditions:

(a) H′ is continuous with respect to the weak topology on 𝑋⋆ in the sense that, for any sequence {𝑧𝑛}𝑛≥0 ⊂ 𝐾
with a limit 𝑧⋆ ∈ 𝐾, it holds that

lim
𝑛→∞

⟨H′(𝑧𝑛), 𝑤⟩ = ⟨H′(𝑧⋆), 𝑤⟩ ∀𝑤 ∈ 𝑋; (2.15)

(b) there exists a damping strategy such that 𝛿(𝑢𝑛) ≥ 𝛿min > 0 and

H(𝑢𝑛)− H
(︀
𝑢𝑛+1

)︀
≥ 𝛾

⃦⃦
𝑢𝑛+1 − 𝑢𝑛

⃦⃦2

𝑌
∀𝑛 ≥ 0, (2.16)

for some constants 𝛿min, 𝛾 > 0 independent of 𝑛.

Then, the damped Kačanov iteration (2.12) converges to the unique solution 𝑢⋆ ∈ 𝐾 of (2.5) for any initial
guess 𝑢0 ∈ 𝐾.

Proof. We will proceed in three steps: First, we show that the difference of two consecutive iterates, i.e.,⃦⃦
𝑢𝑛+1 − 𝑢𝑛

⃦⃦
𝑌

, tends to zero as 𝑛→∞. Subsequently, we will verify the convergence of {𝑢𝑛}𝑛≥0, and finally that
the limit equals to 𝑢⋆. For this purpose, we will essentially follow along the lines of the proof of Proposition 2.1
from [12]; see also the closely related argument in Theorem 25.L of [17].
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(1) In light of Proposition 2.1 we recall that H is bounded from below by H(𝑢⋆). Moreover, {H(𝑢𝑛)}𝑛≥0 is
decreasing thanks to the assumption (2.16). Hence, this sequence converges, and we conclude that

0 ≤ 𝛾
⃦⃦
𝑢𝑛+1 − 𝑢𝑛

⃦⃦2

𝑌
≤ H

(︀
𝑢𝑛+1

)︀
− H(𝑢𝑛) → 0 as 𝑛→∞;

i.e., lim𝑛→∞
⃦⃦
𝑢𝑛+1 − 𝑢𝑛

⃦⃦
𝑌

= 0.
(2) Next, we shall verify the existence of the limit of the sequence {𝑢𝑛}𝑛≥0. By the strong monotonicity (2.1),

for any 𝑚 ≥ 𝑛 ≥ 0, it holds that

𝜈‖𝑢𝑚 − 𝑢𝑛‖2𝑌 ≤ ⟨H′(𝑢𝑚)− H′(𝑢𝑛), 𝜖𝑚,𝑛⟩,

with 𝜖𝑚,𝑛 := 𝑢𝑚 − 𝑢𝑛 ∈ 𝑋. Combining (2.10) and (2.13), for 𝛿 = 𝛿(𝑢) > 0, we note that

H′(𝑢) = F(𝑢) = 𝑎𝛿(𝑢;𝑢, ·)− 𝑏𝛿(𝑢) ∀𝑢 ∈ 𝐾 (2.17)

in 𝑋⋆, and thus,

𝜈‖𝜖𝑚,𝑛‖2𝑌 ≤ 𝑎𝛿𝑚(𝑢𝑚;𝑢𝑚, 𝜖𝑚,𝑛)− ⟨𝑏𝛿𝑚(𝑢𝑚), 𝜖𝑚,𝑛⟩
− 𝑎𝛿𝑛(𝑢𝑛;𝑢𝑛, 𝜖𝑚,𝑛) + ⟨𝑏𝛿𝑛(𝑢𝑛), 𝜖𝑚,𝑛⟩.

Using (2.14), this further leads to

𝜈‖𝜖𝑚,𝑛‖2𝑌 ≤ 𝑎𝛿𝑚(𝑢𝑚;𝑢𝑚 − 𝑢𝑚+1, 𝜖𝑚,𝑛)− 𝑎𝛿𝑛(𝑢𝑛;𝑢𝑛 − 𝑢𝑛+1, 𝜖𝑚,𝑛).

Applying (2.6) yields

𝜈‖𝜖𝑚,𝑛‖2𝑌 ≤ 𝛽

𝛿min
‖𝜖𝑚,𝑛‖𝑌

(︀⃦⃦
𝑢𝑚 − 𝑢𝑚+1

⃦⃦
𝑌

+
⃦⃦
𝑢𝑛 − 𝑢𝑛+1

⃦⃦
𝑌

)︀
,

and thus
‖𝜖𝑚,𝑛‖𝑌 ≤ 𝛽

𝜈𝛿min

(︀⃦⃦
𝑢𝑚 − 𝑢𝑚+1

⃦⃦
𝑌

+
⃦⃦
𝑢𝑛 − 𝑢𝑛+1

⃦⃦
𝑌

)︀
.

From the first step of the proof, we conclude that {𝑢𝑛}𝑛≥0 is a Cauchy sequence in 𝐾. Since 𝐾 is a closed
subset of a Banach space, the sequence {𝑢𝑛}𝑛≥0 has a limit u ∈ 𝐾.

(3) It remains to verify that u is a solution of (2.5). To this end, from (2.17) and (2.14) it follows that

𝑎𝛿𝑛(𝑢𝑛;𝑢𝑛+1 − 𝑢𝑛, 𝑤) + ⟨H′(𝑢𝑛), 𝑤⟩ = 𝑎𝛿𝑛(𝑢𝑛;𝑢𝑛+1, 𝑤)− ⟨𝑏𝛿𝑛(𝑢𝑛), 𝑤⟩ = 0,

for all 𝑤 ∈ 𝑋. Recalling that {𝑢𝑛+1 − 𝑢𝑛}𝑛≥0 is a vanishing sequence in 𝑋, and exploiting (2.6), we have
that 𝑎𝛿(𝑢𝑛;𝑢𝑛+1−𝑢𝑛, 𝑤) → 0 as 𝑛→∞, for any 𝑤 ∈ 𝑋. Moreover, by the weak continuity property (2.15)
of H′, we obtain

⟨H′(u), 𝑤⟩ = lim
𝑛→0

⟨H′(𝑢𝑛), 𝑤⟩ = 0 ∀𝑤 ∈ 𝑋,

i.e., u is a solution of (2.5). Since the solution is unique thanks to Proposition 2.1 and Corollary 2.3, we
infer that u = 𝑢⋆. This completes the argument.

�

Remark 2.6. The classical convergence theory for the (standard) Kačanov method requires the following key
inequality to hold:

G(𝑢)− G(𝑣) ≥ 1
2

(𝑎(𝑢;𝑢, 𝑢)− 𝑎(𝑢; 𝑣, 𝑣)) ∀𝑢, 𝑣 ∈ 𝐾; (2.18)
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see, e.g., Theorem 25.L and equation (106) of [17]. In order to verify (2.18) in the context of our model
problem (1.1), the monotonicity assumption (𝜇2) is decisive. On the contrary, the analysis in our present
work is based on the bound (2.16) which, in turn, allows to omit the monotonicity of the (nonlinear) diffusion
coefficient 𝜇 in the application to quasilinear elliptic PDE (1.1); see Theorem 4.4 below. Furthermore, in contrast
to the traditional framework, the operator B from assumption (A3) does not need to be linear in our analysis,
and, in addition, the symmetry of 𝑎(𝑢, ·, ·) is no longer necessary. We remark that these improvements come
at the expense of condition (K) as well as of the crucial estimate (2.16); in the context of quasilinear elliptic
PDE (1.1), however, these assumptions do not implicate any drawback. Finally, we note that if B is linear,
then (2.18) implies (2.16) with 𝛾 = 𝛼/2.

The next result states that if H′ is Lipschitz continuous in the sense that there exists a constant 𝐿H > 0 such
that

⟨H′(𝑢)− H′(𝑣), 𝑢− 𝑣⟩ ≤ 𝐿H‖𝑢− 𝑣‖2𝑌 ∀𝑢, 𝑣 ∈ 𝐾, (2.19)

then our key assumption (2.16) from Theorem 2.5 is satisfied for sufficiently small damping parameters.

Corollary 2.7. Assume (A1)–(A4) and (K), and suppose that (2.19) holds. Then, we have the estimate

H(𝑢𝑛)− H
(︀
𝑢𝑛+1

)︀
≥

(︂
𝛼

𝛿𝑛
− 𝐿H

2

)︂⃦⃦
𝑢𝑛+1 − 𝑢𝑛

⃦⃦2

𝑌
,

where 𝛼 > 0 is the constant from (2.7). In particular, if 𝛿𝑛 ∈ [𝛿min, 𝛿max], with 0 < 𝛿min ≤ 𝛿max < 2𝛼/𝐿H, for
all 𝑛 ≥ 0, and H′ is continuous with respect to the weak topology on 𝑋⋆, cf., condition (a) from Theorem 2.5,
then the damped Kačanov iteration (2.12) converges to the unique solution 𝑢⋆ ∈ 𝐾 of (2.5) for any initial guess
𝑢0 ∈ 𝐾.

Proof. Our argument follows along the lines of the proof of Theorem 2.6 from [12], however, with a different
bilinear form on account of the present iteration scheme (2.14). Similarly as in the proof of Proposition 2.1, we
define the scalar function 𝜙(𝑡) := H(𝑢𝑛 + 𝑡(𝑢𝑛+1 − 𝑢𝑛)), for 𝑡 ∈ [0, 1] and 𝑛 ≥ 0. Then, we find that

H
(︀
𝑢𝑛+1

)︀
− H(𝑢𝑛) =

∫︁ 1

0

⟨︀
H′(𝑢𝑛 + 𝑡(𝑢𝑛+1 − 𝑢𝑛)), 𝑢𝑛+1 − 𝑢𝑛

⟩︀
d𝑡 (2.20)

=
∫︁ 1

0

⟨︀
H′(𝑢𝑛 + 𝑡(𝑢𝑛+1 − 𝑢𝑛))− H′(𝑢𝑛), 𝑢𝑛+1 − 𝑢𝑛

⟩︀
d𝑡

+
⟨︀
H′(𝑢𝑛), 𝑢𝑛+1 − 𝑢𝑛

⟩︀
.

Hence, by invoking the Lipschitz continuity (2.19), the identity (2.17), and the modified Kačanov scheme (2.14),
we obtain

H
(︀
𝑢𝑛+1

)︀
− H(𝑢𝑛) ≤ 𝐿H

2

⃦⃦
𝑢𝑛+1 − 𝑢𝑛

⃦⃦2

𝑌
+ 𝑎𝛿𝑛(𝑢𝑛;𝑢𝑛, 𝑢𝑛+1 − 𝑢𝑛)−

⟨︀
𝑏𝛿𝑛(𝑢𝑛), 𝑢𝑛+1 − 𝑢𝑛

⟩︀
=
𝐿H

2

⃦⃦
𝑢𝑛+1 − 𝑢𝑛

⃦⃦2

𝑌
− 𝑎𝛿𝑛(𝑢𝑛;𝑢𝑛+1 − 𝑢𝑛, 𝑢𝑛+1 − 𝑢𝑛).

Furthermore, employing the coercivity assumption (2.8), it follows that

H
(︀
𝑢𝑛+1

)︀
− H(𝑢𝑛) ≤

(︂
𝐿H

2
− 𝛼

𝛿𝑛

)︂⃦⃦
𝑢𝑛+1 − 𝑢𝑛

⃦⃦2

𝑌
.

Moreover, if 𝛿𝑛 ≤ 𝛿max for all 𝑛 ≥ 0, then we further deduce the bound

H(𝑢𝑛)− H
(︀
𝑢𝑛+1

)︀
≥

(︂
𝛼

𝛿max
− 𝐿H

2

)︂⃦⃦
𝑢𝑛+1 − 𝑢𝑛

⃦⃦2

𝑌
. (2.21)

If 𝛿max < 2𝛼/𝐿H, then (𝛼/𝛿max − 𝐿H/2) > 0, and, in turn, Theorem 2.5 implies the convergence of the sequence
{𝑢𝑛}𝑛≥0 to 𝑢⋆. �



MODIFIED KAČANOV METHOD 441

Remark 2.8. Applying the abstract analysis in [14], given the assumptions of Theorem 2.5, it can be shown
that the iterates generated by the modified Kačanov scheme (2.14) satisfy the contraction property

H
(︀
𝑢𝑛+1

)︀
− H(𝑢⋆) ≤ 𝑞(H(𝑢𝑛)− H(𝑢⋆)) ∀𝑛 ≥ 0,

for some constant 0 < 𝑞 < 1, where 𝑢⋆ is the solution of (2.5). In particular, in view of Corollary 2.7 with a
constant damping parameter 𝛿 = 𝛿𝑛 ∈ (0, 2𝛼/𝐿H) for all 𝑛 ≥ 0, we have that

𝑞(𝛿) =
(︂

1− 2𝛿𝜈2(𝛼− 𝛿𝐿H/2)
𝛽2𝐿H

)︂
,

cf., Theorem 2.1 of [14]. By taking the derivative with respect to 𝛿, it follows immediately that the minimum
is attained at 𝛿 = 𝛼/𝐿H; noticing that the derivation of 𝑞 involves some rough estimates, however, this choice is
typically suboptimal with regards to the convergence rate.

3. Adaptive step size control

In this section, we will present two adaptive methods for selecting the damping parameter 𝛿𝑛 in the modified
Kačanov iteration (2.14). To this end, recall the key inequality (2.16) from Theorem 2.5, and set 𝛿max = 𝛼/𝐿H

in (2.21) (which is a possibly pessimistic choice as mentioned in Rem. 2.8); then (2.16) holds for 𝛾 = 𝐿H/2.
Alternatively, from Remark 2.6, we recall that within the setting of the classical Kačanov scheme, i.e., for
𝛿 ≡ 1, the bound (2.16) can be shown for the constant 𝛾 = 𝛼/2 under more restrictive assumptions on the
nonlinearity. This observation may suggest that a smaller choice of 𝛾 potentially relates to a larger size of the
damping parameter. We thus propose that the sequence {𝑢𝑛}𝑛≥0 is required to satisfy an estimate of the form

H(𝑢𝑛)− H
(︀
𝑢𝑛+1

)︀
≥ 𝜃min{𝛼,𝐿H}

⃦⃦
𝑢𝑛+1 − 𝑢𝑛

⃦⃦2

𝑌
, (3.1)

for a constant 0 < 𝜃 ≤ 1/2, which still guarantees the convergence of the modified Kačanov scheme (2.14)
in regard to Theorem 2.5 without imposing an upper bound on the damping parameter. In our numerical
experiments in Section 4.5, we let 𝜃 = 0.1. Moreover, in order to prevent too small steps, we set 𝛿min := 𝛼/4𝐿H,
which, in view of Remark 2.8, is a reasonable choice. We emphasize that the constants 𝛼 and 𝐿H must both be
known a priori ; in particular, we assume that H′ is Lipschitz continuous as proposed in (2.19).

The two adaptive step size procedures to be presented below both pursue a similar strategy, namely, to
maximize the difference H(𝑢𝑛)−H

(︀
𝑢𝑛+1

)︀
in each step by choosing an appropriate step size 𝛿𝑛 = 𝛿(𝑢𝑛) ≥ 𝛿min.

Indeed, recalling that 𝑢⋆ is the unique minimizer of H in 𝐾, it seems obvious that a maximal decay of the
functional H along the sequence {𝑢𝑛}𝑛≥0 will potentially accelerate the convergence of {𝑢𝑛}𝑛≥0 to 𝑢⋆.

3.1. Step size control via Taylor expansion

We begin by recalling (2.20), which in regard to (2.10), can be stated as

H
(︀
𝑢𝑛+1

)︀
− H(𝑢𝑛) =

∫︁ 1

0

⟨︀
F(𝑢𝑛 + 𝑡(𝑢𝑛+1 − 𝑢𝑛)), 𝑢𝑛+1 − 𝑢𝑛

⟩︀
d𝑡; (3.2)

in particular, in view of the discussion above, we aim to maximize the integral on the right-hand side. For that
purpose, we will employ a Taylor expansion of the integrand at 𝑡 = 0, provided that F : 𝐾 → 𝑌 ⋆ from (2.10) is
Fréchet differentiable. Specifically, let us first define the (continuously differentiable) function

𝜓𝑛(𝑡) :=
⟨︀
F(𝑢𝑛 + 𝑡(𝑢𝑛+1 − 𝑢𝑛)), 𝑢𝑛+1 − 𝑢𝑛

⟩︀
, 𝑡 ∈ [0, 1].

Then, if the difference 𝑢𝑛+1 − 𝑢𝑛 is sufficiently small, applying a Taylor expansion at 𝑡 = 0 yields

𝜓𝑛(𝑡) ≈ 𝜓𝑛(0) + 𝜓′𝑛(0)𝑡 =
⟨︀
F(𝑢𝑛), 𝑢𝑛+1 − 𝑢𝑛

⟩︀
+ 𝑡

⟨︀
F′(𝑢𝑛)(𝑢𝑛+1 − 𝑢𝑛), 𝑢𝑛+1 − 𝑢𝑛

⟩︀
.
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Since (2.12) implies that 𝑢𝑛+1 − 𝑢𝑛 = −𝛿(𝑢𝑛)𝜌𝑛, for each 𝑛 ≥ 0, we obtain

𝜓𝑛(𝑡) ≈ −𝛿(𝑢𝑛)⟨F(𝑢𝑛), 𝜌𝑛⟩+ 𝑡𝛿(𝑢𝑛)2⟨F′(𝑢𝑛)𝜌𝑛, 𝜌𝑛⟩, (3.3)

where we have exploited the fact that the Fréchet derivative F′(𝑢𝑛) is a linear operator. Hence, by recalling (3.2)
and integrating (3.3) from 𝑡 = 0 to 𝑡 = 1, we find that

H(𝑢𝑛)− H
(︀
𝑢𝑛+1

)︀
≈ 𝛿(𝑢𝑛)⟨F(𝑢𝑛), 𝜌𝑛⟩ − 𝛿(𝑢𝑛)2

2
⟨F′(𝑢𝑛)𝜌𝑛, 𝜌𝑛⟩.

Then, a simple calculation reveals that the right-hand side is maximized for the damping parameter

𝛿𝑛 = 𝛿(𝑢𝑛) :=
⟨F(𝑢𝑛), 𝜌𝑛⟩
⟨F′(𝑢𝑛)𝜌𝑛, 𝜌𝑛⟩

· (3.4)

In account of (3.1) and the lower bound 𝛿min = 𝛼/4𝐿H, this leads to the step size Algorithm 1. We note that
the stopping criterion in line 6 will be satisfied once the damping parameter is small enough, cf., Corollary 2.7,
i.e., the procedure terminates after finitely many steps; indeed, the stopping criterion is certainly satisfied
once we reach 𝛿𝑛 = 𝛿min. Moreover, we underline that the derivative F′(𝑢𝑛) must be available in the step size
Algorithm 1, cf., (3.4).

Algorithm 1. Step size control via Taylor expansion.
Input: Given 𝑢𝑛 ∈ 𝐾, a correction factor 𝜎 ∈ (1/2, 1), and a parameter 𝜃 ∈ (0, 1/2].

1: Solve the linear problem A(𝑢𝑛)𝜌𝑛 = F(𝑢𝑛) for 𝜌𝑛 ∈ 𝑋, cf., (2.11b).
2: Compute 𝛿𝑛 from (3.4) and set 𝛿𝑛 ← max{𝛿min, 𝛿𝑛}.
3: repeat
4: Compute 𝑢𝑛+1 := 𝑢𝑛 − 𝛿𝑛𝜌𝑛, cf., (2.12).
5: Set 𝛿𝑛 ← max{𝜎𝛿𝑛, 𝛿min}.
6: until H(𝑢𝑛)− H

(︀
𝑢𝑛+1

)︀
≥ 𝜃 min{𝛼, 𝐿H}

⃦⃦
𝑢𝑛+1 − 𝑢𝑛

⃦⃦2
𝑌

7: return 𝑢𝑛+1.

3.2. Step size control via a prediction-correction strategy

We will present a second adaptive damping parameter selection procedure that is partially based on ideas
from Section 3.1 of [3]. This strategy is more “ad hoc” than the Taylor expansion approach above, however, it
does not require the differentiability of the operator F = H′, cf., (2.10). The idea is fairly straightforward: For
a given correction factor 𝜎 ∈ (1/2, 1) and damping factor 𝛿 > 0, we compare the energy decay for the damping
parameters 𝛿 and 𝛿′ = 𝜎𝑝𝛿, where 𝑝 ∈ {−1, 1} depends on the previous step; we note that 𝑝 = −1 yields an
increased step size, whereas 𝑝 = 1 decreases the damping parameter. If applying 𝛿′ results in a larger energy
decay, then we choose the damping parameter to be 𝛿′ in the present and subsequent steps, with 𝑝 unchanged;
otherwise, if 𝛿 outperforms 𝛿′, then 𝛿 is retained, however, in the next step we replace 𝑝 by −𝑝. This leads to
Algorithm 2.

4. Application to quasilinear diffusion models

In this section, we discuss the weak formulations of the boundary value problem (1.1) as well as of the
Kačanov iteration scheme (1.2). In addition, an equivalent variational setting will be established. Furthermore,
a series of numerical experiments in the framework of finite element discretizations will be presented.
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Algorithm 2. Step size control via prediction-correction strategy.
Input: Given 𝑢𝑛 ∈ 𝐾, a damping parameter 𝛿 ≥ 𝛿min, an exponent 𝑝 ∈ {−1, 1}, a correction factor 𝜎 ∈ (1/2, 1), and a
parameter 𝜃 ∈ (0, 1/2].

1: Let 𝐶 := 𝜃 min{𝛼, 𝐿𝐻}.
2: Solve the linear problem A(𝑢𝑛)𝜌𝑛 = F(𝑢𝑛) for 𝜌𝑛 ∈ 𝑋, cf., (2.11b).
3: if 𝑝 = 1 and 𝛿 < 𝜎−1𝛿min then
4: Set 𝑝← −1.
5: end if
6: Set 𝛿′ := 𝜎𝑝𝛿 and compute ̃︀𝑢𝑛+1 := 𝑢𝑛 − 𝛿′𝜌𝑛, cf., (2.12).

7: if H(𝑢𝑛)− H
(︀
̃︀𝑢𝑛+1

)︀
≥ 𝐶
⃦⃦
𝑢𝑛 − ̃︀𝑢𝑛+1

⃦⃦2
𝑌

then

8: Compute 𝑢𝑛+1 := 𝑢𝑛 − 𝛿𝜌𝑛, cf., (2.12).

9: if H
(︀
̃︀𝑢𝑛+1

)︀
≤ H
(︀
𝑢𝑛+1

)︀
or H(𝑢𝑛)− H

(︀
𝑢𝑛+1

)︀
< 𝐶
⃦⃦
𝑢𝑛 − 𝑢𝑛+1

⃦⃦2
𝑌

then

10: Set 𝛿 ← 𝛿′ and 𝑢𝑛+1 ← ̃︀𝑢𝑛+1.
11: else
12: Set 𝑝← −𝑝.
13: end if
14: else
15: Set 𝑝← 1, 𝛿 ← 𝛿′, and 𝑢𝑛+1 := ̃︀𝑢𝑛+1.

16: while H(𝑢𝑛)− H
(︀
𝑢𝑛+1

)︀
< 𝐶
⃦⃦
𝑢𝑛+1 − 𝑢𝑛

⃦⃦2
𝑌

do

17: Set 𝛿 ← 𝜎𝛿 and compute 𝑢𝑛+1 := 𝑢𝑛 − 𝛿𝜌𝑛, cf., (2.12).
18: end while
19: end if
20: return 𝛿, 𝑢𝑛+1, and 𝑝.

4.1. Sobolev spaces

Let 𝑌 := H1(Ω) be the standard Sobolev space of L2(Ω)-functions with weak derivatives in L2(Ω). We endow
𝑌 with the inner product

(𝑢, 𝑣)𝑌 :=
∫︁

Ω

∇𝑢 · ∇𝑣 dx +
∫︁

Ω

𝑢𝑣 dx, 𝑢, 𝑣 ∈ 𝑌,

and with the induced H1-norm ‖𝑢‖𝑌 :=
√︀

(𝑢, 𝑢)𝑌 , 𝑢 ∈ 𝑌 .
Moreover, consider the closed linear subspace 𝑋 := {𝑤 ∈ 𝑌 : 𝑤|Γ1 = 0} ⊂ 𝑌 , where 𝑤|Γ1 denotes the

trace of 𝑤 ∈ 𝑌 on the (non-vanishing) Dirichlet boundary part Γ1 ⊂ 𝜕Ω. We equip 𝑋 with the H1-seminorm
‖𝑢‖𝑋 := ‖∇𝑢‖L2(Ω), for 𝑢 ∈ 𝑋; owing to the Poincaré-Friedrichs inequality, we note that the norm ‖ · ‖𝑋 is
equivalent to the norm ‖·‖𝑌 on 𝑋, i.e., there exists a constant 𝑐 > 0 such that 𝑐‖𝑢‖𝑌 ≤ ‖𝑢‖𝑋 ≤ ‖𝑢‖𝑌 for all
𝑢 ∈ 𝑋.

Finally, we consider the closed and convex subset

𝐾 := {𝑤 ∈ 𝑌 : 𝑤|Γ1 = 𝑔 on Γ1} ⊂ 𝑌, (4.1)

with 𝑔 the Dirichlet boundary data from (1.2b). Evidently, 𝐾 has property (K). In particular, if Γ1 = 𝜕Ω and
𝑔 ≡ 0 on 𝜕Ω, then we may consider 𝑌 = 𝑋 = 𝐾 = H1

0(Ω) with the norm ‖ · ‖𝑋 .

4.2. Weak formulations

For any given 𝑢 ∈ 𝐾, we define a (symmetric) bilinear form 𝑎(𝑢; ·, ·) on 𝑌 × 𝑌 by

𝑎(𝑢; 𝑣, 𝑤) :=
∫︁

Ω

𝜇
(︁
|∇𝑢|2

)︁
∇𝑣 · ∇𝑤 dx, 𝑣, 𝑤 ∈ 𝑌. (4.2)
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Moreover, we introduce the linear functional

⟨𝑏, 𝑣⟩ :=
∫︁

Ω

𝑓𝑣 dx−
∫︁

Γ2

ℎ𝑣 dx, 𝑣 ∈ 𝑋, (4.3)

where ⟨·, ·⟩ denotes the duality pairing in 𝑋⋆×𝑋, with 𝑋⋆ signifying the dual space of 𝑋. If the source function
𝑓 ∈ L2(Ω) and the Neumann boundary data ℎ ∈ L2(𝜕Ω), then we notice that 𝑏 ∈ 𝑋⋆; incidentally, more general
assumptions on the data can be made, see, e.g., Remark 25.32 of [17].

In terms of the above forms, the weak formulation of (1.1) reads as follows:

Find 𝑢 ∈ 𝐾 : 𝑎(𝑢;𝑢, 𝑣) = ⟨𝑏, 𝑣⟩ ∀𝑣 ∈ 𝑋. (4.4)

Furthermore, for given 𝑢𝑛 ∈ 𝐾, 𝑛 ≥ 0, the weak form of the Kačanov scheme (1.2) is to find 𝑢𝑛+1 ∈ 𝐾 such
that

𝑎(𝑢𝑛;𝑢𝑛+1, 𝑣) = ⟨𝑏, 𝑣⟩ ∀𝑣 ∈ 𝑋.

The ensuing result follows from standard arguments.

Proposition 4.1. If the diffusion coefficient 𝜇 satisfies (𝜇3), then the form 𝑎(·; ·, ·) from (4.2) is bounded in
the sense that

|𝑎(𝑢; 𝑣, 𝑤)| ≤𝑀𝜇‖𝑣‖𝑌 ‖𝑤‖𝑌 ∀𝑢 ∈ 𝐾, ∀𝑣, 𝑤 ∈ 𝑌.

Moreover, there exists a constant 𝛼 > 0 such that, for any 𝑢 ∈ 𝐾, we have the coercivity property

𝑎(𝑢; 𝑣, 𝑣) ≥ 𝛼‖𝑣‖2𝑌 ∀𝑣 ∈ 𝑋, (4.5)

and, especially,

𝑎(𝑢; 𝑣 − 𝑤, 𝑣 − 𝑤) ≥ 𝛼‖𝑣 − 𝑤‖2𝑌 ∀𝑣, 𝑤 ∈ 𝐾. (4.6)

4.3. Variational framework

We introduce the (nonlinear) functional G : 𝐾 → R by

G(𝑢) :=
∫︁

Ω

𝜓
(︀
|∇𝑢|2

)︀
dx, with 𝜓(𝑠) :=

1
2

∫︁ 𝑠

0

𝜇(𝑡) d𝑡, 𝑠 ≥ 0. (4.7)

For 𝑢 ∈ 𝐾, the Gâteaux derivative of G is given by

⟨G′(𝑢), 𝑣⟩ =
∫︁

Ω

2𝜓′
(︀
|∇𝑢|2

)︀
∇𝑢 · ∇𝑣 dx =

∫︁
Ω

𝜇
(︁
|∇𝑢|2

)︁
∇𝑢 · ∇𝑣 dx, (4.8)

for all 𝑣 ∈ 𝑋, i.e., G′(𝑢) = 𝑎(𝑢;𝑢, ·) in 𝑋⋆.
Now, introduce the (energy) potential H : 𝐾 → R by

H(𝑢) := G(𝑢)− ⟨𝑏, 𝑢⟩, (4.9)

with G and 𝑏 from (4.7) and (4.3), respectively. If the diffusion coefficient 𝜇 satisfies the estimates

𝑚𝜇(𝑡− 𝑠) ≤ 𝜇(𝑡2)𝑡− 𝜇(𝑠2)𝑠 ≤𝑀𝜇(𝑡− 𝑠), 𝑡 ≥ 𝑠 ≥ 0, (4.10)

then the Lipschitz condition (2.19) and the strong monotonicity property (2.1) can be deduced with 𝜈 = 𝑚𝜇

and 𝐿H = 3𝑀𝜇 (with respect to the norm ‖·‖𝑋), cf., Proposition 25.26 of [17].
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Remark 4.2. We comment on the assumption (4.10):
(a) It is easily shown that (𝜇1)–(𝜇4) implies (4.10), however, we emphasize that the latter assumption does not

require 𝜇 to be decreasing nor differentiable. Yet, if 𝜇 is differentiable, then (4.10) implies (𝜇3) and (𝜇4).
(b) If the diffusion coefficient 𝜇 is continuously differentiable, then we can (easily) compute the bounds in (4.10)

by taking into account the mean value theorem. In particular, we may set

𝑚𝜇 = inf
𝑡≥0

𝜉′(𝑡) and 𝑀𝜇 = sup
𝑡≥0

𝜉′(𝑡),

where 𝜉(𝑡) = 𝜇(𝑡2)𝑡.
(c) Recall from (𝜇4) that the continuous function 𝜑(𝑡), cf., (1.3), is strictly convex and increasing for 𝑡 ≥ 0 by

(𝜇3) with 𝜑(0) = 0; we note that these properties relate to the class of Orlicz functions. In this aspect, our
work links to the more general context of Orlicz type nonlinearities which have been studied, for instance,
in [4].

The following result is a direct consequence of Corollary 2.3.

Proposition 4.3. Suppose that the diffusion coefficient 𝜇 satisfies (4.10). Then, the functional H from (4.9)
has a unique minimizer 𝑢⋆ ∈ 𝐾, cf., (4.1), which satisfies the weak formulation∫︁

Ω

𝜇
(︁
|∇𝑢|2

)︁
∇𝑢 · ∇𝑣 dx =

∫︁
Ω

𝑓𝑣 dx−
∫︁

Γ2

ℎ𝑣 dx ∀𝑣 ∈ 𝑋; (4.11)

i.e., 𝑢⋆ is the unique (weak) solution of (4.4).

4.4. Convergence of the modified Kačanov method

Recall that the properties (A1)–(A4) as well as (K) are satisfied if the diffusion coefficient obeys the
bounds (4.10) by our analysis in the previous Sections 4.2 and 4.3, see, in particular, Proposition 4.1 and (4.8).
Hence, the assumptions for the convergence results, cf., Theorem 2.5 and Corollary 2.7, are fulfilled in the
context of the quasilinear elliptic PDE (1.1), without assuming (𝜇2).

Theorem 4.4. Assume that the diffusion coefficient satisfies the bounds (4.10). Then, the damped Kačanov
method (2.14), with 𝛿 : 𝐾 → [𝛿min, 𝛿max] and 0 < 𝛿min ≤ 𝛿max < 2𝛼/3𝑀𝜇, converges to the unique weak solution
𝑢⋆ ∈ 𝐾 of (4.11).

Remark 4.5. We emphasize that the assumptions on the damping function 𝛿 from Theorem 4.4 are sufficient
for the key inequality (2.16) to hold, cf., Corollary 2.7, however, they are not necessary. Indeed, as both step
size methods from Section 3 guarantee this inequality, they yield the convergence in the setting of Theorem 4.4
without the restriction on 𝛿.

4.5. Numerical experiments

We will now perform a number of numerical tests for the modified Kačanov method based on the different
step size methods from Section 3 in the context of the quasilinear elliptic boundary value problem (1.1).

In all experiments, we let Ω := (−1, 1)2 ∖ ([0, 1] × [−1, 0]) be a standard L-shaped domain in R2. We focus
on homogeneous Dirichlet boundary conditions, i.e., Γ1 = 𝜕Ω and 𝑔 ≡ 0, and therefore we set 𝑌 := 𝑋 =
𝐾 = H1

0(Ω). Moreover, we consider the norm ‖·‖𝑌 := ‖∇(·)‖L2(Ω), so that we obtain 𝛼 = 𝑚𝜇 in (4.5) and
(4.6). The source function 𝑓 in (1.1a), respectively the linear functional 𝑏 ≡ 𝑏(𝑢) in the abstract analysis in
Section 2, is chosen such that the analytical solution of (1.1a) and (1.1b), with 𝑔 ≡ 0 on the Dirichlet boundary
Γ1 = 𝜕Ω, is given by the smooth function 𝑢⋆(𝑥, 𝑦) = sin(𝜋𝑥) sin(𝜋𝑦). For the numerical approximation, we
will use a conforming P1-finite element framework with a uniform mesh consisting of approximately 3 · 106

triangles. Throughout we set the correction factor in the adaptive step size algorithms to be 𝜎 = 0.9. We have
implemented our algorithms in Matlab, and solved the linear equations by means of the backslash operator.
Furthermore, the errors to be illustrated in the figures below are taken with respect to the underlying exact
discrete solution, which, in each case, was determined with the aid of 1000 steps of the Zarantonello iteration
with a suitable damping parameter, cf., Proposition 5.1 of [12].
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Figure 1. The diffusion coefficients 𝜇(𝑡) = 𝜇1(𝑡) and 𝜇(𝑡) = 𝜇2(𝑡) from Sections 4.5.1 and 4.5.2,
respectively.

Figure 2. Experiment 4.5.1. Comparison of the performance of the classical Kačanov scheme
(“Undamped”) with the step size algorithms from Section 3.1 (“Taylor”) and Section 3.2
(“Prediction-Correction”). Left: error decay. Right: ratio of two successive errors.

4.5.1. Monotonically decreasing diffusion

We consider the nonlinear diffusion coefficient 𝜇(𝑡) = 𝜇1(𝑡) = (𝑡 + 1)−1 + 1/2, for 𝑡 ≥ 0, see Figure 1. It is
straightforward to verify that the diffusion parameter 𝜇 satisfies (4.10) as well as the properties (𝜇1)–(𝜇4). We
compare the performance of the classical Kačanov scheme (2.11) with the damped Kačanov method (2.14) for
both step size strategies from Section 3. For the application of the two step size methods, we recall that we need
to know the values of the constants 𝑚𝜇 and 𝑀𝜇 a priori ; in light of Remark 4.2 they are found to be 𝑚𝜇 = 3/8
and 𝑀𝜇 = 3/2. Moreover, here and in the two following experiments, we use the initial parameters 𝛿 = 1 and
𝑝 = −1 in Algorithm 2. Even though the diffusion parameter is monotonically decreasing and differentiable,
which implies the convergence of the classical Kačanov scheme, we can see from Figure 2 that the damped
Kačanov method with either the step size method from Section 3.1 or Section 3.2 performs (overall) better (in
terms of error reduction per iteration step) than the undamped iteration. It is noteworthy that the damping
parameters are larger than 1 in all steps for both approaches, see Figure 3.

4.5.2. Non-monotone diffusion

In our second experiment, we consider the nonlinear diffusion parameter 𝜇(𝑡) = 𝜇2(𝑡) = 𝑡 exp(−𝑡2) log(𝑡 +
𝜖) + 1, 𝑡 ≥ 0, for 𝜖 = 10−4, see Figure 1. It can be shown that 𝜇 satisfies (4.10) with 𝑚𝜇 ≈ 0.483503 and
𝑀𝜇 ≈ 1.73565, but is not monotonically decreasing (nor increasing). Even though Figure 4 indicates that the
classical Kačanov scheme (2.11) may still converge, the convergence rate is really poor. In contrast, the modified
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Figure 3. Experiment 4.5.1. Step sizes of each iterative step for the respective damped Kačanov
scheme.

Figure 4. Experiment 4.5.2. Comparison of the performance of the classical Kačanov scheme
(“Undamped”) with the step size algorithms from Section 3.1 (“Taylor”) and Section 3.2
(“Prediction-Correction”). Left: error decay. Right: ratio of two successive errors.

Figure 5. Experiment 4.5.2. Step sizes of each iterative step for the respective damped Kačanov
scheme.
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Figure 6. The diffusion coefficients 𝜇3 from Section 4.5.3.

Figure 7. Experiment 4.5.3. Comparison of the performance of the classical Kačanov scheme
(“Undamped”) with the step size algorithms from Section 3.1 (“Taylor”) and Section 3.2
(“Prediction-Correction”). Left: error decay. Right: ratio of two successive errors.

Kačanov scheme (2.14) with either damping strategy from Section 3 exhibits a considerably better performance.
We can observe in Figure 5 that the damping parameters for both step size strategies from Section 3 are (mostly)
smaller than 1 in this specific experiment.

4.5.3. Diffusion coefficient motivated by fluid viscosities with shear thinning and shear thickening zones

In our last experiment, we will consider a diffusion coefficient that is motivated by a model of a fluid viscosity
with both shear thinning and shear thickening zones; we refer to the work [6] for the details about the rheological
properties of the corresponding fluids. Specifically, let

𝜇3(𝑡) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜇𝑐 + 𝜇0−𝜇𝑐

1+
(︁

𝑡2
𝑡−𝑡𝑐

)︁2 , 0 ≤ 𝑡 ≤ 𝑡𝑐

𝜇max + 𝜇𝑐−𝜇max

1+( 𝑡−𝑡𝑐
𝑡−𝑡max )2 , 𝑡𝑐 < 𝑡 ≤ 𝑡max

𝜇∞ + 𝜇max−𝜇∞
1+(𝑡−𝑡max)2

, 𝑡 > 𝑡max,

whereby we set 𝑡𝑐 = 0.5, 𝑡max = 2, 𝜇0 = 5, 𝜇𝑐 = 4, 𝜇max = 10, and 𝜇∞ = 6; this diffusion coefficient is
illustrated in Figure 6.

In [6] it is shown that the diffusion coefficient 𝜇3(𝑡) is continuously differentiable. Once more, from Remark 4.2,
it follows that (4.10) is satisfied with 𝑚𝜇 = 1.68 and 𝑀𝜇 ≈ 28.2696. We clearly see in Figure 7 that the classical
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Figure 8. Experiment 4.5.3. Step sizes of each iterative step for the respective damped Kačanov
scheme.

Kačanov scheme does not converge for this specific problem. In contrast, the modified Kačanov method with
either of the two step size strategies from Section 3 converges perfectly, with the ratio of two successive errors
being around 0.8. Here, the step sizes in the damped Kačanov scheme are, after an initial phase, between 0.3
and 0.7, and thus noticeably below 1, see Figure 8.

5. Conclusion

In this work, we have devised a modified version of the classical Kačanov iteration scheme. Exploiting the
iterative linearization approach, cf., [12], we have shown that the introduction of a damping parameter allows
to derive a new convergence analysis, which applies to a wider class of problems. For instance, in the context of
quasilinear elliptic PDE, a standard monotonicity condition on the diffusion coefficient can be dropped. More-
over, our numerical tests highlight that the modified Kačanov method, in combination with suitable damping
strategies, outperforms the classical scheme for the examples under consideration. Especially, the final experi-
ment in our work illustrates that the modified Kačanov scheme can effectively approximate nonlinear problems,
for which the classical Kačanov method fails to generate a sequence converging to a solution. This underlines
the relevance of our modified Kačanov scheme. We close by remarking that our work can be extended in a
straightforward manner to quasilinear systems with applications to, e.g., plasticity or quasi-Newtonian fluids.
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