Goldstein’s equations have been introduced in 1978 as an alternative model to linearized Euler equations to model acoustic waves in moving fluids. This new model is particularly attractive since it appears as a perturbation of a simple scalar model: the potential model. In this work we propose a mathematical analysis of boundary value problems associated with Goldstein’s equations in the time-harmonic regime.
Keywords: Goldstein’s equations, aeroacoustics, well-posedness, Fredholm alternative
@article{M2AN_2022__56_2_451_0,
author = {Bensalah, Antoine and Joly, Patrick and Mercier, Jean-Francois},
title = {Mathematical analysis of {Goldstein{\textquoteright}s} model for time-harmonic acoustics in flows},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
pages = {451--483},
year = {2022},
publisher = {EDP-Sciences},
volume = {56},
number = {2},
doi = {10.1051/m2an/2022007},
mrnumber = {4385102},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an/2022007/}
}
TY - JOUR AU - Bensalah, Antoine AU - Joly, Patrick AU - Mercier, Jean-Francois TI - Mathematical analysis of Goldstein’s model for time-harmonic acoustics in flows JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2022 SP - 451 EP - 483 VL - 56 IS - 2 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2022007/ DO - 10.1051/m2an/2022007 LA - en ID - M2AN_2022__56_2_451_0 ER -
%0 Journal Article %A Bensalah, Antoine %A Joly, Patrick %A Mercier, Jean-Francois %T Mathematical analysis of Goldstein’s model for time-harmonic acoustics in flows %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2022 %P 451-483 %V 56 %N 2 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/m2an/2022007/ %R 10.1051/m2an/2022007 %G en %F M2AN_2022__56_2_451_0
Bensalah, Antoine; Joly, Patrick; Mercier, Jean-Francois. Mathematical analysis of Goldstein’s model for time-harmonic acoustics in flows. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 2, pp. 451-483. doi: 10.1051/m2an/2022007
[1] , , and , The stability for the Cauchy problem for elliptic equations. Inverse Prob. 25 (2009) 123004. | MR | Zbl
[2] , , , and , Challgences for time and frequency domain aeroacoustic solvers. In: 11th World Congress on Computational Mechanics (WCCM XI); 5th European Conference on Computationnal Mechanics (ECCM V); 6th European Conference on Computational Fluid Dynamics (ECFD VI) (2014).
[3] , Computing the sound power in non-uniform flow. J. Sound Vib. 266 (2003) 75–92.
[4] and , Inégalité de poincaré courbe pour le traitement variationnel de l’équation de transport. C. R. Acad. Sci. Sér. 1 Math. 322 (1996) 721–727. | MR | Zbl
[5] , Problèmes aux limites pour les équations aux dérivées partielles du premier ordre à coefficients réels; théorèmes d’approximation; application à l’équation de transport. Ann. Sci. de l’École Norm. Supérieure 3 (1970) 185–233. | MR | Zbl | Numdam
[6] , and , Perfectly matched layers for the convected Helmholtz equation. SIAM J. Numer. Anal. 42 (2004) 409–433. | MR | Zbl
[7] , and , Perfectly matched layers for time-harmonic acoustics in the presence of a uniform flow. SIAM J. Numer. Anal. 44 (2006) 1191–1217. | MR | Zbl
[8] , Une approche nouvelle de la modélisation mathématique et numérique en aéroacoustique par les équations de Goldstein et applications en aéronautique. Ph.D. thesis, ENSTA ParisTech (2018).
[9] , and , Well-posedness of a generalized time-harmonic transport equation for acoustics in flow. Math. Methods Appl. Sci. 41 (2018) 3117–3137. | MR
[10] , A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114 (1994) 185–200. | MR | Zbl
[11] , , and , Wave equation for sound in fluids with vorticity. Phys. D: Nonlinear Phenom. 191 (2004) 121–136. | MR | Zbl
[12] , The propagation of sound in an inhomogeneous and moving medium I. J. Acoust. Soc. Am. 18 (1946) 322–328. | MR
[13] , , and , Time-harmonic acoustic propagation in the presence of a shear flow. J. Comput. Appl. Math. 204 (2007) 428–439. | MR | Zbl
[14] , , and , A low-mach number model for time-harmonic acoustics in arbitrary flows. J. Comput. Appl. Math. 234 (2010) 1868–1875. | MR | Zbl
[15] , , , and , Time-harmonic acoustic scattering in a complex flow: a full coupling between acoustics and hydrodynamics. Commun. Comput. Phys. 11 (2012) 555–572. | MR
[16] and , Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 32 (1982) 199–259. | MR | Zbl
[17] , and , Coupled BEM–FEM for the convected Helmholtz equation with non-uniform flow in a bounded domain. J. Comput. Phys. 257 (2014) 627–644. | MR
[18] . Perfect Incompressible Fluids. Vol. 14, Oxford University Press (1998). | MR | Zbl
[19] and , Theory of Ordinary Differential Equations. Tata McGraw-Hill Education (1955). | MR | Zbl
[20] , Effect of mean entropy on unsteady disturbance propagation in a slowly varying duct with mean swirling flow. J. Sound Vib. 291 (2006) 779–801.
[21] and , Propagation of unsteady disturbances in a slowly varying duct with mean swirling flow. J. Fluid Mech. 445 (2001) 207–234. | MR | Zbl
[22] , Manuel théorique ACTRAN. Free Field Technologies, Louvain-la-Neuve, Belgique (2001).
[23] and , Mathematical Aspects of Discontinuous Galerkin Methods. Vol. 69, Springer Science & Business Media (2011). | MR | Zbl
[24] , Etude mathématique et numérique de la propagation acoustique d’un turboréacteur. Ph.D. thesis, Université Henri Poincaré-Nancy 1 (2006).
[25] and , Absorbing boundary conditions for numerical simulation of waves. Proc. Nat. Acad. Sci. 74 (1977) 1765–1766. | MR | Zbl
[26] and , Discontinuous Galerkin methods for Friedrichs’ systems. I. General theory. SIAM J. Numer. Anal. 44 (2006) 753–778. | MR | Zbl
[27] and , Theory and Practice of Finite Elements. Vol. 159. Springer Science & Business Media (2013). | MR | Zbl
[28] , The boundary condition at an impedance wall in a non-uniform duct with potential mean flow. J. Sound Vib. 246 (2001) 63–69.
[29] , Symmetric positive linear differential equations. Commun. Pure Appl. Math. 11 (1958) 333–418. | MR | Zbl
[30] and , A full discrete dispersion analysis of time-domain simulations of acoustic liners with flow. J. Comput. Phys. 273 (2014) 310–326. | MR
[31] , Propagation d’une onde sonore dans l’atmosphère et théorie des zones de silence. Gauthier-Villars et Cie, Éditeurs, Libraires du Bureau des longitudes, de l (1931). | Zbl | JFM
[32] , Unsteady vortical and entropic distortions of potential flows round arbitrary obstacles. J. Fluid Mech. 89 (1978) 433–468. | Zbl
[33] and , Sound propagation in an annular duct with mean potential swirling flow. J. Sound Vib. 198 (1996) 601–616.
[34] and , Acoustic–vorticity waves in swirling flows. J. Sound Vib. 209 (1998) 203–222.
[35] and , On the well-posedness of Galbrun’s equation. J. Math. Pures App. 150 (2021) 112–133. | MR
[36] and , On the well-posedness of the damped time-harmonic Galbrun equation and the equations of stellar oscillations. SIAM J. Math. Anal. 53 (2021) 4068–4095. | MR
[37] and , Algebraic and exponential instability of inviscid swirling flow. J. Fluid Mech. 565 (2006) 279–318. | MR | Zbl
[38] , Discontinuous Galerkin methods for Friedrichs systems with irregular solutions. Ph.D. thesis, Citeseer (2004).
[39] , Some trace theorems in anisotropic Sobolev spaces. SIAM J. Math. Anal. 23 (1992) 799–819. | MR | Zbl
[40] , An elementary introduction to the construction and the analysis of perfectly matched layers for time domain wave propagation. SeMA J. 57 (2012) 5–48. | MR | Zbl | DOI
[41] , Perturbation Theory for Linear Operators. Vol. 132, Springer Science & Business Media (2013). | Zbl | MR
[42] , A comparison between analytic and numerical methods for modelling automotive dissipative silencers with mean flow. J. Sound Vib. 325 (2009) 565–582. | DOI
[43] and , Analytic mode matching for a circular dissipative silencer containing mean flow and a perforated pipe. J. Acoust. Soc. Am. 122 (2007) 3471–3482. | DOI
[44] , On sound generated aerodynamically I. General theory. Proc. R. Soc. London. Ser. A. Math. Phys. Sci. 211 (1952) 564–587. | MR | Zbl
[45] , On spatially growing disturbances in an inviscid shear layer. J. Fluid Mech. 23 (1965) 521–544. | MR | DOI
[46] , and , A stable formulation of resonant Maxwell’s equations in cold plasma. J. Comput. Appl. Math. 362 (2019) 185–204. | MR | DOI
[47] and , A finite element analysis of the convected acoustic wave motion in dissipative silencers. J. Sound Vib. 184 (1995) 529–545. | Zbl | DOI
[48] , Wave equation for sound in fluids with unsteady inhomogeneous flow. J. Acoust. Soc. Am. 87 (1990) 2292–2299. | DOI
[49] and , An Introduction to Partial Differential Equations. Vol. 13, Springer Science & Business Media (2006). | MR | Zbl
[50] and , A numerical comparison between the multiple-scales and finite-element solution for sound propagation in lined flow ducts. J. Fluid Mech. 437 (2001) 367–384. | Zbl | DOI
[51] and , An introduction to acoustics. Eindhoven Univ. Technol. 18 (2004) 19.
[52] and , The wave modes in ducted swirling flows. J. Fluid Mech. 371 (1998) 1–20. | MR | Zbl | DOI
Cité par Sources :





