Mathematical analysis of Goldstein’s model for time-harmonic acoustics in flows
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 2, pp. 451-483

Goldstein’s equations have been introduced in 1978 as an alternative model to linearized Euler equations to model acoustic waves in moving fluids. This new model is particularly attractive since it appears as a perturbation of a simple scalar model: the potential model. In this work we propose a mathematical analysis of boundary value problems associated with Goldstein’s equations in the time-harmonic regime.

DOI : 10.1051/m2an/2022007
Classification : 35B20, 35B45, 35M32, 35Q35
Keywords: Goldstein’s equations, aeroacoustics, well-posedness, Fredholm alternative
@article{M2AN_2022__56_2_451_0,
     author = {Bensalah, Antoine and Joly, Patrick and Mercier, Jean-Francois},
     title = {Mathematical analysis of {Goldstein{\textquoteright}s} model for time-harmonic acoustics in flows},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {451--483},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {2},
     doi = {10.1051/m2an/2022007},
     mrnumber = {4385102},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2022007/}
}
TY  - JOUR
AU  - Bensalah, Antoine
AU  - Joly, Patrick
AU  - Mercier, Jean-Francois
TI  - Mathematical analysis of Goldstein’s model for time-harmonic acoustics in flows
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2022
SP  - 451
EP  - 483
VL  - 56
IS  - 2
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2022007/
DO  - 10.1051/m2an/2022007
LA  - en
ID  - M2AN_2022__56_2_451_0
ER  - 
%0 Journal Article
%A Bensalah, Antoine
%A Joly, Patrick
%A Mercier, Jean-Francois
%T Mathematical analysis of Goldstein’s model for time-harmonic acoustics in flows
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2022
%P 451-483
%V 56
%N 2
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2022007/
%R 10.1051/m2an/2022007
%G en
%F M2AN_2022__56_2_451_0
Bensalah, Antoine; Joly, Patrick; Mercier, Jean-Francois. Mathematical analysis of Goldstein’s model for time-harmonic acoustics in flows. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 2, pp. 451-483. doi: 10.1051/m2an/2022007

[1] G. Alessandrini, L. Rondi, E. Rosset and S. Vessella, The stability for the Cauchy problem for elliptic equations. Inverse Prob. 25 (2009) 123004. | MR | Zbl

[2] A. Angeloski, M. Discacciati, C. Legendre, G. Lielens and A. Huerta, Challgences for time and frequency domain aeroacoustic solvers. In: 11th World Congress on Computational Mechanics (WCCM XI); 5th European Conference on Computationnal Mechanics (ECCM V); 6th European Conference on Computational Fluid Dynamics (ECFD VI) (2014).

[3] O. V. Atassi, Computing the sound power in non-uniform flow. J. Sound Vib. 266 (2003) 75–92.

[4] P. Azérad and J. Pousin, Inégalité de poincaré courbe pour le traitement variationnel de l’équation de transport. C. R. Acad. Sci. Sér. 1 Math. 322 (1996) 721–727. | MR | Zbl

[5] C. Bardos, Problèmes aux limites pour les équations aux dérivées partielles du premier ordre à coefficients réels; théorèmes d’approximation; application à l’équation de transport. Ann. Sci. de l’École Norm. Supérieure 3 (1970) 185–233. | MR | Zbl | Numdam

[6] E. Bécache, A. Bonnet-Ben Dhia and G. Legendre, Perfectly matched layers for the convected Helmholtz equation. SIAM J. Numer. Anal. 42 (2004) 409–433. | MR | Zbl

[7] E. Bécache, A.-S. Bonnet Ben-Dhia and G. Legendre, Perfectly matched layers for time-harmonic acoustics in the presence of a uniform flow. SIAM J. Numer. Anal. 44 (2006) 1191–1217. | MR | Zbl

[8] A. Bensalah, Une approche nouvelle de la modélisation mathématique et numérique en aéroacoustique par les équations de Goldstein et applications en aéronautique. Ph.D. thesis, ENSTA ParisTech (2018).

[9] A. Bensalah, P. Joly and J.-F. Mercier, Well-posedness of a generalized time-harmonic transport equation for acoustics in flow. Math. Methods Appl. Sci. 41 (2018) 3117–3137. | MR

[10] J.-P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114 (1994) 185–200. | MR | Zbl

[11] S. E. P. Bergliaffa, K. Hibberd, M. Stone and M. Visser, Wave equation for sound in fluids with vorticity. Phys. D: Nonlinear Phenom. 191 (2004) 121–136. | MR | Zbl

[12] D. Blokhintzev, The propagation of sound in an inhomogeneous and moving medium I. J. Acoust. Soc. Am. 18 (1946) 322–328. | MR

[13] A.-S. Bonnet Ben-Dhia, E.-M. Duclairoir, G. Legendre and J.-F. Mercier, Time-harmonic acoustic propagation in the presence of a shear flow. J. Comput. Appl. Math. 204 (2007) 428–439. | MR | Zbl

[14] A.-S. Bonnet Ben-Dhia, J.-F. Mercier, F. Millot and S. Pernet, A low-mach number model for time-harmonic acoustics in arbitrary flows. J. Comput. Appl. Math. 234 (2010) 1868–1875. | MR | Zbl

[15] A.-S. Bonnet Ben-Dhia, J.-F. Mercier, F. Millot, S. Pernet and E. Peynaud, Time-harmonic acoustic scattering in a complex flow: a full coupling between acoustics and hydrodynamics. Commun. Comput. Phys. 11 (2012) 555–572. | MR

[16] A. N. Brooks and T. J. Hughes, Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 32 (1982) 199–259. | MR | Zbl

[17] F. Casenave, A. Ern and G. Sylvand, Coupled BEM–FEM for the convected Helmholtz equation with non-uniform flow in a bounded domain. J. Comput. Phys. 257 (2014) 627–644. | MR

[18] J.-Y. Chemin. Perfect Incompressible Fluids. Vol. 14, Oxford University Press (1998). | MR | Zbl

[19] E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations. Tata McGraw-Hill Education (1955). | MR | Zbl

[20] A. J. Cooper, Effect of mean entropy on unsteady disturbance propagation in a slowly varying duct with mean swirling flow. J. Sound Vib. 291 (2006) 779–801.

[21] A. J. Cooper and N. Peake, Propagation of unsteady disturbances in a slowly varying duct with mean swirling flow. J. Fluid Mech. 445 (2001) 207–234. | MR | Zbl

[22] J. Coyette, Manuel théorique ACTRAN. Free Field Technologies, Louvain-la-Neuve, Belgique (2001).

[23] D. A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods. Vol. 69, Springer Science & Business Media (2011). | MR | Zbl

[24] S. Duprey, Etude mathématique et numérique de la propagation acoustique d’un turboréacteur. Ph.D. thesis, Université Henri Poincaré-Nancy 1 (2006).

[25] B. Engquist and A. Majda, Absorbing boundary conditions for numerical simulation of waves. Proc. Nat. Acad. Sci. 74 (1977) 1765–1766. | MR | Zbl

[26] A. Ern and J.-L. Guermond, Discontinuous Galerkin methods for Friedrichs’ systems. I. General theory. SIAM J. Numer. Anal. 44 (2006) 753–778. | MR | Zbl

[27] A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements. Vol. 159. Springer Science & Business Media (2013). | MR | Zbl

[28] W. Eversman, The boundary condition at an impedance wall in a non-uniform duct with potential mean flow. J. Sound Vib. 246 (2001) 63–69.

[29] K. O. Friedrichs, Symmetric positive linear differential equations. Commun. Pure Appl. Math. 11 (1958) 333–418. | MR | Zbl

[30] G. Gabard and E. J. Brambley, A full discrete dispersion analysis of time-domain simulations of acoustic liners with flow. J. Comput. Phys. 273 (2014) 310–326. | MR

[31] H. Galbrun, Propagation d’une onde sonore dans l’atmosphère et théorie des zones de silence. Gauthier-Villars et Cie, Éditeurs, Libraires du Bureau des longitudes, de l (1931). | Zbl | JFM

[32] M. Goldstein, Unsteady vortical and entropic distortions of potential flows round arbitrary obstacles. J. Fluid Mech. 89 (1978) 433–468. | Zbl

[33] V. V. Golubev and H. M. Atassi, Sound propagation in an annular duct with mean potential swirling flow. J. Sound Vib. 198 (1996) 601–616.

[34] V. V. Golubev and H. M. Atassi, Acoustic–vorticity waves in swirling flows. J. Sound Vib. 209 (1998) 203–222.

[35] L. Hägg and M. Berggren, On the well-posedness of Galbrun’s equation. J. Math. Pures App. 150 (2021) 112–133. | MR

[36] M. Halla and T. Hohage, On the well-posedness of the damped time-harmonic Galbrun equation and the equations of stellar oscillations. SIAM J. Math. Anal. 53 (2021) 4068–4095. | MR

[37] C. Heaton and N. Peake, Algebraic and exponential instability of inviscid swirling flow. J. Fluid Mech. 565 (2006) 279–318. | MR | Zbl

[38] M. Jensen, Discontinuous Galerkin methods for Friedrichs systems with irregular solutions. Ph.D. thesis, Citeseer (2004).

[39] P. Joly, Some trace theorems in anisotropic Sobolev spaces. SIAM J. Math. Anal. 23 (1992) 799–819. | MR | Zbl

[40] P. Joly, An elementary introduction to the construction and the analysis of perfectly matched layers for time domain wave propagation. SeMA J. 57 (2012) 5–48. | MR | Zbl | DOI

[41] T. Kato, Perturbation Theory for Linear Operators. Vol. 132, Springer Science & Business Media (2013). | Zbl | MR

[42] R. Kirby, A comparison between analytic and numerical methods for modelling automotive dissipative silencers with mean flow. J. Sound Vib. 325 (2009) 565–582. | DOI

[43] R. Kirby and F. D. Denia, Analytic mode matching for a circular dissipative silencer containing mean flow and a perforated pipe. J. Acoust. Soc. Am. 122 (2007) 3471–3482. | DOI

[44] M. J. Lighthill, On sound generated aerodynamically I. General theory. Proc. R. Soc. London. Ser. A. Math. Phys. Sci. 211 (1952) 564–587. | MR | Zbl

[45] A. Michalke, On spatially growing disturbances in an inviscid shear layer. J. Fluid Mech. 23 (1965) 521–544. | MR | DOI

[46] A. Nicolopoulos, M. Campos-Pinto and B. Després, A stable formulation of resonant Maxwell’s equations in cold plasma. J. Comput. Appl. Math. 362 (2019) 185–204. | MR | DOI

[47] K. S. Peat and K. L. Rathi, A finite element analysis of the convected acoustic wave motion in dissipative silencers. J. Sound Vib. 184 (1995) 529–545. | Zbl | DOI

[48] A. D. Pierce, Wave equation for sound in fluids with unsteady inhomogeneous flow. J. Acoust. Soc. Am. 87 (1990) 2292–2299. | DOI

[49] M. Renardy and R. C. Rogers, An Introduction to Partial Differential Equations. Vol. 13, Springer Science & Business Media (2006). | MR | Zbl

[50] S. W. Rienstra and W. Eversman, A numerical comparison between the multiple-scales and finite-element solution for sound propagation in lined flow ducts. J. Fluid Mech. 437 (2001) 367–384. | Zbl | DOI

[51] S. W. Rienstra and A. Hirschberg, An introduction to acoustics. Eindhoven Univ. Technol. 18 (2004) 19.

[52] C. K. Tam and L. Auriault, The wave modes in ducted swirling flows. J. Fluid Mech. 371 (1998) 1–20. | MR | Zbl | DOI

Cité par Sources :