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MATHEMATICAL ANALYSIS OF GOLDSTEIN’S MODEL FOR
TIME-HARMONIC ACOUSTICS IN FLOWS

Antoine Bensalah1,* , Patrick Joly2 and Jean-Francois Mercier2

Abstract. Goldstein’s equations have been introduced in 1978 as an alternative model to linearized
Euler equations to model acoustic waves in moving fluids. This new model is particularly attractive
since it appears as a perturbation of a simple scalar model: the potential model. In this work we
propose a mathematical analysis of boundary value problems associated with Goldstein’s equations in
the time-harmonic regime.
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1. Introduction

Aeroacoustics concerns the study of the sound propagation in presence of a fluid in flow. In this framework, we
aim at determining the propagation of small perturbations of a fluid, namely the acoustic perturbations, created
by a known source in an imposed flow [44]. The main motivations are in aeronautics where the noise pollution
induced by aircraft engines is a major environmental issue which is addressed both by numerical simulations
[28], and by experiment. Applications lie also in the car industry with the need of reducing the sound emitted by
exhaust pipes [42,43,47], or in the domestic industry with the noise of air-conditioning devices and ventilation
ducts.

The most natural model for aeroacoustics is provided by the linearized Euler equations obtained from the
linearization of Euler Equations [51] around a stationary solution: 𝜌0, 𝑝0,𝑣0, density, pressure and velocity of the
so called base flow. In what follows, we shall suppose that the fluid is perfect and the flow is homentropic (con-
stant entropy). Linearized Euler’s system appears as a first order hyperbolic system with zero order governing
the acoustic velocity 𝑣 and the acoustic pressure 𝑝, perturbations of 𝑣0 and 𝑝0.

Motivated by better properties regarding to their discretization by already available numerical methods,
alternative models have been proposed in the literature. In the mid 1900’s, Galbrun’s equations have been
proposed [31]: the unknown is the so-called Lagrangian displacement field 𝑢 and the model looks like a vectorial
convected wave equation.

In the particular case where the mean flow is potential (i.e. the mean velocity field 𝑣0 is the gradient of a
scalar potential), one can show [12, 48], under reasonable assumptions about source terms, that the acoustic
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velocity is itself the gradient of a scalar potential 𝜙. The model governing 𝜙, called the potential model in what
follows, consists in the scalar convected wave equation

𝜌0𝐷𝑡

(︀
𝑐−2
0 𝐷𝑡𝜙

)︀
− div(𝜌0∇𝜙) = 𝜌0𝑓,

where 𝑓 is a source term, 𝐷𝑡 := 𝜕𝑡 + 𝑣0 ·∇ is the convective derivative relatively to the base flow and 𝑐0 is the
sound celerity (deduced from the base flow 𝜌0, 𝑝0,𝑣0 and the state law chosen). Because of its simplicity and
its adequation to numerical approximations, this scalar model is used in many industrial applications [22, 24],
for instance in the analysis of the influence of liners on the acoustic propagation [28,30,50].

More recently, Goldstein has proposed a new mathematical model [11, 32]. It can be seen as an extension of
the potential one to the general situation where the mean flow is no longer potential. It has the advantage that
the corresponding computational code can be built as a modification of existing codes for the potential case.
The model couples a scalar potential 𝜙 to a vectorial unknown 𝜉, the hydrodynamic velocity, as follow:{︃

𝜌0𝐷𝑡

(︀
𝑐−2
0 𝐷𝑡𝜙

)︀
− div(𝜌0∇𝜙+ 𝜌0𝜉) = 𝜌0𝑓,

𝐷𝑡𝜉 + (𝜉 ·∇)𝑣0 = ∇𝜙× 𝜔0,

where 𝜔0 := ∇ × 𝑣0 is the vorticity of the base flow. As we will show in this paper, Goldstein’s equations are
well adapted for aeroacoustics whereas they are better known in the field of fluid dynamics and where they have
been widely used to model the development of perturbations in a swirling flow [3,20,21,33,34,37,52].

Note that all three models can be shown to be equivalent in the case where the mean flow obeys nonlinear
stationary Euler equations [51]. In particular, concerning the link between linearized Euler equations and Gold-
stein’s equations, the equivalence is investigated in the original paper of Goldstein [32] and in the Ph.D. thesis
[8]. In particular, the connection between Euler and Goldstein’s unknowns reads

𝑝 = −𝜌0𝐷𝑡𝜙, and 𝑣 = ∇𝜙+ 𝜉.

By the way, Goldstein’s equations deserve to be studied independently of the fact that 𝜌0, 𝑝0,𝑣0 satisfy stationary
Euler equations. This is important for the development of numerical methods and also for true life applications
for which available mean flows are not necessarily exact solutions of stationary Euler equations. The only
equation that we will use in the following is the mass conservation equation div(𝜌0𝑣0) = 0.

In this article we study Goldstein’s equations which did not retain much attention from mathematicians.
A particularity of this work is that we are interested in the time-harmonic regime: we look for solutions that
oscillate in time at a given frequency 𝜔 > 0, proportionally to 𝑒−𝑖𝜔𝑡. Our goal is to study the well-posedness
(existence and uniqueness of solutions) of the Goldstein’s model in this particular case.

There are relatively few mathematical works about aeroacoustic models. In time domain, one can benefit
from the well-known theory of symmetric hyperbolic systems in the sense of Friedrichs [29, 38] to prove the
well-posedness of the linearized Euler equations. For instance, it has been done in the recent paper [35] where
the authors also deduce the well-posedness of Galbrun’s equations from the one of Euler’s equations.

The analysis of the time-harmonic regime appears to be much more delicate. An important assumption, not
needed for the time domain analysis, is that the mean flow is subsonic, i.e. its velocity field has an amplitude
strictly less than the speed of sound. This assumption, which is presumed in all existing works, is not restrictive
with respect to many applications in aeroacoustics.

For the analysis, first order Euler equations appear to be not adapted to a direct mathematical approach.
As a matter of fact, the first existing results concern, to our knowledge, Galbrun’s equations. More precisely
the Fredholm nature of the corresponding boundary value problem has been shown in situations of increasing
difficulty. In [13], the case of a 1D shear flow was considered (one benefits from the simple geometry to use
explicit computations). In [14, 15], the analysis has been extended to more general 2D mean flows, first in the
case of a simplified approximate model (the so called low Mach model, valid under a smallness assumption
about the velocity field 𝑣0), then for the full model. In all cases, the results are obtained under some restrictions
about the variations on the reference mean flow: roughly speaking |∇𝑣0| must be small enough.
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The analysis simplifies drastically when one considers the potential model which can be studied with the same
tools and method as the classical Helmholtz equation although the medium is anisotropic and non homogenous.
In [17] (see also [24]), the well-posedness of this model is shown under the only assumption that the mean flow
is subsonic, using Fredholm’s alternative.

Very recently, in [36], a work relatively close to ours, the authors study the time-harmonic damped Galbrun’s
equations in the context of helioseismology. In particular, their model contains absorption terms that we shall
do not consider in this paper. This allows to consider more general flows, without using the Ω-filling assumption,
see the Definition 3.15. The method of analysis is based on some original ad hoc Helmholtz decomposition of
vector fields. The results are obtained under the assumption that the absorption is large enough but do not
require any other assumption on the mean flow, apart its subsonic nature.

In this paper, we do not consider any intrinsic absorption. It complicates the analysis in particular through
the time-harmonic vectorial transport equation satisfied by the unknown 𝜉. The consequence is that a new
restrictive assumption must be done on the reference flow: the Ω-filling condition. In this work, we prove the
existence and uniqueness of solutions to Goldstein’s equations for subsonic Ω-filling flows satisfying an additional
condition similar to the one in [15] but more explicit (in particular easy to check) and this condition can be
moreover interpreted as a low vorticity condition. From the methodological point of view, our method can be
seen more as a modification of the analysis made in [17] for the potential model (this is another advantage of
Goldstein’s model) and uses in an essential manner our previous work on the time-harmonic transport equation
[9] where the Ω-filling condition, already introduced in [4] for the scalar stationary transport equation, plays a
fundamental role.

The outline of this paper is as follows. In Section 2, we present the problem under consideration, beginning
with the assumptions on the mean flow (Sect. 2.1), then presenting the governing equations (Sect. 2.2) and
finally the boundary conditions (Sect. 2.3). The full problem is presented in a mathematically oriented manner
in Section 2.4. The main section of the paper is Section 3. Our main results are the object of Section 3.1 in
which we present and discuss the important notion of admissible flows. In Section 3.2, we explain the difficulties
of the problem and present the approach we have chosen. In Section 3.3, we give a recap of the analysis of
the potential model. Section 3.4 is devoted to the proof of our main theorem, based on analytic Fredholm
theory. Finally, in Section 3.5, we explain in which sense our admissibility condition for the mean flow can be
interpreted as a low vorticity condition. The paper is completed by three appendices devoted to a justification
of the boundary conditions chosen in Section 2.3 (Appendix A), to the proof of a technical lemma related
to Section 3.5 (Appendix B), and to a discussion about a possible alternative approach to the well-posedness
analysis (Appendix C).

2. Equations of the problem

2.1. Geometry and mean flow

We consider a mean flow occupying R𝑑∖𝒪𝑅, 𝑑 = 2 or 3, where the set 𝒪𝑅 represents a rigid body inside which
acoustic waves will not penetrate. The stationary mean flow is characterized by its pressure 𝑝0 and velocity
vector field 𝑣0, all measurable function of the space variable 𝑥. The constitutive law for a barotropic fluid,
namely 𝑝 = 𝐹 (𝜌), where 𝐹 : R ↦→ R is a smooth non decreasing function, then determines the mean flow density
𝜌0 = 𝐹−1(𝑝0) as well as its speed of sound 𝑐0 > 0 via 𝑐20 := 𝐹 ′(𝜌0) [51]. The quantities (𝜌0, 𝑝0,𝑣0) are supposed
to satisfy stationary Euler equations [51] (see however Rem. 2.1) and in particular the mass conservation:

div (𝜌0𝑣0) = 0, (2.1)

which is the only equation on the mean flow that we shall use explicitly in this paper.

Remark 2.1. Real life computations in aeroacoustics are often done with idealized mean flows that are not
necessary exact solutions of stationary Euler equations but result of various approximations (constant density
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for instance) that mays due to physical simplifications or due to approximate numerical calculations. For this
paper, the mass conservation condition (2.1) is the only equation that we shall use explicitly.

For the application to acoustics, we assume that the velocity field is smooth enough, 𝑣0 ∈ C1(R𝑑 ∖ 𝑂𝑅; R𝑑)
and that, as 𝒪𝑅 is rigid, the flow is sliding along 𝜕𝒪𝑅, that is to say, 𝑛(𝑥) denoting the unit normal on 𝜕𝒪𝑅,

∀ 𝑥 ∈ 𝜕𝒪𝑅, 𝑣0(𝑥) · 𝑛(𝑥) = 0.

We also assume that the density 𝜌0 and the velocity 𝑐0 are bounded from below and above by two strictly
positive constants:

∀ 𝑥 ∈ R𝑑∖𝒪𝑅, 0 < 𝜌− ≤ 𝜌0(𝑥) ≤ 𝜌+, 0 < 𝑐− ≤ 𝑐0(𝑥) ≤ 𝑐+. (2.2)

We are interested to study the propagation of acoustic waves in a connected and bounded domain Ω ⊂ R𝑑 ∖𝒪𝑅

whose boundary 𝜕Ω is split into two parts:
𝜕Ω = Γ ∪ Γ𝑅,

where Γ𝑅 := 𝜕Ω ∩ 𝜕𝒪𝑅 is the rigid part and Γ is the outer boundary. It will also be useful, for formulating
boundary conditions, to separate Γ into three parts:

Γ = Γ+ ∪ Γ− ∪ Γ0,

where, by definition
Γ+ :=

{︀
𝑥 ∈ Γ, 𝑛(𝑥) · 𝑣0(𝑥) > 0

}︀
is the outflow boundary,

Γ− :=
{︀
𝑥 ∈ Γ, 𝑛(𝑥) · 𝑣0(𝑥) < 0

}︀
is the inflow boundary,

Γ0 :=
{︀
𝑥 ∈ Γ, 𝑛(𝑥) · 𝑣0(𝑥) = 0

}︀
is the sliding boundary.

(2.3)

For the mathematical analysis, we shall assume that the inflow and outflow boundaries are well separated,
namely (such a condition appears, for instance, in most mathematical works about the stationary transport
equation)

𝑑(Γ−,Γ+) > 0. (2.4)

Remark 2.2. As seen in (2.3), the boundaries are defined by the flow so that they should be denoted Γ±(𝑣0)
and Γ0(𝑣0). We did not do so for avoiding heavy notation.

To illustrate our purpose, let us consider two examples of “real life” applications.

Application 1. Propagation of acoustic waves in a deformed duct.

Denoting 𝑥 = (𝑥𝑇 , 𝑥𝑑), with 𝑥𝑇 ∈ R𝑑−1 the transverse variable and 𝑥𝑑 ∈ R the longitudinal one, we consider
that the fluid domain R𝑑 ∖ 𝒪𝑅 is an infinite “deformed cylinder”, i.e. a infinite connected domain that is
transversally bounded

∃ 𝑅0 > 0 s.t. R𝑑 ∖ 𝒪𝑅 ⊂
{︀
𝑥 ∈ R𝑑 / |𝑥𝑇 | < 𝑅0

}︀
,

and, outside a bounded set, is perfectly cylindrical, namely 𝑆± denoting two bounded domains of R𝑑−1

∃ 𝐿 > 0 s.t R𝑑 ∖ 𝒪𝑅 ∩ {±𝑥𝑑 > 𝐿} = (𝑆± × R) ∩ {±𝑥𝑑 > 𝐿}.

We also assume that the flow is homogeneous outside a bounded domain: there exists positive constants 𝜌±∞, 𝑐
±
∞

and 𝑣±∞ such that, 𝑒𝑑 being the unit vector in the direction 𝑥𝑑,

±𝑥𝑑 > 𝐿 =⇒ 𝜌0(𝑥) = 𝜌±∞, 𝑐0(𝑥) = 𝑐±∞ and 𝑣0(𝑥) = 𝑣±∞ 𝑒𝑑.

In this case, the domain of interest for the propagation of acoustic waves will be typically

Ω :=
{︀
𝑥 ∈ R𝑑 ∖ 𝒪𝑅 / |𝑥𝑑| < 𝐿

}︀
,

whose outer boundary Γ is such that Γ− = 𝑆− × {−𝐿} and Γ+ = 𝑆+ × {𝐿}.
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Figure 1. Typical mean flows. Application 1 (left). Application 2 (right).

Application 2. A model problem in aeronautics (𝑑 = 3).

This concerns a more industrial application about modeling the noise produced by airplanes during their
flight. In cruise regime, the airplane moves at a constant speed 𝑣∞ 𝑒𝑑 and, for the modeling, the idea is to stand
in the attached moving frame. In this way, everything happens as if the plane, which will be typically the rigid
body 𝒪𝑅, created a mean flow whose velocity would be constant “at infinity”, which means sufficiently far, equal
to 𝑣∞ 𝑒𝑑. This flow is typically obtained from a CFD calculation solving stationary Euler (or Navier–Stokes)
equations. More precisely, one generally assumes that there exists a (sufficiently large) parallelepipedic box 𝐵
(which will contain the computational domain), outside which the mean flow is supposed to be homogeneous,
namely

∀ 𝑥 ∈ R𝑑∖Ω, 𝜌0(𝑥) = 𝜌∞, 𝑐0(𝑥) = 𝑐∞ and 𝑣0(𝑥) = 𝑣∞ 𝑒𝑑.

In that case, the computational domain is Ω = 𝐵 ∖ 𝒪𝑅 and the outer boundary Γ is 𝜕𝐵. The boundary Γ0 is
the union of the four faces of 𝐵 that are parallel to 𝑒𝑑, the inflow boundary Γ− is the face of 𝐵 that has 𝑒𝑑 as
incoming normal vector and the outflow boundary Γ+ is the face of 𝐵 that has 𝑒𝑑 as outgoing normal vector.
Both applications are represented on Figure 1.

2.2. Time-harmonic Goldstein’s equations

The goal of the modeling of acoustics in a stationary mean flow (characterized by (𝑣0, 𝑝0)) is to compute the
perturbations (𝑣(𝑥, 𝑡), 𝑝(𝑥, 𝑡)) induced by a small perturbative source term. If this source term varies in time
proportionally to 𝑒−𝑖𝜔𝑡, for a given frequency 𝜔 > 0 and if we look for the first order term of the perturbation
(with respect to the small amplitude of the source term), it is natural to look for acoustic perturbations of
the form 𝑣(𝑥) 𝑒−𝑖𝜔𝑡 for the velocity and 𝑝(𝑥) 𝑒−𝑖𝜔𝑡 for the pressure where (𝑣, 𝑝) are complex valued functions.
The unknowns (𝑣, 𝑝) are naturally governed by time-harmonic linearized Euler equations [51]. However, the
Goldstein’s model is better adapted for taking into account the fact that the nature of the acoustic perturbations
depends on the characteristics of the flow and in particular on its vorticity 𝜔0 := ∇× 𝑣0 (see also Rem. 2.3).

When the flow is potential (𝜔0 = 0) and homentropic (constant entropy), 𝑣 is found to be potential, i.e.
𝑣 = ∇𝜙, where the velocity potential 𝜙 satisfies the convected Helmholtz equation [12,48], in which the acoustic
source is represented by the right hand side 𝑓 :

𝐷𝜔

(︀
𝑐−2
0 𝐷𝜔𝜙

)︀
− 𝜌−1

0 div (𝜌0∇𝜙) = 𝑓. (2.5)

In this equation, 𝐷𝜔 := −𝑖𝜔 + 𝑣0 · ∇, is the harmonic convective derivative. Equation (2.5) is the form of
the convected wave equation that is the most commonly used in the literature [12, 17]. However, exploiting
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the mass conservation equation (2.1), this equation can be rewritten in divergence form, more suitable for the
mathematical and numerical analysis. This exploits the fact that, for any scalar function 𝜓,

𝜌0𝐷𝜔𝜓 = −𝑖𝜔 𝜌0 𝜓 + 𝜌0 𝑣0 ·∇𝜓 = −𝑖𝜔 𝜌𝜓 + div(𝜌0 𝑣0 𝜓).

Applying the above with 𝜓 = 𝑐−2
0 𝐷𝜔𝜑, (2.5) (multiplied by 𝜌0) can be rewritten as

−div
(︀
𝜌0

(︀
∇𝜙− 𝑐−2

0 𝐷𝜔𝜙𝑣0

)︀)︀
− 𝑖𝜔 𝜌0 𝑐

−2
0 𝐷𝜔𝜙 = 𝜌0 𝑓. (2.6)

For a general flow of vorticity 𝜔0 ̸= 0, the acoustic perturbations are also found vortical. That is why, in
addition to the potential 𝜙, one has to introduce a new (vector valued) unknown: the hydrodynamic vector field
𝜉. These unknowns are found to satisfy the Goldstein equations [11,32], that we write below in divergence form,
in conformity with (2.6):⎧⎨⎩−div

(︀
𝜌0

(︀
∇𝜙+ 𝜉 − 𝑐−2

0 𝐷𝜔𝜙𝑣0

)︀)︀
− 𝑖𝜔 𝜌0 𝑐

−2
0 𝐷𝜔𝜙 = 𝜌0 𝑓, (i)

𝐷𝜔𝜉 + (𝜉 ·∇)𝑣0 = ∇𝜙× 𝜔0, (ii)
(2.7)

and are linked to the Euler’s unknowns, velocity 𝑣 and pressure 𝑝, by{︃
𝑣 = ∇𝜙+ 𝜉, (i)

𝑝 = −𝜌0𝐷𝜔𝜙. (ii)
(2.8)

Let us interpret each equation. First (2.7)(i) means that, given 𝜉, 𝜙 is a solution of the convected Helmholtz
equation, with source term 𝑓+𝜌−1

0 div (𝜌0𝜉). Next (2.7)(ii) means that, given 𝜙, 𝜉 is solution of a time-harmonic
transport equation, namely of the form

𝒯 0(𝜔) 𝜉 = 𝑔, with 𝒯 0(𝜔) 𝜉 := 𝐷𝜔 𝜉 + (𝜉 ·∇)𝑣0, (2.9)

by definition the time-harmonic transport operator, with source term 𝑔 = ∇𝜙 × 𝜔0. Of course, (2.7) needs to
be completed with boundary conditions (object of the next section).

Remark 2.3. Another drawback of time-harmonic linearized Euler equations is that, contrary to what hap-
pens in time domain, there are not well-established numerical methods for their resolution. Although no well-
established numerical methods to solve the Goldstein’s equations exists neither, one can rely on the much more
numerically studied equations which constitute the Goldstein’s coupling: the convected Helmholtz equation and
a time-harmonic transport equation. See [17] for the first one and [16,27] for the second one. As a consequence,
one can build a numerical method for Goldstein’s equations: this is what has been done for instance in [8].

2.3. Boundary conditions for the perturbations

As we work with a system of two equations (2.7), we need two different boundary conditions. The first one,
called the acoustic condition, will be seen as a boundary condition for the potential 𝜙 and naturally attached
to (2.7)(i) while the second one, called the hydrodynamic condition, will be seen as a boundary condition for
the hydrodynamic velocity 𝜉 and naturally attached to (2.7)(ii). However, in fact, as it is the case of the two
equations in (2.7), these conditions (the acoustic condition to be more precise) couple the two unknowns.

2.3.1. Acoustic condition

This condition writes differently depending on the part of the boundary, Γ𝑅 or Γ, one is looking at.

– On the rigid boundary Γ𝑅, the boundary condition to be chosen is clear: as for the mean flow, the velocity
of the acoustic disturbances is tangential. According to (2.8)(i), this condition, namely 𝑣 · 𝑛 = 0, simply
reads:

(∇𝜙+ 𝜉) · 𝑛 = 0 on Γ𝑅. (2.10)
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– On the artificial boundary Γ, the choice of good boundary conditions, which are supposed to represent the
fact that acoustic waves want to leave the domain Ω through Γ, is a delicate issue: this is where approximate
modeling enters into account. In the context of this paper, we will content ourselves with a first order
absorbing boundary condition (or first order radiation condition in the spirit of [25], see also Remark 2.4 for
more accurate and sophisticated alternatives). This condition writes

(∇𝜙+ 𝜉) · 𝑛− (𝑣0 · 𝑛) 𝑐−1
0

(︀
𝜉 · 𝑛 + 𝑐−1

0 𝐷𝜔𝜙
)︀

= 𝑖
𝜔

𝑐0
𝜙 on Γ, (2.11)

and its derivation is explained in Appendix A: as for the standard Helmholtz equation, it is designed in order
to perfectly absorb the waves that strike the artificial boundary Γ with normal incidence. By the way, in the
absence of flow (i.e. 𝑣0 and 𝜉 vanishing everywhere), one recovers the well known first order (or Sommerfeld)
absorbing condition ∇𝜙 · 𝑛 = 𝑖 𝜔

𝑐0
𝜙.

The reader will note that, as 𝑣0 ·𝑛 = 0 on Γ𝑅, introducing the function 𝜆 : 𝜕Ω → R+ such that 𝜆 = 0 on Γ𝑅

and 𝜆 = 1 on Γ the conditions (2.10) and (2.11) can be gathered in the following unified form,

𝜌0(∇𝜙+ 𝜉 − 𝑐−2
0 𝐷𝜔𝜙𝑣0) · 𝑛− 𝜌0 𝑐

−1
0 (𝑣0 · 𝑛)(𝜉 · 𝑛) = 𝑖 𝜆

𝜔

𝑐0
𝜌0 𝜙 on 𝜕Ω, (2.12)

which is, thanks to the multiplication by 𝜌0, compatible with the divergence form of the equation (2.7)(i). In
the rest of the paper, we will consider the boundary condition (2.12) in the more general case where 𝜆 is an
impedance function along 𝜕Ω satisfying

𝜆 : 𝜕Ω → R+ ∈ L∞(Γ) / ∃ 𝛾 ⊂ 𝜕Ω, 𝑏 ∈ 𝜕Ω, 𝜚 > 0, s.t. 𝜕Ω ∩𝐵(𝑏, 𝜚) ⊂ 𝛾 and 𝜆 > 0 on 𝛾, (2.13)

where 𝐵(𝑏, 𝜚) is the ball of center 𝑏 and radius 𝜚. In particular, this includes the case of a boundary partially
made of an absorbing wall with impedance 𝜆.

Remark 2.4. There are several approaches to define alternative radiation conditions which are more efficient
than the first order that we used. Let us quote two of them.

– In the situation described in Application 2, Section 2.1, where the mean flow is supposed to be homogeneous
at the outer boundary, one can construct transparent boundary conditions via an integral representation
formula [17]. Such a condition is thus non local. The corresponding boundary value problem has been
analyzed in [17] in the case where the flow is potential everywhere (so that 𝜙 is the only unknown) and at
rest outside Ω. Note that for Application 1, the boundary condition is much less precise due to multiple
reflections on the walls of the waveguide.

– An alternative to radiation conditions is provided by Perfectly Matched Layers (PMLs): the absorption of
waves is realized inside an absorbing layer instead across the absorbing boundary (see [10,40] for introductory
papers). There is not much analysis of PMLs for acoustics in flow. It is nevertheless worthwhile mentioning
the works [6] for the convected Helmholtz equation or [7] for Galbrun’s equations, in the case of a waveguide
(a situation that enters the framework of Application 1, Sect. 2.1).

2.3.2. Hydrodynamic condition

Because of the nature of the equation (2.14)(ii) satisfied by 𝜉, transport type equation, we need a boundary
condition only on the inflow boundary Γ−. We suppose that this boundary is located in such a way that there
does not exist any acoustic source upstream and that the vorticity of the mean flow vanishes in the upstream
area. As a consequence, we prescribe that 𝜉 vanishes on Γ− (this can be interpreted as a causal boundary
condition)

𝜉 = 0 on Γ−.
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2.4. Mathematical formulation of the boundary value problem

We now describe the mathematical problem to be solved, making precise in which functional spaces the
unknowns are searched and the data are taken:

Given 𝑓 ∈ L2(Ω), find (𝜙, 𝜉) ∈ H1(Ω)× L2(Ω)𝑑, such that⎧⎨⎩−div
(︀
𝜌0

(︀
∇𝜙+ 𝜉 − 𝑐−2

0 𝐷𝜔𝜙𝑣0

)︀)︀
− 𝑖𝜔 𝜌0 𝑐

−2
0 𝐷𝜔𝜙 = 𝜌0𝑓, in Ω, (i)

𝐷𝜔𝜉 + (𝜉 ·∇)𝑣0 = ∇𝜙× 𝜔0, in Ω, (ii)
(2.14)

with the following acoustic and hydrodynamic boundary conditions⎧⎨⎩𝜌0(∇𝜙+ 𝜉 − 𝑐−2
0 𝐷𝜔𝜙𝑣0) · 𝑛− 𝜌0 𝑐

−1
0 (𝑣0 · 𝑛)(𝜉 · 𝑛) = 𝑖 𝜆 𝑐−1

0 𝜌0 𝜙, on 𝜕Ω, (i)

𝜉 = 0, on Γ−. (ii)
(2.15)

Let us comment the physical pertinence of the functional framework and the sense to give to the boundary
conditions (2.15), which is related to the existence of appropriate traces. First note that looking for 𝜙 ∈ H1(Ω)
and 𝜉 ∈ L2(Ω)𝑑 implies, via 𝑣 = ∇𝜙+ 𝜉, that ∫︁

Ω

𝜌0 |𝑣|2 < +∞,

namely that the solution has a finite kinetic energy.
The question of traces is a little bit more delicate. First, we remark that (2.14)(i) implies

𝜌0

(︀
∇𝜙+ 𝜉 − 𝑐−2

0 𝐷𝜔𝜙𝑣0

)︀
∈ H(div; Ω),

so that the usual trace theorem in H(div; Ω) ensures that

𝜌0

(︀
∇𝜙+ 𝜉 − 𝑐−2

0 𝐷𝜔𝜙𝑣0

)︀
· 𝑛 ∈ H−

1
2 (𝜕Ω). (2.16)

Note also that (2.14)(ii) implies that 𝜉 belongs to an anisotropic Sobolev space, namely

𝜉 ∈ H(Ω,𝑣0) :=
{︀
𝜁 ∈ L2(Ω)𝑑 / (𝑣0 ·∇)𝜁 ∈ L2(Ω)𝑑

}︀
,

where H(Ω,𝑣0) is a Hilbert space for the natural graph norm

‖𝜁‖2H(Ω,𝑣0)
:=
∫︁

Ω

(︁
|𝜁|2 + |(𝑣0 ·∇)𝜁|2

)︁
,

see [26] for the proof (with weaker assumption on 𝑣0 regularity). Next, it is well known [23,39] that, under the
separation condition (2.4), the trace 𝜁|Γ± on Γ± of any 𝜁 ∈ H(Ω,𝑣0) is well defined and that

𝜁|Γ± ∈ L2(Γ±, |𝑣0 · 𝑛|)𝑑 :=

{︃
𝜁 : Γ± → C𝑑 /

∫︁
Γ±

|𝑣0 · 𝑛| |𝜁|2 < +∞
}︃
. (2.17)

Moreover, the trace map 𝜁 ↦→ 𝜁|Γ± is continuous from H(Ω,𝑣0) in L2(Γ±, |𝑣0 · 𝑛|)𝑑. This gives a sense to
(2.15)(ii) which can also be rewritten as

𝜉 ∈ H−(Ω,𝑣0) :=
{︀
𝜁 ∈ H(Ω,𝑣0) / 𝜁 = 0 on Γ−

}︀
(closed in H(Ω,𝑣0)).

This also gives a sense to the trace (𝜁 ·𝑛)(𝑣0 ·𝑛), when 𝜁 ∈ H−(Ω,𝑣0), as an element of L2(𝜕Ω), that vanishes
along Γ0∪Γ𝑅 (because 𝑣0 ·𝑛 = 0) and Γ− (because 𝜉 = 0). Indeed, it suffices to check that (𝜁 ·𝑛)(𝑣0 ·𝑛) ∈ L2(Γ+)
which follows from the following estimate∫︁

Γ+

|(𝜁 · 𝑛)(𝑣0 · 𝑛)|2 ≤
∫︁

Γ+

|𝜁 · 𝑛|2 |𝑣0 · 𝑛|2 ≤ ‖𝑣0‖L∞
∫︁

Γ+

|𝜁 · 𝑛|2 |𝑣0 · 𝑛|
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which is finite thanks to (2.17). Then, by continuity of the trace operator 𝜁 ↦→ 𝜁|Γ+ , we know that there exists
a constant 𝐶+ > 0, that depends only on Ω, Γ+ and 𝑣0 such that

∀ 𝜁 ∈ H−(Ω,𝑣0), ‖(𝜁 · 𝑛)(𝑣0 · 𝑛)‖L2(Γ+) ≤ 𝐶+ ‖𝜁‖H(Ω,𝑣0). (2.18)

Finally (2.16) and (2.18) give a sense to the boundary condition (2.15)(i) in H−
1
2 (𝜕Ω) a priori. However, since

𝜙|𝜕Ω ∈ H
1
2 (𝜕Ω) ⊂ L2(𝜕Ω) and 𝜆 ∈ L∞(𝜕Ω), 𝜆 𝜌0 𝑐0

−1 𝜙 ∈ L2(𝜕Ω) so that (2.15)(i) implies that the trace (2.16)
belongs to L2(𝜕Ω) and (2.15)(i) holds in L2(𝜕Ω).

3. Analysis of Goldstein’s equations

3.1. The main result

Our main result will rely on a particular assumption of the flow 𝑣0 with respect to the domain Ω. The first
important condition is related to the following definition, that we choose first to express in “physical” terms
(see Def. 3.15 for the proper mathematical definition).

Definition 3.1 (Ω-filling flow and lifetime – informal). The vector field 𝑣0 is said Ω-filling if there exists a
time upper bound 𝑡* > 0 such that any point inside Ω is reached before 𝑡* by a particle that is transported by
the flow from a point on the inflow boundary Γ− at time 𝑡 = 0. In the latter, we call the (global) lifetime of 𝑣0

in Ω, denoted 𝑡*(𝑣0,Ω), the smallest of such upper bounds 𝑡*.

Remark 3.2. The Ω-filling condition excludes in particular two situations:

– the existence of closed streamlines (also called recirculations or periodic orbits) for the flow 𝑣0 inside Ω.
These would correspond to the existence of particles that are transported by the flow and stay indefinitely
inside Ω.

– the existence of stopping points, i.e. points 𝑥𝑠 ∈ Ω where 𝑣0(𝑥𝑠) = 0: this corresponds to the existence of
particles that take an arbitrarily large time to reach a point arbitrarily closed to 𝑥𝑠.

In dimension 2, 𝑑 = 2, there exists a particularly simple characterization of Ω-filling flows provided that Ω is
simply connected. The result, proven in [9], is linked to Brouwer and Poincaré–Bendixson theorems [19], exploits
the fact that, roughly speaking, the existence of periodic orbits implies the existence of a stopping point. The
precise statement is the following

If Ω ⊂ R2 is simply connected, 𝑣0 is Ω-filling ⇐⇒ inf
𝑥∈Ω

|𝑣0(𝑥)| > 0. (3.1)

Remark 3.3. Obviously, if the statement of Definition 3.1 is satisfied for some 𝑡* > 0, it remains true for any
larger time. In the sequel, we shall denote 𝑡*(𝑣0,Ω) the infimum of such times and we shall call it the lifetime
of the flow in Ω.

The Ω-filling condition in Definition 3.1 will be stated in a more mathematical form when we shall use it, in
Section 3.4.2. We shall need a more elaborate condition that relies on the introduction of the following functions

Ψ(𝑠) :=

√︂
𝑒𝑠 − 1
𝑠

, Φ(𝑠) :=
√
𝑒𝑠 − 1− 𝑠

|𝑠| , 𝑠 ∈ R* := R∖{0}, Ψ(0) = 1, Φ(0) = 1/
√

2, (3.2)

whose useful properties are summarized in the following lemma:

Lemma 3.4. The functions Ψ and Φ are continuous and strictly increasing from 0 (𝑠→ −∞) to +∞ (𝑠→ +∞).
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Proof. The proof is easy but given for completeness as the result is important for the rest of the paper.
The function 𝑓(𝑠) := (𝑒𝑠 − 1)/𝑠 is analytic on R. Given 𝑠 ∈ R*, 𝑓 ′(𝑠) = ℎ(𝑠)/𝑠2 where ℎ(𝑠) = 𝑒𝑠(𝑠− 1) + 1.

Providing ℎ′(𝑠) = 𝑠𝑒𝑠, ℎ is decreasing on R− and increasing on R+, and thanks to ℎ(0) = 0, one deduces that
𝑓 ′(𝑠) = ℎ(𝑠)/𝑠2 is positive on R* and one computes 𝑓 ′(0) = 1/2. Thus, 𝑓 is strictly increasing, nonnegative as
𝑓(𝑠) → 0 when 𝑠→ −∞, so is Ψ =

√
𝑓 .

In the same fashion, for Φ, the function 𝑔(𝑠) := (𝑒𝑠−1−𝑠)/𝑠2 is analytic on R. Given 𝑠 ∈ R*, 𝑔′(𝑠) = 𝐻(𝑠)/𝑠3

where 𝐻(𝑠) = 𝑒𝑠(𝑠− 2) + 𝑠+ 2 of derivative 𝐻 ′(𝑠) = ℎ(𝑠). We have just seen that ℎ(𝑠) > 0 on R* and ℎ(0) = 0,
then, 𝐻 is increasing on R and from 𝐻(0) = 0, one deduces that 𝑔′(𝑠) = 𝐻(𝑠)/𝑠3 is positive on R* and thus 𝑔
is strictly increasing, nonnegative as 𝑔(𝑠) → 0 when 𝑠→ −∞, and so is Φ =

√
𝑔. �

Definition 3.5 (Admissible flow). An flow 𝑣0 is admissible if and only if it is Ω-filling, with lifetime 𝑡*(𝑣0,Ω),
and denoting 𝜔0 := ∇×𝑣0 (its vorticity) and 𝑀0 := 𝑣0/𝑐0 (its Mach number), satisfies the following inequality

‖𝜔0‖L∞ 𝑡*(𝑣0,Ω) Φ(2𝑡*(𝑣0,Ω)‖∇𝑣0‖L∞) < 1− ‖𝑀0‖2L∞ . (3.3)

At first glance, equation (3.3) appears as an upper bound for the L∞ norm of the vorticity 𝜔0. This is at
second glance not so obvious since the lifetime 𝑡*(𝑣0,Ω) depends on 𝑣0 in a complicated implicit manner while
𝜔0 is also related to 𝑣0. To emphasize that (3.3) does indeed correspond to a smallness of the vorticity, we refer
the reader to Section 3.5.

Theorem 3.6. Assume that 𝑣0 is an admissible flow in the sense of Definition 3.5 and that the impedance
function 𝜆 satisfies (2.13) and that the inflow and outflow boundaries are well separated, i.e. (2.4). Then, for
any real frequency, the problem is of Fredholm type and there exists a subset of ℛ𝑒𝑥 ⊂ R, with no limit point
in R, of exceptional frequencies such that, for any 𝜔 /∈ ℛ𝑒𝑥, the boundary value problem ((2.14), (2.15)) is
well-posed. More precisely, for such a frequency and for any 𝑓 ∈ L2(Ω), equations ((2.14), (2.15)) has a unique
solution (𝜙, 𝜉) ∈ H1(Ω)× L2(Ω)𝑑 that depends continuously on 𝑓 : for some constant 𝐶(𝑣0,Ω)

‖𝜙‖H1(Ω) + ‖𝜉‖L2(Ω)𝑑 ≤ 𝐶(𝑣0,Ω) ‖𝑓‖L2(Ω).

Any frequency in the set ℛ𝑒𝑥 would correspond to a resonance, a frequency for which there exists a non zero
finite energy solution to the homogeneous problem. For a time source with this frequency, the solution of the
evolution problem would blow up when 𝑡→ +∞ instead of “converging” to a time-harmonic solution (limiting
amplitude principle). The existence of such frequencies – which cannot be excluded a priori because of our
method of proof – remains an open question (see also the point (d) in the discussion below).

It is interesting to question the importance/relevance of the assumptions of Theorem 3.6:

(a) The Ω-filling condition, which is implicitly included in the admissibility condition, will be used in our
analysis to eliminate the unknown 𝜉 (cf. Sect. 3.4.2). Violating this condition disqualifies our approach but
is not a priori an obstacle to the well-posedness of ((2.14), (2.15)). However, it has been shown in the Ph.D
thesis [8] that, in some specific situations, the existence of closed orbits (closed streamlines) was, for a wide
range of frequencies, an obstacle to the well-posedness of ((2.14), (2.15)), at least in the framework adopted
in Section 2.4. For such frequencies, it would be necessary to adopt a new notion of weak solution that
would require to accept more singular solutions than (𝜙, 𝜉) ∈ H1(Ω) × L2(Ω). Similar phenomena appear
for the propagation of electromagnetic waves in magnetized plasmas [46].

(b) The separation condition (2.4) appears regularly in the theory of transport equations (see for instance [23]).
Clearly for us, it will appear again as a technical condition for eliminating 𝜉. However, contrary to the
Ω-filling condition, our feeling is that this condition is not really essential and could be removed.

(c) The admissibility condition of Definition 3.5 is stronger than simply saying that the mean flow is strictly
subsonic, ‖𝑀0‖L∞ < 1, a condition that is made in most mathematical studies in aeroacoustics. If the
flow became supersonic in parts of Ω, the nature of the equation (2.14) governing 𝜙 would change since the
ellipticity of the principal part of the differential operator would be lost. Then, the mathematical analysis
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would fall under the application of completely different techniques, far beyond the domain of competence
of the authors.

(d) The admissibility condition will be used in our approach to show that the reduced problem falls under
Fredholm’s alternative. In this paper, this condition will clearly appear as a technical condition not connected
to physics. However, it is not so surprising to see appear a condition of this nature, which corresponds to
imposing an upper bound on the velocity field 𝑣0 space variations, and more precisely an upper bound on
the vorticity 𝜔0. Indeed, it is well-known, in particular in the case of a laminar flow inside a waveguide,
that a too strong vorticity is the cause of the development of hydrodynamic instabilities, in particular
instabilities of Kelvin–Helmholtz type [45] which questions the soundness of the time-harmonic model [2].
This is clearly very close to the question of the existence of resonances as evoked previously.

3.2. Orientation and difficulties

The method we shall follow is to consider the coupled problem ((2.14), (2.15)) as a perturbation of the
problem obtained by taking 𝜔0 = 0 in ((2.14), (2.15)), which is the problem to be solved in the case of a
potential flow, i.e. when ∇× 𝑣0 = 0. Assume for a while that, given 𝜙, the transport equation (2.14)(ii) in 𝜉,
completed by the boundary condition (2.15)(ii), is well-posed. In such a case, one easily infers that, since the
source term ∇𝜙×𝜔0 vanishes, 𝜉 = 0. As a consequence, the only unknown is the potential 𝜙 which solves the
convected Helmholtz problem{︃−div

(︀
𝜌0

(︀
∇𝜙− 𝑐−2

0 𝐷𝜔𝜙𝑣0

)︀)︀
− 𝑖𝜔 𝜌0 𝑐

−2
0 𝐷𝜔𝜙 = 𝜌0𝑓, in Ω, (i)

𝜌0

(︀
∇𝜙− 𝑐−2

0 𝐷𝜔𝜙𝑣0

)︀
· 𝑛 = 𝑖 𝜆 𝑐−1

0 𝜌0 𝜙 on 𝜕Ω. (ii)
(3.4)

In the context of subsonic flows to which we restrict ourselves in this paper, the analysis on the above problem
is well known (see for instance [17]) but for the sake of completeness and pedagogy, we shall recall the main
ideas and results in Section 3.3.

To solve the Goldstein’s problem ((2.14), (2.15)), we shall use a perturbative analysis. The idea is to eliminate
𝜉 via the solution of the transport problem ((2.14)(ii), (2.15)(ii)). This, at least formally for the moment (this
will be made precise and rigorous in Sect. 3.4.2, see (3.34) and (3.35)), allows us to express 𝜉 as a function of 𝜙

𝜉 = 𝒮0(𝜔; ∇𝜙). (3.5)

As already seen in Section 3.1, a sufficient condition (and probably necessary) for the solvability of (2.14)(ii)
is that the flow is Ω-filling (Def. 3.1). This was demonstrated in [9] and will be recalled (and extended) in
Section 3.4.2. Thanks to (3.5), Goldstein’s problem ((2.14), (2.15)) is rewritten as the following “modified”
convected Helmholtz problem governing the only unknown 𝜙:{︃−div

(︀
𝜌0

(︀
∇𝜙+ 𝒮0(𝜔; ∇𝜙)− 𝑐−2

0 𝐷𝜔𝜙𝑣0

)︀)︀
− 𝑖𝜔 𝜌0 𝑐

−2
0 𝐷𝜔𝜙 = 𝜌0𝑓, in Ω, (i)

𝜌0

(︀
∇𝜙+ 𝒮0(𝜔; ∇𝜙)− 𝑐−2

0 𝐷𝜔𝜙𝑣0

)︀
· 𝑛− 𝜌0 𝑐

−1
0 (𝑣0 · 𝑛)(𝒮0(𝜔; ∇𝜙) · 𝑛) = 𝑖 𝜆 𝑐−1

0 𝜌0 𝜙, on 𝜕Ω. (ii)
(3.6)

Seeing the problem (3.6) as a perturbation of the convected Helmholtz problem (3.4) leads us to analyse (3.6) by
adapting the arguments used for the (3.4) analysis. We shall also call the problem (3.6) the reduced Goldstein’s
problem in the sense that the only unknown is the potential 𝜙.

As we shall recall in Section 3.3, the analysis of the convected Helmholtz equation is very close to the one
of the standard Helmholtz equation. One first reduces the problem to the application of Fredholm’s alternative
(this is where the condition that the flow is subsonic is used), in such a way that the existence result is simply
a consequence of the uniqueness result. Uniqueness is obtained by energy type boundary estimates combined
with unique continuation arguments.

Adapting this analysis to the modified Helmholtz problem (3.6) is not as straightforward as one might
think. The difficulty is that we do not know how to obtain the uniqueness result (this will be explained at the
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beginning of Sect. 3.4.3). That is why, to get around this obstacle, we shall use the analytic Fredholm theory,
which requires to extend the problem to complex frequencies. This is for putting the problem in the adequate
abstract framework, that we shall need the stronger admissibility condition (3.3) for the flow 𝑣0. This is also
because we use this theory that we have to exclude the set of possible resonances ℛ𝑒𝑥 for the existence and
uniqueness result.

The rest of this section is organized as follows. Section 3.3 is devoted to a recap of the existent theory for
the convected Helmholtz equation. The main section is Section 3.4 where we develop the proof of Theorem 3.11
via a perturbation approach explained above. Finally, in Section 3.5, we give a precise reinterpretation (when
𝑑 = 2) of the admissibility condition as a small vorticity condition.

3.3. Resolution of the convected Helmholtz equation

As said above, the convected Helmholtz equation (3.6) is the one that must be solved when the mean flow is
irrotational. However, from the mathematical point of view, this equation makes sense even for a non potential
flow, 𝜔0 := ∇× 𝑣0 ̸= 0, even though it is physically meaningful only when 𝜔0 = 0.

3.3.1. Weak formulation of the problem

It is through the variational formulation that the boundary value problem will acquire a precise sense. In
(3.4), in comparison with the classical Helmholtz equation, the only difference is a second order term, namely
𝜌0𝐷𝜔

(︀
𝑐−2
0 𝐷𝜔𝜙

)︀
, which replaces the usual zero order term −𝜔2𝑐−2

0 𝜌0 𝜙 (𝐷𝜔𝜙 = −𝑖𝜔𝜙 if 𝑣0 = 0).

Proposition 3.7. If div(𝜌0𝑣0) = 0, the weak formulation of (3.4) reads, setting 𝑉 = H1(Ω),

Find 𝜙 ∈ 𝑉 such that ∀ 𝜓 ∈ 𝑉, 𝑎(𝜔;𝜙,𝜓) = ℓ(𝜓), (3.7)

where the sesquilinear form 𝑎(𝜔;𝜙,𝜓) and the antilinear form ℓ(𝜓) are defined on 𝑉 by:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑎(𝜔;𝜙,𝜓) :=
∫︁

Ω

𝜌0

[︀
∇𝜙 ·∇𝜓 − (𝑀0 ·∇𝜙)

(︀
𝑀0 ·∇𝜓

)︀]︀
− 𝜔2

∫︁
Ω

𝜌0 𝑐
−2
0 𝜙𝜓

+ 𝑖𝜔

∫︁
Ω

𝜌0 𝑐
−1
0

[︀
𝜙
(︀
𝑀0 ·∇𝜓

)︀
− (𝑀0 ·∇𝜙)𝜓

]︀
− 𝑖𝜔

∫︁
𝜕Ω

𝜆 𝜌0 𝑐
−1
0 𝜙𝜓,

ℓ(𝜓) :=
∫︁

Ω

𝜌0 𝑓 𝜓.

(3.8)

Proof. It is quite standard, multiplying (3.4)(i) by 𝜓, for 𝜓 ∈ H1(Ω) and integrating over Ω yields, after using
Green’s formula,∫︁

Ω

𝜌0

(︀
∇𝜙− 𝑐−2

0 𝐷𝜔𝜙𝑣0

)︀
·∇𝜓 − 𝑖𝜔

∫︁
Ω

𝜌0𝑐
−2
0 𝐷𝜔𝜙𝜓 −

⟨︀
𝜌0

(︀
∇𝜙− 𝑐−2

0 𝐷𝜔𝜙𝑣0

)︀
· 𝑛, 𝜓

⟩︀
𝜕Ω

=
∫︁

Ω

𝜌0 𝑓 𝜓.

Then, to obtain (3.7), it suffices to first use (3.4)(ii) in order to get

⟨︀
𝜌0

(︀
∇𝜙− 𝑐−2

0 𝐷𝜔𝜙𝑣0

)︀
· 𝑛, 𝜓

⟩︀
𝜕Ω

= 𝑖𝜔

∫︁
𝜕Ω

𝜆 𝜌0 𝑐
−1
0 𝜙𝜓,

and then observe that, by definition of 𝐷𝜔 and 𝑐−1
0 𝑣0 = 𝑀0,{︃−𝑐−2

0 𝐷𝜔𝜙
(︀
𝑣0 ·∇𝜓

)︀
= 𝑖𝜔 𝑐−1

0 𝜙
(︀
𝑀0 ·∇𝜓

)︀
− (𝑀0 ·∇𝜙)

(︀
𝑀0 ·∇𝜓

)︀
,

−𝑖𝜔 𝑐−2
0 𝐷𝜔𝜙𝜓 = −𝑖𝜔 𝑐−1

0 (𝑀0 ·∇𝜙)𝜓 − 𝜔2 𝑐−2
0 𝜙𝜓,

which we substitute into (3.13). �
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3.3.2. Existence and uniqueness result

In order to get tighter inequalities by avoiding factors such as 𝜌+/𝜌−, we choose to introduce the weighted
norms ‖ · ‖L2(Ω,𝜌0) and ‖ · ‖H1(Ω,𝜌0), on L2(Ω) and H1(Ω), defined for 𝜑 ∈ L2(Ω), 𝜓 ∈ H1(Ω) by

‖𝜑‖L2(Ω,𝜌0) :=
(︂∫︁

Ω

𝜌0|𝜑|2
)︂1/2

, ‖𝜓‖H1(Ω,𝜌0) :=
(︁
‖𝜓‖2L2(Ω,𝜌0)

+ ‖∇𝜓‖2L2(Ω,𝜌0)𝑑

)︁1/2

.

The assumption (2.2) on 𝜌0 ensures that these norms are equivalent to the usual one used on L2(Ω) and H1(Ω).

Theorem 3.8. The potential flow problem (3.4) is well-posed under the assumption (2.13) and the condition
that the flow is strictly subsonic, namely

sup
𝑥∈Ω

|𝑀0(𝑥)|2 < 1. (3.9)

Proof. It is carried out in two steps: (i) the problem is of Fredholm type and (ii) and admits at most one
solution.

For (i), we decompose (artificially) the sesquilinear form 𝑎(𝜔;𝜙,𝜓) as the sum of two terms

𝑎(𝜔;𝜙,𝜓) = 𝑎*(𝜔;𝜙,𝜓) + 𝑐(𝜔;𝜙,𝜓),

where (note that we add and subtract artificially the term
∫︀
Ω
𝜌0 𝜙𝜓):⎧⎪⎪⎨⎪⎪⎩

𝑎*(𝜔;𝜙,𝜓) :=
∫︁

Ω

𝜌0

[︀
∇𝜙 ·∇𝜓 − (𝑀0 ·∇𝜙)

(︀
𝑀0 ·∇𝜓

)︀
+ 𝜙𝜓

]︀
− 𝑖𝜔

∫︁
𝜕Ω

𝜆 𝜌0𝑐
−1
0 𝜙𝜓,

𝑐(𝜔;𝜙,𝜓) := 𝑖𝜔

∫︁
Ω

𝜌0 𝑐
−1
0 𝜙

(︀
𝑀0 ·∇𝜓

)︀
− 𝑖𝜔

∫︁
Ω

𝜌0 𝑐
−1
0 (𝑀0 ·∇𝜙)𝜓 −

∫︁
Ω

𝜌0

(︀
1 + 𝜔2 𝑐−2

0

)︀
𝜙𝜓.

Next, we observe that, thanks to (3.9), 𝑎*(𝜔;𝜙,𝜓) is coercive in H1(Ω). Indeed since the volume integral in the
expression of 𝑎*(𝜔;𝜙,𝜙) is real while the boundary integral is purely imaginary, we have

|𝑎*(𝜔;𝜙,𝜙)| ≥
∫︁

Ω

𝜌0

(︁
|∇𝜙|2 − |(𝑀0 ·∇)𝜙|2 + |𝜙|2

)︁
≥
(︂

1− sup
𝑥∈Ω

|𝑀0(𝑥)|2
)︂
‖𝜙‖2H1(Ω,𝜌0)

.

(3.10)

It remains to show that the sesquilinear form 𝑐(·, ·) is associated with a compact operator. It is straightforward
that 𝑐 is a sum of three continuous sesquilinear forms, 𝑐1, 𝑐2 and 𝑐3, in H1(Ω) satisfying one of these two
properties:

∀ 𝜙,𝜓 ∈ H1(Ω), |𝑐𝑖(𝜙,𝜓)| ≤ 𝛼𝑖‖𝜙‖L2(Ω)‖𝜓‖H1(Ω) (i), or

∀ 𝜙,𝜓 ∈ H1(Ω), |𝑐𝑖(𝜙,𝜓)| ≤ 𝛼𝑖‖𝜙‖H1(Ω)‖𝜓‖L2(Ω) (ii),
(3.11)

where 𝛼𝑖 > 0, 𝑖 = 1, 2, 3. Moreover, for 𝑖 = 1, 2, 3 and denoting 𝐶𝑖 ∈ ℒ(H1(Ω)) the bounded operator associated
with 𝑐𝑖, i.e. such that ∀𝜙,𝜓 ∈ H1(Ω), (𝐶𝑖𝜙,𝜓)H1(Ω) = 𝑐𝑖(𝜙,𝜓), the estimation (3.11)(i) implies that 𝐶𝑖 is
compact and the estimation (3.11)(ii) implies that its adjoint 𝐶*𝑖 is compact and thus 𝐶𝑖 is too. Indeed, assuming
that 𝑐𝑖 satisfies (3.11)(i), let us show that 𝐶𝑖 is then a compact operator, the second assertion is deduced in the
same fashion. Consider a sequence (𝜙𝑛) ∈ H1(Ω) bounded in H1(Ω). Up to an extraction, thanks to the compact
embedding of H1(Ω) into L2(Ω) (as Ω is bounded), (𝜙𝑛) converges in L2(Ω) toward 𝜙 ∈ H1(Ω). Remarking that
‖𝐶𝑖𝜙𝑛 − 𝐶𝑖𝜙‖2H1(Ω) = 𝑐𝑖(𝜙𝑛 − 𝜙,𝐶𝑖𝜙𝑛 − 𝐶𝑖𝜙), and applying (3.11)(i), one finds

‖𝐶𝑖𝜙𝑛 − 𝐶𝑖𝜙‖2H1(Ω) ≤ 𝛼𝑖‖𝜙𝑛 − 𝜙‖L2(Ω)‖𝐶𝑖𝜙𝑛 − 𝐶𝑖𝜙‖H1(Ω).
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As (𝐶𝑖𝜙𝑛 − 𝐶𝑖𝜙) is bounded in H1(Ω), this shows that (𝐶𝑖𝜙𝑛) converges in H1(Ω) (up to the extraction) and
thus that 𝐶𝑖 is compact. As a consequence, 𝑐 is associated with a compact operator and the problem falls under
the Fredholm alternative [41,49].

For the point (ii) (uniqueness), let us introduce 𝜙 ∈ H1(Ω) solution of (3.4) with 𝑓 = 0:

∀ 𝜓 ∈ H1(Ω), 𝑎(𝜔;𝜙,𝜓) = 0.

Then, choosing 𝜓 = 𝜙 and taking the imaginary part of this equality leads to:

ℑ𝑚
[︀
𝑎(𝜔;𝜙,𝜙)

]︀
= 0 = 𝜔

∫︁
𝜕Ω

𝜆 𝜌0 𝑐
−1
0 |𝜙|2.

Since 𝜆 > 0 on 𝛾 ⊂ 𝜕Ω (assumption (2.13)), this shows that 𝜙 = 0 on 𝛾. From the boundary condition (2.15)(i),
we deduce that ∇𝜙 ·𝑛 = 0 on 𝛾. As Ω is connected, we conclude, with a classical unique continuation argument
for elliptic equations [1], that 𝜙 = 0 in Ω. �

3.4. Proof of the main result

3.4.1. Preamble

Let us start with the weak formulation of the coupled problem ((2.14), (2.15)) (the natural extension of (3.7)
obtained for the convected Helmholtz equation). Let us introduce the Hilbert spaces

𝑉 := H1(Ω), 𝑀 := H−(𝑣0,Ω), and 𝐿 := L2(Ω)𝑑.

Proposition 3.9. The weak formulation of ((2.14), (2.15)) is: find (𝜙, 𝜉) ∈ 𝑉 ×𝑀 such that⎧⎨⎩𝑎(𝜔;𝜙,𝜓) + 𝑑(𝜉, 𝜓) = ℓ(𝜓), ∀ 𝜓 ∈ 𝑉, (i)

𝑏(𝜙, 𝜁) + 𝑡(𝜔; 𝜉, 𝜁) = 0, ∀ 𝜁 ∈ 𝐿, (ii)
(3.12)

where the sesquilinear form 𝑎(𝜔;𝜙,𝜓) and the antilinear form ℓ(𝜓) are defined in (3.8), while the other sesquilin-
ear forms are given by ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑡(𝜔; 𝜉, 𝜁) :=
∫︁

Ω

(︀
𝐷𝜔𝜉 · 𝜁 + (𝜉 ·∇)𝑣0 · 𝜁

)︀
,

𝑑(𝜉, 𝜓) :=
∫︁

Ω

𝜌0 𝜉 ·∇𝜓 −
∫︁

Γ+

𝜌0 𝑐
−1
0 (𝑣0 · 𝑛)(𝜉 · 𝑛)𝜓,

𝑏(𝜙, 𝜁) :=
∫︁

Ω

(𝜔0 ×∇𝜙) · 𝜁.

Proof. As (3.12)(ii) simply results from multiplication of (2.14)(ii) by 𝜁 and integration over Ω, only (3.12)(i)
deserves some comments. This equation is obtained as in the proof of Proposition 3.7, by multiplying (2.14)(i)
by 𝜓, integrating over Ω and using Green’s formula, which gives∫︁

Ω

𝜌0

(︀
∇𝜙+ 𝜉 − 𝑐−2

0 𝐷𝜔𝜙𝑣0

)︀
·∇𝜓 − 𝑖𝜔

∫︁
Ω

𝜌0 𝑐
−2
0 𝐷𝜔𝜙𝜓 −

⟨︀
𝜌0

(︀
∇𝜙+ 𝜉 − 𝑐−2

0 𝐷𝜔𝜙𝑣0

)︀
· 𝑛, 𝜓

⟩︀
𝜕Ω

=
∫︁

Ω

𝜌0 𝑓 𝜓.

(3.13)
One then concludes as in the proof of Proposition 3.7 using (2.15)(i). �
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For the sequel, it is useful to rewrite (3.12) in an abstract operator form. To this purpose, via Riesz theorem,
we introduce the linear operators associated to the sesquilinear forms in (3.12)⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝐴(𝜔) ∈ ℒ(𝑉 ) s.t. (𝐴(𝜔)𝜙,𝜓)𝑉 = 𝑎(𝜔;𝜙,𝜓), ∀ (𝜙,𝜓) ∈ 𝑉 × 𝑉,

𝑇 (𝜔) ∈ ℒ(𝑀 ,𝐿) s.t. (𝑇 (𝜔)𝜉, 𝜁)𝐿 = 𝑡(𝜔; 𝜉, 𝜁), ∀ (𝜉, 𝜁) ∈ 𝑀 ×𝐿,

𝐷 ∈ ℒ(𝑀 , 𝑉 ) s.t. (𝐷𝜉, 𝜓)𝑉 = 𝑑(𝜉, 𝜓), ∀ (𝜉, 𝜓) ∈ 𝑀 × 𝑉,

𝐵 ∈ ℒ(𝑉,𝐿) s.t. (𝐵𝜙, 𝜁)𝐿 = 𝑏(𝜙, 𝜁), ∀ (𝜙, 𝜁) ∈ 𝑉 ×𝐿.

(3.14)

Then, with 𝑓 ∈ 𝑉 such that ℓ(𝜙) = (𝑓, 𝜓)𝑉 for all 𝜓 in 𝑉 , (3.12) rewrites(︂
𝐴(𝜔) 𝐷

𝐵 𝑇 (𝜔)

)︂(︂
𝜙

𝜉

)︂
=

(︃
𝑓

0

)︃
. (3.15)

Remark 3.10. Note that the operator T(𝜔) is nothing but the transport differential operator 𝒯 0(𝜔), see (2.9),
acting in the space M and that B𝜙 = 𝜔0 × ∇𝜙, since their definition simply uses the L2-inner product (or
L-inner product). The interpretation of 𝐴(𝜔) and 𝐷 is less direct since they are defined through the H1-inner
product.

For solving (3.15), the most natural idea, is to try to extend the Fredholm type approach followed in Section 3.3
for the convected Helmholtz equation. However, a first obstacle is that the uniqueness proof in Theorem 3.8 is
not generalisable (at least we did not succeed) to the coupled problem ((2.14), (2.15)). Indeed, let (𝜙, 𝜉) be a
solution of ((2.14), (2.15)) for 𝑓 = 0. Taking 𝜓 = 𝜙 in (3.12)(i) gives, after taking the imaginary part

𝜔

∫︁
Γ

𝜆 𝜌0 𝑐
−1
0 |𝜙|2 = ℑ𝑚

{︃
−
∫︁

Ω

𝜌0 𝜉 ·∇𝜙+
∫︁

Γ+

𝜌0 𝑐
−1
0 (𝑣0 · 𝑛)(𝜉 · 𝑛)𝜙,

}︃
.

We could conclude if, for instance, we could deduce from the transport equation (2.14)(ii) that the right hand
side term is non-positive. Unfortunately, we did not succeed (even in the simple case of a laminar flow in a wave
guide) which leads us to doubt that this is true in general. This is why we have chosen to use analytic Fredholm
theory as explained in Section 3.2.

The idea is to extend the Goldstein’s problem ((2.14), (2.15)) to complex values of the frequency 𝜔, especially
to

𝜔 ∈ C+
𝛽 := {𝑧 ∈ C / ℑ𝑚(𝑧) > −𝛽}

for 𝛽 > 0 small enough: this will be made precise in the proof, see Section 3.4. As we shall see, the key properties
of this domain is that it is connected, contains the real axis as well as the semi-imaginary one {𝑖 𝜔𝑖 / 𝜔𝑖 > 0}.

This will permit us to apply the following abstract result from analytic Fredholm theory. For instance, from
[49], Theorem 8.92:

Theorem 3.11 (Analytic Fredholm). Let 𝑉 be a Hilbert space and 𝐺 ⊂ C be a domain (open and connected).
Let 𝜆 ∈ 𝐺 ↦→ 𝐵(𝜆) ∈ ℒ(𝑉 ) an analytic map such that 𝐵(𝜆) is compact for all 𝜆 ∈ 𝐺. Then, either,

(1) (𝐼 −𝐵(𝜆))−1 exists for no 𝜆 ∈ 𝐺,
(2) There exists 𝑆 ⊂ 𝐺, with no limit point in 𝐺, such that for all 𝜆 ∈ 𝐺 ∖ 𝑆, (𝐼 −𝐵(𝜆))−1 exists and the map

𝜆 ∈ 𝐺 ∖ 𝑆 ↦→ (𝐼 −𝐵(𝜆))−1, is analytic.

From which one easily deduces the following corollary that is more directly fitted to our settings:

Corollary 3.12 (Analytic Fredholm (invertible case)). Let 𝑉 be a Hilbert space and 𝐺 ⊂ C be a domain. Let
𝐴𝑔(𝜔), 𝜔 ∈ 𝐺, be a family of bounded linear operators in 𝑉 and assume that 𝐴𝑔(𝜔) = 𝐴𝑔

*(𝜔) + 𝐶𝑔(𝜔) with
𝐴𝑔
*(𝜔), 𝐶𝑔(𝜔) ∈ ℒ(𝑉 ), where
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(1) 𝐴𝑔
* : 𝜔 ∈ 𝐺 ↦→ 𝐴𝑔

*(𝜔) and 𝐶𝑔 : 𝜔 ∈ 𝐺 ↦→ 𝐶𝑔(𝜔) are analytic,
(2) ∀ 𝜔 ∈ 𝐺, 𝐴𝑔

*(𝜔) is invertible and 𝐶𝑔(𝜔) is compact,
(3) ∃ 𝜔◇ ∈ 𝐺 such that 𝐴𝑔(𝜔◇) is invertible.

Then, there exists a set 𝑆 ⊂ 𝐺 with no limit point in 𝐺 such that ∀𝜔 ∈ 𝐺 ∖ 𝑆, 𝐴𝑔(𝜔) is invertible.

Remark 3.13. – Here, the analyticity of 𝐴𝑔 : 𝜔 ∈ 𝐺 ↦→ 𝐴𝑔(𝜔) ∈ ℒ(𝑉 ) has to be understood in the sense of
the operator norm, i.e.

∀ 𝜔 ∈ 𝐺, lim
𝑧→0,
𝑧∈C*

1
𝑧

(𝐴𝑔(𝜔 + 𝑧)−𝐴𝑔(𝜔)) exists in ℒ(𝑉 ).

– A Fredholm operator is a bounded linear operator such that both its kernel and a supplementary of its range
are finite dimensional. Its index is the difference between these two dimensions. An invertible operator is a
Fredholm operator of index 0, and because the Fredholm property and the index value are stable by adding
a compact operator, assumption (2) of the Corollary 3.12 implies that 𝐴𝑔(𝜔) is a Fredholm operator of index
0.

The above result cannot be directly applied to coupled problem (3.15) in (𝜙, 𝜉). We shall apply it to the
problem in 𝜙 alone obtained formally by eliminating 𝜉. In other words, we perform a Schur complement

𝜉 = 𝜉(𝜙) = −T(𝜔)−1 B𝜙, (3.16)

so that the equation governing 𝜙 is given by the “modified” convected Helmholtz equation:

𝐴𝑟(𝜔)𝜙 = 𝑓, where 𝐴𝑟(𝜔) := 𝐴(𝜔)−𝐷 𝑇 (𝜔)−1 𝐵.

and we aim to apply Corollary 3.12 to 𝑉 = H1(Ω) and 𝐴𝑔(𝜔) = 𝐴𝑟(𝜔).

Remark 3.14. Note that, going back to the notation (3.5) of Section 3.2,

−T(𝜔)−1 B𝜙 = 𝒮0(𝜔,∇𝜙).

In Section 3.4.2, we first show that the elimination of 𝜉 is possible, namely that (3.16) has a sense (this
is of course related to the invertibility of the transport equation). In Section 3.4.3, we show that the family
𝐴𝑟(𝜔) satisfies the assumptions (1) and (2) of Corollary 3.12. Finally, in Section 3.4.4, we conclude the proof
by showing that the assumption (3) is also satisfied.

3.4.2. Elimination of 𝜉 and modified convected Helmholtz equation

As this section is dedicated to the elimination of 𝜉 from the transport equation (2.7)(i), let us begin with
the Theorem 3.16 which states the invertibility of the transport operator, introduced in (2.9), acting on 𝑀 , i.e.
𝒯 0(𝜔) : 𝑀 ⊂ 𝐿 → 𝐿. Whereas the issue of the invertibility of this operator has been previously treated in [9],
it has to be adapted here to complex frequencies 𝜔. For completeness, let us recall the definition of a Ω-filling
flow 𝑣0 which is the key assumption of the Theorem 3.16.

The characteristic field 𝜒 : R × R𝑑 → R𝑑 associated to 𝑣0 ∈ C1(R𝑑)𝑑 is defined from the solutions of the
following family of differential equations:

∀ (𝑡, 𝑏) ∈ R× R𝑑,

⎧⎪⎨⎪⎩
𝜕𝜒

𝜕𝑡
(𝑡, 𝑏) = 𝑣0(𝜒(𝑡, 𝑏)),

𝜒(0, 𝑏) = 𝑏,

(we do not use the term “flow” from differential equation theory to avoid confusion with the flow 𝑣0). Using 𝜒,
we can now precise the Definition 3.1 of a Ω-filling flow 𝑣0:
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Definition 3.15 (Ω-filling flow and lifetime in Ω). The flow 𝑣0 is said Ω-filling if there exists a time 𝑇 * ∈ R+

such that for all 𝑥 ∈ Ω:

∃(𝑡, 𝑏) ∈ [0, 𝑇 *]× Γ− / 𝜒(𝑡, 𝑏) = 𝑥 and ∀ 𝜏 ∈ ]0, 𝑡], 𝜒(𝜏, 𝑏) ∈ Ω. (3.17)

For such a flow, its lifetime in Ω, denoted 𝑡*(𝑣0,Ω), is the infimum of all constants 𝑇 * keeping (3.17) valid.

We then have the following theorem:

Theorem 3.16 (Invertibility of 𝒯 0(𝜔) for 𝜔 ∈ C). If the flow 𝑣0 is Ω-filling and satisfies div(𝜌0𝑣0) = 0, with
the lifetime 𝑡*(𝑣0,Ω) in Ω, then, for all 𝜔 ∈ C, the time-harmonic transport operator 𝒯 0(𝜔) : 𝑀 ⊂ 𝐿 → 𝐿
defined by (2.9) is invertible and the following estimates hold: denoting 𝜔𝑖 = ℑ𝑚𝜔, for all 𝑔 ∈ 𝐿,⃦⃦

𝒯 −1
0 (𝜔) 𝑔

⃦⃦
L2(Ω,𝜌0)

𝑑 ≤ 𝐶0(𝑣0,Ω, 𝜔𝑖) ‖𝑔‖L2(Ω,𝜌0)
𝑑 (i),⃦⃦

𝒯 −1
0 (𝜔) 𝑔

⃦⃦
L2(Γ+, 𝜌0(𝑣0·𝑛))

≤ 𝐶+(𝑣0,Ω, 𝜔𝑖) ‖𝑔‖L2(Ω,𝜌0)𝑑 (ii),
(3.18)

where the weighted L2-norm along Γ+ is given by, remembering that 𝑣0 · 𝑛 > 0 on Γ+,

‖𝑤‖2L2(Γ+, 𝜌0(𝑣0·𝑛)) :=
∫︁

Γ+

|𝑤|2 𝜌0(𝑣0 · 𝑛) d𝜎,

and 𝐶0(𝑣0,Ω, 𝜔𝑖) and 𝐶+(𝑣0,Ω, 𝜔𝑖) are respectively given, with (Φ,Ψ) defined in (3.2), by⎧⎨⎩
𝐶0(𝑣0,Ω, 𝜔𝑖) := 𝑡*(𝑣0,Ω) Φ(2 𝑡*(𝑣0,Ω)(‖∇𝑣0‖L∞− 𝜔𝑖)), (i)

𝐶+(𝑣0,Ω, 𝜔𝑖) :=
√︀
𝑡*(𝑣0,Ω) Ψ(2 𝑡*(𝑣0,Ω)(‖∇𝑣0‖L∞− 𝜔𝑖)). (ii)

(3.19)

Remark 3.17. As the map Φ : R → R is increasing (Lem. 3.4), equation (3.19)(i) implies that the function
𝜔𝑖 ∈ R ↦→ 𝐶0(𝑣0,Ω, 𝜔𝑖) is (strictly) decreasing. In particular

∀ 𝜔𝑖 ≥ 0, 𝐶0(𝑣0,Ω, 𝜔𝑖) ≤ 𝐶0(𝑣0,Ω, 0) = 𝑡*(𝑣0,Ω) Φ(2 𝑡*(𝑣0,Ω)‖∇𝑣0‖L∞).

Moreover, as Φ(𝑠) and Ψ(𝑠) tend to 0 when 𝑠→ −∞ (Lem. 3.4 again), it is also clear from formulas (3.19) that

𝐶0(𝑣0,Ω, 𝜔𝑖) → 0 and, 𝐶+(𝑣0,Ω, 𝜔𝑖) → 0 when 𝜔𝑖 → +∞.

Remark 3.18. The estimate (3.18)(ii) is similar to a trace theorem in the space H(Ω,𝑣0), where a special care
is given to explicit the trace constant.

Proof. The proof of Theorem 3.16 is a straightforward adaptation of the same result for real frequencies detailed
in [9]. The key point consists in obtaining the following two a priori estimates (obviously related to (3.18))

∀ 𝜉 ∈ 𝑀 , ‖ 𝜉‖L2(Ω,𝜌0)𝑑 ≤ 𝐶0(𝑣0,Ω, 𝜔𝑖) ‖𝒯 0(𝜔)𝜉‖L2(Ω,𝜌0)𝑑 , (i)

∀ 𝜉 ∈ 𝑀 , ‖𝜉‖L2(Γ+, 𝜌0(𝑣0·𝑛))≤ 𝐶+(𝑣0,Ω, 𝜔𝑖) ‖𝒯 0(𝜔)𝜉‖L2(Ω,𝜌0)
𝑑 . (ii)

(3.20)

Once the estimates (3.20) are established, the proof of the invertibility of 𝒯 0(𝜔) essentially relies on functional
analytic arguments and (3.20) leads to (3.18). We divide the proof into three steps.

Step 1. Preliminary material. We use the same technique of “characteristic” change of variables as in [9].
Thanks to the Ω-filling property of 𝑣0 and the fact that the boundary Γ− is piecewise C1, the function 𝜒
induces a piecewise-C1-diffeomorphism 𝜒 : Θ ↦→ Ω on the fiber bundle

Θ :=
{︀

(𝑡, 𝑏) ∈ R+ × Γ− : ∀ 𝜏 ∈ (0, 𝑡], 𝜒(𝜏, 𝑏) ∈ Ω
}︀
.
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In what follows, we endow Θ with the push-forward measure 𝜇 = (𝜌0d𝑥) ∘ 𝜒 such that for any Lebesgue
measurable set 𝐵 ⊂ Θ,

𝜇(𝐵) := (𝜌0d𝑥)
[︀
𝜒(𝐵)

]︀
.

This leads to the change of variables formula: given 𝑓 : Ω → C,∫︁
Θ

𝑓 ∘ 𝜒(𝑡, 𝑏) d𝜇(𝑡, 𝑏) =
∫︁

Ω

𝑓(𝑥)𝜌0(𝑥) d𝑥. (3.21)

A classical consequence of div(𝜌0𝑣0) = 0 [5, 18], is that the measure d𝜇(𝑡, 𝑏) can be written as the product
measure of d𝑡 and the surfacic measure d𝜎 on Γ− (which means nothing else, but the fact that the volume
is preserved along the streamlines):

d𝜇(𝑡, 𝑏) = d𝑡d𝜎(𝑏),

and thus the integration over Θ reads, given 𝑔 : Θ → C,∫︁
Θ

𝑔(𝑡, 𝑏) d𝜇(𝑡, 𝑏) =
∫︁

Θ

𝑔(𝑡, 𝑏) d𝑡d𝜎(𝑏) =
∫︁

Γ−

(︃∫︁ 𝑡(𝑏)

0

𝑔(𝑡, 𝑏) d𝑡

)︃
d𝜎(𝑏), (3.22)

where 𝑡(𝑏) := sup{𝑡 ≥ 0 : ∀ 𝜏 ∈ (0, 𝑡], 𝜒(𝑡, 𝑏) ∈ Ω} is by definition the lifetime in Ω of 𝑏 ∈ Γ−. Note that
this notion is related to the global lifetime in Ω via

𝑡*(𝑣0,Ω) = sup
𝑏∈Γ−

𝑡(𝑏). (3.23)

As a consequence of formula (3.21), the operator 𝒮 ∈ ℒ
(︀
L2(Ω, 𝜌0)𝑑,L2(Θ, 𝜇)𝑑

)︀
defined by

∀ 𝜉 ∈ L2(Ω)𝑑, ∀ (𝑡, 𝑏) ∈ Θ, 𝒮𝜉(𝑡, 𝑏) := 𝜉(𝜒(𝑡, 𝑏))

is an isometry, namely:

∀ 𝜉 ∈ L2(Ω, 𝜌0)𝑑, ‖𝒮𝜉‖L2(Θ)𝑑 = ‖𝜉‖L2(Ω,𝜌0)𝑑 . (3.24)

The main interest of the change of variables 𝑥 = 𝜒(𝑡, 𝑏) is that it simplifies the expression of the transport
operator in Θ variables. More precisely, one observes that setting

̂︁𝑀 :=

{︃̂︀𝜁 ∈ L2(Θ, 𝜇)𝑑 /
𝜕̂︀𝜁
𝜕𝑡

∈ L2(Θ, 𝜇)𝑑, ∀ 𝑏 ∈ Γ−, ̂︀𝜁(0, 𝑏) = 0

}︃
,

then 𝜉 ∈ 𝑀 if and only if ̂︀𝜉 := 𝒮𝜉 ∈ ̂︁𝑀 . Moreover, one has the formula (𝑣0 · ∇ simply becomes the
𝑡-derivative, this is pure computation, see [9] for 𝑑 = 2)

∀ 𝜁 ∈ 𝑀 , 𝒮((𝑣0 ·∇)𝜁) =
𝜕

𝜕𝑡
(𝒮𝜁). (3.25)

As a consequence if we introduce the operator 𝒬0(𝜔) defined by

∀ ̂︀𝜁 ∈ ̂︁𝑀 , 𝒬0(𝜔) ̂︀𝜁 :=
𝜕̂︀𝜁
𝜕𝑡
− 𝑖𝜔 ̂︀𝜁 + ̂︀𝐽0

̂︀𝜁,
where ̂︀𝐽0(𝑡, 𝑏) ∈ ℒ(R𝑑) is defined as

̂︀𝐽0(𝑡, 𝑏) := 𝐽0(𝜒(𝑡, 𝑏)), where 𝐽0(𝑥) := 𝐷𝑣0(𝑥), i.e. (𝐽0)𝑖𝑗(𝑥) =
𝜕𝑣0,𝑖

𝜕𝑥𝑗
(𝑥),

one has the commutation property (this is pure computation, see [9] for 𝑑 = 2)

∀ 𝜉 ∈ 𝑀 , 𝒮 𝒯 0(𝜔)𝜉 = 𝒬0(𝜔) 𝒮𝜉. (3.26)
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Step 2. Proof of the volume estimate (3.20)(i).
From (3.26), the isometry result (3.24) and ̂︀𝜉 = 𝒮𝜉, it is clear that proving (3.20)(i) amounts to proving

∀ ̂︀𝜉 ∈ ̂︁𝑀 ,
⃦⃦⃦̂︀𝜉⃦⃦⃦

L2(Θ,𝜇)𝑑
≤ 𝐶0(𝑣0,Ω, 𝜔)

⃦⃦⃦
𝒬0(𝜔)̂︀𝜉⃦⃦⃦

L2(Θ,𝜇)𝑑
. (3.27)

Of course, by a density-continuity argument, it suffices to establish (3.27) when

̂︀𝜉 ∈ 𝐷−(Θ) :=
{︁

𝜁 ∈ ̂︁𝑀 / a.e. 𝑏 ∈ Γ−, 𝑡→ 𝜁(𝑡, 𝑏) ∈ C1([0, 𝑡(𝑏)])
}︁
.

which is a dense subset of ̂︁𝑀 . For such a ̂︀𝜉, we write

̂︀𝜉(𝑡, 𝑏) 𝑒−𝑖𝜔𝑡 =
∫︁ 𝑡

0

𝜕

𝜕𝜏

(︁̂︀𝜉(𝜏, 𝑏)𝑒−𝑖𝜔𝜏
)︁

d𝜏 =
∫︁ 𝑡

0

𝑒−𝑖𝜔𝜏

(︃
𝜕̂︀𝜉
𝜕𝜏

(𝜏, 𝑏)− 𝑖𝜔 ̂︀𝜉(𝜏, 𝑏)

)︃
d𝜏

=
∫︁ 𝑡

0

𝑒−𝑖𝜔𝜏𝒬0(𝜔)̂︀𝜉(𝜏, 𝑏) d𝜏 −
∫︁ 𝑡

0

𝑒−𝑖𝜔𝜏 ̂︀𝐽0(𝜏, 𝑏)̂︀𝜉(𝜏, 𝑏) d𝜏.

Then, using
⃒⃒⃒
𝑒−𝑖𝜔𝑡 ̂︀𝜉(𝑡, 𝑏)

⃒⃒⃒
= 𝑒𝜔𝑖𝑡

⃒⃒⃒̂︀𝜉(𝑡, 𝑏)
⃒⃒⃒

we get

𝑒𝜔𝑖𝑡
⃒⃒⃒̂︀𝜉(𝑡, 𝑏)

⃒⃒⃒
≤
∫︁ 𝑡

0

𝑒𝜔𝑖𝜏
⃒⃒⃒
𝒬0(𝜔)̂︀𝜉(𝜏, 𝑏)

⃒⃒⃒
d𝜏 +

∫︁ 𝑡

0

𝑒𝜔𝑖𝜏
⃒⃒⃒̂︀𝜉(𝜏, 𝑏)

⃒⃒⃒⃒⃒⃒ ̂︀𝐽0(𝜏, 𝑏)
⃒⃒⃒
d𝜏. (3.28)

Let us give the particular Gronwall’s lemma which will provide the estimate of 𝑒𝜔𝑖𝑡
⃒⃒⃒̂︀𝜉(𝑡, 𝑏)

⃒⃒⃒
from (3.28).

Lemma 3.19. Let 𝛼, 𝛽 : R+ → R+ be two continuous functions. If a continuous function 𝑢 : R+ → R
satisfies

∀ 𝑡 ≥ 0, 𝑢(𝑡) ≤
∫︁ 𝑡

0

𝛼(𝜏)d𝜏 +
∫︁ 𝑡

0

𝛽(𝜏)𝑢(𝜏)d𝜏 and 𝑢(0) = 0, (3.29)

then,

∀ 𝑡 ≥ 0, 𝑢(𝑡) ≤
∫︁ 𝑡

0

𝛼(𝜏) exp
(︂∫︁ 𝑡

𝜏

𝛽(𝜏 ′)d𝜏 ′
)︂

d𝜏. (3.30)

A proof of the Lemma 3.19 has been given in the article [9]. Denoting 𝛼 : 𝜏 ↦→ 𝑒𝜔𝑖𝜏
⃒⃒⃒
𝒬0(𝜔)̂︀𝜉(𝜏, 𝑏)

⃒⃒⃒
and

𝛽 : 𝜏 ↦→
⃒⃒⃒ ̂︀𝐽0(𝜏, 𝑏)

⃒⃒⃒
, the inequality (3.28) reads as (3.29) where 𝑢 : 𝑡 ↦→ 𝑒𝜔𝑖𝑡

⃒⃒⃒̂︀𝜉(𝑡, 𝑏)
⃒⃒⃒
. It then follows from

(3.30):

𝑒𝜔𝑖𝑡
⃒⃒⃒ ̂︀𝜉(𝑡, 𝑏)

⃒⃒⃒
≤
∫︁ 𝑡

0

exp
(︂∫︁ 𝑡

𝜏

⃒⃒⃒ ̂︀𝐽0(𝜏 ′, 𝑏)
⃒⃒⃒
d𝜏 ′
)︂
𝑒𝜔𝑖𝜏

⃒⃒⃒
𝒬0(𝜔)̂︀𝜉(𝜏, 𝑏)

⃒⃒⃒
d𝜏,

and Cauchy–Schwartz inequality leads tô⃒⃒⃒︀𝜉(𝑡, 𝑏)
⃒⃒⃒2
≤ ℐ(𝜔𝑖; 𝑡, 𝑏)

∫︁ 𝑡

0

⃒⃒⃒
𝒬0
̂︀𝜉(𝜏, 𝑏)

⃒⃒⃒2
d𝜏, (3.31)

where ℐ(𝜔𝑖; 𝑡, 𝑏) :=
∫︀ 𝑡

0
exp
(︁

2
∫︀ 𝑡

𝜏

⃒⃒⃒ ̂︀𝐽0(𝜏 ′, 𝑏)
⃒⃒⃒
d𝜏 ′
)︁
𝑒−2𝜔𝑖(𝑡−𝜏) d𝜏 . Since

⃒⃒⃒ ̂︀𝐽0(𝜏 ′, 𝑏)
⃒⃒⃒
≤ ‖∇𝑣0‖L∞ , we get

ℐ(𝜔𝑖; 𝑡, 𝑏) ≤ ℐ*(𝜔𝑖; 𝑡) :=
∫︁ 𝑡

0

𝑒 2 (‖∇𝑣0‖L∞−𝜔𝑖)(𝑡−𝜏) d𝜏 = 𝑡Ψ(2𝑡(‖∇𝑣0‖L∞ − 𝜔𝑖))
2
, (3.32)
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where the last equality results from an explicit computation and definition (3.2) of Ψ. Note that by definition
(3.19) of 𝐶+(𝑣0,Ω, 𝜔𝑖),

ℐ*(𝜔𝑖; 𝑡*(𝑣0,Ω)) = 𝐶+(𝑣0,Ω, 𝜔𝑖)2. (3.33)

Finally, using (3.32) in (3.31) and integrating the resulting inequality over Θ giveŝ⃦⃦⃦︀𝜉⃦⃦⃦2

L2(Θ,𝜇)𝑑
=
∫︁

Γ−

∫︁ 𝑡(𝑏)

0

⃒⃒⃒̂︀𝜉(𝑡, 𝑏)
⃒⃒⃒2

d𝑡d𝜎(𝑏)

≤
∫︁

Γ−

∫︁ 𝑡(𝑏)

0

(︂
ℐ*(𝜔𝑖; 𝑡)

∫︁ 𝑡

0

⃒⃒⃒
𝒬0
̂︀𝜉(𝜏, 𝑏)

⃒⃒⃒2
d𝜏
)︂

d𝑡d𝜎(𝑏)

≤
∫︁

Γ−

(︃∫︁ 𝑡(𝑏)

0

⃒⃒⃒
𝒬0
̂︀𝜉(𝜏, 𝑏)

⃒⃒⃒2
d𝜏

)︃(︃∫︁ 𝑡(𝑏)

0

ℐ*(𝜔𝑖; 𝑡) d𝑡

)︃
d𝜎(𝑏)

≤
(︃∫︁ 𝑡*(𝑣0,Ω)

0

ℐ*(𝜔𝑖; 𝑡) d𝑡

)︃(︃∫︁
Γ−

∫︁ 𝑡(𝑏)

0

⃒⃒⃒
𝒬0
̂︀𝜉(𝜏, 𝑏)

⃒⃒⃒2
d𝜏d𝜎(𝑏)

)︃
(by (3.23))

≤
(︃∫︁ 𝑡*(𝑣0,Ω)

0

ℐ*(𝜔𝑖; 𝑡) d𝑡

)︃ ⃦⃦⃦
𝒬0(𝜔)̂︀𝜉 ⃦⃦⃦2

L2(Θ,𝜇)𝑑
,

and an exact computation, with the expressions (3.2), (3.19)(i), (3.32) of respectively Φ, 𝐶0, ℐ*(𝜔𝑖; 𝑡), gives:∫︁ 𝑡*(𝑣0,Ω)

0

ℐ*(𝜔𝑖; 𝑡)d𝑡 =
∫︁ 𝑡*(𝑣0,Ω)

0

𝑡Ψ(2𝑡(‖∇𝑣0‖L∞ − 𝜔𝑖))
2d𝑡

=
∫︁ 𝑡*(𝑣0,Ω)

0

𝑒2𝑡(‖∇𝑣0‖L∞−𝜔𝑖) − 1
2(‖∇𝑣0‖L∞ − 𝜔𝑖)

d𝑡

= 𝑡*(𝑣0,Ω)2 Φ(2𝑡*(𝑣0,Ω)(‖∇𝑣0‖L∞ − 𝜔𝑖))
2

= 𝐶0(𝑣0,Ω, 𝜔𝑖)2,

which leads to the desired estimate (3.27).
Step 3. Proof of the boundary estimate (3.20)(ii).

We first observe that, by Green’s formula,

‖𝜉‖2L2(Γ+,𝜌0(𝑣0·𝑛)) :=
∫︁

Γ+

𝜌0 |𝜉|2 (𝑣0 · 𝑛) d𝜎 = 2ℜ𝑒
∫︁

Ω

𝜌0(𝑣0 ·∇)𝜉 · 𝜉.

Thus using the change of variables formula (3.21), (3.22) and (3.25)

‖𝜉‖2L2(Γ+,𝜌0(𝑣0·𝑛)) = 2ℜ𝑒
∫︁

Θ

𝜕̂︀𝜉
𝜕𝑡
· ̂︀𝜉 d𝜇(𝑡, 𝑏) = 2ℜ𝑒

∫︁
Γ−

∫︁ 𝑡(𝑏)

0

𝜕̂︀𝜉
𝜕𝑡
· ̂︀𝜉 d𝑡d𝜎(𝑏).

Thus, using again (3.31) and the inequality ℐ(𝜔𝑖; 𝑡(𝑏), 𝑏) ≤ ℐ*(𝜔𝑖; 𝑡(𝑏)) ≤ ℐ*(𝜔𝑖; 𝑡*(𝑣0,Ω)),

‖𝜉‖2L2(Γ+,𝜌0(𝑣0·𝑛)) =
∫︁

Γ−

⃒⃒⃒̂︀𝜉(𝑡(𝑏), 𝑏)
⃒⃒⃒2

d𝜎(𝑏)

≤
∫︁

Γ−

ℐ(𝜔𝑖; 𝑡(𝑏), 𝑏))

(︃∫︁ 𝑡(𝑏)

0

⃒⃒⃒
𝒬0
̂︀𝜉(𝜏, 𝑏)

⃒⃒⃒2
d𝜏

)︃
d𝜎(𝑏)

≤ ℐ*(𝜔𝑖; 𝑡*(𝑣0,Ω))
∫︁

Γ−

∫︁ 𝑡(𝑏)

0

⃒⃒⃒
𝒬0
̂︀𝜉(𝜏, 𝑏)

⃒⃒⃒2
d𝜏d𝜎(𝑏)
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= ℐ*(𝜔𝑖; 𝑡*(𝑣0,Ω))
⃦⃦⃦
𝒬0
̂︀𝜉⃦⃦⃦2

L2(Θ,𝜇)𝑑
.

Finally, using (3.33) and
⃦⃦⃦
𝒬0
̂︀𝜉⃦⃦⃦

L2(Θ,𝜇)𝑑
= ‖𝒯 0(𝜔)𝜉‖L2(Ω,𝜌0)𝑑 (again by (3.26), (3.24) and ̂︀𝜉 = 𝒮𝜉):

‖𝜉‖2L2(Γ+,𝜌0(𝑣0·𝑛)) ≤ 𝐶+(𝑣0,Ω, 𝜔𝑖)2 ‖𝒯 0(𝜔)𝜉‖2L2(Ω,𝜌0)𝑑 .

�

We can now apply Theorem 3.16 to reduce the Goldstein problem ((2.14), (2.15)) to the “modified” convected
Helmholtz problem (3.6) with unknown 𝜙 ∈ 𝑉 by giving a rigorous sense to

𝒮0(𝜔; ∇𝜙) := 𝒯 −1
0 (𝜔0 ×∇𝜙) ∈ 𝐻, ∀ 𝜙 ∈ 𝑉, (3.34)

since 𝜔0 ×∇𝜙 ∈ 𝐿. We deduce in particular, from the estimates (3.18), the following continuity estimates

∀ 𝜙 ∈ 𝑉, ‖𝒮0(𝜔; ∇𝜙)‖L2(Ω,𝜌0)𝑑 ≤ 𝐶0(𝑣0,Ω, 𝜔𝑖) ‖𝜔0‖L∞‖∇𝜙‖L2(Ω,𝜌0)𝑑 , (i)

∀ 𝜙 ∈ 𝑉, ‖𝒮0(𝜔; ∇𝜙)‖L2(Γ+, 𝜌0(𝑣0·𝑛))≤ 𝐶+(𝑣0,Ω, 𝜔𝑖) ‖𝜔0‖L∞‖∇𝜙‖L2(Ω,𝜌0)𝑑 . (ii)
(3.35)

The next proposition gives the weak formulation of the reduced Goldstein’s problem (3.6).

Proposition 3.20. If the flow 𝑣0 is admissible and if div(𝜌0𝑣0) = 0, the weak formulation of (3.6) reads, with
ℓ(𝜓) defined as in (3.8):

For 𝑓 ∈ L2(Ω), find 𝜙 ∈ 𝑉 s.t. ∀ 𝜓 ∈ 𝑉, 𝑎𝑔(𝜔;𝜙,𝜓) = ℓ(𝜓), (3.36)

where the sesquilinear form 𝑎𝑔(𝜔, 𝜙, 𝜓) is defined on 𝑉 by:

𝑎𝑔(𝜔;𝜙,𝜓) := 𝑎(𝜔;𝜙,𝜓) + 𝑑(𝒮0(𝜔; ∇𝜙), 𝜓) (3.37)

where 𝑎(𝜔;𝜙,𝜓) and 𝑑(𝜔;𝜙,𝜓) are the sesquilinear forms defined in (3.8) and (3.14).

Proof. It is a straightforward consequence of weak formulation ((2.14), (2.15)) of the Goldstein’s problem.
Indeed, (2.15) means, via Theorem 3.16, that 𝜉 = 𝒮0(𝜔; ∇𝜙) ∈ 𝐻 that we substitute into (2.14) to
get (3.36). �

3.4.3. Fredholm analytic property

This section is dedicated to show that the assumptions (1) and (2) of the Corollary 3.12 are satisfied for
the operator 𝐴𝑔(𝜔) := 𝐴𝑟(𝜔) defined in the preamble 3.4.1. The check of the assumption (1) is easy as the
sesquilinear forms involved depend only polynomially on 𝜔. We have the following proposition:

Proposition 3.21 (Analyticity). The map 𝜔 ∈ C ↦→ 𝐴𝑔(𝜔) ∈ ℒ(𝑉 ) is analytic.

Proof. Using the notations of the preamble, as the sesquilinear forms 𝑎 and 𝑡 defined respectively on 𝑉 × 𝑉
and 𝐻 × 𝐿 have a polynomial dependence in the variable 𝜔 ∈ C, the associated operators 𝐴(𝜔) and 𝑇 (𝜔)
depends also polynomially, thus analytically, on 𝜔. Then, by standard results, if 𝜔 ↦→ 𝑇 (𝜔) is analytic and 𝑇 (𝜔)
is invertible for all 𝜔, the maps 𝜔 ↦→ 𝑇 (𝜔)−1 is also analytic. We finally deduce the analyticity of the mapping
𝜔 ↦→ 𝐴𝑔(𝜔) := 𝐴(𝜔)−𝐷 𝑇 (𝜔)−1𝐵 as a sum and composition of analytic maps. �
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We now investigate the Fredholmness of 𝐴𝑔(𝜔) to verify assumption (2). In the proof of Theorem 3.8, we
proved the Fredholmness of the convected Helmholtz problem by artificially decomposing its sesquilinear form
𝑎 as 𝑎 = 𝑎* + 𝑐 and showed that 𝑎* is coercive and 𝑐 is associated with a compact operator. To use a similar
approach for 𝑎𝑔, it worths first to mention that the first part of the sesquilinear form 𝑑(𝒮0(𝜔; ∇𝜙), 𝜓) namely∫︁

Ω

𝜌0 𝒮0(𝜔; ∇𝜙) ·∇𝜓, (3.38)

is not compact in 𝑉 = H1(Ω). This is due to the fact that the operator 𝒯0 is regularizing along the streamlines
(this is estimate (3.18)) but not along the transverse directions. As a consequence, equation (3.38) needs to be
incorporated in the “coercive part” of the decomposition of 𝑎𝑔. This leads us to the following decomposition

∀ (𝜙,𝜓) ∈ 𝑉 × 𝑉, 𝑎𝑔(𝜔;𝜙,𝜓) = 𝑎𝑔
*(𝜔;𝜙,𝜓) + 𝑐𝑔(𝜔;𝜙,𝜓),

where

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑎𝑔
*(𝜔;𝜙,𝜓) := 𝑎*(𝜔;𝜙,𝜓) +

∫︁
Ω

𝜌0 𝒮0(𝜔; ∇𝜙) ·∇𝜓,

𝑐𝑔(𝜔;𝜙,𝜓) := 𝑐(𝜔;𝜙,𝜓)−
∫︁

Γ+

𝜌0(𝑀0 · 𝑛) 𝒮0(𝜔; ∇𝜙) · 𝑛𝜓.

Let 𝐴*(𝜔), 𝐶(𝜔), 𝐴𝑔
*(𝜔), 𝐶𝑔(𝜔) in ℒ(𝑉 ) be the operators defined, via Riesz theorem, by

∀ 𝜙,𝜓 ∈ 𝑉,

⎧⎨⎩𝑎*(𝜔;𝜙,𝜓) = (𝐴*(𝜔)𝜙,𝜓)𝑉 , 𝑎
𝑔
*(𝜔;𝜙,𝜓) = (𝐴𝑔

*(𝜔)𝜙,𝜓)𝑉 ,

𝑐(𝜔;𝜙,𝜓) = (𝐶(𝜔)𝜙,𝜓)𝑉 , 𝑐𝑔(𝜔;𝜙,𝜓) = (𝐶𝑔(𝜔)𝜙,𝜓)𝑉 .

Proposition 3.22 (Fredholmness). If the flow 𝑣0 is admissible (Def. 3.5, which includes in particular (3.3)),
and satisfies div(𝜌0𝑣0) = 0, there exists 𝛽 > 0 such that for all 𝜔 ∈ C+

𝛽 :

(i) 𝐴𝑔
*(𝜔) is invertible,

(ii) 𝐶𝑔(𝜔) is a compact operator,

so that 𝐴𝑔(𝜔) is a Fredholm operator of index 0.

Proof. (i) We have proved that 𝑎*(𝜔; ·, ·) is coercive for real frequency 𝜔, see (3.10). If 𝜔 := 𝜔𝑟 + 𝑖𝜔𝑖 is a
complex number (where 𝜔𝑟, 𝜔𝑖 ∈ R), we have, for 𝜙 ∈ H1(Ω),

|𝑎*(𝜔, 𝜙, 𝜙)| ≥ ℜ𝑒(𝑎*(𝜔, 𝜙, 𝜙)) =
∫︁

Ω

𝜌0

(︁
|∇𝜙|2 − |𝑀0 ·∇𝜙|2 + |𝜙|2

)︁
+ 𝜔𝑖

∫︁
𝜕Ω

𝜆𝜌0𝑐
−1
0 |𝜙|2.

As the additional term 𝑎𝑔
*(𝜔;𝜙,𝜙) − 𝑎*(𝜔, 𝜙, 𝜙) has a priori no sign, we simply bound it from below by

minus its absolute value. Using Cauchy–Schwarz inequality, we get

|𝑎𝑔
*(𝜔;𝜙,𝜙)| =

⃒⃒⃒⃒
𝑎*(𝜔;𝜙,𝜙) +

∫︁
Ω

𝜌0 𝒮0(𝜔; ∇𝜙) ·∇𝜙

⃒⃒⃒⃒
≥ |𝑎*(𝜔;𝜙,𝜙)| − ‖𝒮0(𝜔; ∇𝜙)‖L2(Ω,𝜌0)𝑑‖∇𝜙‖L2(Ω,𝜌0)𝑑 ,

and thus,

|𝑎𝑔
*(𝜔;𝜙,𝜙)| ≥ 𝑔(𝜔𝑖) ‖𝜙‖2H1(Ω,𝜌0)

+ 𝜔𝑖

∫︁
𝜕Ω

𝜆 𝜌0𝑐
−1
0 |𝜙|2,

where we have set
𝑔(𝜔𝑖) := 1− ‖𝑀0‖2L∞ − ‖𝜔0‖L∞ 𝐶0(𝑣0,Ω, 𝜔𝑖). (3.39)
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As 𝜔𝑖 ↦→ 𝐶0(𝑣0,Ω, 𝜔𝑖) is decreasing (Rem. 3.17), 𝜔𝑖 ↦→ 𝑔(𝜔𝑖) is increasing and we can bound by below as
follow:

|𝑎𝑔
*(𝜔;𝜙,𝜙)| ≥ 𝑔(−𝛽) ‖𝜙‖2H1(Ω,𝜌0)

− 𝛽

∫︁
𝜕Ω

𝜆 𝜌0𝑐
−1
0 |𝜙|2.

By boundedness of 𝜆 and 𝑐−1
0 and trace theorem, there exists 𝐶 > 0 such that∫︁

𝜕Ω

𝜆 𝜌0𝑐
−1
0 |𝜙|2 ≤ 𝐶 ‖𝜙‖2H1(Ω,𝜌0)

.

It follows that
∀ 𝜔 ∈ C+

𝛽 , |𝑎𝑔
*(𝜔;𝜙,𝜙)| ≥ [𝑔(−𝛽)− 𝐶𝛽] ‖𝜙‖2H1(Ω,𝜌0)

. (3.40)

By a continuity argument (3.19), we see that

lim
𝛽→0

[︀
𝑔(−𝛽)− 𝐶𝛽

]︀
= 𝑔(0),

where, by definition of 𝑔(𝜔𝑖), (3.39), and 𝐶0(𝑣0,Ω, 𝜔𝑖), (3.19),

𝑔(0) = 1− ‖𝑀0‖2L∞ − ‖𝜔0‖L∞ 𝑡*(𝑣0,Ω) Φ(2𝑡*(𝑣0,Ω)‖∇𝑣0‖L∞) > 0,

where the strict inequality is nothing but (3.3). By continuity, we can find 𝛽 > 0 (small enough) such that
𝑔(−𝛽) − 𝐶𝛽 > 0. Thus, for such a 𝛽, equation (3.40) provides the coercivity of 𝑎𝑔

*(𝜔; ·, ·) for any 𝜔 ∈ C+
𝛽 ,

uniformly with respect to 𝜔 ∈ C+
𝛽 .

As a consequence, 𝐴𝑔
*(𝜔) is invertible for any 𝜔 ∈ C+

𝛽 .
(ii) The compactness of the operator 𝐶(𝜔) associated to the sesquilinear form 𝑐(𝜔, ·, ·) has already been proved

in the proof of Theorem 3.8. It remains to show the compactness of the operator 𝐶𝑑(𝜔) = 𝐶𝑔(𝜔) − 𝐶(𝜔)
associated with the sesquilinear form

𝜙,𝜓 ∈ 𝑉, 𝑐𝑑(𝜔, 𝜙, 𝜓) :=
∫︁

Γ+

𝜌0 (𝑀0 · 𝑛) (𝒮0(𝜔; ∇𝜙) · 𝑛)𝜓.

This will rely on a sharp continuity estimate for 𝑐𝑑(𝜔, 𝜙, 𝜓) which will provide more than the simple
continuity of 𝐶𝑑(𝜔).
First, by Cauchy–Schwarz inequality, 𝑀0 = 𝑐−1

0 𝑣0 and boundedness of various coefficients, we have, for
some 𝐶 > 0, ⃒⃒

𝑐𝑑(𝜔, 𝜙, 𝜓)
⃒⃒
≤
⃦⃦
𝑐−1
0

⃦⃦
L∞
‖(𝒮0(𝜔; ∇𝜙) · 𝑛)‖L2(Γ+,𝜌0(𝑣0·𝑛)) ‖𝜓‖L2(Γ+, 𝜌0(𝑣0·𝑛)).

Therefore, using the trace inequality (3.35)(ii), we have, with 𝜔𝑖 := ℑ𝑚𝜔,⃒⃒
𝑐𝑑(𝜔, 𝜙, 𝜓)

⃒⃒
≤ 𝐶+(𝑣0,Ω, 𝜔𝑖) ‖𝜔0‖L∞‖∇𝜙‖L2(Ω,𝜌0)𝑑‖𝜓‖L2(Γ+, 𝜌0(𝑣0·𝑛))

and the compactness of 𝐶𝑑(𝜔) is a consequence of the compactness of the map 𝜓 ∈ 𝑉 ↦→ 𝜓|Γ+ ∈ L2(Γ+)
(or the compact embedding of H

1
2 (Γ+) in L2(Γ+)), in a same fashion as the compactness of the operator 𝐶

associated with 𝑐 in the proof of Theroem 3.8.
�

3.4.4. Invertibility at one frequency 𝜔◇
To fulfill the conditions of the Corollary 3.12, it remains to verify that the operator 𝐴𝑔(𝜔), is invertible at

one frequency 𝜔◇ in the domain C*𝛽 where the problem has been shown to be of Fredholm type in the previous
section. This value will be found on the positive imaginary semi-axis provided that the imaginary part of 𝜔◇ is
large enough.
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Remark 3.23. The idea of looking at frequencies with a positive imaginary part 𝜔 + 𝑖𝜀, 𝜀 > 0 is classical in
particular for the standard Helmholtz equation: it corresponds to the limiting absorption procedure. Looking
at 𝜔 + 𝑖𝜀 can be interpreted physically as adding absorption in the original model. For the standard Helmholtz
equation, or for the convected Helmholtz equation in a subsonic flow, coercivity is recovered for any 𝜀 > 0,
even arbitrarily small. This will not be the case here for the Goldstein’s problem, due to the coupling with the
transport equation: we shall need the absorption 𝜀 to be large enough. This will appear as a technical necessity
but this is also physically meaningful: in aeroacoustics the possible presence of hydrodynamic instabilities require
a large enough absorption to be counterbalanced.

Proposition 3.24. For a strictly subsonic (3.9), a Ω-filling flow 𝑣0 such that div(𝜌0𝑣0) = 0, and for 𝜔◇ = 𝑖 𝜔𝑖

with 𝜔𝑖 > 0 large enough (obviously 𝜔* ∈ C+
𝛽 ), 𝐴𝑔(𝜔◇) is invertible.

Proof. Of course, it suffices to prove the coercivity of 𝑎𝑔(𝑖𝜔𝑖, ·, ·) for 𝜔𝑖 large enough. Let us begin with 𝑎(𝑖𝜔;𝜙,𝜙)
(associated to the convected Helmholtz’s problem). Noticing that

ℜ𝑒(𝜙(𝑀0 ·∇𝜙)− (𝑀0 ·∇𝜙)𝜙 ) = 0,

we see that

ℜ𝑒 (𝑎(𝑖𝜔𝑖;𝜙,𝜙)) =
∫︁

Ω

𝜌0

(︂
|∇𝜙|2 − |𝑀0 ·∇𝜙|2 +

𝜔2
𝑖

𝑐20
|𝜙|2

)︂
+ 𝜔𝑖

∫︁
𝜕Ω

𝜌0 𝑐
−1
0 𝜆 |𝜙|2.

Then, using 𝜆 ≥ 0 on 𝜕Ω, one gets:

ℜ𝑒 (𝑎(𝑖𝜔𝑖;𝜙,𝜙)) ≥ 𝛼*(𝜔𝑖)‖𝜙‖2H1(Ω,𝜌0)
, 𝛼*(𝜔𝑖) := min

(︁
1− ‖𝑀0‖2L∞ , 𝜔2

𝑖 ‖𝑐0‖−2
L∞

)︁
. (3.41)

Next, we treat the remaining part (3.37) of 𝑎𝑔, namely (see (3.37))

ℜ𝑒 (𝑑(𝒮0(𝑖𝜔𝑖; ∇𝜙), 𝜓)) = ℜ𝑒
(︂∫︁

Ω

𝜌0 𝒮0(𝑖𝜔𝑖; ∇𝜙) ·∇𝜙

)︂
−ℜ𝑒

(︃∫︁
Γ+

𝜌0(𝑀0 · 𝑛)(𝒮0(𝑖𝜔𝑖; ∇𝜙) · 𝑛)𝜙

)︃
.

First, by Cauchy–Schwarz,⃒⃒⃒⃒∫︁
Ω

𝜌0 𝒮0(𝑖𝜔𝑖; ∇𝜙) ·∇𝜙

⃒⃒⃒⃒
≤ ‖𝒮0(𝑖𝜔𝑖; ∇𝜙)‖L2(Ω,𝜌0)𝑑‖∇𝜙‖L2(Ω,𝜌0)𝑑 ,

so that, using (3.35)(i),⃒⃒⃒⃒∫︁
Ω

𝜌0 𝒮0(𝑖𝜔𝑖; ∇𝜙) ·∇𝜙

⃒⃒⃒⃒
≤ 𝐶0(𝑣0,Ω, 𝑖𝜔𝑖) ‖𝜔0‖L∞‖∇𝜙‖2L2(Ω,𝜌0)

𝑑 . (3.42)

In a similar way, using again Cauchy–Schwarz, 𝑀0 = 𝑐−1
0 𝑣0 and the boundedness of 𝜌0 and 𝑐−1

0 , we get:⃒⃒⃒⃒
⃒
∫︁

Γ+

𝜌0(𝑀0 · 𝑛)(𝒮0(𝑖𝜔𝑖; ∇𝜙) · 𝑛)𝜙

⃒⃒⃒⃒
⃒ ≤ ⃦⃦𝑐−1

0

⃦⃦
L∞
‖(𝒮0(𝑖𝜔𝑖; ∇𝜙) · 𝑛)‖L2(Γ+,𝜌0(𝑣0·𝑛)) ‖𝜙‖L2(Γ+,𝜌0(𝑣0·𝑛)).

Thus, introducing the non dimensionless constant

𝐶𝑡𝑟(𝜌0,𝑣0,Ω) := sup
𝜙∈H1(Ω)

‖𝜙‖L2(Γ+, 𝜌0(𝑣0·𝑛))

‖𝜙‖H1(Ω,𝜌0)

< +∞ (by trace theorem),

and using (3.35)(ii), we conclude that⃒⃒⃒⃒
⃒
∫︁

Γ+

𝜌0(𝑀0 · 𝑛)(𝒮0(𝜔; ∇𝜙) · 𝑛)𝜙

⃒⃒⃒⃒
⃒ ≤ ⃦⃦𝑐−1

0

⃦⃦
L∞

‖𝜔0‖L∞ 𝐶𝑡𝑟(𝜌0,𝑣0) 𝐶+(𝑣0,Ω, 𝜔𝑖)‖𝜙‖2H1(Ω,𝜌0)
. (3.43)
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Finally, regrouping (3.41)–(3.43) in (3.37) and setting

𝛼(𝜔𝑖) := 𝛼*(𝜔𝑖)−
[︀
𝐶0(𝑣0,Ω, 𝜔𝑖) +

⃦⃦
𝑐−1
0

⃦⃦
L∞

𝐶𝑡𝑟(𝜌0,𝑣0) 𝐶+(𝑣0,Ω, 𝜔𝑖)
]︀
‖𝜔0‖L∞ ,

we obtain the lower bound
ℜ𝑒 (𝑎𝑔(𝑖𝜔𝑖;𝜙,𝜙)) ≥ 𝛼(𝜔𝑖)‖𝜙‖2H1(Ω,𝜌0)

.

As 𝐶0(𝑣0,Ω, 𝑖𝜔𝑖) and 𝐶+(𝑣0,Ω, 𝑖𝜔𝑖) tends to 0 when 𝜔𝑖 → +∞, cf. Remark 3.17, and since 𝛼*(𝜔𝑖) = 1 −
‖𝑀0‖2L∞ , for 𝜔𝑖 large enough (see (3.41)), we have

lim
𝜔𝑖→+∞

𝛼(𝑖𝜔𝑖) = 1− ‖𝑀0‖2L∞ > 0. (3.44)

It is then easy to conclude. �

Remark 3.25. It is worthwhile noticing that Proposition 3.24 does not require that the flow is admissible.
Only the Ω-filling property, for defining 𝒮0(𝑖𝜔𝑖; ∇𝜙), and the fact that the flow is subsonic, for (3.44), are
needed. This is explained by the fact that the hydrodynamic effects, due to the unknown 𝜉, are killed at high
absorption as shown by Theorem 3.16.

3.4.5. End of the main result (Thm. 3.6) proof

Since we have gathered all the Corollary 3.12 conditions, there exists a subset ℛC
𝑒𝑥 ⊂ C+

𝛽 , with no limit point
in C+

𝛽 , such that for all frequencies 𝜔 ∈ C+
𝛽 ∖ℛC

𝑒𝑥, the reduced Goldstein’s problem (3.6) is well-posed and so is
the Goldstein’s problem ((2.14), (2.15)). We deduce that the same is true for all frequencies 𝜔 ∈ R ∖ℛ𝑒𝑥, where
the set ℛ𝑒𝑥 := ℛC

𝑒𝑥 ∩ R has no limit point in R, which ends the proof of the main result.

3.5. On the admissibility condition as a low vorticity condition

In this section, essentially for technical reasons, we suppose that 𝑑 = 2 that allows us to use the simple
characterization (3.1) of Ω-filling flows. However, we conjecture that the content of this section remains valid
for 𝑑 = 3.

We wish to reinterpret the condition (3.3) as imposing on the mean flow to be subsonic, as in the potential
case, but also to be of low vorticity and not more. In this aim, we consider a family of flows parameterized
by a real 𝜂 ∈ R, (𝜌𝜂

0 , 𝑝
𝜂
0 ,𝑣

𝜂
0) whose velocity flows are perturbation of a (strictly) subsonic potential flow. More

precisely, these are of the form:

𝑣𝜂
0 := 𝑣0 + 𝜂 𝑤0, 𝑣0 = ∇𝜙0, ‖∇×𝑤0‖L∞ = 1, (3.45)

where 𝑤0 is C1
(︀
R𝑑,R𝑑

)︀
and we assume that the acoustic velocity field 𝑐𝜂0 satisfies

lim
𝜂→0

‖𝑐𝜂0 − 𝑐0‖L∞ = 0.

The vorticity of these flows is proportional to 𝜂 (in such a way that, for these flows “small vorticity” is equivalent
to “small 𝜂”):

𝜔𝜂
0 := ∇× (∇𝜙0 + 𝜂𝑤0) = 𝜂 ∇×𝑤0 =⇒ ‖𝜔𝜂

0‖L∞ = |𝜂|.
We also assume that 𝑤0 satisfies

𝑤0 · 𝑛 = 0 on 𝜕Ω, (3.46)

(which is for instance the case if supp(𝑤0) ⊂ Ω), such that the inflow and outflow boundaries (cf. defini-
tions (2.3)) are independent of 𝜂, i.e. with the notations of Remark 2.2:

∀ 𝜂, Γ±(𝑣𝜂
0) = Γ±(𝑣0) ≡ Γ±.
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Remark 3.26. We think that the assumption is not really essential but it suppresses many tedious difficulties
in the proof of our results.

Theorem 3.27. Let 𝑣0 strictly be subsonic and Ω filling and 𝑣𝜂
0 be defined by (3.45) where the vector field 𝑤0

satisfies (3.46). Then, there is a threshold 𝜂* > 0 such that for all 𝜂 ∈ ] − 𝜂*, 𝜂*[, the flow 𝑣𝜂
0 is admissible in

the sense of Definition 3.5 and, therefore, so that the Goldstein’s problem ((2.14), (2.15)) associated with the
flow (𝜌𝜂

0 , 𝑝
𝜂
0 ,𝑣

𝜂
0) is well posed in the sense of Theorem 3.6.

The proof relies on the following technical lemma (whose proof is given in appendix) that provides a uniform
control (in 𝜂) of the lifetimes of the flows 𝑣𝜂

0

Lemma 3.28. There exists 𝜂* > 0 and 𝑇 * > 0 such that:

∀ 𝜂 ∈ (−𝜂*, 𝜂*), 𝑡*(𝑣𝜂
0 ,Ω) ≤ 𝑇 *.

Proof of Theorem 3.27. One first remarks that, using the 2D characterization (3.1) of the Ω-filling property, for
𝜂 small enough, as infΩ |𝑣𝜂

0 | > 0, 𝑣𝜂
0 is Ω-filling.

Then, if we denote 𝑀𝜂
0 := 𝑣𝜂

0/𝑐
𝜂
0 the Mach flow of the perturbed flow, with our assumptions, 𝑀𝜂

0 converges
uniformly in Ω towards 𝑀0 = 𝑣0/𝑐0 and in particular ‖𝑀𝜂

0‖L∞ → ‖𝑀0‖L∞ when 𝜂 → 0. In a same fash-
ion, one easily sees that ‖∇𝑣𝜂

0‖L∞ → ‖∇𝑣0‖L∞ when 𝜂 → 0. Finally, as a consequence of Lemma 3.28, as
𝑡*(𝑣𝜂

0 ,Ω)Φ(2𝑡*(𝑣𝜂
0 ,Ω)‖∇𝑣𝜂

0‖L∞) remains bounded when 𝜂 → 0 and as ‖𝜔𝜂
0‖L∞ = |𝜂| → 0, one gets:

lim
𝜂→0

[︁
1− ‖𝑀𝜂

0‖
2
L∞ − ‖𝜔

𝜂
0‖L∞ 𝑡*(𝑣𝜂

0 ,Ω) Φ
(︀
2 𝑡*(𝑣𝜂

0 ,Ω)‖∇𝑣𝜂
0‖L∞

)︀]︁
= 1− ‖𝑀𝜂

0‖2L∞ > 0.

Thus 𝑣𝜂
0 is admissible for 𝜂 small enough. One concludes with Theorem 3.6. �

Appendix A. A first order absorbing boundary condition

In this appendix, we explain the construction of the absorbing boundary condition (2.11) of Section 2.3.1, as
an approximate transparent condition.

In what follows, we denote Ωext the exterior domain as the unbounded connected component of R𝑑 ∖ Γ, so
that in particular Γ = 𝜕Ωext. Ideally, a transparent boundary condition on 𝜕Ω would result from a generalized
Dirichlet-to-Neumann (DtN) operator acting on a couple of boundary data

𝑇 :
(︀
𝜙0, 𝜉0

)︀
: Γ× Γ+ → C× C𝑑,

and is related to the notion of generalized Neumann trace defined in (2.16):

𝑇
(︀
𝜙0, 𝜉0

)︀
:= −

(︀
∇𝜑
(︀
𝜙0, 𝜉0

)︀
+ 𝜁
(︀
𝜙0, 𝜉0

)︀)︀
· 𝑛 + 𝑐−1

0 (𝑀0 · 𝑛)𝐷𝜔𝜑
(︀
𝜙0, 𝜉0

)︀
, (A.1)

where 𝜑 := 𝜑
(︀
𝜙0, 𝜉0

)︀
and 𝜁 := 𝜁

(︀
𝜙0, 𝜉0

)︀
are solution of the exterior Dirichlet boundary value problem (posed in

Ωext) associated to the convected Helmholtz equation with constant coefficients (𝑐0,𝑀0) (the exterior medium
is homogeneous with a uniform flow):⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(︂
−𝑖 𝜔
𝑐0

+ 𝑀0 ·∇
)︂2

𝜑−∆𝜑−∇ · 𝜁 = 0, in Ωext(︂
−𝑖 𝜔
𝑐0

+ 𝑀0 ·∇
)︂

𝜁 = 0, in Ωext

𝜑 = 𝜙0 on Γ, 𝜁 = 𝜉0 on Γ+.

(A.2)
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Figure A.1. Illustration of the local 1D problem geometry around 𝑥 ∈ Γ+.

Note that the outflow boundary Γ+ becomes the inflow boundary for the exterior domain reason why we need to
prescribe 𝜁 on Γ+ (instead on Γ+ for the interior problem, cf. Sect. 2.3). Also note that the transport equation
for 𝜁 is completely decoupled from 𝜑 because the vorticity 𝜔0 is 0 in the exterior domain Ωext.

Once 𝑇 is known, a transparent boundary condition for the interior problem in (𝜙, 𝜉) is

𝜌0(∇𝜙+ 𝜉) · 𝑛− 𝜌0𝑐
−1
0 (𝑀0 · 𝑛)𝐷𝜔𝜙+ 𝜌0 𝑇 (𝜙, 𝜉) = 0 on Γ. (A.3)

The above operator 𝑇 in non local along Γ and cannot be computed in practice. That is why or goal in this
section will be to construct a “local approximation” based on the usual idea that works for the Dirichlet-to-
Neumann map which occurs in Helmholtz equation boundary conditions study. More precisely, this consists in
considering the problem in a small neighborhood of a point 𝑥 ∈ Γ with outgoing normal vector 𝑛 and

– assimilate locally the boundary Γ to the tangent plane Γ𝑥 and the exterior domain to the half-space Ω𝑥 :=
{𝑦/(𝑦 − 𝑥) · 𝑛 > 0},

– consider that around Γ, the boundary data are constant (in other words their lateral variations are neglected).

This leads to consider the (𝑥-dependent) half-space problem (A.2) in which Ωext is replaced by Ω𝑥 and the
boundary data are constant along Γ𝑥 as shown in Figure A.1. i.e. 𝜙0 ≡ 𝜙0(𝑥) and 𝜉0 ≡ 𝜉0(𝑥). By translational
invariance along Γ𝑥 we deduce that the solution (𝜑𝑥, 𝜁𝑥) is a 1D function of the space coordinate normal to
Γ𝑥. If we call 𝑦 this variable, so that Ω𝑥 corresponds to 𝑦 > 0 and Γ𝑥 corresponds to 𝑦 = 0, the 1D problems
rewrites ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(︂
−𝑖 𝜔
𝑐0

+ (𝑀0 · 𝑛)
d
d𝑦

)︂2

𝜑𝑥 −
d2𝜑𝑥

d𝑦2
− d

d𝑦
(𝜁𝑥 · 𝑛) = 0, 𝑦 > 0,(︂

−𝑖 𝜔
𝑐0

+ (𝑀0 · 𝑛)
d
d𝑦

)︂
𝜁𝑥 = 0, 𝑦 > 0,

𝜑𝑥(0) = 𝜙0(𝑥) on Γ, 𝜁𝑥(0) = 𝜉0(𝑥) on Γ+.

(A.4)

Note that the above is valid for any point 𝑥 along the boundary Γ with the particularity that 𝜉0(𝑥) = 0 if
𝑥 /∈ Γ+. From the transport equation we deduce that

𝜁𝑥(𝑦) = 𝜉0(𝑥) 𝑒𝑖 𝜔
𝑐0

𝑦
𝑀0·𝑛 (A.5)

that we substitute into the equation for 𝜑𝑥, which gives(︂
−𝑖 𝜔
𝑐0

+ (𝑀0 · 𝑛)
d
d𝑦

)︂2

𝜑𝑥 −
d2𝜑𝑥

d𝑦2
= 𝑖

𝜔

𝑐0

(︂
𝜉0(𝑥) · 𝑛
𝑀0 · 𝑛

)︂
𝑒𝑖 𝜔

𝑐0
𝑦

𝑀0·𝑛 . (A.6)
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The solution is the sum of a particular solution 𝜑𝑝 + 𝜑ℎ where 𝜑ℎ is a solution of the homogeneous equation.
Of course 𝜑𝑝 is of the form

𝜑𝑝(𝑦) = 𝜑0,𝑝 𝑒
𝑖 𝜔

𝑐0
𝑦

𝑀0·𝑛 ,

where, noticing that the first term of the left hand side of the equation (A.6) vanishes for 𝜑𝑥 = 𝜑𝑝, one computes
that

𝜑0,𝑝 = 𝑖
𝑐0
𝜔

(𝑀0 · 𝑛) (𝜉0(𝑥) · 𝑛).

On the other hand, we know that 𝜑ℎ is of the form

𝜑ℎ(𝑦) = 𝐴+ 𝑒𝑖 𝑘+(𝜔) 𝑦 +𝐴− 𝑒𝑖 𝑘−(𝜔) 𝑦,

where (𝑘+(𝜔), 𝑘−(𝜔)) are the two solutions of the quadratic dispersion relation in 𝑘:

𝑘2 =
(︂
𝜔

𝑐0
− (𝑀0 · 𝑛) 𝑘

)︂2

,

that is to say, taking into account that the the flow is subsonic (|𝑀0| < 1),

𝑘+(𝜔) =
𝜔

𝑐0
(1 + 𝑀0 · 𝑛)−1 > 0, 𝑘−(𝜔) = − 𝜔

𝑐0
(1−𝑀0 · 𝑛)−1 < 0.

Moreover, we shall retain only in the homogeneous solution, the one that is going at infinity (this can be fully
justified by limiting absorption, we omit the details) which yields 𝐴− = 0. Therefore 𝐴+ = 𝜙0(𝑥)−𝜑0,𝑝 in order
that 𝜑𝑥(0) = 𝜙0(𝑥). This leads to

𝜑𝑥(𝑦) = 𝜙0(𝑥) 𝑒𝑖 𝜔
𝑐0

𝑥
1+𝑀0·𝑛 + 𝑖

𝑐0
𝜔

(𝑀0 · 𝑛)(𝜉0(𝑥) · 𝑛)
[︁
𝑒𝑖 𝜔

𝑐0
𝑦

𝑀0·𝑛 − 𝑒𝑖 𝜔
𝑐0

𝑦
1+𝑀0·𝑛

]︁
. (A.7)

We then define the approximate operator, consistently with the 1D approximate solution (𝜑𝑥, 𝜁
𝑥) (A.1), as

−𝑇𝑎𝑝 (𝜙0, 𝜉0)(𝑥)= 𝜑′𝑥(0) + 𝜁𝑥(0) · 𝑛 + (𝑀0 · 𝑛)
(︀
𝑖𝜔 𝑐−1

0 𝜑𝑥 − (𝑀0 · 𝑛)𝜑′𝑥
)︀
(0)

=
[︀
1− (𝑀0 · 𝑛)2

]︀
𝜑′𝑥(0) + 𝑖𝜔 𝑐−1

0 (𝑀0 · 𝑛)𝜑𝑥(0) + 𝜁𝑥(0) · 𝑛.
(A.8)

By (A.4), 𝜑𝑥(0) = 𝜙0(𝑥) and 𝜁𝑥(0) = 𝜉0(𝑥), thus

𝑖𝜔 𝑐−1
0 (𝑀0 · 𝑛)𝜑𝑥(0) + 𝜁𝑥(0) · 𝑛 = 𝑖𝜔 𝑐−1

0 (𝑀0 · 𝑛)𝜙0(𝑥) + 𝜉0(𝑥) · 𝑛, (A.9)

while, from (A.7), one gets (𝜑𝑥)′(0) = (1 + 𝑀0 · 𝑛)−1
(︀
𝑖 𝜔 𝑐−1

0 𝜙0(𝑥)− 𝜉0(𝑥) · 𝑛
)︀
, thus[︀

1− (𝑀0 · 𝑛)2
]︀
(𝜑𝑥)′(0) = (1−𝑀0 · 𝑛)

(︀
𝑖 𝜔 𝑐−1

0 𝜙0(𝑥)− 𝜉0(𝑥) · 𝑛
)︀
. (A.10)

Then, substituting (A.9) and (A.10) into (A.8) gives which, using ((A.5), (A.7)), gives

𝑇𝑎𝑝 (𝜙0, 𝜉0)(𝑥) = − 𝑖 𝜔
𝑐0
𝜙0(𝑥)− 𝜉0(𝑥) · 𝑛.

Finally, changing 𝑇 into 𝑇𝑎𝑝 in the transparent condition (A.3) leads to the desired absorbing condition (2.11).
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Appendix B. Proof of the technical Lemma 3.28

Let us first recall the statement of this lemma:

Lemma B.1. There exists 𝜂* > 0 and 𝑇 * > 0 such that:

∀ 𝜂 ∈ (−𝜂*, 𝜂*), 𝑡*(𝑣𝜂
0 ,Ω) ≤ 𝑇 *.

Proof. In the same fashion that 𝜒 denotes the characteristics of the flow 𝑣0, let us introduce 𝜒𝜂 the character-
istics of the perturbed flow 𝑣𝜂

0 , i.e. 𝜒𝜂 : R × R𝑑 → R𝑑 solution of the following system of ordinary differential
equations: ⎧⎪⎨⎪⎩

𝜕𝑡𝜒
𝜂

𝜕𝑡
(𝑡,𝑥) = 𝑣𝜂

0(𝜒𝜂(𝑡,𝑥)),

𝜒𝜂(0,𝑥) = 𝑥,

for all (𝑡,𝑥) ∈ R× R𝑑.

The proof consists of the following steps for which a justification will be given:

(1) General theorems of ODE theory provide that the mappings (𝑡,𝑥) ↦→ 𝜒𝜂(𝑡,𝑥) converge uniformly on any
compact of R× R𝑑 when 𝜂 → 0. However, in our case, we can merely get a stronger result by establishing
the following estimate:

∀ 𝜂 ∈ R, ∀ (𝑡,𝑥) ∈ R× R𝑑, |𝜒𝜂(𝑡,𝑥)− 𝜒(𝑡,𝑥)| ≤ |𝜂|
(︀
𝑡+ 𝑡2‖∇𝑣0‖L∞𝑒𝑡 ‖∇𝑣0‖L∞

)︀
‖𝑤0‖L∞ .

(2) There exists a small enough 𝜀 > 0 such that the flow 𝑣0 still fills the extended domain Ω𝜀 := Ω + 𝐵(0, 𝜀)
(i.e. 𝑣0 is Ω𝜀-filling). Thus, the exit time of Ω𝜀 for the flow 𝑣0 is well-defined by:

𝑡*(𝑣0,Ω𝜀) := sup
𝑥∈Ω𝜀

𝑡*(𝑥,𝑣0,Ω𝜀) < +∞,

where the exit time starting from 𝑥 ∈ Ω𝜀 is defined by:

𝑡*(𝑥,𝑣0,Ω𝜀) := sup{𝑡 ≥ 0 / ∀ 𝜏 ∈ [0, 𝑡), 𝜒(𝑡,𝑥) ∈ Ω𝜀}.

(3) There exists 𝜂* > 0 such that:

∀ 𝜂 ∈ (−𝜂*, 𝜂*), 𝑡*(𝑣𝜂
0 ,Ω) ≤ 𝑡*(𝑣0,Ω𝜀),

which provides the expected bound with 𝑇 * := 𝑡*(𝑣0,Ω𝜀).

The geometry of the problem is represented on the Figure B.1 where the streamlines of the flow, its charac-
teristics and the perturbation area are shown. Let us justify each of the steps (1), (2) and (3).

(1) The inequality follows a Gronwall estimation of the difference 𝜒𝜂(𝑡,𝑥)−𝜒(𝑡,𝑥) by using the ODE and the
fact that 𝑣𝜂

0 := 𝑣0 + 𝜂𝑤0. More precisely, for (𝑡,𝑥) ∈ R+ × R𝑑, we have:

𝜒𝜂(𝑡,𝑥)− 𝜒(𝑡,𝑥) = 𝜒𝜂(0,𝑥)− 𝜒(0,𝑥) +
∫︁ 𝑡

0

𝜕𝑡𝜒
𝜂(𝑠,𝑥)− 𝜕𝑡𝜒(𝑠,𝑥) d𝑠

=
∫︁ 𝑡

0

𝑣𝜂
0(𝜒𝜂(𝑠,𝑥))− 𝑣0(𝜒(𝑠,𝑥)) d𝑠

=
∫︁ 𝑡

0

𝑣𝜂
0(𝜒𝜂(𝑠,𝑥))− 𝑣0(𝜒𝜂(𝑠,𝑥)) + 𝑣0(𝜒𝜂(𝑠,𝑥))− 𝑣0(𝜒(𝑠,𝑥)) d𝑠

=
∫︁ 𝑡

0

𝜂𝑤0(𝜒(𝑠,𝑥)) + 𝑣0(𝜒𝜂(𝑠,𝑥))− 𝑣0(𝜒(𝑠,𝑥)) d𝑠.
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Figure B.1. The control of the distance between the reference and the perturbed character-
istics from 𝑥 ensures that if the reference characteristic is, at time 𝑡, outside of Ω𝜀, then, the
perturbed characteristic is outside of Ω at the same time 𝑡.

Then, by mean value inequality,

|𝜒𝜂(𝑡,𝑥)− 𝜒(𝑡,𝑥)| ≤ 𝑡 |𝜂| ‖𝑤0‖L∞ + ‖∇𝑣0‖L∞
∫︁ 𝑡

0

|𝜒𝜂(𝑠,𝑥)− 𝜒(𝑠,𝑥)|d𝑠,

and by Gronwall’s lemma we deduce

|𝜒𝜂(𝑡,𝑥)− 𝜒(𝑡,𝑥)| ≤ 𝑡 |𝜂| ‖𝑤0‖L∞ + ‖∇𝑣0‖L∞
∫︁ 𝑡

0

𝑒(𝑡−𝑠)‖∇𝑣0‖L∞ 𝑠|𝜂|‖𝑤0‖L∞d𝑠,

≤ 𝑡 |𝜂| ‖𝑤0‖L∞ + ‖∇𝑣0‖L∞ 𝑒𝑡‖∇𝑣0‖L∞ 𝑡2|𝜂|‖𝑤0‖L∞ ,
which is the expected inequality.

(2) The 2D characterization (3.1) of Ω-filling states that 𝑣0 is Ω-filling if and only infΩ |𝑣0| > 0. Thus, it is
straightforward that the continuity of 𝑣0 and the fact that infΩ |𝑣0| > 0 imply that there exists 𝜀 > 0 such
that infΩ𝜀 |𝑣0| > 0.

(3) Thanks to (1), given 𝜂* > 0 such that

∀ 𝜂 ∈ (−𝜂*, 𝜂*), ∀ (𝑡,𝑥) ∈ [0, 𝑡*(𝑣0,Ω𝜀)]× Ω𝜀, |𝜒𝜂(𝑡,𝑥)− 𝜒(𝑡,𝑥)| ≤ 𝜀/2.

Then, let 𝑥 ∈ Ω. One has 𝜒(𝑡*(𝑥,𝑣0,Ω𝜀),𝑥) ∈ 𝜕Ω𝜀 and thus is at a distance 𝜀 to Ω:

dist(𝜒(𝑡*(𝑥,𝑣0,Ω𝜀)),Ω) = 𝜀.

One also has that for 𝜂 ∈ (−𝜂*, 𝜂*), (𝑡*(𝑥,𝑣0,Ω𝜀),𝑥) ∈ [0, 𝑡*(𝑣0,Ω𝜀)]×Ω𝜀, leading to |𝜒𝜂(𝑡*(𝑥,𝑣0,Ω𝜀),𝑥)−
𝜒(𝑡*(𝑥,𝑣0,Ω𝜀),𝑥)| ≤ 𝜀/2, which implies that

𝜒𝜂(𝑡*(𝑥,𝑣0,Ω𝜀),𝑥) /∈ Ω.

By definition of 𝑡*(𝑥,𝑣𝜂
0 ,Ω), we have ∀ 𝜏 ∈ [0, 𝑡*(𝑥,𝑣𝜂

0 ,Ω)), 𝜒𝜂(𝜏,𝑥) ∈ Ω, from which we deduce:

𝑡*(𝑥,𝑣𝜂
0 ,Ω) ≤ 𝑡*(𝑥,𝑣0,Ω𝜀) ≤ 𝑡*(𝑣0,Ω𝜀).

Passing to the sup over Ω in this inequality, one finally gets, for any 𝜂 ∈ (−𝜂*, 𝜂*):

𝑡*(𝑣𝜂
0 ,Ω) ≤ 𝑡*(𝑣0,Ω𝜀),

which is the announced result. �
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Appendix C. On an alternative approach to the existence result

Let us mention a possible alternative to the approach of Section 3 to the analysis of Goldstein’s coupling. We
have not chosen to follow this approach in a first step for reasons that we shall mention later, but this could be
the object of a companion paper.

Let us restart from the abstract block form (3.15) of the Goldstein’s problem:(︂
𝐴(𝜔) 𝐷

𝐵 𝑇 (𝜔)

)︂(︂
𝜙

𝜉

)︂
=

(︃
𝑓

0

)︃
.

In our approach in Section 3.1, we proceed via the elimination of 𝜉. An natural alternative would be to eliminate
𝜙 via (formally)

𝜙 = 𝐴(𝜔)−1
(︁
𝑓 −𝐷 𝜉

)︁
,

so that, we are led to a “reduced” transport equation on 𝜉

𝑇 (𝜔)−𝐵𝐴(𝜔)−1𝐷 = −𝐵𝐴(𝜔)−1𝑓. (C.1)

To do so, we first have to check that the first step is possible, which is related to the invertibility of 𝐴(𝜔), that
is to say the resolution of the convected Helmholtz equation. We know, see Section 3.3, that 𝐴(𝜔) is invertible
under the only assumption that the flow is strictly subsonic. Then it remains to treat the reduced transport
equation which is far from standard since the operator 𝐵𝐴(𝜔)−1𝐷 is a fully non local perturbation of the
transport operator.

For the perturbation analysis, we cannot use, as in Section 3.4, the Fredholm approach which is not adapted
(at least to our knowledge) to the transport equation. However, we can try to use the Banach fixed point theorem.
More precisely, assuming that the transport operator T(𝜔) is invertible, which is guaranteed (Sect. 3.4.2) under
the condition that the flow is Ω-filling, we rewrite (C.1) as

𝐼 − 𝑇 (𝜔)−1B𝐴(𝜔)−1𝐷 = −𝑇 (𝜔)−1 𝐵𝐴(𝜔)−1𝑓.

We can then conclude to the solvability of (C.1) under the formal condition⃦⃦
𝑇 (𝜔)−1𝐵𝐴(𝜔)−1𝐷

⃦⃦
< 1, (C.2)

where 𝑇 (𝜔)−1𝐵𝐴(𝜔)−1𝐷 is seen as an operator of ℒ(𝑀). Of course a sufficient condition for (C.2) is

‖𝐵‖ ‖𝐷‖
⃦⃦
𝑇 (𝜔)−1

⃦⃦ ⃦⃦
𝐴(𝜔)−1

⃦⃦
< 1. (C.3)

If, for a while, we forget about the presence of
⃦⃦
𝐴(𝜔)−1

⃦⃦
, considering the estimate (3.35)(i) (remember that

𝑇 (𝜔)−1 = 𝒮0(𝜔; ∇𝜙), one sees that the condition (C.3) is at least qualitatively very similar to our admissibility
condition (3.5), the norm ‖𝜔0‖L∞ of the vorticity being hidden in the estimate (3.35)(i) which is frequency
independent for real frequencies. However, the presence of

⃦⃦
𝐴(𝜔)−1

⃦⃦
makes the condition (C.3) much less

explicit than (3.5), especially because it is hard to get an explicit upper bound for
⃦⃦
𝐴(𝜔)−1

⃦⃦
. This quantity

does depend on the frequency and may become large if the presence of resonances of the convected Helmholtz
equation (i.e. poles of the resolvent 𝐴(𝜔)−1) that could be close to the real axis. This is one of the reasons that
led us to privilege the approach adopted in this paper.

Acknowledgements. The authors would like to thank Airbus and Association Nationale Recherche et Technologie (ANRT)
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Goldstein et applications en aéronautique. Ph.D. thesis, ENSTA ParisTech (2018).

[9] A. Bensalah, P. Joly and J.-F. Mercier, Well-posedness of a generalized time-harmonic transport equation for acoustics in flow.
Math. Methods Appl. Sci. 41 (2018) 3117–3137.

[10] J.-P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114 (1994) 185–200.

[11] S.E.P. Bergliaffa, K. Hibberd, M. Stone and M. Visser, Wave equation for sound in fluids with vorticity. Phys. D: Nonlinear
Phenom. 191 (2004) 121–136.

[12] D. Blokhintzev, The propagation of sound in an inhomogeneous and moving medium I. J. Acoust. Soc. Am. 18 (1946) 322–328.

[13] A.-S. Bonnet Ben-Dhia, E.-M. Duclairoir, G. Legendre and J.-F. Mercier, Time-harmonic acoustic propagation in the presence
of a shear flow. J. Comput. Appl. Math. 204 (2007) 428–439.

[14] A.-S. Bonnet Ben-Dhia, J.-F. Mercier, F. Millot and S. Pernet, A low-mach number model for time-harmonic acoustics in
arbitrary flows. J. Comput. Appl. Math. 234 (2010) 1868–1875.

[15] A.-S. Bonnet Ben-Dhia, J.-F. Mercier, F. Millot, S. Pernet and E. Peynaud, Time-harmonic acoustic scattering in a complex
flow: a full coupling between acoustics and hydrodynamics. Commun. Comput. Phys. 11 (2012) 555–572.

[16] A.N. Brooks and T.J. Hughes, Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular
emphasis on the incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 32 (1982) 199–259.

[17] F. Casenave, A. Ern and G. Sylvand, Coupled BEM–FEM for the convected Helmholtz equation with non-uniform flow in a
bounded domain. J. Comput. Phys. 257 (2014) 627–644.

[18] J.-Y. Chemin, Perfect Incompressible Fluids. Vol. 14, Oxford University Press (1998).

[19] E.A. Coddington and N. Levinson, Theory of Ordinary Differential Equations. Tata McGraw-Hill Education (1955).

[20] A.J. Cooper, Effect of mean entropy on unsteady disturbance propagation in a slowly varying duct with mean swirling flow.
J. Sound Vib. 291 (2006) 779–801.

[21] A.J. Cooper and N. Peake, Propagation of unsteady disturbances in a slowly varying duct with mean swirling flow. J. Fluid
Mech. 445 (2001) 207–234.
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