In this paper, we investigate a hybridizable discontinuous Galerkin method for second order elliptic equations with Dirac measures. Under assumption that the domain is convex and the mesh is quasi-uniform, a priori error estimate for the error in -norm is proved. By duality argument and Oswald interpolation, a posteriori error estimates for the errors in -norm and -seminorm are also obtained. Finally, numerical examples are provided to validate the theoretical analysis.
Keywords: Hybridizable discontinuous Galerkin method, a priori error estimate, a posteriori error estimate, elliptic equation, Dirac measure
@article{M2AN_2022__56_2_385_0,
author = {Leng, Haitao and Chen, Yanping},
title = {A hybridizable discontinuous {Galerkin} method for second order elliptic equations with {Dirac} delta source},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
pages = {385--406},
year = {2022},
publisher = {EDP-Sciences},
volume = {56},
number = {2},
doi = {10.1051/m2an/2022005},
mrnumber = {4379608},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an/2022005/}
}
TY - JOUR AU - Leng, Haitao AU - Chen, Yanping TI - A hybridizable discontinuous Galerkin method for second order elliptic equations with Dirac delta source JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2022 SP - 385 EP - 406 VL - 56 IS - 2 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2022005/ DO - 10.1051/m2an/2022005 LA - en ID - M2AN_2022__56_2_385_0 ER -
%0 Journal Article %A Leng, Haitao %A Chen, Yanping %T A hybridizable discontinuous Galerkin method for second order elliptic equations with Dirac delta source %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2022 %P 385-406 %V 56 %N 2 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/m2an/2022005/ %R 10.1051/m2an/2022005 %G en %F M2AN_2022__56_2_385_0
Leng, Haitao; Chen, Yanping. A hybridizable discontinuous Galerkin method for second order elliptic equations with Dirac delta source. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 2, pp. 385-406. doi: 10.1051/m2an/2022005
[1] , Sobolev spaces, Academic Press (1975). | MR
[2] , and , A posteriori error estimates for elliptic problems with Dirac delta source terms. Numer. Math. 105 (2006) 193–216. | MR | Zbl | DOI
[3] , and , An adaptive stabilized finite element scheme for a water quality model. Comput. Methods Appl. Mech. Engry. 196 (2007) 2800–2812. | MR | Zbl | DOI
[4] , and , A posteriori error analysis of an HDG method for the Oseen problem. Appl. Numer. Math. 146 (2019) 291–308. | MR | DOI
[5] , and , Analysis of an adaptive HDG method for the Brinkman problem. IMA J. Numer. Anal. 39 (2019) 1502–1528. | MR | DOI
[6] , , and , A priori mesh grading for an elliptic problem with Dirac right-hand side. SIAM J. Numer. Anal. 49 (2011) 992–1005. | MR | Zbl | DOI
[7] , and , A posteriori error estimates for elliptic problems with Dirac measure terms in weighted spaces. ESAIM: M2AN 48 (2014) 1557–1581. | MR | Zbl | Numdam | DOI
[8] , Error bounds for the finite element method. Numer. Math. 16 (1971) 322–333. | MR | Zbl | DOI
[9] and , The mathematical theory of finite element methods. Springer-Verlag, New York (2008). | MR | Zbl | DOI
[10] , The finite element methods for elliptic problems. Stud. Math. Appl. vol. 4, North-Holland, Amsterdam (1978). | MR | Zbl
[11] , estimates for the finite element method for the Dirchlet problem with singular data. Numer. Math. 47 (1985) 627–632. | MR | Zbl | DOI
[12] , Control of an elliptic problem with pointwise state constraints. SIAM J. Control Optim. 24 (1986) 1309–1318. | MR | Zbl | DOI
[13] and , A posteriori error estimates for HDG methods. J. Sci. Comput. 51 (2012) 582–607. | MR | Zbl | DOI
[14] and , A posteriori error analysis for hybridizable discontinuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 51 (2013) 676–693. | MR | Zbl | DOI
[15] , and , Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47 (2009) 1319–1365. | MR | Zbl | DOI
[16] , , , and , Analysis of HDG methods for Stokes flow. Math. Comput. 80 (2011) 723–760. | MR | Zbl | DOI
[17] , and , A posteriori error estimates for HDG method for convection-diffusion equations. IMA J. Numer. Anal. 36 (2016) 437–462. | MR
[18] , , , , and , An HDG method for distributed control of convection diffusion PDEs. J. Comput. Appl. Math. 343 (2018) 643–661. | MR | DOI
[19] , Improve accuarcy by adapted mesh-refinements in the finite element method. Math. Comput. 44 (1985) 321–343. | MR | Zbl | DOI
[20] , , and , A posteriori error estimates in spaces for the Stokes system with Dirac measures. Preprint (2019). | arXiv | MR
[21] , and , An analysis of HDG methods for convection-dominated diffusion problems. ESAIM: M2AN 49 (2015) 225–256. | MR | Zbl | Numdam | DOI
[22] , and , Approximation of elliptic optimal control problems acting on a lower dimensional manifold. SIAM J. Control Optim. 52 (2014) 2008–2035. | MR | Zbl | DOI
[23] , , , , and , A new HDG method for Dirichlet boundary control of convection diffusion PDEs II: low regularity. SIAM J. Numer. Anal. 56 (2018) 2262–2287. | MR | DOI
[24] , Elliptic problems for non-smooth domains. Pitman, Boston (1985). | MR | Zbl
[25] , and , A posteriori error estimates with point sources in fractional Sobolev spaces. Numer. Methods Part. Diff. Equ. 33 (2017) 1018–1042. | MR | DOI
[26] and , Discontinuous Galerkin methods for problems with Dirac delta source. ESAIM: M2AN 46 (2012) 1467–1483. | MR | Zbl | Numdam | DOI
[27] and , A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems. SIAM J. Numer. Anal. 41 (2003) 2374–2399. | MR | Zbl | DOI
[28] , Adaptive HDG methods for the steady-state incompressible Navier-Stokes equations. J. Sci. Comput. 87 (2021) 37. | MR | DOI
[29] and , Adaptive HDG methods for the Brinkman equations with application to optimal control. J. Sci. Comput. 87 (2021) 46. | MR | DOI
[30] , HDG methods for second order elliptic problems. RIMS Kokyuroku 2037 (2017) 61–74.
[31] , A posteriori error estimators for elliptic equations with discontinuous coefficients. Adv. Comput. Math. 16 (2002) 47–75. | MR | Zbl | DOI
[32] and , A superconvergent HDG method for the incompressible Navier-Stokes equations on general polyhedral meshes. IMA J. Numer. Anal. 36 (2016) 1943–1967. | MR | DOI
[33] , Finite element convergence for singular data. Numer. Math. 21 (1973) 317–327. | MR | Zbl | DOI
[34] and , Interior maxumum norm estimates for finite element methods. Math. Comput. 31 (1977) 414–442. | MR | Zbl | DOI
[35] , A posteriori error estimators for convection-diffusion equations. Numer. Math. 80 (1998) 641–663. | MR | Zbl | DOI
Cité par Sources :





