A hybridizable discontinuous Galerkin method for second order elliptic equations with Dirac delta source
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 2, pp. 385-406

In this paper, we investigate a hybridizable discontinuous Galerkin method for second order elliptic equations with Dirac measures. Under assumption that the domain is convex and the mesh is quasi-uniform, a priori error estimate for the error in L 2 -norm is proved. By duality argument and Oswald interpolation, a posteriori error estimates for the errors in L 2 -norm and W 1 , p -seminorm are also obtained. Finally, numerical examples are provided to validate the theoretical analysis.

DOI : 10.1051/m2an/2022005
Classification : 49M25, 65K10, 65M50
Keywords: Hybridizable discontinuous Galerkin method, a priori error estimate, a posteriori error estimate, elliptic equation, Dirac measure
@article{M2AN_2022__56_2_385_0,
     author = {Leng, Haitao and Chen, Yanping},
     title = {A hybridizable discontinuous {Galerkin} method for second order elliptic equations with {Dirac} delta source},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {385--406},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {2},
     doi = {10.1051/m2an/2022005},
     mrnumber = {4379608},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2022005/}
}
TY  - JOUR
AU  - Leng, Haitao
AU  - Chen, Yanping
TI  - A hybridizable discontinuous Galerkin method for second order elliptic equations with Dirac delta source
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2022
SP  - 385
EP  - 406
VL  - 56
IS  - 2
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2022005/
DO  - 10.1051/m2an/2022005
LA  - en
ID  - M2AN_2022__56_2_385_0
ER  - 
%0 Journal Article
%A Leng, Haitao
%A Chen, Yanping
%T A hybridizable discontinuous Galerkin method for second order elliptic equations with Dirac delta source
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2022
%P 385-406
%V 56
%N 2
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2022005/
%R 10.1051/m2an/2022005
%G en
%F M2AN_2022__56_2_385_0
Leng, Haitao; Chen, Yanping. A hybridizable discontinuous Galerkin method for second order elliptic equations with Dirac delta source. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 2, pp. 385-406. doi: 10.1051/m2an/2022005

[1] R. A. Adams, Sobolev spaces, Academic Press (1975). | MR

[2] R. Araya, E. Behrens and R. Rodríguez, A posteriori error estimates for elliptic problems with Dirac delta source terms. Numer. Math. 105 (2006) 193–216. | MR | Zbl | DOI

[3] R. Araya, E. Behrens and R. Rodríguez, An adaptive stabilized finite element scheme for a water quality model. Comput. Methods Appl. Mech. Engry. 196 (2007) 2800–2812. | MR | Zbl | DOI

[4] R. Araya, M. Solano and P. Vega, A posteriori error analysis of an HDG method for the Oseen problem. Appl. Numer. Math. 146 (2019) 291–308. | MR | DOI

[5] R. Araya, M. Solano and P. Vega, Analysis of an adaptive HDG method for the Brinkman problem. IMA J. Numer. Anal. 39 (2019) 1502–1528. | MR | DOI

[6] T. Apel, O. Benedix, D. Sirch and B. Vexler, A priori mesh grading for an elliptic problem with Dirac right-hand side. SIAM J. Numer. Anal. 49 (2011) 992–1005. | MR | Zbl | DOI

[7] J. P. Agnelli, E. M. Garau and P. Morin, A posteriori error estimates for elliptic problems with Dirac measure terms in weighted spaces. ESAIM: M2AN 48 (2014) 1557–1581. | MR | Zbl | Numdam | DOI

[8] I. Babuška, Error bounds for the finite element method. Numer. Math. 16 (1971) 322–333. | MR | Zbl | DOI

[9] S. C. Brenner and L. R. Scott, The mathematical theory of finite element methods. Springer-Verlag, New York (2008). | MR | Zbl | DOI

[10] P. G. Ciarlet, The finite element methods for elliptic problems. Stud. Math. Appl. vol. 4, North-Holland, Amsterdam (1978). | MR | Zbl

[11] E. Casas, L 2 estimates for the finite element method for the Dirchlet problem with singular data. Numer. Math. 47 (1985) 627–632. | MR | Zbl | DOI

[12] E. Casas, Control of an elliptic problem with pointwise state constraints. SIAM J. Control Optim. 24 (1986) 1309–1318. | MR | Zbl | DOI

[13] B. Cockburn and W. Zhang, A posteriori error estimates for HDG methods. J. Sci. Comput. 51 (2012) 582–607. | MR | Zbl | DOI

[14] B. Cockburn and W. Zhang, A posteriori error analysis for hybridizable discontinuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 51 (2013) 676–693. | MR | Zbl | DOI

[15] B. Cockburn, J. Gopalakrishnan and R. Lazarov, Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47 (2009) 1319–1365. | MR | Zbl | DOI

[16] B. Cockburn, J. Gopalakrishnan, N. C. Nguyen, J. Peraire and F.-J. Sayas, Analysis of HDG methods for Stokes flow. Math. Comput. 80 (2011) 723–760. | MR | Zbl | DOI

[17] H. Chen, J. Li and W. Qiu, A posteriori error estimates for HDG method for convection-diffusion equations. IMA J. Numer. Anal. 36 (2016) 437–462. | MR

[18] G. Chen, W. Hu, J. Shen, J. R. Singler, Y. Zhang and X. Zheng, An HDG method for distributed control of convection diffusion PDEs. J. Comput. Appl. Math. 343 (2018) 643–661. | MR | DOI

[19] K. Eriksson, Improve accuarcy by adapted mesh-refinements in the finite element method. Math. Comput. 44 (1985) 321–343. | MR | Zbl | DOI

[20] F. Fuica, F. Lepe, E. Otárola and D. Quero, A posteriori error estimates in W 1 , p × L p spaces for the Stokes system with Dirac measures. Preprint (2019). | arXiv | MR

[21] G. Fu, W. Qiu and W. Zhang, An analysis of HDG methods for convection-dominated diffusion problems. ESAIM: M2AN 49 (2015) 225–256. | MR | Zbl | Numdam | DOI

[22] W. Gong, G. Wang and N. Yan, Approximation of elliptic optimal control problems acting on a lower dimensional manifold. SIAM J. Control Optim. 52 (2014) 2008–2035. | MR | Zbl | DOI

[23] W. Gong, W. Hu, M. Mateos, J. R. Singler, X. Zhang and Y. Zhang, A new HDG method for Dirichlet boundary control of convection diffusion PDEs II: low regularity. SIAM J. Numer. Anal. 56 (2018) 2262–2287. | MR | DOI

[24] P. Grisvard, Elliptic problems for non-smooth domains. Pitman, Boston (1985). | MR | Zbl

[25] F. D. Gaspoz, P. Morin and A. Veeser, A posteriori error estimates with point sources in fractional Sobolev spaces. Numer. Methods Part. Diff. Equ. 33 (2017) 1018–1042. | MR | DOI

[26] P. Houston and T. P. Wihler, Discontinuous Galerkin methods for problems with Dirac delta source. ESAIM: M2AN 46 (2012) 1467–1483. | MR | Zbl | Numdam | DOI

[27] O. A. Karakashian and F. Pascal, A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems. SIAM J. Numer. Anal. 41 (2003) 2374–2399. | MR | Zbl | DOI

[28] H. Leng, Adaptive HDG methods for the steady-state incompressible Navier-Stokes equations. J. Sci. Comput. 87 (2021) 37. | MR | DOI

[29] H. Leng and H. Chen, Adaptive HDG methods for the Brinkman equations with application to optimal control. J. Sci. Comput. 87 (2021) 46. | MR | DOI

[30] I. Oikawa, HDG methods for second order elliptic problems. RIMS Kokyuroku 2037 (2017) 61–74.

[31] M. Petzoldt, A posteriori error estimators for elliptic equations with discontinuous coefficients. Adv. Comput. Math. 16 (2002) 47–75. | MR | Zbl | DOI

[32] W. Qiu and K. Shi, A superconvergent HDG method for the incompressible Navier-Stokes equations on general polyhedral meshes. IMA J. Numer. Anal. 36 (2016) 1943–1967. | MR | DOI

[33] R. Scott, Finite element convergence for singular data. Numer. Math. 21 (1973) 317–327. | MR | Zbl | DOI

[34] A. H. Schatz and L. B. Wahlbin, Interior maxumum norm estimates for finite element methods. Math. Comput. 31 (1977) 414–442. | MR | Zbl | DOI

[35] R. Verfürth, A posteriori error estimators for convection-diffusion equations. Numer. Math. 80 (1998) 641–663. | MR | Zbl | DOI

Cité par Sources :